intelfb: fixup p calculation
[safe/jmp/linux-2.6] / mm / slab.c
index 4d5c4b9..f055c14 100644 (file)
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -50,7 +50,7 @@
  * The head array is strictly LIFO and should improve the cache hit rates.
  * On SMP, it additionally reduces the spinlock operations.
  *
- * The c_cpuarray may not be read with enabled local interrupts - 
+ * The c_cpuarray may not be read with enabled local interrupts -
  * it's changed with a smp_call_function().
  *
  * SMP synchronization:
@@ -94,6 +94,7 @@
 #include       <linux/interrupt.h>
 #include       <linux/init.h>
 #include       <linux/compiler.h>
+#include       <linux/cpuset.h>
 #include       <linux/seq_file.h>
 #include       <linux/notifier.h>
 #include       <linux/kallsyms.h>
 #if DEBUG
 # define CREATE_MASK   (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
                         SLAB_POISON | SLAB_HWCACHE_ALIGN | \
-                        SLAB_NO_REAP | SLAB_CACHE_DMA | \
+                        SLAB_CACHE_DMA | \
                         SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
-                        SLAB_DESTROY_BY_RCU)
+                        SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
 #else
-# define CREATE_MASK   (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
+# define CREATE_MASK   (SLAB_HWCACHE_ALIGN | \
                         SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
-                        SLAB_DESTROY_BY_RCU)
+                        SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
 #endif
 
 /*
 typedef unsigned int kmem_bufctl_t;
 #define BUFCTL_END     (((kmem_bufctl_t)(~0U))-0)
 #define BUFCTL_FREE    (((kmem_bufctl_t)(~0U))-1)
-#define        SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-2)
+#define        BUFCTL_ACTIVE   (((kmem_bufctl_t)(~0U))-2)
+#define        SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-3)
 
 /* Max number of objs-per-slab for caches which use off-slab slabs.
  * Needed to avoid a possible looping condition in cache_grow().
@@ -266,16 +268,17 @@ struct array_cache {
        unsigned int batchcount;
        unsigned int touched;
        spinlock_t lock;
-       void *entry[0];         /*
-                                * Must have this definition in here for the proper
-                                * alignment of array_cache. Also simplifies accessing
-                                * the entries.
-                                * [0] is for gcc 2.95. It should really be [].
-                                */
+       void *entry[0]; /*
+                        * Must have this definition in here for the proper
+                        * alignment of array_cache. Also simplifies accessing
+                        * the entries.
+                        * [0] is for gcc 2.95. It should really be [].
+                        */
 };
 
-/* bootstrap: The caches do not work without cpuarrays anymore,
- * but the cpuarrays are allocated from the generic caches...
+/*
+ * bootstrap: The caches do not work without cpuarrays anymore, but the
+ * cpuarrays are allocated from the generic caches...
  */
 #define BOOT_CPUCACHE_ENTRIES  1
 struct arraycache_init {
@@ -291,13 +294,13 @@ struct kmem_list3 {
        struct list_head slabs_full;
        struct list_head slabs_free;
        unsigned long free_objects;
-       unsigned long next_reap;
-       int free_touched;
        unsigned int free_limit;
        unsigned int colour_next;       /* Per-node cache coloring */
        spinlock_t list_lock;
        struct array_cache *shared;     /* shared per node */
        struct array_cache **alien;     /* on other nodes */
+       unsigned long next_reap;        /* updated without locking */
+       int free_touched;               /* updated without locking */
 };
 
 /*
@@ -310,10 +313,8 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 #define        SIZE_L3 (1 + MAX_NUMNODES)
 
 /*
- * This function must be completely optimized away if
- * a constant is passed to it. Mostly the same as
- * what is in linux/slab.h except it returns an
- * index.
+ * This function must be completely optimized away if a constant is passed to
+ * it.  Mostly the same as what is in linux/slab.h except it returns an index.
  */
 static __always_inline int index_of(const size_t size)
 {
@@ -351,14 +352,14 @@ static void kmem_list3_init(struct kmem_list3 *parent)
        parent->free_touched = 0;
 }
 
-#define MAKE_LIST(cachep, listp, slab, nodeid) \
-       do {    \
-               INIT_LIST_HEAD(listp);          \
-               list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
+#define MAKE_LIST(cachep, listp, slab, nodeid)                         \
+       do {                                                            \
+               INIT_LIST_HEAD(listp);                                  \
+               list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
        } while (0)
 
-#define        MAKE_ALL_LISTS(cachep, ptr, nodeid)                     \
-       do {                                    \
+#define        MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
+       do {                                                            \
        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
@@ -373,28 +374,30 @@ static void kmem_list3_init(struct kmem_list3 *parent)
 struct kmem_cache {
 /* 1) per-cpu data, touched during every alloc/free */
        struct array_cache *array[NR_CPUS];
+/* 2) Cache tunables. Protected by cache_chain_mutex */
        unsigned int batchcount;
        unsigned int limit;
        unsigned int shared;
+
        unsigned int buffer_size;
-/* 2) touched by every alloc & free from the backend */
+/* 3) touched by every alloc & free from the backend */
        struct kmem_list3 *nodelists[MAX_NUMNODES];
-       unsigned int flags;     /* constant flags */
-       unsigned int num;       /* # of objs per slab */
-       spinlock_t spinlock;
 
-/* 3) cache_grow/shrink */
+       unsigned int flags;             /* constant flags */
+       unsigned int num;               /* # of objs per slab */
+
+/* 4) cache_grow/shrink */
        /* order of pgs per slab (2^n) */
        unsigned int gfporder;
 
        /* force GFP flags, e.g. GFP_DMA */
        gfp_t gfpflags;
 
-       size_t colour;          /* cache colouring range */
+       size_t colour;                  /* cache colouring range */
        unsigned int colour_off;        /* colour offset */
        struct kmem_cache *slabp_cache;
        unsigned int slab_size;
-       unsigned int dflags;    /* dynamic flags */
+       unsigned int dflags;            /* dynamic flags */
 
        /* constructor func */
        void (*ctor) (void *, struct kmem_cache *, unsigned long);
@@ -402,11 +405,11 @@ struct kmem_cache {
        /* de-constructor func */
        void (*dtor) (void *, struct kmem_cache *, unsigned long);
 
-/* 4) cache creation/removal */
+/* 5) cache creation/removal */
        const char *name;
        struct list_head next;
 
-/* 5) statistics */
+/* 6) statistics */
 #if STATS
        unsigned long num_active;
        unsigned long num_allocations;
@@ -438,8 +441,9 @@ struct kmem_cache {
 #define        OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 
 #define BATCHREFILL_LIMIT      16
-/* Optimization question: fewer reaps means less 
- * probability for unnessary cpucache drain/refill cycles.
+/*
+ * Optimization question: fewer reaps means less probability for unnessary
+ * cpucache drain/refill cycles.
  *
  * OTOH the cpuarrays can contain lots of objects,
  * which could lock up otherwise freeable slabs.
@@ -453,17 +457,19 @@ struct kmem_cache {
 #define        STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 #define        STATS_INC_GROWN(x)      ((x)->grown++)
 #define        STATS_INC_REAPED(x)     ((x)->reaped++)
-#define        STATS_SET_HIGH(x)       do { if ((x)->num_active > (x)->high_mark) \
-                                       (x)->high_mark = (x)->num_active; \
-                               } while (0)
+#define        STATS_SET_HIGH(x)                                               \
+       do {                                                            \
+               if ((x)->num_active > (x)->high_mark)                   \
+                       (x)->high_mark = (x)->num_active;               \
+       } while (0)
 #define        STATS_INC_ERR(x)        ((x)->errors++)
 #define        STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 #define        STATS_INC_NODEFREES(x)  ((x)->node_frees++)
-#define        STATS_SET_FREEABLE(x, i) \
-                               do { if ((x)->max_freeable < i) \
-                                       (x)->max_freeable = i; \
-                               } while (0)
-
+#define        STATS_SET_FREEABLE(x, i)                                        \
+       do {                                                            \
+               if ((x)->max_freeable < i)                              \
+                       (x)->max_freeable = i;                          \
+       } while (0)
 #define STATS_INC_ALLOCHIT(x)  atomic_inc(&(x)->allochit)
 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
 #define STATS_INC_FREEHIT(x)   atomic_inc(&(x)->freehit)
@@ -478,9 +484,7 @@ struct kmem_cache {
 #define        STATS_INC_ERR(x)        do { } while (0)
 #define        STATS_INC_NODEALLOCS(x) do { } while (0)
 #define        STATS_INC_NODEFREES(x)  do { } while (0)
-#define        STATS_SET_FREEABLE(x, i) \
-                               do { } while (0)
-
+#define        STATS_SET_FREEABLE(x, i) do { } while (0)
 #define STATS_INC_ALLOCHIT(x)  do { } while (0)
 #define STATS_INC_ALLOCMISS(x) do { } while (0)
 #define STATS_INC_FREEHIT(x)   do { } while (0)
@@ -488,7 +492,8 @@ struct kmem_cache {
 #endif
 
