slab: setup allocators earlier in the boot sequence
[safe/jmp/linux-2.6] / mm / slub.c
index 0d861c3..c1815a6 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -9,6 +9,7 @@
  */
 
 #include <linux/mm.h>
+#include <linux/swap.h> /* struct reclaim_state */
 #include <linux/module.h>
 #include <linux/bit_spinlock.h>
 #include <linux/interrupt.h>
@@ -16,6 +17,7 @@
 #include <linux/slab.h>
 #include <linux/proc_fs.h>
 #include <linux/seq_file.h>
+#include <linux/kmemtrace.h>
 #include <linux/cpu.h>
 #include <linux/cpuset.h>
 #include <linux/mempolicy.h>
@@ -374,14 +376,8 @@ static struct track *get_track(struct kmem_cache *s, void *object,
 static void set_track(struct kmem_cache *s, void *object,
                        enum track_item alloc, unsigned long addr)
 {
-       struct track *p;
+       struct track *p = get_track(s, object, alloc);
 
-       if (s->offset)
-               p = object + s->offset + sizeof(void *);
-       else
-               p = object + s->inuse;
-
-       p += alloc;
        if (addr) {
                p->addr = addr;
                p->cpu = smp_processor_id();
@@ -1175,6 +1171,8 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
 
        __ClearPageSlab(page);
        reset_page_mapcount(page);
+       if (current->reclaim_state)
+               current->reclaim_state->reclaimed_slab += pages;
        __free_pages(page, order);
 }
 
@@ -1335,7 +1333,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
                n = get_node(s, zone_to_nid(zone));
 
                if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
-                               n->nr_partial > n->min_partial) {
+                               n->nr_partial > s->min_partial) {
                        page = get_partial_node(n);
                        if (page)
                                return page;
@@ -1387,7 +1385,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
                slab_unlock(page);
        } else {
                stat(c, DEACTIVATE_EMPTY);
-               if (n->nr_partial < n->min_partial) {
+               if (n->nr_partial < s->min_partial) {
                        /*
                         * Adding an empty slab to the partial slabs in order
                         * to avoid page allocator overhead. This slab needs
@@ -1596,6 +1594,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
        unsigned long flags;
        unsigned int objsize;
 
+       lockdep_trace_alloc(gfpflags);
        might_sleep_if(gfpflags & __GFP_WAIT);
 
        if (should_failslab(s->objsize, gfpflags))
@@ -1623,18 +1622,45 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
 
 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 {
-       return slab_alloc(s, gfpflags, -1, _RET_IP_);
+       void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
+
+       trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
+
+       return ret;
 }
 EXPORT_SYMBOL(kmem_cache_alloc);
 
+#ifdef CONFIG_KMEMTRACE
+void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
+{
+       return slab_alloc(s, gfpflags, -1, _RET_IP_);
+}
+EXPORT_SYMBOL(kmem_cache_alloc_notrace);
+#endif
+
 #ifdef CONFIG_NUMA
 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
 {
-       return slab_alloc(s, gfpflags, node, _RET_IP_);
+       void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
+
+       trace_kmem_cache_alloc_node(_RET_IP_, ret,
+                                   s->objsize, s->size, gfpflags, node);
+
+       return ret;
 }
 EXPORT_SYMBOL(kmem_cache_alloc_node);
 #endif
 
+#ifdef CONFIG_KMEMTRACE
+void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
+                                   gfp_t gfpflags,
+                                   int node)
+{
+       return slab_alloc(s, gfpflags, node, _RET_IP_);
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
+#endif
+
 /*
  * Slow patch handling. This may still be called frequently since objects
  * have a longer lifetime than the cpu slabs in most processing loads.
@@ -1724,7 +1750,7 @@ static __always_inline void slab_free(struct kmem_cache *s,
        c = get_cpu_slab(s, smp_processor_id());
        debug_check_no_locks_freed(object, c->objsize);
        if (!(s->flags & SLAB_DEBUG_OBJECTS))
-               debug_check_no_obj_freed(object, s->objsize);
+               debug_check_no_obj_freed(object, c->objsize);
        if (likely(page == c->page && c->node >= 0)) {
                object[c->offset] = c->freelist;
                c->freelist = object;
@@ -1742,6 +1768,8 @@ void kmem_cache_free(struct kmem_cache *s, void *x)
        page = virt_to_head_page(x);
 
        slab_free(s, page, x, _RET_IP_);
+
+       trace_kmem_cache_free(_RET_IP_, x);
 }
 EXPORT_SYMBOL(kmem_cache_free);
 
