nfsd: move fsid_type choice out of fh_compose
[safe/jmp/linux-2.6] / lib / kernel_lock.c
index 99b0ae3..39f1029 100644 (file)
  * lib/kernel_lock.c
  *
  * This is the traditional BKL - big kernel lock. Largely
- * relegated to obsolescense, but used by various less
+ * relegated to obsolescence, but used by various less
  * important (or lazy) subsystems.
  */
 #include <linux/smp_lock.h>
 #include <linux/module.h>
 #include <linux/kallsyms.h>
-
-#if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \
-               defined(CONFIG_DEBUG_PREEMPT)
-
-/*
- * Debugging check.
- */
-unsigned int smp_processor_id(void)
-{
-       unsigned long preempt_count = preempt_count();
-       int this_cpu = __smp_processor_id();
-       cpumask_t this_mask;
-
-       if (likely(preempt_count))
-               goto out;
-
-       if (irqs_disabled())
-               goto out;
-
-       /*
-        * Kernel threads bound to a single CPU can safely use
-        * smp_processor_id():
-        */
-       this_mask = cpumask_of_cpu(this_cpu);
-
-       if (cpus_equal(current->cpus_allowed, this_mask))
-               goto out;
-
-       /*
-        * It is valid to assume CPU-locality during early bootup:
-        */
-       if (system_state != SYSTEM_RUNNING)
-               goto out;
-
-       /*
-        * Avoid recursion:
-        */
-       preempt_disable();
-
-       if (!printk_ratelimit())
-               goto out_enable;
-
-       printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid);
-       print_symbol("caller is %s\n", (long)__builtin_return_address(0));
-       dump_stack();
-
-out_enable:
-       preempt_enable_no_resched();
-out:
-       return this_cpu;
-}
-
-EXPORT_SYMBOL(smp_processor_id);
-
-#endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */
-
-#ifdef CONFIG_PREEMPT_BKL
-/*
- * The 'big kernel semaphore'
- *
- * This mutex is taken and released recursively by lock_kernel()
- * and unlock_kernel().  It is transparently dropped and reaquired
- * over schedule().  It is used to protect legacy code that hasn't
- * been migrated to a proper locking design yet.
- *
- * Note: code locked by this semaphore will only be serialized against
- * other code using the same locking facility. The code guarantees that
- * the task remains on the same CPU.
- *
- * Don't use in new code.
- */
-static DECLARE_MUTEX(kernel_sem);
-
-/*
- * Re-acquire the kernel semaphore.
- *
- * This function is called with preemption off.
- *
- * We are executing in schedule() so the code must be extremely careful
- * about recursion, both due to the down() and due to the enabling of
- * preemption. schedule() will re-check the preemption flag after
- * reacquiring the semaphore.
- */
-int __lockfunc __reacquire_kernel_lock(void)
-{
-       struct task_struct *task = current;
-       int saved_lock_depth = task->lock_depth;
-
-       BUG_ON(saved_lock_depth < 0);
-
-       task->lock_depth = -1;
-       preempt_enable_no_resched();
-
-       down(&kernel_sem);
-
-       preempt_disable();
-       task->lock_depth = saved_lock_depth;
-
-       return 0;
-}
-
-void __lockfunc __release_kernel_lock(void)
-{
-       up(&kernel_sem);
-}
-
-/*
- * Getting the big kernel semaphore.
- */
-void __lockfunc lock_kernel(void)
-{
-       struct task_struct *task = current;
-       int depth = task->lock_depth + 1;
-
-       if (likely(!depth))
-               /*
-                * No recursion worries - we set up lock_depth _after_
-                */
-               down(&kernel_sem);
-
-       task->lock_depth = depth;
-}
-
-void __lockfunc unlock_kernel(void)
-{
-       struct task_struct *task = current;
-
-       BUG_ON(task->lock_depth < 0);
-
-       if (likely(--task->lock_depth < 0))
-               up(&kernel_sem);
-}
-
-#else
+#include <linux/semaphore.h>
 
 /*
  * The 'big kernel lock'
  *
  * This spinlock is taken and released recursively by lock_kernel()
- * and unlock_kernel().  It is transparently dropped and reaquired
+ * and unlock_kernel().  It is transparently dropped and reacquired
  * over schedule().  It is used to protect legacy code that hasn't
  * been migrated to a proper locking design yet.
  *
@@ -172,7 +39,7 @@ static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
 int __lockfunc __reacquire_kernel_lock(void)
 {
        while (!_raw_spin_trylock(&kernel_flag)) {
-               if (test_thread_flag(TIF_NEED_RESCHED))
+               if (need_resched())
                        return -EAGAIN;
                cpu_relax();
        }
@@ -187,7 +54,7 @@ void __lockfunc __release_kernel_lock(void)
 }
 
 /*
- * These are the BKL spinlocks - we try to be polite about preemption. 
+ * These are the BKL spinlocks - we try to be polite about preemption.
  * If SMP is not on (ie UP preemption), this all goes away because the
  * _raw_spin_trylock() will always succeed.
  */
@@ -232,6 +99,10 @@ static inline void __lock_kernel(void)
 
 static inline void __unlock_kernel(void)
 {
+       /*
+        * the BKL is not covered by lockdep, so we open-code the
+        * unlocking sequence (and thus avoid the dep-chain ops):
+        */
        _raw_spin_unlock(&kernel_flag);
        preempt_enable();
 }
@@ -257,8 +128,6 @@ void __lockfunc unlock_kernel(void)
                __unlock_kernel();
 }
 
-#endif
-
 EXPORT_SYMBOL(lock_kernel);
 EXPORT_SYMBOL(unlock_kernel);