 #if DEBUG
-/* Magic nums for obj red zoning.
+/*
+ * Magic nums for obj red zoning.
  * Placed in the first word before and the first word after an obj.
  */
 #define        RED_INACTIVE    0x5A2CF071UL    /* when obj is inactive */
@@ -499,7 +504,8 @@ struct kmem_cache {
 #define POISON_FREE    0x6b    /* for use-after-free poisoning */
 #define        POISON_END      0xa5    /* end-byte of poisoning */
 
-/* memory layout of objects:
+/*
+ * memory layout of objects:
  * 0           : objp
  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  *             the end of an object is aligned with the end of the real
@@ -508,7 +514,8 @@ struct kmem_cache {
  *             redzone word.
  * cachep->obj_offset: The real object.
  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
+ * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
+ *                                     [BYTES_PER_WORD long]
  */
 static int obj_offset(struct kmem_cache *cachep)
 {
@@ -552,8 +559,8 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 #endif
 
 /*
- * Maximum size of an obj (in 2^order pages)
- * and absolute limit for the gfp order.
+ * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
+ * order.
  */
 #if defined(CONFIG_LARGE_ALLOCS)
 #define        MAX_OBJ_ORDER   13      /* up to 32Mb */
@@ -573,9 +580,10 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 #define        BREAK_GFP_ORDER_LO      0
 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 
-/* Functions for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
+/*
+ * Functions for storing/retrieving the cachep and or slab from the page
+ * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
+ * these are used to find the cache which an obj belongs to.
  */
 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 {
@@ -584,6 +592,8 @@ static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 
 static inline struct kmem_cache *page_get_cache(struct page *page)
 {
+       if (unlikely(PageCompound(page)))
+               page = (struct page *)page_private(page);
        return (struct kmem_cache *)page->lru.next;
 }
 
@@ -594,6 +604,8 @@ static inline void page_set_slab(struct page *page, struct slab *slab)
 
 static inline struct slab *page_get_slab(struct page *page)
 {
+       if (unlikely(PageCompound(page)))
+               page = (struct page *)page_private(page);
        return (struct slab *)page->lru.prev;
 }
 
@@ -621,7 +633,9 @@ static inline unsigned int obj_to_index(struct kmem_cache *cache,
        return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
 }
 
-/* These are the default caches for kmalloc. Custom caches can have other sizes. */
+/*
+ * These are the default caches for kmalloc. Custom caches can have other sizes.
+ */
 struct cache_sizes malloc_sizes[] = {
 #define CACHE(x) { .cs_size = (x) },
 #include <linux/kmalloc_sizes.h>
@@ -654,8 +668,6 @@ static struct kmem_cache cache_cache = {
        .limit = BOOT_CPUCACHE_ENTRIES,
        .shared = 1,
        .buffer_size = sizeof(struct kmem_cache),
-       .flags = SLAB_NO_REAP,
-       .spinlock = SPIN_LOCK_UNLOCKED,
        .name = "kmem_cache",
 #if DEBUG
        .obj_size = sizeof(struct kmem_cache),
@@ -667,8 +679,8 @@ static DEFINE_MUTEX(cache_chain_mutex);
 static struct list_head cache_chain;
 
 /*
- * vm_enough_memory() looks at this to determine how many
- * slab-allocated pages are possibly freeable under pressure
+ * vm_enough_memory() looks at this to determine how many slab-allocated pages
+ * are possibly freeable under pressure
  *
  * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  */
@@ -687,7 +699,8 @@ static enum {
 
 static DEFINE_PER_CPU(struct work_struct, reap_work);
 
-static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+                       int node);
 static void enable_cpucache(struct kmem_cache *cachep);
 static void cache_reap(void *unused);
 static int __node_shrink(struct kmem_cache *cachep, int node);
@@ -697,7 +710,8 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
        return cachep->array[smp_processor_id()];
 }
 
-static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
+static inline struct kmem_cache *__find_general_cachep(size_t size,
+                                                       gfp_t gfpflags)
 {
        struct cache_sizes *csizep = malloc_sizes;
 
@@ -732,8 +746,9 @@ static size_t slab_mgmt_size(size_t nr_objs, size_t align)
        return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 }
 
-/* Calculate the number of objects and left-over bytes for a given
-   buffer size. */
+/*
+ * Calculate the number of objects and left-over bytes for a given buffer size.
+ */
 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
                           size_t align, int flags, size_t *left_over,
                           unsigned int *num)
@@ -794,7 +809,8 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 
 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
 
-static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
+static void __slab_error(const char *function, struct kmem_cache *cachep,
+                       char *msg)
 {
        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
               function, cachep->name, msg);
@@ -816,7 +832,7 @@ static void init_reap_node(int cpu)
 
        node = next_node(cpu_to_node(cpu), node_online_map);
        if (node == MAX_NUMNODES)
-               node = 0;
+               node = first_node(node_online_map);
 
        __get_cpu_var(reap_node) = node;
 }
@@ -882,8 +898,33 @@ static struct array_cache *alloc_arraycache(int node, int entries,
        return nc;
 }
 
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+               struct array_cache *from, unsigned int max)
+{
+       /* Figure out how many entries to transfer */
+       int nr = min(min(from->avail, max), to->limit - to->avail);
+
+       if (!nr)
+               return 0;
+
+       memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+                       sizeof(void *) *nr);
+
+       from->avail -= nr;
+       to->avail += nr;
+       to->touched = 1;
+       return nr;
+}
+
 #ifdef CONFIG_NUMA
 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
+static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 
 static struct array_cache **alloc_alien_cache(int node, int limit)
 {
@@ -918,10 +959,8 @@ static void free_alien_cache(struct array_cache **ac_ptr)
 
        if (!ac_ptr)
                return;
-
        for_each_node(i)
            kfree(ac_ptr[i]);
-
        kfree(ac_ptr);
 }
 
@@ -932,6 +971,13 @@ static void __drain_alien_cache(struct kmem_cache *cachep,
 
        if (ac->avail) {
                spin_lock(&rl3->list_lock);
+               /*
+                * Stuff objects into the remote nodes shared array first.
+                * That way we could avoid the overhead of putting the objects
+                * into the free lists and getting them back later.
+                */
+               transfer_objects(rl3->shared, ac, ac->limit);
+
                free_block(cachep, ac->entry, ac->avail, node);
                ac->avail = 0;
                spin_unlock(&rl3->list_lock);
@@ -947,15 +993,16 @@ static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
 
        if (l3->alien) {
                struct array_cache *ac = l3->alien[node];
-               if (ac && ac->avail) {
-                       spin_lock_irq(&ac->lock);
+
+               if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
                        __drain_alien_cache(cachep, ac, node);
                        spin_unlock_irq(&ac->lock);
                }
        }
 }
 
-static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
+static void drain_alien_cache(struct kmem_cache *cachep,
+                               struct array_cache **alien)
 {
        int i = 0;
        struct array_cache *ac;
@@ -998,20 +1045,22 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
        switch (action) {
        case CPU_UP_PREPARE:
                mutex_lock(&cache_chain_mutex);
-               /* we need to do this right in the beginning since
+               /*
+                * We need to do this right in the beginning since
                 * alloc_arraycache's are going to use this list.
                 * kmalloc_node allows us to add the slab to the right
                 * kmem_list3 and not this cpu's kmem_list3
                 */
 
                list_for_each_entry(cachep, &cache_chain, next) {
-                       /* setup the size64 kmemlist for cpu before we can
+                       /*
+                        * Set up the size64 kmemlist for cpu before we can
                         * begin anything. Make sure some other cpu on this
                         * node has not already allocated this
                         */
                        if (!cachep->nodelists[node]) {
-                               if (!(l3 = kmalloc_node(memsize,
-                                                       GFP_KERNEL, node)))
+                               l3 = kmalloc_node(memsize, GFP_KERNEL, node);
+                               if (!l3)
                                        goto bad;
                                kmem_list3_init(l3);
                                l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
@@ -1027,13 +1076,15 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
 
                        spin_lock_irq(&cachep->nodelists[node]->list_lock);
                        cachep->nodelists[node]->free_limit =
-                           (1 + nr_cpus_node(node)) *
-                           cachep->batchcount + cachep->num;
+                               (1 + nr_cpus_node(node)) *
+                               cachep->batchcount + cachep->num;
                        spin_unlock_irq(&cachep->nodelists[node]->list_lock);
                }
 
-               /* Now we can go ahead with allocating the shared array's
-                  & array cache's */
+               /*
+                * Now we can go ahead with allocating the shared arrays and
+                * array caches
+                */
                list_for_each_entry(cachep, &cache_chain, next) {
                        struct array_cache *nc;
                        struct array_cache *shared;
@@ -1053,7 +1104,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
                        if (!alien)
                                goto bad;
                        cachep->array[cpu] = nc;
-
                        l3 = cachep->nodelists[node];
                        BUG_ON(!l3);
 