@@ -1844,6 +1872,7 @@ static inline int calculate_order(int size)
        int order;
        int min_objects;
        int fraction;
+       int max_objects;
 
        /*
         * Attempt to find best configuration for a slab. This
@@ -1856,6 +1885,9 @@ static inline int calculate_order(int size)
        min_objects = slub_min_objects;
        if (!min_objects)
                min_objects = 4 * (fls(nr_cpu_ids) + 1);
+       max_objects = (PAGE_SIZE << slub_max_order)/size;
+       min_objects = min(min_objects, max_objects);
+
        while (min_objects > 1) {
                fraction = 16;
                while (fraction >= 4) {
@@ -1865,7 +1897,7 @@ static inline int calculate_order(int size)
                                return order;
                        fraction /= 2;
                }
-               min_objects /= 2;
+               min_objects --;
        }
 
        /*
@@ -1880,7 +1912,7 @@ static inline int calculate_order(int size)
         * Doh this slab cannot be placed using slub_max_order.
         */
        order = slab_order(size, 1, MAX_ORDER, 1);
-       if (order <= MAX_ORDER)
+       if (order < MAX_ORDER)
                return order;
        return -ENOSYS;
 }
@@ -1928,17 +1960,6 @@ static void
 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
 {
        n->nr_partial = 0;
-
-       /*
-        * The larger the object size is, the more pages we want on the partial
-        * list to avoid pounding the page allocator excessively.
-        */
-       n->min_partial = ilog2(s->size);
-       if (n->min_partial < MIN_PARTIAL)
-               n->min_partial = MIN_PARTIAL;
-       else if (n->min_partial > MAX_PARTIAL)
-               n->min_partial = MAX_PARTIAL;
-
        spin_lock_init(&n->list_lock);
        INIT_LIST_HEAD(&n->partial);
 #ifdef CONFIG_SLUB_DEBUG
@@ -1970,7 +1991,7 @@ static DEFINE_PER_CPU(struct kmem_cache_cpu,
                                kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
 
 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
-static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
+static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
 
 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
                                                        int cpu, gfp_t flags)
@@ -1996,7 +2017,7 @@ static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
 {
        if (c < per_cpu(kmem_cache_cpu, cpu) ||
-                       c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
+                       c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
                kfree(c);
                return;
        }
@@ -2045,13 +2066,13 @@ static void init_alloc_cpu_cpu(int cpu)
 {
        int i;
 
-       if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
+       if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
                return;
 
        for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
                free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
 
-       cpu_set(cpu, kmem_cach_cpu_free_init_once);
+       cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
 }
 
 static void __init init_alloc_cpu(void)
@@ -2181,6 +2202,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
 }
 #endif
 
+static void set_min_partial(struct kmem_cache *s, unsigned long min)
+{
+       if (min < MIN_PARTIAL)
+               min = MIN_PARTIAL;
+       else if (min > MAX_PARTIAL)
+               min = MAX_PARTIAL;
+       s->min_partial = min;
+}
+
 /*
  * calculate_sizes() determines the order and the distribution of data within
  * a slab object.
@@ -2254,7 +2284,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
                 * Add some empty padding so that we can catch
                 * overwrites from earlier objects rather than let
                 * tracking information or the free pointer be
-                * corrupted if an user writes before the start
+                * corrupted if a user writes before the start
                 * of the object.
                 */
                size += sizeof(void *);
@@ -2319,6 +2349,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
        if (!calculate_sizes(s, -1))
                goto error;
 
+       /*
+        * The larger the object size is, the more pages we want on the partial
+        * list to avoid pounding the page allocator excessively.
+        */
+       set_min_partial(s, ilog2(s->size));
        s->refcount = 1;
 #ifdef CONFIG_NUMA
        s->remote_node_defrag_ratio = 1000;
@@ -2475,7 +2510,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
  *             Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
 EXPORT_SYMBOL(kmalloc_caches);
 
 static int __init setup_slub_min_order(char *str)
@@ -2490,6 +2525,7 @@ __setup("slub_min_order=", setup_slub_min_order);
 static int __init setup_slub_max_order(char *str)
 {
        get_option(&str, &slub_max_order);
+       slub_max_order = min(slub_max_order, MAX_ORDER - 1);
 
        return 1;
 }
@@ -2521,13 +2557,16 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
        if (gfp_flags & SLUB_DMA)
                flags = SLAB_CACHE_DMA;
 
