netns xfrm: fix "ip xfrm state|policy count" misreport
[safe/jmp/linux-2.6] / mm / readahead.c
index d250487..033bc13 100644 (file)
@@ -3,7 +3,7 @@
  *
  * Copyright (C) 2002, Linus Torvalds
  *
- * 09Apr2002   akpm@zip.com.au
+ * 09Apr2002   Andrew Morton
  *             Initial version.
  */
 
 #include <linux/pagevec.h>
 #include <linux/pagemap.h>
 
-void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
-{
-}
-EXPORT_SYMBOL(default_unplug_io_fn);
-
-/*
- * Convienent macros for min/max read-ahead pages.
- * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
- * The latter is necessary for systems with large page size(i.e. 64k).
- */
-#define MAX_RA_PAGES   (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
-#define MIN_RA_PAGES   DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
-
-struct backing_dev_info default_backing_dev_info = {
-       .ra_pages       = MAX_RA_PAGES,
-       .state          = 0,
-       .capabilities   = BDI_CAP_MAP_COPY,
-       .unplug_io_fn   = default_unplug_io_fn,
-};
-EXPORT_SYMBOL_GPL(default_backing_dev_info);
-
 /*
  * Initialise a struct file's readahead state.  Assumes that the caller has
  * memset *ra to zero.
@@ -46,12 +25,48 @@ void
 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 {
        ra->ra_pages = mapping->backing_dev_info->ra_pages;
-       ra->prev_index = -1;
+       ra->prev_pos = -1;
 }
 EXPORT_SYMBOL_GPL(file_ra_state_init);
 
 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
 
+/*
+ * see if a page needs releasing upon read_cache_pages() failure
+ * - the caller of read_cache_pages() may have set PG_private or PG_fscache
+ *   before calling, such as the NFS fs marking pages that are cached locally
+ *   on disk, thus we need to give the fs a chance to clean up in the event of
+ *   an error
+ */
+static void read_cache_pages_invalidate_page(struct address_space *mapping,
+                                            struct page *page)
+{
+       if (page_has_private(page)) {
+               if (!trylock_page(page))
+                       BUG();
+               page->mapping = mapping;
+               do_invalidatepage(page, 0);
+               page->mapping = NULL;
+               unlock_page(page);
+       }
+       page_cache_release(page);
+}
+
+/*
+ * release a list of pages, invalidating them first if need be
+ */
+static void read_cache_pages_invalidate_pages(struct address_space *mapping,
+                                             struct list_head *pages)
+{
+       struct page *victim;
+
+       while (!list_empty(pages)) {
+               victim = list_to_page(pages);
+               list_del(&victim->lru);
+               read_cache_pages_invalidate_page(mapping, victim);
+       }
+}
+
 /**
  * read_cache_pages - populate an address space with some pages & start reads against them
  * @mapping: the address_space
@@ -66,28 +81,25 @@ int read_cache_pages(struct address_space *mapping, struct list_head *pages,
                        int (*filler)(void *, struct page *), void *data)
 {
        struct page *page;
-       struct pagevec lru_pvec;
        int ret = 0;
 
-       pagevec_init(&lru_pvec, 0);
-
        while (!list_empty(pages)) {
                page = list_to_page(pages);
                list_del(&page->lru);
-               if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
-                       page_cache_release(page);
+               if (add_to_page_cache_lru(page, mapping,
+                                       page->index, GFP_KERNEL)) {
+                       read_cache_pages_invalidate_page(mapping, page);
                        continue;
                }
+               page_cache_release(page);
+
                ret = filler(data, page);
-               if (!pagevec_add(&lru_pvec, page))
-                       __pagevec_lru_add(&lru_pvec);
-               if (ret) {
-                       put_pages_list(pages);
+               if (unlikely(ret)) {
+                       read_cache_pages_invalidate_pages(mapping, pages);
                        break;
                }
                task_io_account_read(PAGE_CACHE_SIZE);
        }
-       pagevec_lru_add(&lru_pvec);
        return ret;
 }
 
@@ -97,7 +109,6 @@ static int read_pages(struct address_space *mapping, struct file *filp,
                struct list_head *pages, unsigned nr_pages)
 {
        unsigned page_idx;
-       struct pagevec lru_pvec;
        int ret;
 
        if (mapping->a_ops->readpages) {
@@ -107,34 +118,27 @@ static int read_pages(struct address_space *mapping, struct file *filp,
                goto out;
        }
 