@@ -1073,7 +1123,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
                        }
 #endif
                        spin_unlock_irq(&l3->list_lock);
-
                        kfree(shared);
                        free_alien_cache(alien);
                }
@@ -1095,7 +1144,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
                /* fall thru */
        case CPU_UP_CANCELED:
                mutex_lock(&cache_chain_mutex);
-
                list_for_each_entry(cachep, &cache_chain, next) {
                        struct array_cache *nc;
                        struct array_cache *shared;
@@ -1162,7 +1210,7 @@ free_array_cache:
 #endif
        }
        return NOTIFY_OK;
-      bad:
+bad:
        mutex_unlock(&cache_chain_mutex);
        return NOTIFY_BAD;
 }
@@ -1172,7 +1220,8 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
 /*
  * swap the static kmem_list3 with kmalloced memory
  */
-static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
+static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+                       int nodeid)
 {
        struct kmem_list3 *ptr;
 
@@ -1187,8 +1236,9 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int no
        local_irq_enable();
 }
 
-/* Initialisation.
- * Called after the gfp() functions have been enabled, and before smp_init().
+/*
+ * Initialisation.  Called after the page allocator have been initialised and
+ * before smp_init().
  */
 void __init kmem_cache_init(void)
 {
@@ -1213,9 +1263,9 @@ void __init kmem_cache_init(void)
 
        /* Bootstrap is tricky, because several objects are allocated
         * from caches that do not exist yet:
-        * 1) initialize the cache_cache cache: it contains the struct kmem_cache
-        *    structures of all caches, except cache_cache itself: cache_cache
-        *    is statically allocated.
+        * 1) initialize the cache_cache cache: it contains the struct
+        *    kmem_cache structures of all caches, except cache_cache itself:
+        *    cache_cache is statically allocated.
         *    Initially an __init data area is used for the head array and the
         *    kmem_list3 structures, it's replaced with a kmalloc allocated
         *    array at the end of the bootstrap.
@@ -1238,7 +1288,8 @@ void __init kmem_cache_init(void)
        cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
        cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
 
-       cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
+       cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
+                                       cache_line_size());
 
        for (order = 0; order < MAX_ORDER; order++) {
                cache_estimate(order, cache_cache.buffer_size,
@@ -1246,8 +1297,7 @@ void __init kmem_cache_init(void)
                if (cache_cache.num)
                        break;
        }
-       if (!cache_cache.num)
-               BUG();
+       BUG_ON(!cache_cache.num);
        cache_cache.gfporder = order;
        cache_cache.colour = left_over / cache_cache.colour_off;
        cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
@@ -1257,24 +1307,26 @@ void __init kmem_cache_init(void)
        sizes = malloc_sizes;
        names = cache_names;
 
-       /* Initialize the caches that provide memory for the array cache
-        * and the kmem_list3 structures first.
-        * Without this, further allocations will bug
+       /*
+        * Initialize the caches that provide memory for the array cache and the
+        * kmem_list3 structures first.  Without this, further allocations will
+        * bug.
         */
 
        sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
-                                                     sizes[INDEX_AC].cs_size,
-                                                     ARCH_KMALLOC_MINALIGN,
-                                                     (ARCH_KMALLOC_FLAGS |
-                                                      SLAB_PANIC), NULL, NULL);
+                                       sizes[INDEX_AC].cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                                       NULL, NULL);
 
-       if (INDEX_AC != INDEX_L3)
+       if (INDEX_AC != INDEX_L3) {
                sizes[INDEX_L3].cs_cachep =
-                   kmem_cache_create(names[INDEX_L3].name,
-                                     sizes[INDEX_L3].cs_size,
-                                     ARCH_KMALLOC_MINALIGN,
-                                     (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
-                                     NULL);
+                       kmem_cache_create(names[INDEX_L3].name,
+                               sizes[INDEX_L3].cs_size,
+                               ARCH_KMALLOC_MINALIGN,
+                               ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                               NULL, NULL);
+       }
 
        while (sizes->cs_size != ULONG_MAX) {
                /*
@@ -1284,13 +1336,13 @@ void __init kmem_cache_init(void)
                 * Note for systems short on memory removing the alignment will
                 * allow tighter packing of the smaller caches.
                 */
-               if (!sizes->cs_cachep)
+               if (!sizes->cs_cachep) {
                        sizes->cs_cachep = kmem_cache_create(names->name,
-                                                            sizes->cs_size,
-                                                            ARCH_KMALLOC_MINALIGN,
-                                                            (ARCH_KMALLOC_FLAGS
-                                                             | SLAB_PANIC),
-                                                            NULL, NULL);
+                                       sizes->cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+                                       NULL, NULL);
+               }
 
                /* Inc off-slab bufctl limit until the ceiling is hit. */
                if (!(OFF_SLAB(sizes->cs_cachep))) {
@@ -1299,13 +1351,11 @@ void __init kmem_cache_init(void)
                }
 
                sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
-                                                       sizes->cs_size,
-                                                       ARCH_KMALLOC_MINALIGN,
-                                                       (ARCH_KMALLOC_FLAGS |
-                                                        SLAB_CACHE_DMA |
-                                                        SLAB_PANIC), NULL,
-                                                       NULL);
-
+                                       sizes->cs_size,
+                                       ARCH_KMALLOC_MINALIGN,
+                                       ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
+                                               SLAB_PANIC,
+                                       NULL, NULL);
                sizes++;
                names++;
        }
@@ -1357,20 +1407,22 @@ void __init kmem_cache_init(void)
                struct kmem_cache *cachep;
                mutex_lock(&cache_chain_mutex);
                list_for_each_entry(cachep, &cache_chain, next)
-                   enable_cpucache(cachep);
+                       enable_cpucache(cachep);
                mutex_unlock(&cache_chain_mutex);
        }
 
        /* Done! */
        g_cpucache_up = FULL;
 
-       /* Register a cpu startup notifier callback
-        * that initializes cpu_cache_get for all new cpus
+       /*
+        * Register a cpu startup notifier callback that initializes
+        * cpu_cache_get for all new cpus
         */
        register_cpu_notifier(&cpucache_notifier);
 
-       /* The reap timers are started later, with a module init call:
-        * That part of the kernel is not yet operational.
+       /*
+        * The reap timers are started later, with a module init call: That part
+        * of the kernel is not yet operational.
         */
 }
 
@@ -1378,16 +1430,13 @@ static int __init cpucache_init(void)
 {
        int cpu;
 
-       /* 
-        * Register the timers that return unneeded
-        * pages to gfp.
+       /*
+        * Register the timers that return unneeded pages to the page allocator
         */
        for_each_online_cpu(cpu)
-           start_cpu_timer(cpu);
-
+               start_cpu_timer(cpu);
        return 0;
 }
-
 __initcall(cpucache_init);
 
 /*
@@ -1501,9 +1550,8 @@ static void dump_line(char *data, int offset, int limit)
 {
        int i;
        printk(KERN_ERR "%03x:", offset);
-       for (i = 0; i < limit; i++) {
+       for (i = 0; i < limit; i++)
                printk(" %02x", (unsigned char)data[offset + i]);
-       }
        printk("\n");
 }
 #endif
@@ -1517,15 +1565,15 @@ static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
 
        if (cachep->flags & SLAB_RED_ZONE) {
                printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
-                      *dbg_redzone1(cachep, objp),
-                      *dbg_redzone2(cachep, objp));
+                       *dbg_redzone1(cachep, objp),
+                       *dbg_redzone2(cachep, objp));
        }
 
        if (cachep->flags & SLAB_STORE_USER) {
                printk(KERN_ERR "Last user: [<%p>]",
-                      *dbg_userword(cachep, objp));
+                       *dbg_userword(cachep, objp));
                print_symbol("(%s)",
-                            (unsigned long)*dbg_userword(cachep, objp));
+                               (unsigned long)*dbg_userword(cachep, objp));
                printk("\n");
        }
        realobj = (char *)objp + obj_offset(cachep);
@@ -1558,8 +1606,8 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
                        /* Print header */
                        if (lines == 0) {
                                printk(KERN_ERR
-                                      "Slab corruption: start=%p, len=%d\n",
-                                      realobj, size);
+                                       "Slab corruption: start=%p, len=%d\n",
+                                       realobj, size);
                                print_objinfo(cachep, objp, 0);
                        }
                        /* Hexdump the affected line */
@@ -1603,8 +1651,12 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 
 #if DEBUG
 /**
- * slab_destroy_objs - call the registered destructor for each object in
- *      a slab that is to be destroyed.
+ * slab_destroy_objs - destroy a slab and its objects
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
+ * Call the registered destructor for each object in a slab that is being
+ * destroyed.
  */
 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
 {
@@ -1614,11 +1666,10 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
 
                if (cachep->flags & SLAB_POISON) {
 #ifdef CONFIG_DEBUG_PAGEALLOC
-                       if ((cachep->buffer_size % PAGE_SIZE) == 0
-                           && OFF_SLAB(cachep))
+                       if (cachep->buffer_size % PAGE_SIZE == 0 &&
+                                       OFF_SLAB(cachep))
                                kernel_map_pages(virt_to_page(objp),
-                                                cachep->buffer_size / PAGE_SIZE,
-                                                1);
+                                       cachep->buffer_size / PAGE_SIZE, 1);
                        else
                                check_poison_obj(cachep, objp);
 #else
@@ -1651,9 +1702,13 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
 #endif
 