-       down_write(&slub_lock);
+       /*
+        * This function is called with IRQs disabled during early-boot on
+        * single CPU so there's no need to take slub_lock here.
+        */
        if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
                                                                flags, NULL))
                goto panic;
 
        list_add(&s->list, &slab_caches);
-       up_write(&slub_lock);
+
        if (sysfs_slab_add(s))
                goto panic;
        return s;
@@ -2537,7 +2576,7 @@ panic:
 }
 
 #ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
+static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
 
 static void sysfs_add_func(struct work_struct *w)
 {
@@ -2657,8 +2696,9 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags)
 void *__kmalloc(size_t size, gfp_t flags)
 {
        struct kmem_cache *s;
+       void *ret;
 
-       if (unlikely(size > PAGE_SIZE))
+       if (unlikely(size > SLUB_MAX_SIZE))
                return kmalloc_large(size, flags);
 
        s = get_slab(size, flags);
@@ -2666,7 +2706,11 @@ void *__kmalloc(size_t size, gfp_t flags)
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
-       return slab_alloc(s, flags, -1, _RET_IP_);
+       ret = slab_alloc(s, flags, -1, _RET_IP_);
+
+       trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
+
+       return ret;
 }
 EXPORT_SYMBOL(__kmalloc);
 
@@ -2685,16 +2729,28 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 void *__kmalloc_node(size_t size, gfp_t flags, int node)
 {
        struct kmem_cache *s;
+       void *ret;
+
+       if (unlikely(size > SLUB_MAX_SIZE)) {
+               ret = kmalloc_large_node(size, flags, node);
 
-       if (unlikely(size > PAGE_SIZE))
-               return kmalloc_large_node(size, flags, node);
+               trace_kmalloc_node(_RET_IP_, ret,
+                                  size, PAGE_SIZE << get_order(size),
+                                  flags, node);
+
+               return ret;
+       }
 
        s = get_slab(size, flags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
-       return slab_alloc(s, flags, node, _RET_IP_);
+       ret = slab_alloc(s, flags, node, _RET_IP_);
+
+       trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
+
+       return ret;
 }
 EXPORT_SYMBOL(__kmalloc_node);
 #endif
@@ -2736,12 +2792,15 @@ size_t ksize(const void *object)
         */
        return s->size;
 }
+EXPORT_SYMBOL(ksize);
 
 void kfree(const void *x)
 {
        struct page *page;
        void *object = (void *)x;
 
+       trace_kfree(_RET_IP_, x);
+
        if (unlikely(ZERO_OR_NULL_PTR(x)))
                return;
 
@@ -2965,7 +3024,7 @@ void __init kmem_cache_init(void)
         * kmem_cache_open for slab_state == DOWN.
         */
        create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
-               sizeof(struct kmem_cache_node), GFP_KERNEL);
+               sizeof(struct kmem_cache_node), GFP_NOWAIT);
        kmalloc_caches[0].refcount = -1;
        caches++;
 
@@ -2978,16 +3037,16 @@ void __init kmem_cache_init(void)
        /* Caches that are not of the two-to-the-power-of size */
        if (KMALLOC_MIN_SIZE <= 64) {
                create_kmalloc_cache(&kmalloc_caches[1],
-                               "kmalloc-96", 96, GFP_KERNEL);
+                               "kmalloc-96", 96, GFP_NOWAIT);
                caches++;
                create_kmalloc_cache(&kmalloc_caches[2],
-                               "kmalloc-192", 192, GFP_KERNEL);
+                               "kmalloc-192", 192, GFP_NOWAIT);
                caches++;
        }
 
-       for (i = KMALLOC_SHIFT_LOW; i <PAGE_SHIFT; i++) {
+       for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
                create_kmalloc_cache(&kmalloc_caches[i],
-                       "kmalloc", 1 << i, GFP_KERNEL);
+                       "kmalloc", 1 << i, GFP_NOWAIT);
                caches++;
        }
 