-       pagevec_init(&lru_pvec, 0);
        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
                struct page *page = list_to_page(pages);
                list_del(&page->lru);
-               if (!add_to_page_cache(page, mapping,
+               if (!add_to_page_cache_lru(page, mapping,
                                        page->index, GFP_KERNEL)) {
                        mapping->a_ops->readpage(filp, page);
-                       if (!pagevec_add(&lru_pvec, page))
-                               __pagevec_lru_add(&lru_pvec);
-               } else
-                       page_cache_release(page);
+               }
+               page_cache_release(page);
        }
-       pagevec_lru_add(&lru_pvec);
        ret = 0;
 out:
        return ret;
 }
 
 /*
- * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
+ * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
  * the pages first, then submits them all for I/O. This avoids the very bad
  * behaviour which would occur if page allocations are causing VM writeback.
  * We really don't want to intermingle reads and writes like that.
  *
  * Returns the number of pages requested, or the maximum amount of I/O allowed.
- *
- * do_page_cache_readahead() returns -1 if it encountered request queue
- * congestion.
  */
 static int
 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
@@ -157,20 +161,19 @@ __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
        /*
         * Preallocate as many pages as we will need.
         */
-       read_lock_irq(&mapping->tree_lock);
        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
                pgoff_t page_offset = offset + page_idx;
 
                if (page_offset > end_index)
                        break;
 
+               rcu_read_lock();
                page = radix_tree_lookup(&mapping->page_tree, page_offset);
+               rcu_read_unlock();
                if (page)
                        continue;
 
-               read_unlock_irq(&mapping->tree_lock);
                page = page_cache_alloc_cold(mapping);
-               read_lock_irq(&mapping->tree_lock);
                if (!page)
                        break;
                page->index = page_offset;
@@ -179,7 +182,6 @@ __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
                        SetPageReadahead(page);
                ret++;
        }
-       read_unlock_irq(&mapping->tree_lock);
 
        /*
         * Now start the IO.  We ignore I/O errors - if the page is not
@@ -205,6 +207,7 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
                return -EINVAL;
 
+       nr_to_read = max_sane_readahead(nr_to_read);
        while (nr_to_read) {
                int err;
 
@@ -226,35 +229,19 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 }
 
 /*
- * This version skips the IO if the queue is read-congested, and will tell the
- * block layer to abandon the readahead if request allocation would block.
- *
- * force_page_cache_readahead() will ignore queue congestion and will block on
- * request queues.
- */
-int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
-                       pgoff_t offset, unsigned long nr_to_read)
-{
-       if (bdi_read_congested(mapping->backing_dev_info))
-               return -1;
-
-       return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
-}
-
-/*
  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  * sensible upper limit.
  */
 unsigned long max_sane_readahead(unsigned long nr)
 {
-       return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
+       return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
                + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
 }
 
 /*
  * Submit IO for the read-ahead request in file_ra_state.
  */
-static unsigned long ra_submit(struct file_ra_state *ra,
+unsigned long ra_submit(struct file_ra_state *ra,
                       struct address_space *mapping, struct file *filp)
 {
        int actual;
@@ -327,7 +314,7 @@ static unsigned long get_next_ra_size(struct file_ra_state *ra,
  * indicator. The flag won't be set on already cached pages, to avoid the
  * readahead-for-nothing fuss, saving pointless page cache lookups.
  *
- * prev_index tracks the last visited page in the _previous_ read request.
+ * prev_pos tracks the last visited byte in the _previous_ read request.
  * It should be maintained by the caller, and will be used for detecting
  * small random reads. Note that the readahead algorithm checks loosely
  * for sequential patterns. Hence interleaved reads might be served as
@@ -343,6 +330,59 @@ static unsigned long get_next_ra_size(struct file_ra_state *ra,
  */
 
 /*
+ * Count contiguously cached pages from @offset-1 to @offset-@max,
+ * this count is a conservative estimation of
+ *     - length of the sequential read sequence, or
+ *     - thrashing threshold in memory tight systems
+ */
+static pgoff_t count_history_pages(struct address_space *mapping,
+                                  struct file_ra_state *ra,
+                                  pgoff_t offset, unsigned long max)
+{
+       pgoff_t head;
+
+       rcu_read_lock();
+       head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
+       rcu_read_unlock();
+
+       return offset - 1 - head;
+}
+
+/*
+ * page cache context based read-ahead
+ */
+static int try_context_readahead(struct address_space *mapping,
+                                struct file_ra_state *ra,
+                                pgoff_t offset,
+                                unsigned long req_size,
+                                unsigned long max)
+{
+       pgoff_t size;
+
+       size = count_history_pages(mapping, ra, offset, max);
+
+       /*
+        * no history pages:
+        * it could be a random read
+        */
+       if (!size)
+               return 0;
+
+       /*
+        * starts from beginning of file:
+        * it is a strong indication of long-run stream (or whole-file-read)
+        */
+       if (size >= offset)
+               size *= 2;
+
+       ra->start = offset;
+       ra->size = get_init_ra_size(size + req_size, max);
+       ra->async_size = ra->size;
+
+       return 1;
+}
+
+/*
  * A minimal readahead algorithm for trivial sequential/random reads.
  */
 static unsigned long
@@ -351,18 +391,20 @@ ondemand_readahead(struct address_space *mapping,
                   bool hit_readahead_marker, pgoff_t offset,
                   unsigned long req_size)
 {
-       int max;        /* max readahead pages */
-       int sequential;
+       unsigned long max = max_sane_readahead(ra->ra_pages);
 