 /**
+ * slab_destroy - destroy and release all objects in a slab
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
  * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
+ * Before calling the slab must have been unlinked from the cache.  The
+ * cache-lock is not held/needed.
  */
 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
 {
@@ -1674,8 +1729,10 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
        }
 }
 
-/* For setting up all the kmem_list3s for cache whose buffer_size is same
-   as size of kmem_list3. */
+/*
+ * For setting up all the kmem_list3s for cache whose buffer_size is same as
+ * size of kmem_list3.
+ */
 static void set_up_list3s(struct kmem_cache *cachep, int index)
 {
        int node;
@@ -1701,13 +1758,13 @@ static void set_up_list3s(struct kmem_cache *cachep, int index)
  * high order pages for slabs.  When the gfp() functions are more friendly
  * towards high-order requests, this should be changed.
  */
-static inline size_t calculate_slab_order(struct kmem_cache *cachep,
+static size_t calculate_slab_order(struct kmem_cache *cachep,
                        size_t size, size_t align, unsigned long flags)
 {
        size_t left_over = 0;
        int gfporder;
 
-       for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
+       for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
                unsigned int num;
                size_t remainder;
 
@@ -1742,7 +1799,7 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
                /*
                 * Acceptable internal fragmentation?
                 */
-               if ((left_over * 8) <= (PAGE_SIZE << gfporder))
+               if (left_over * 8 <= (PAGE_SIZE << gfporder))
                        break;
        }
        return left_over;
@@ -1817,9 +1874,8 @@ static void setup_cpu_cache(struct kmem_cache *cachep)
  * and the @dtor is run before the pages are handed back.
  *
  * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting 
- * unloaded.
- * 
+ * the module calling this has to destroy the cache before getting unloaded.
+ *
  * The flags are
  *
  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@@ -1828,16 +1884,14 @@ static void setup_cpu_cache(struct kmem_cache *cachep)
  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  * for buffer overruns.
  *
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  * cacheline.  This can be beneficial if you're counting cycles as closely
  * as davem.
  */
 struct kmem_cache *
 kmem_cache_create (const char *name, size_t size, size_t align,
-       unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
+       unsigned long flags,
+       void (*ctor)(void*, struct kmem_cache *, unsigned long),
        void (*dtor)(void*, struct kmem_cache *, unsigned long))
 {
        size_t left_over, slab_size, ralign;
@@ -1847,12 +1901,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        /*
         * Sanity checks... these are all serious usage bugs.
         */
-       if ((!name) ||
-           in_interrupt() ||
-           (size < BYTES_PER_WORD) ||
+       if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
            (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
-               printk(KERN_ERR "%s: Early error in slab %s\n",
-                      __FUNCTION__, name);
+               printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
+                               name);
                BUG();
        }
 
@@ -1906,8 +1958,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
         * above the next power of two: caches with object sizes just above a
         * power of two have a significant amount of internal fragmentation.
         */
-       if ((size < 4096
-            || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
+       if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
        if (!(flags & SLAB_DESTROY_BY_RCU))
                flags |= SLAB_POISON;
@@ -1919,13 +1970,13 @@ kmem_cache_create (const char *name, size_t size, size_t align,
                BUG_ON(dtor);
 
        /*
-        * Always checks flags, a caller might be expecting debug
-        * support which isn't available.
+        * Always checks flags, a caller might be expecting debug support which
+        * isn't available.
         */
-       if (flags & ~CREATE_MASK)
-               BUG();
+       BUG_ON(flags & ~CREATE_MASK);
 
-       /* Check that size is in terms of words.  This is needed to avoid
+       /*
+        * Check that size is in terms of words.  This is needed to avoid
         * unaligned accesses for some archs when redzoning is used, and makes
         * sure any on-slab bufctl's are also correctly aligned.
         */
@@ -1934,12 +1985,14 @@ kmem_cache_create (const char *name, size_t size, size_t align,
                size &= ~(BYTES_PER_WORD - 1);
        }
 
-       /* calculate out the final buffer alignment: */
+       /* calculate the final buffer alignment: */
+
        /* 1) arch recommendation: can be overridden for debug */
        if (flags & SLAB_HWCACHE_ALIGN) {
-               /* Default alignment: as specified by the arch code.
-                * Except if an object is really small, then squeeze multiple
-                * objects into one cacheline.
+               /*
+                * Default alignment: as specified by the arch code.  Except if
+                * an object is really small, then squeeze multiple objects into
+                * one cacheline.
                 */
                ralign = cache_line_size();
                while (size <= ralign / 2)
@@ -1959,16 +2012,16 @@ kmem_cache_create (const char *name, size_t size, size_t align,
                if (ralign > BYTES_PER_WORD)
                        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
        }
-       /* 4) Store it. Note that the debug code below can reduce
+       /*
+        * 4) Store it. Note that the debug code below can reduce
         *    the alignment to BYTES_PER_WORD.
         */
        align = ralign;
 
        /* Get cache's description obj. */
-       cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
+       cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
        if (!cachep)
                goto oops;
-       memset(cachep, 0, sizeof(struct kmem_cache));
 
 #if DEBUG
        cachep->obj_size = size;
@@ -2044,7 +2097,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        cachep->gfpflags = 0;
        if (flags & SLAB_CACHE_DMA)
                cachep->gfpflags |= GFP_DMA;
-       spin_lock_init(&cachep->spinlock);
        cachep->buffer_size = size;
 
        if (flags & CFLGS_OFF_SLAB)
@@ -2058,7 +2110,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
 
        /* cache setup completed, link it into the list */
        list_add(&cachep->next, &cache_chain);
-      oops:
+oops:
        if (!cachep && (flags & SLAB_PANIC))
                panic("kmem_cache_create(): failed to create slab `%s'\n",
                      name);
@@ -2102,30 +2154,13 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
 #define check_spinlock_acquired_node(x, y) do { } while(0)
 #endif
 
-/*
- * Waits for all CPUs to execute func().
- */
-static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
-{
-       check_irq_on();
-       preempt_disable();
-
-       local_irq_disable();
-       func(arg);
-       local_irq_enable();
-
-       if (smp_call_function(func, arg, 1, 1))
-               BUG();
-
-       preempt_enable();
-}
-
-static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
-                               int force, int node);
+static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+                       struct array_cache *ac,
+                       int force, int node);
 
 static void do_drain(void *arg)
 {
-       struct kmem_cache *cachep = (struct kmem_cache *) arg;
+       struct kmem_cache *cachep = arg;
        struct array_cache *ac;
        int node = numa_node_id();
 
@@ -2142,14 +2177,12 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
        struct kmem_list3 *l3;
        int node;
 
-       smp_call_function_all_cpus(do_drain, cachep);
+       on_each_cpu(do_drain, cachep, 1, 1);
        check_irq_on();
        for_each_online_node(node) {
                l3 = cachep->nodelists[node];
                if (l3) {
-                       spin_lock_irq(&l3->list_lock);
-                       drain_array_locked(cachep, l3->shared, 1, node);
-                       spin_unlock_irq(&l3->list_lock);
+                       drain_array(cachep, l3, l3->shared, 1, node);
                        if (l3->alien)
                                drain_alien_cache(cachep, l3->alien);
                }
@@ -2171,8 +2204,7 @@ static int __node_shrink(struct kmem_cache *cachep, int node)
 
                slabp = list_entry(l3->slabs_free.prev, struct slab, list);
 #if DEBUG
-               if (slabp->inuse)
-                       BUG();
+               BUG_ON(slabp->inuse);
 #endif
                list_del(&slabp->list);
 
@@ -2213,8 +2245,7 @@ static int __cache_shrink(struct kmem_cache *cachep)
  */
 int kmem_cache_shrink(struct kmem_cache *cachep)
 {
-       if (!cachep || in_interrupt())
-               BUG();
+       BUG_ON(!cachep || in_interrupt());
 
        return __cache_shrink(cachep);
 }
@@ -2242,8 +2273,7 @@ int kmem_cache_destroy(struct kmem_cache *cachep)
        int i;
        struct kmem_list3 *l3;
 
-       if (!cachep || in_interrupt())
-               BUG();
+       BUG_ON(!cachep || in_interrupt());
 
        /* Don't let CPUs to come and go */
        lock_cpu_hotplug();
@@ -2273,16 +2303,15 @@ int kmem_cache_destroy(struct kmem_cache *cachep)
 