@@ -3022,9 +3081,9 @@ void __init kmem_cache_init(void)
        slab_state = UP;
 
        /* Provide the correct kmalloc names now that the caches are up */
-       for (i = KMALLOC_SHIFT_LOW; i <PAGE_SHIFT; i++)
+       for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
                kmalloc_caches[i]. name =
-                       kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
+                       kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
 
 #ifdef CONFIG_SMP
        register_cpu_notifier(&slab_notifier);
@@ -3221,8 +3280,9 @@ static struct notifier_block __cpuinitdata slab_notifier = {
 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
 {
        struct kmem_cache *s;
+       void *ret;
 
-       if (unlikely(size > PAGE_SIZE))
+       if (unlikely(size > SLUB_MAX_SIZE))
                return kmalloc_large(size, gfpflags);
 
        s = get_slab(size, gfpflags);
@@ -3230,15 +3290,21 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
-       return slab_alloc(s, gfpflags, -1, caller);
+       ret = slab_alloc(s, gfpflags, -1, caller);
+
+       /* Honor the call site pointer we recieved. */
+       trace_kmalloc(caller, ret, size, s->size, gfpflags);
+
+       return ret;
 }
 
 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
                                        int node, unsigned long caller)
 {
        struct kmem_cache *s;
+       void *ret;
 
-       if (unlikely(size > PAGE_SIZE))
+       if (unlikely(size > SLUB_MAX_SIZE))
                return kmalloc_large_node(size, gfpflags, node);
 
        s = get_slab(size, gfpflags);
@@ -3246,7 +3312,12 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
 
-       return slab_alloc(s, gfpflags, node, caller);
+       ret = slab_alloc(s, gfpflags, node, caller);
+
+       /* Honor the call site pointer we recieved. */
+       trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
+
+       return ret;
 }
 
 #ifdef CONFIG_SLUB_DEBUG
@@ -3451,7 +3522,7 @@ struct location {
        long max_time;
        long min_pid;
        long max_pid;
-       cpumask_t cpus;
+       DECLARE_BITMAP(cpus, NR_CPUS);
        nodemask_t nodes;
 };
 
@@ -3526,7 +3597,8 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
                                if (track->pid > l->max_pid)
                                        l->max_pid = track->pid;
 
-                               cpu_set(track->cpu, l->cpus);
+                               cpumask_set_cpu(track->cpu,
+                                               to_cpumask(l->cpus));
                        }
                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
                        return 1;
@@ -3556,8 +3628,8 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
        l->max_time = age;
        l->min_pid = track->pid;
        l->max_pid = track->pid;
-       cpus_clear(l->cpus);
-       cpu_set(track->cpu, l->cpus);
+       cpumask_clear(to_cpumask(l->cpus));
+       cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
        nodes_clear(l->nodes);
        node_set(page_to_nid(virt_to_page(track)), l->nodes);
        return 1;
@@ -3638,11 +3710,12 @@ static int list_locations(struct kmem_cache *s, char *buf,
                        len += sprintf(buf + len, " pid=%ld",
                                l->min_pid);
 
-               if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
+               if (num_online_cpus() > 1 &&
+                               !cpumask_empty(to_cpumask(l->cpus)) &&
                                len < PAGE_SIZE - 60) {
                        len += sprintf(buf + len, " cpus=");
                        len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
-                                       &l->cpus);
+                                                to_cpumask(l->cpus));
                }
 
                if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
@@ -3833,6 +3906,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf)
 }
 SLAB_ATTR(order);
 
+static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
+{
+       return sprintf(buf, "%lu\n", s->min_partial);
+}
+
+static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
+                                size_t length)
+{
+       unsigned long min;
+       int err;
+
+       err = strict_strtoul(buf, 10, &min);
+       if (err)
+               return err;
+
+       set_min_partial(s, min);
+       return length;
+}
+SLAB_ATTR(min_partial);
+
 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 {
        if (s->ctor) {
@@ -4148,6 +4241,7 @@ static struct attribute *slab_attrs[] = {
        &object_size_attr.attr,
        &objs_per_slab_attr.attr,
        &order_attr.attr,
+       &min_partial_attr.attr,
        &objects_attr.attr,
        &objects_partial_attr.attr,
        &total_objects_attr.attr,