-       max = ra->ra_pages;
-       sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);
+       /*
+        * start of file
+        */
+       if (!offset)
+               goto initial_readahead;
 
        /*
         * It's the expected callback offset, assume sequential access.
         * Ramp up sizes, and push forward the readahead window.
         */
-       if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
-                       offset == (ra->start + ra->size))) {
+       if ((offset == (ra->start + ra->size - ra->async_size) ||
+            offset == (ra->start + ra->size))) {
                ra->start += ra->size;
                ra->size = get_next_ra_size(ra, max);
                ra->async_size = ra->size;
@@ -370,36 +412,70 @@ ondemand_readahead(struct address_space *mapping,
        }
 
        /*
-        * Standalone, small read.
-        * Read as is, and do not pollute the readahead state.
+        * Hit a marked page without valid readahead state.
+        * E.g. interleaved reads.
+        * Query the pagecache for async_size, which normally equals to
+        * readahead size. Ramp it up and use it as the new readahead size.
         */
-       if (!hit_readahead_marker && !sequential) {
-               return __do_page_cache_readahead(mapping, filp,
-                                               offset, req_size, 0);
+       if (hit_readahead_marker) {
+               pgoff_t start;
+
+               rcu_read_lock();
+               start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
+               rcu_read_unlock();
+
+               if (!start || start - offset > max)
+                       return 0;
+
+               ra->start = start;
+               ra->size = start - offset;      /* old async_size */
+               ra->size += req_size;
+               ra->size = get_next_ra_size(ra, max);
+               ra->async_size = ra->size;
+               goto readit;
        }
 
        /*
-        * It may be one of
-        *      - first read on start of file
-        *      - sequential cache miss
-        *      - oversize random read
-        * Start readahead for it.
+        * oversize read
+        */
+       if (req_size > max)
+               goto initial_readahead;
+
+       /*
+        * sequential cache miss
+        */
+       if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
+               goto initial_readahead;
+
+       /*
+        * Query the page cache and look for the traces(cached history pages)
+        * that a sequential stream would leave behind.
+        */
+       if (try_context_readahead(mapping, ra, offset, req_size, max))
+               goto readit;
+
+       /*
+        * standalone, small random read
+        * Read as is, and do not pollute the readahead state.
         */
+       return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
+
+initial_readahead:
        ra->start = offset;
        ra->size = get_init_ra_size(req_size, max);
        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 
+readit:
        /*
-        * Hit on a marked page without valid readahead state.
-        * E.g. interleaved reads.
-        * Not knowing its readahead pos/size, bet on the minimal possible one.
+        * Will this read hit the readahead marker made by itself?
+        * If so, trigger the readahead marker hit now, and merge
+        * the resulted next readahead window into the current one.
         */
-       if (hit_readahead_marker) {
-               ra->start++;
-               ra->size = get_next_ra_size(ra, max);
+       if (offset == ra->start && ra->size == ra->async_size) {
+               ra->async_size = get_next_ra_size(ra, max);
+               ra->size += ra->async_size;
        }
 
-readit:
        return ra_submit(ra, mapping, filp);
 }
 
@@ -441,9 +517,10 @@ EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  *            pagecache pages
  *
  * page_cache_async_ondemand() should be called when a page is used which
- * has the PG_readahead flag: this is a marker to suggest that the application
+ * has the PG_readahead flag; this is a marker to suggest that the application
  * has used up enough of the readahead window that we should start pulling in
- * more pages. */
+ * more pages.
+ */
 void
 page_cache_async_readahead(struct address_space *mapping,
                           struct file_ra_state *ra, struct file *filp,
@@ -470,5 +547,17 @@ page_cache_async_readahead(struct address_space *mapping,
 
        /* do read-ahead */
        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
+
+#ifdef CONFIG_BLOCK
+       /*
+        * Normally the current page is !uptodate and lock_page() will be
+        * immediately called to implicitly unplug the device. However this
+        * is not always true for RAID conifgurations, where data arrives
+        * not strictly in their submission order. In this case we need to
+        * explicitly kick off the IO.
+        */
+       if (PageUptodate(page))
+               blk_run_backing_dev(mapping->backing_dev_info, NULL);
+#endif
 }
 EXPORT_SYMBOL_GPL(page_cache_async_readahead);