        /* NUMA: free the list3 structures */
        for_each_online_node(i) {
-               if ((l3 = cachep->nodelists[i])) {
+               l3 = cachep->nodelists[i];
+               if (l3) {
                        kfree(l3->shared);
                        free_alien_cache(l3->alien);
                        kfree(l3);
                }
        }
        kmem_cache_free(&cache_cache, cachep);
-
        unlock_cpu_hotplug();
-
        return 0;
 }
 EXPORT_SYMBOL(kmem_cache_destroy);
@@ -2305,7 +2334,6 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
        slabp->inuse = 0;
        slabp->colouroff = colour_off;
        slabp->s_mem = objp + colour_off;
-
        return slabp;
 }
 
@@ -2333,9 +2361,9 @@ static void cache_init_objs(struct kmem_cache *cachep,
                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
                }
                /*
-                * Constructors are not allowed to allocate memory from
-                * the same cache which they are a constructor for.
-                * Otherwise, deadlock. They must also be threaded.
+                * Constructors are not allowed to allocate memory from the same
+                * cache which they are a constructor for.  Otherwise, deadlock.
+                * They must also be threaded.
                 */
                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
                        cachep->ctor(objp + obj_offset(cachep), cachep,
@@ -2349,8 +2377,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
                                slab_error(cachep, "constructor overwrote the"
                                           " start of an object");
                }
-               if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
-                   && cachep->flags & SLAB_POISON)
+               if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
+                           OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
                        kernel_map_pages(virt_to_page(objp),
                                         cachep->buffer_size / PAGE_SIZE, 0);
 #else
@@ -2365,16 +2393,14 @@ static void cache_init_objs(struct kmem_cache *cachep,
 
 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 {
-       if (flags & SLAB_DMA) {
-               if (!(cachep->gfpflags & GFP_DMA))
-                       BUG();
-       } else {
-               if (cachep->gfpflags & GFP_DMA)
-                       BUG();
-       }
+       if (flags & SLAB_DMA)
+               BUG_ON(!(cachep->gfpflags & GFP_DMA));
+       else
+               BUG_ON(cachep->gfpflags & GFP_DMA);
 }
 
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
+static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+                               int nodeid)
 {
        void *objp = index_to_obj(cachep, slabp, slabp->free);
        kmem_bufctl_t next;
@@ -2390,8 +2416,8 @@ static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nod
        return objp;
 }
 
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
-                         int nodeid)
+static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+                               void *objp, int nodeid)
 {
        unsigned int objnr = obj_to_index(cachep, slabp, objp);
 
@@ -2399,9 +2425,9 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *ob
        /* Verify that the slab belongs to the intended node */
        WARN_ON(slabp->nodeid != nodeid);
 
-       if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
+       if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
                printk(KERN_ERR "slab: double free detected in cache "
-                      "'%s', objp %p\n", cachep->name, objp);
+                               "'%s', objp %p\n", cachep->name, objp);
                BUG();
        }
 #endif
@@ -2410,14 +2436,18 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *ob
        slabp->inuse--;
 }
 
-static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
+static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
+                       void *objp)
 {
        int i;
        struct page *page;
 
        /* Nasty!!!!!! I hope this is OK. */
-       i = 1 << cachep->gfporder;
        page = virt_to_page(objp);
+
+       i = 1;
+       if (likely(!PageCompound(page)))
+               i <<= cachep->gfporder;
        do {
                page_set_cache(page, cachep);
                page_set_slab(page, slabp);
@@ -2438,11 +2468,11 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
        unsigned long ctor_flags;
        struct kmem_list3 *l3;
 
-       /* Be lazy and only check for valid flags here,
-        * keeping it out of the critical path in kmem_cache_alloc().
+       /*
+        * Be lazy and only check for valid flags here,  keeping it out of the
+        * critical path in kmem_cache_alloc().
         */
-       if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
-               BUG();
+       BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
        if (flags & SLAB_NO_GROW)
                return 0;
 
@@ -2480,14 +2510,17 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
         */
        kmem_flagcheck(cachep, flags);
 
-       /* Get mem for the objs.
-        * Attempt to allocate a physical page from 'nodeid',
+       /*
+        * Get mem for the objs.  Attempt to allocate a physical page from
+        * 'nodeid'.
         */
-       if (!(objp = kmem_getpages(cachep, flags, nodeid)))
+       objp = kmem_getpages(cachep, flags, nodeid);
+       if (!objp)
                goto failed;
 
        /* Get slab management. */
-       if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
+       slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
+       if (!slabp)
                goto opps1;
 
        slabp->nodeid = nodeid;
@@ -2506,9 +2539,9 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
        l3->free_objects += cachep->num;
        spin_unlock(&l3->list_lock);
        return 1;
-      opps1:
+opps1:
        kmem_freepages(cachep, objp);
-      failed:
+failed:
        if (local_flags & __GFP_WAIT)
                local_irq_disable();
        return 0;
@@ -2551,8 +2584,8 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
        page = virt_to_page(objp);
 
        if (page_get_cache(page) != cachep) {
-               printk(KERN_ERR
-                      "mismatch in kmem_cache_free: expected cache %p, got %p\n",
+               printk(KERN_ERR "mismatch in kmem_cache_free: expected "
+                               "cache %p, got %p\n",
                       page_get_cache(page), cachep);
                printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
                printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
@@ -2562,13 +2595,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
        slabp = page_get_slab(page);
 
        if (cachep->flags & SLAB_RED_ZONE) {
-               if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
-                   || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
-                       slab_error(cachep,
-                                  "double free, or memory outside"
-                                  " object was overwritten");
-                       printk(KERN_ERR
-                              "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
+               if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
+                               *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
+                       slab_error(cachep, "double free, or memory outside"
+                                               " object was overwritten");
+                       printk(KERN_ERR "%p: redzone 1:0x%lx, "
+                                       "redzone 2:0x%lx.\n",
                               objp, *dbg_redzone1(cachep, objp),
                               *dbg_redzone2(cachep, objp));
                }
@@ -2584,9 +2616,10 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
        BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
 
        if (cachep->flags & SLAB_DEBUG_INITIAL) {
-               /* Need to call the slab's constructor so the
-                * caller can perform a verify of its state (debugging).
-                * Called without the cache-lock held.
+               /*
+                * Need to call the slab's constructor so the caller can
+                * perform a verify of its state (debugging).  Called without
+                * the cache-lock held.
                 */
                cachep->ctor(objp + obj_offset(cachep),
                             cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
@@ -2597,9 +2630,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
                 */
                cachep->dtor(objp + obj_offset(cachep), cachep, 0);
        }
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+       slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
+#endif
        if (cachep->flags & SLAB_POISON) {
 #ifdef CONFIG_DEBUG_PAGEALLOC
-               if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
+               if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
                        store_stackinfo(cachep, objp, (unsigned long)caller);
                        kernel_map_pages(virt_to_page(objp),
                                         cachep->buffer_size / PAGE_SIZE, 0);
@@ -2625,14 +2661,14 @@ static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
                        goto bad;
        }
        if (entries != cachep->num - slabp->inuse) {
-             bad:
-               printk(KERN_ERR
-                      "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
-                      cachep->name, cachep->num, slabp, slabp->inuse);
+bad:
+               printk(KERN_ERR "slab: Internal list corruption detected in "
+                               "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
+                       cachep->name, cachep->num, slabp, slabp->inuse);
                for (i = 0;
                     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
                     i++) {
-                       if ((i % 16) == 0)
+                       if (i % 16 == 0)
                                printk("\n%03x:", i);
                        printk(" %02x", ((unsigned char *)slabp)[i]);
                }
@@ -2654,12 +2690,13 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 
        check_irq_off();
        ac = cpu_cache_get(cachep);
-      retry:
+retry:
        batchcount = ac->batchcount;
        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
-               /* if there was little recent activity on this
-                * cache, then perform only a partial refill.
-                * Otherwise we could generate refill bouncing.
+               /*
+                * If there was little recent activity on this cache, then
+                * perform only a partial refill.  Otherwise we could generate
+                * refill bouncing.
                 */
                batchcount = BATCHREFILL_LIMIT;
        }
@@ -2668,20 +2705,10 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
        BUG_ON(ac->avail > 0 || !l3);
        spin_lock(&l3->list_lock);
 
-       if (l3->shared) {
-               struct array_cache *shared_array = l3->shared;
-               if (shared_array->avail) {
-                       if (batchcount > shared_array->avail)
-                               batchcount = shared_array->avail;
-                       shared_array->avail -= batchcount;
-                       ac->avail = batchcount;
-                       memcpy(ac->entry,
-                              &(shared_array->entry[shared_array->avail]),
-                              sizeof(void *) * batchcount);
-                       shared_array->touched = 1;
-                       goto alloc_done;
-               }
-       }
+       /* See if we can refill from the shared array */
+       if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
+               goto alloc_done;
+
        while (batchcount > 0) {
                struct list_head *entry;
                struct slab *slabp;
@@ -2715,29 +2742,29 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
                        list_add(&slabp->list, &l3->slabs_partial);
        }
 
-      must_grow:
+must_grow:
        l3->free_objects -= ac->avail;
-      alloc_done:
+alloc_done:
        spin_unlock(&l3->list_lock);
 
        if (unlikely(!ac->avail)) {
                int x;
                x = cache_grow(cachep, flags, numa_node_id());
 
-               // cache_grow can reenable interrupts, then ac could change.
+               /* cache_grow can reenable interrupts, then ac could change. */
                ac = cpu_cache_get(cachep);
-               if (!x && ac->avail == 0)       // no objects in sight? abort
+               if (!x && ac->avail == 0)       /* no objects in sight? abort */
                        return NULL;
 
-               if (!ac->avail) // objects refilled by interrupt?
+               if (!ac->avail)         /* objects refilled by interrupt? */
                        goto retry;
        }
        ac->touched = 1;
        return ac->entry[--ac->avail];
 }
 
-static inline void
-cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
+static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
+                                               gfp_t flags)
 {
        might_sleep_if(flags & __GFP_WAIT);
 #if DEBUG
@@ -2746,8 +2773,8 @@ cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
 }
 
 #if DEBUG
-static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
-                                       void *objp, void *caller)
+static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
+                               gfp_t flags, void *objp, void *caller)
 {
        if (!objp)
                return objp;
@@ -2767,19 +2794,28 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags
                *dbg_userword(cachep, objp) = caller;
 
        if (cachep->flags & SLAB_RED_ZONE) {
-               if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
-                   || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
-                       slab_error(cachep,
-                                  "double free, or memory outside"
-                                  " object was overwritten");
+               if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+                               *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+                       slab_error(cachep, "double free, or memory outside"
+                                               " object was overwritten");
                        printk(KERN_ERR
-                              "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
-                              objp, *dbg_redzone1(cachep, objp),
-                              *dbg_redzone2(cachep, objp));
+                               "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
+                               objp, *dbg_redzone1(cachep, objp),
+                               *dbg_redzone2(cachep, objp));
                }
                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
        }
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+       {
+               struct slab *slabp;
+               unsigned objnr;
+
+               slabp = page_get_slab(virt_to_page(objp));
+               objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+               slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
+       }
+#endif
        objp += obj_offset(cachep);
        if (cachep->ctor && cachep->flags & SLAB_POISON) {
                unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
@@ -2801,11 +2837,10 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
        struct array_cache *ac;
 
 #ifdef CONFIG_NUMA
-       if (unlikely(current->mempolicy && !in_interrupt())) {
-               int nid = slab_node(current->mempolicy);
-
-               if (nid != numa_node_id())
-                       return __cache_alloc_node(cachep, flags, nid);
+       if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
+               objp = alternate_node_alloc(cachep, flags);
+               if (objp != NULL)
+                       return objp;
        }
 #endif
 
@@ -2822,8 +2857,8 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
        return objp;
 }
 
-static __always_inline void *
-__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
+static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
+                                               gfp_t flags, void *caller)
 {
        unsigned long save_flags;
        void *objp;
@@ -2841,9 +2876,32 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
 
 #ifdef CONFIG_NUMA
 /*
+ * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
+ *
+ * If we are in_interrupt, then process context, including cpusets and
+ * mempolicy, may not apply and should not be used for allocation policy.
+ */
+static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+       int nid_alloc, nid_here;
+
+       if (in_interrupt())
+               return NULL;
+       nid_alloc = nid_here = numa_node_id();
+       if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
+               nid_alloc = cpuset_mem_spread_node();
+       else if (current->mempolicy)
+               nid_alloc = slab_node(current->mempolicy);
+       if (nid_alloc != nid_here)
+               return __cache_alloc_node(cachep, flags, nid_alloc);
+       return NULL;
+}
+
+/*
  * A interface to enable slab creation on nodeid
  */
-static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+                               int nodeid)
 {
        struct list_head *entry;
        struct slab *slabp;
@@ -2854,7 +2912,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
        l3 = cachep->nodelists[nodeid];
        BUG_ON(!l3);
 
-      retry:
+retry:
        check_irq_off();
        spin_lock(&l3->list_lock);
        entry = l3->slabs_partial.next;
@@ -2881,16 +2939,15 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
        /* move slabp to correct slabp list: */
        list_del(&slabp->list);
 
-       if (slabp->free == BUFCTL_END) {
+       if (slabp->free == BUFCTL_END)
                list_add(&slabp->list, &l3->slabs_full);
-       } else {
+       else
                list_add(&slabp->list, &l3->slabs_partial);
-       }
 
        spin_unlock(&l3->list_lock);
        goto done;
 
-      must_grow:
+must_grow:
        spin_unlock(&l3->list_lock);
        x = cache_grow(cachep, flags, nodeid);
 
@@ -2898,7 +2955,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
                return NULL;
 
        goto retry;
-      done:
+done:
        return obj;
 }
 #endif
@@ -2971,7 +3028,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
        }
 
        free_block(cachep, ac->entry, batchcount, node);
-      free_done:
+free_done:
 #if STATS
        {
                int i = 0;
@@ -2992,16 +3049,12 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 #endif
        spin_unlock(&l3->list_lock);
        ac->avail -= batchcount;
-       memmove(ac->entry, &(ac->entry[batchcount]),
-               sizeof(void *) * ac->avail);
+       memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 }
 
 /*
- * __cache_free
- * Release an obj back to its cache. If the obj has a constructed
- * state, it must be in this state _before_ it is released.
- *
- * Called with disabled ints.
+ * Release an obj back to its cache. If the obj has a constructed state, it must
+ * be in this state _before_ it is released.  Called with disabled ints.
  */
 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
 {
@@ -3020,9 +3073,9 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
                if (unlikely(slabp->nodeid != numa_node_id())) {
                        struct array_cache *alien = NULL;
                        int nodeid = slabp->nodeid;
-                       struct kmem_list3 *l3 =
-                           cachep->nodelists[numa_node_id()];
+                       struct kmem_list3 *l3;
 
+                       l3 = cachep->nodelists[numa_node_id()];
                        STATS_INC_NODEFREES(cachep);
                        if (l3->alien && l3->alien[nodeid]) {
                                alien = l3->alien[nodeid];
@@ -3069,6 +3122,23 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 EXPORT_SYMBOL(kmem_cache_alloc);
 
 /**
+ * kmem_cache_alloc - Allocate an object. The memory is set to zero.
+ * @cache: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache and set the allocated memory to zero.
+ * The flags are only relevant if the cache has no available objects.
+ */
+void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
+{
+       void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
+       if (ret)
+               memset(ret, 0, obj_size(cache));
+       return ret;
+}
+EXPORT_SYMBOL(kmem_cache_zalloc);
+
+/**
  * kmem_ptr_validate - check if an untrusted pointer might
  *     be a slab entry.
  * @cachep: the cache we're checking against
@@ -3106,7 +3176,7 @@ int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
        if (unlikely(page_get_cache(page) != cachep))
                goto out;
        return 1;
-      out:
+out:
        return 0;
 }
 
@@ -3132,7 +3202,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
        local_irq_save(save_flags);
 
        if (nodeid == -1 || nodeid == numa_node_id() ||
-           !cachep->nodelists[nodeid])
+                       !cachep->nodelists[nodeid])
                ptr = ____cache_alloc(cachep, flags);
        else
                ptr = __cache_alloc_node(cachep, flags, nodeid);
@@ -3161,6 +3231,7 @@ EXPORT_SYMBOL(kmalloc_node);
  * kmalloc - allocate memory
  * @size: how many bytes of memory are required.
  * @flags: the type of memory to allocate.
+ * @caller: function caller for debug tracking of the caller
  *
  * kmalloc is the normal method of allocating memory
  * in the kernel.
@@ -3194,22 +3265,23 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
        return __cache_alloc(cachep, flags, caller);
 }
 
-#ifndef CONFIG_DEBUG_SLAB
 
 void *__kmalloc(size_t size, gfp_t flags)
 {
+#ifndef CONFIG_DEBUG_SLAB
        return __do_kmalloc(size, flags, NULL);
+#else
+       return __do_kmalloc(size, flags, __builtin_return_address(0));
+#endif
 }
 EXPORT_SYMBOL(__kmalloc);
 
-#else
-
+#ifdef CONFIG_DEBUG_SLAB
 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
 {
        return __do_kmalloc(size, flags, caller);
 }
 EXPORT_SYMBOL(__kmalloc_track_caller);
-
 #endif
 
 #ifdef CONFIG_SMP
@@ -3233,7 +3305,7 @@ void *__alloc_percpu(size_t size)
         * and we have no way of figuring out how to fix the array
         * that we have allocated then....
         */
-       for_each_cpu(i) {
+       for_each_possible_cpu(i) {
                int node = cpu_to_node(i);
 
                if (node_online(node))
@@ -3249,7 +3321,7 @@ void *__alloc_percpu(size_t size)
        /* Catch derefs w/o wrappers */
        return (void *)(~(unsigned long)pdata);
 
-      unwind_oom:
+unwind_oom:
        while (--i >= 0) {
                if (!cpu_possible(i))
                        continue;
@@ -3320,7 +3392,7 @@ void free_percpu(const void *objp)
        /*
         * We allocate for all cpus so we cannot use for online cpu here.
         */
-       for_each_cpu(i)
+       for_each_possible_cpu(i)
            kfree(p->ptrs[i]);
        kfree(p);
 }
@@ -3340,61 +3412,86 @@ const char *kmem_cache_name(struct kmem_cache *cachep)
 EXPORT_SYMBOL_GPL(kmem_cache_name);
 
 /*
- * This initializes kmem_list3 for all nodes.
+ * This initializes kmem_list3 or resizes varioius caches for all nodes.
  */
 static int alloc_kmemlist(struct kmem_cache *cachep)
 {
        int node;
        struct kmem_list3 *l3;
-       int err = 0;
+       struct array_cache *new_shared;
+       struct array_cache **new_alien;
 
        for_each_online_node(node) {
-               struct array_cache *nc = NULL, *new;
-               struct array_cache **new_alien = NULL;
-#ifdef CONFIG_NUMA
-               if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
+
+               new_alien = alloc_alien_cache(node, cachep->limit);
+               if (!new_alien)
                        goto fail;
-#endif
-               if (!(new = alloc_arraycache(node, (cachep->shared *
-                                                   cachep->batchcount),
-                                            0xbaadf00d)))
+
+               new_shared = alloc_arraycache(node,
+                               cachep->shared*cachep->batchcount,
+                                       0xbaadf00d);
+               if (!new_shared) {
+                       free_alien_cache(new_alien);
                        goto fail;
-               if ((l3 = cachep->nodelists[node])) {
+               }
+
+               l3 = cachep->nodelists[node];
+               if (l3) {
+                       struct array_cache *shared = l3->shared;
 
                        spin_lock_irq(&l3->list_lock);
 
-                       if ((nc = cachep->nodelists[node]->shared))
-                               free_block(cachep, nc->entry, nc->avail, node);
+                       if (shared)
+                               free_block(cachep, shared->entry,
+                                               shared->avail, node);
 
-                       l3->shared = new;
-                       if (!cachep->nodelists[node]->alien) {
+                       l3->shared = new_shared;
+                       if (!l3->alien) {
                                l3->alien = new_alien;
                                new_alien = NULL;
                        }
                        l3->free_limit = (1 + nr_cpus_node(node)) *
-                           cachep->batchcount + cachep->num;
+                                       cachep->batchcount + cachep->num;
                        spin_unlock_irq(&l3->list_lock);
-                       kfree(nc);
+                       kfree(shared);
                        free_alien_cache(new_alien);
                        continue;
                }
-               if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
-                                       GFP_KERNEL, node)))
+               l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
+               if (!l3) {
+                       free_alien_cache(new_alien);
+                       kfree(new_shared);
                        goto fail;
+               }
 
                kmem_list3_init(l3);
                l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
-                   ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-               l3->shared = new;
+                               ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+               l3->shared = new_shared;
                l3->alien = new_alien;
                l3->free_limit = (1 + nr_cpus_node(node)) *
-                   cachep->batchcount + cachep->num;
+                                       cachep->batchcount + cachep->num;
                cachep->nodelists[node] = l3;
        }
-       return err;
-      fail:
-       err = -ENOMEM;
-       return err;
+       return 0;
+
+fail:
+       if (!cachep->next.next) {
+               /* Cache is not active yet. Roll back what we did */
+               node--;
+               while (node >= 0) {
+                       if (cachep->nodelists[node]) {
+                               l3 = cachep->nodelists[node];
+
+                               kfree(l3->shared);
+                               free_alien_cache(l3->alien);
+                               kfree(l3);
+                               cachep->nodelists[node] = NULL;
+                       }
+                       node--;
+               }
+       }
+       return -ENOMEM;
 }
 
 struct ccupdate_struct {
@@ -3404,7 +3501,7 @@ struct ccupdate_struct {
 
 static void do_ccupdate_local(void *info)
 {
-       struct ccupdate_struct *new = (struct ccupdate_struct *)info;
+       struct ccupdate_struct *new = info;
        struct array_cache *old;
 
        check_irq_off();
@@ -3414,16 +3511,17 @@ static void do_ccupdate_local(void *info)
        new->new[smp_processor_id()] = old;
 }
 
-static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
-                           int shared)
+/* Always called with the cache_chain_mutex held */
+static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
+                               int batchcount, int shared)
 {
        struct ccupdate_struct new;
        int i, err;
 
        memset(&new.new, 0, sizeof(new.new));
        for_each_online_cpu(i) {
-               new.new[i] =
-                   alloc_arraycache(cpu_to_node(i), limit, batchcount);
+               new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
+                                               batchcount);
                if (!new.new[i]) {
                        for (i--; i >= 0; i--)
                                kfree(new.new[i]);
@@ -3432,14 +3530,12 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
        }
        new.cachep = cachep;
 
-       smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+       on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
 
        check_irq_on();
-       spin_lock(&cachep->spinlock);
        cachep->batchcount = batchcount;
        cachep->limit = limit;
        cachep->shared = shared;
-       spin_unlock(&cachep->spinlock);
 
        for_each_online_cpu(i) {
                struct array_cache *ccold = new.new[i];
@@ -3460,15 +3556,17 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
        return 0;
 }
 
+/* Called with cache_chain_mutex held always */
 static void enable_cpucache(struct kmem_cache *cachep)
 {
        int err;
        int limit, shared;
 
-       /* The head array serves three purposes:
+       /*
+        * The head array serves three purposes:
         * - create a LIFO ordering, i.e. return objects that are cache-warm
         * - reduce the number of spinlock operations.
-        * - reduce the number of linked list operations on the slab and 
+        * - reduce the number of linked list operations on the slab and
         *   bufctl chains: array operations are cheaper.
         * The numbers are guessed, we should auto-tune as described by
         * Bonwick.
@@ -3484,7 +3582,8 @@ static void enable_cpucache(struct kmem_cache *cachep)
        else
                limit = 120;
 
-       /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
+       /*
+        * CPU bound tasks (e.g. network routing) can exhibit cpu bound
         * allocation behaviour: Most allocs on one cpu, most free operations
         * on another cpu. For these cases, an efficient object passing between
         * cpus is necessary. This is provided by a shared array. The array
@@ -3499,9 +3598,9 @@ static void enable_cpucache(struct kmem_cache *cachep)
 #endif
 
 #if DEBUG
-       /* With debugging enabled, large batchcount lead to excessively
-        * long periods with disabled local interrupts. Limit the 
-        * batchcount
+       /*
+        * With debugging enabled, large batchcount lead to excessively long
+        * periods with disabled local interrupts. Limit the batchcount
         */
        if (limit > 32)
                limit = 32;
@@ -3512,23 +3611,32 @@ static void enable_cpucache(struct kmem_cache *cachep)
                       cachep->name, -err);
 }
 
-static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
-                               int force, int node)
+/*
+ * Drain an array if it contains any elements taking the l3 lock only if
+ * necessary. Note that the l3 listlock also protects the array_cache
+ * if drain_array() is used on the shared array.
+ */
+void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+                        struct array_cache *ac, int force, int node)
 {
        int tofree;
 
-       check_spinlock_acquired_node(cachep, node);
+       if (!ac || !ac->avail)
+               return;
        if (ac->touched && !force) {
                ac->touched = 0;
-       } else if (ac->avail) {
-               tofree = force ? ac->avail : (ac->limit + 4) / 5;
-               if (tofree > ac->avail) {
-                       tofree = (ac->avail + 1) / 2;
+       } else {
+               spin_lock_irq(&l3->list_lock);
+               if (ac->avail) {
+                       tofree = force ? ac->avail : (ac->limit + 4) / 5;
+                       if (tofree > ac->avail)
+                               tofree = (ac->avail + 1) / 2;
+                       free_block(cachep, ac->entry, tofree, node);
+                       ac->avail -= tofree;
+                       memmove(ac->entry, &(ac->entry[tofree]),
+                               sizeof(void *) * ac->avail);
                }
-               free_block(cachep, ac->entry, tofree, node);
-               ac->avail -= tofree;
-               memmove(ac->entry, &(ac->entry[tofree]),
-                       sizeof(void *) * ac->avail);
+               spin_unlock_irq(&l3->list_lock);
        }
 }
 
@@ -3541,13 +3649,14 @@ static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac
  * - clear the per-cpu caches for this CPU.
  * - return freeable pages to the main free memory pool.
  *
- * If we cannot acquire the cache chain mutex then just give up - we'll
- * try again on the next iteration.
+ * If we cannot acquire the cache chain mutex then just give up - we'll try
+ * again on the next iteration.
  */
 static void cache_reap(void *unused)
 {
        struct list_head *walk;
        struct kmem_list3 *l3;
+       int node = numa_node_id();
 
        if (!mutex_trylock(&cache_chain_mutex)) {
                /* Give up. Setup the next iteration. */
@@ -3563,65 +3672,72 @@ static void cache_reap(void *unused)
                struct slab *slabp;
 
                searchp = list_entry(walk, struct kmem_cache, next);
-
-               if (searchp->flags & SLAB_NO_REAP)
-                       goto next;
-
                check_irq_on();
 
-               l3 = searchp->nodelists[numa_node_id()];
+               /*
+                * We only take the l3 lock if absolutely necessary and we
+                * have established with reasonable certainty that
+                * we can do some work if the lock was obtained.
+                */
+               l3 = searchp->nodelists[node];
+
                reap_alien(searchp, l3);
-               spin_lock_irq(&l3->list_lock);
 
-               drain_array_locked(searchp, cpu_cache_get(searchp), 0,
-                                  numa_node_id());
+               drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
 
+               /*
+                * These are racy checks but it does not matter
+                * if we skip one check or scan twice.
+                */
                if (time_after(l3->next_reap, jiffies))
-                       goto next_unlock;
+                       goto next;
 
                l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
 
-               if (l3->shared)
-                       drain_array_locked(searchp, l3->shared, 0,
-                                          numa_node_id());
+               drain_array(searchp, l3, l3->shared, 0, node);
 
                if (l3->free_touched) {
                        l3->free_touched = 0;
-                       goto next_unlock;
+                       goto next;
                }
 
-               tofree =
-                   (l3->free_limit + 5 * searchp->num -
-                    1) / (5 * searchp->num);
+               tofree = (l3->free_limit + 5 * searchp->num - 1) /
+                               (5 * searchp->num);
                do {
+                       /*
+                        * Do not lock if there are no free blocks.
+                        */
+                       if (list_empty(&l3->slabs_free))
+                               break;
+
+                       spin_lock_irq(&l3->list_lock);
                        p = l3->slabs_free.next;
-                       if (p == &(l3->slabs_free))
+                       if (p == &(l3->slabs_free)) {
+                               spin_unlock_irq(&l3->list_lock);
                                break;
+                       }
 
                        slabp = list_entry(p, struct slab, list);
                        BUG_ON(slabp->inuse);
                        list_del(&slabp->list);
                        STATS_INC_REAPED(searchp);
 
-                       /* Safe to drop the lock. The slab is no longer
-                        * linked to the cache.
-                        * searchp cannot disappear, we hold
+                       /*
+                        * Safe to drop the lock. The slab is no longer linked
+                        * to the cache. searchp cannot disappear, we hold
                         * cache_chain_lock
                         */
                        l3->free_objects -= searchp->num;
                        spin_unlock_irq(&l3->list_lock);
                        slab_destroy(searchp, slabp);
-                       spin_lock_irq(&l3->list_lock);
                } while (--tofree > 0);
-             next_unlock:
-               spin_unlock_irq(&l3->list_lock);
-             next:
+next:
                cond_resched();
        }
        check_irq_on();
        mutex_unlock(&cache_chain_mutex);
        next_reap_node();
-       /* Setup the next iteration */
+       /* Set up the next iteration */
        schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
 }
 
@@ -3671,8 +3787,8 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 {
        struct kmem_cache *cachep = p;
        ++*pos;
-       return cachep->next.next == &cache_chain ? NULL
-           : list_entry(cachep->next.next, struct kmem_cache, next);
+       return cachep->next.next == &cache_chain ?
+               NULL : list_entry(cachep->next.next, struct kmem_cache, next);
 }
 
 static void s_stop(struct seq_file *m, void *p)
@@ -3694,7 +3810,6 @@ static int s_show(struct seq_file *m, void *p)
        int node;
        struct kmem_list3 *l3;
 
-       spin_lock(&cachep->spinlock);
        active_objs = 0;
        num_slabs = 0;
        for_each_online_node(node) {
@@ -3761,7 +3876,9 @@ static int s_show(struct seq_file *m, void *p)
                unsigned long node_frees = cachep->node_frees;
 
                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
-                               %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
+                               %4lu %4lu %4lu %4lu", allocs, high, grown,
+                               reaped, errors, max_freeable, node_allocs,
+                               node_frees);
        }
        /* cpu stats */
        {
@@ -3775,7 +3892,6 @@ static int s_show(struct seq_file *m, void *p)
        }
 #endif
        seq_putc(m, '\n');
-       spin_unlock(&cachep->spinlock);
        return 0;
 }
 
@@ -3833,13 +3949,12 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
        mutex_lock(&cache_chain_mutex);
        res = -EINVAL;
        list_for_each(p, &cache_chain) {
-               struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
-                                                      next);
+               struct kmem_cache *cachep;
 
+               cachep = list_entry(p, struct kmem_cache, next);
                if (!strcmp(cachep->name, kbuf)) {
-                       if (limit < 1 ||
-                           batchcount < 1 ||
-                           batchcount > limit || shared < 0) {
+                       if (limit < 1 || batchcount < 1 ||
+                                       batchcount > limit || shared < 0) {
                                res = 0;
                        } else {
                                res = do_tune_cpucache(cachep, limit,
@@ -3853,6 +3968,159 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                res = count;
        return res;
 }
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static void *leaks_start(struct seq_file *m, loff_t *pos)
+{
+       loff_t n = *pos;
+       struct list_head *p;
+
+       mutex_lock(&cache_chain_mutex);
+       p = cache_chain.next;
+       while (n--) {
+               p = p->next;
+               if (p == &cache_chain)
+                       return NULL;
+       }
+       return list_entry(p, struct kmem_cache, next);
+}
+
+static inline int add_caller(unsigned long *n, unsigned long v)
+{
+       unsigned long *p;
+       int l;
+       if (!v)
+               return 1;
+       l = n[1];
+       p = n + 2;
+       while (l) {
+               int i = l/2;
+               unsigned long *q = p + 2 * i;
+               if (*q == v) {
+                       q[1]++;
+                       return 1;
+               }
+               if (*q > v) {
+                       l = i;
+               } else {
+                       p = q + 2;
+                       l -= i + 1;
+               }
+       }
+       if (++n[1] == n[0])
+               return 0;
+       memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
+       p[0] = v;
+       p[1] = 1;
+       return 1;
+}
+
+static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+{
+       void *p;
+       int i;
+       if (n[0] == n[1])
+               return;
+       for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
+               if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+                       continue;
+               if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
+                       return;
+       }
+}
+
+static void show_symbol(struct seq_file *m, unsigned long address)
+{
+#ifdef CONFIG_KALLSYMS
+       char *modname;
+       const char *name;
+       unsigned long offset, size;
+       char namebuf[KSYM_NAME_LEN+1];
+
+       name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
+
+       if (name) {
+               seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
+               if (modname)
+                       seq_printf(m, " [%s]", modname);
+               return;
+       }
+#endif
+       seq_printf(m, "%p", (void *)address);
+}
+
+static int leaks_show(struct seq_file *m, void *p)
+{
+       struct kmem_cache *cachep = p;
+       struct list_head *q;
+       struct slab *slabp;
+       struct kmem_list3 *l3;
+       const char *name;
+       unsigned long *n = m->private;
+       int node;
+       int i;
+
+       if (!(cachep->flags & SLAB_STORE_USER))
+               return 0;
+       if (!(cachep->flags & SLAB_RED_ZONE))
+               return 0;
+
+       /* OK, we can do it */
+
+       n[1] = 0;
+
+       for_each_online_node(node) {
+               l3 = cachep->nodelists[node];
+               if (!l3)
+                       continue;
+
+               check_irq_on();
+               spin_lock_irq(&l3->list_lock);
+
+               list_for_each(q, &l3->slabs_full) {
+                       slabp = list_entry(q, struct slab, list);
+                       handle_slab(n, cachep, slabp);
+               }
+               list_for_each(q, &l3->slabs_partial) {
+                       slabp = list_entry(q, struct slab, list);
+                       handle_slab(n, cachep, slabp);
+               }
+               spin_unlock_irq(&l3->list_lock);
+       }
+       name = cachep->name;
+       if (n[0] == n[1]) {
+               /* Increase the buffer size */
+               mutex_unlock(&cache_chain_mutex);
+               m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
+               if (!m->private) {
+                       /* Too bad, we are really out */
+                       m->private = n;
+                       mutex_lock(&cache_chain_mutex);
+                       return -ENOMEM;
+               }
+               *(unsigned long *)m->private = n[0] * 2;
+               kfree(n);
+               mutex_lock(&cache_chain_mutex);
+               /* Now make sure this entry will be retried */
+               m->count = m->size;
+               return 0;
+       }
+       for (i = 0; i < n[1]; i++) {
+               seq_printf(m, "%s: %lu ", name, n[2*i+3]);
+               show_symbol(m, n[2*i+2]);
+               seq_putc(m, '\n');
+       }
+       return 0;
+}
+
+struct seq_operations slabstats_op = {
+       .start = leaks_start,
+       .next = s_next,
+       .stop = s_stop,
+       .show = leaks_show,
+};
+#endif
 #endif
 
 /**