Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / timer.c
index e5adb9e..13dd64f 100644 (file)
@@ -1,7 +1,7 @@
 /*
  *  linux/kernel/timer.c
  *
- *  Kernel internal timers, kernel timekeeping, basic process system calls
+ *  Kernel internal timers, basic process system calls
  *
  *  Copyright (C) 1991, 1992  Linus Torvalds
  *
@@ -26,6 +26,7 @@
 #include <linux/init.h>
 #include <linux/mm.h>
 #include <linux/swap.h>
+#include <linux/pid_namespace.h>
 #include <linux/notifier.h>
 #include <linux/thread_info.h>
 #include <linux/time.h>
@@ -34,6 +35,8 @@
 #include <linux/cpu.h>
 #include <linux/syscalls.h>
 #include <linux/delay.h>
+#include <linux/tick.h>
+#include <linux/kallsyms.h>
 
 #include <asm/uaccess.h>
 #include <asm/unistd.h>
 #include <asm/timex.h>
 #include <asm/io.h>
 
-#ifdef CONFIG_TIME_INTERPOLATION
-static void time_interpolator_update(long delta_nsec);
-#else
-#define time_interpolator_update(x)
-#endif
-
 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
 
 EXPORT_SYMBOL(jiffies_64);
@@ -61,32 +58,262 @@ EXPORT_SYMBOL(jiffies_64);
 #define TVN_MASK (TVN_SIZE - 1)
 #define TVR_MASK (TVR_SIZE - 1)
 
-typedef struct tvec_s {
+struct tvec {
        struct list_head vec[TVN_SIZE];
-} tvec_t;
+};
 
-typedef struct tvec_root_s {
+struct tvec_root {
        struct list_head vec[TVR_SIZE];
-} tvec_root_t;
+};
 
-struct tvec_t_base_s {
+struct tvec_base {
        spinlock_t lock;
        struct timer_list *running_timer;
        unsigned long timer_jiffies;
-       tvec_root_t tv1;
-       tvec_t tv2;
-       tvec_t tv3;
-       tvec_t tv4;
-       tvec_t tv5;
-} ____cacheline_aligned_in_smp;
+       struct tvec_root tv1;
+       struct tvec tv2;
+       struct tvec tv3;
+       struct tvec tv4;
+       struct tvec tv5;
+} ____cacheline_aligned;
+
+struct tvec_base boot_tvec_bases;
+EXPORT_SYMBOL(boot_tvec_bases);
+static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
+
+/*
+ * Note that all tvec_bases are 2 byte aligned and lower bit of
+ * base in timer_list is guaranteed to be zero. Use the LSB for
+ * the new flag to indicate whether the timer is deferrable
+ */
+#define TBASE_DEFERRABLE_FLAG          (0x1)
 
-typedef struct tvec_t_base_s tvec_base_t;
+/* Functions below help us manage 'deferrable' flag */
+static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
+{
+       return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
+}
 
-tvec_base_t boot_tvec_bases;
-EXPORT_SYMBOL(boot_tvec_bases);
-static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
+static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
+{
+       return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
+}
 
-static inline void set_running_timer(tvec_base_t *base,
+static inline void timer_set_deferrable(struct timer_list *timer)
+{
+       timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
+                                      TBASE_DEFERRABLE_FLAG));
+}
+
+static inline void
+timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
+{
+       timer->base = (struct tvec_base *)((unsigned long)(new_base) |
+                                     tbase_get_deferrable(timer->base));
+}
+
+static unsigned long round_jiffies_common(unsigned long j, int cpu,
+               bool force_up)
+{
+       int rem;
+       unsigned long original = j;
+
+       /*
+        * We don't want all cpus firing their timers at once hitting the
+        * same lock or cachelines, so we skew each extra cpu with an extra
+        * 3 jiffies. This 3 jiffies came originally from the mm/ code which
+        * already did this.
+        * The skew is done by adding 3*cpunr, then round, then subtract this
+        * extra offset again.
+        */
+       j += cpu * 3;
+
+       rem = j % HZ;
+
+       /*
+        * If the target jiffie is just after a whole second (which can happen
+        * due to delays of the timer irq, long irq off times etc etc) then
+        * we should round down to the whole second, not up. Use 1/4th second
+        * as cutoff for this rounding as an extreme upper bound for this.
+        * But never round down if @force_up is set.
+        */
+       if (rem < HZ/4 && !force_up) /* round down */
+               j = j - rem;
+       else /* round up */
+               j = j - rem + HZ;
+
+       /* now that we have rounded, subtract the extra skew again */
+       j -= cpu * 3;
+
+       if (j <= jiffies) /* rounding ate our timeout entirely; */
+               return original;
+       return j;
+}
+
+/**
+ * __round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies(unsigned long j, int cpu)
+{
+       return round_jiffies_common(j, cpu, false);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies);
+
+/**
+ * __round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies_relative(unsigned long j, int cpu)
+{
+       unsigned long j0 = jiffies;
+
+       /* Use j0 because jiffies might change while we run */
+       return round_jiffies_common(j + j0, cpu, false) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_relative);
+
+/**
+ * round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies(unsigned long j)
+{
+       return round_jiffies_common(j, raw_smp_processor_id(), false);
+}
+EXPORT_SYMBOL_GPL(round_jiffies);
+
+/**
+ * round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies_relative(unsigned long j)
+{
+       return __round_jiffies_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_relative);
+
+/**
+ * __round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up(unsigned long j, int cpu)
+{
+       return round_jiffies_common(j, cpu, true);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up);
+
+/**
+ * __round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
+{
+       unsigned long j0 = jiffies;
+
+       /* Use j0 because jiffies might change while we run */
+       return round_jiffies_common(j + j0, cpu, true) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
+
+/**
+ * round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up(unsigned long j)
+{
+       return round_jiffies_common(j, raw_smp_processor_id(), true);
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up);
+
+/**
+ * round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up_relative(unsigned long j)
+{
+       return __round_jiffies_up_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
+
+
+static inline void set_running_timer(struct tvec_base *base,
                                        struct timer_list *timer)
 {
 #ifdef CONFIG_SMP
@@ -94,7 +321,7 @@ static inline void set_running_timer(tvec_base_t *base,
 #endif
 }
 
-static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
+static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
 {
        unsigned long expires = timer->expires;
        unsigned long idx = expires - base->timer_jiffies;
@@ -136,25 +363,194 @@ static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
        list_add_tail(&timer->entry, vec);
 }
 
-/***
+#ifdef CONFIG_TIMER_STATS
+void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
+{
+       if (timer->start_site)
+               return;
+
+       timer->start_site = addr;
+       memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+       timer->start_pid = current->pid;
+}
+
+static void timer_stats_account_timer(struct timer_list *timer)
+{
+       unsigned int flag = 0;
+
+       if (unlikely(tbase_get_deferrable(timer->base)))
+               flag |= TIMER_STATS_FLAG_DEFERRABLE;
+
+       timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+                                timer->function, timer->start_comm, flag);
+}
+
+#else
+static void timer_stats_account_timer(struct timer_list *timer) {}
+#endif
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr timer_debug_descr;
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int timer_fixup_init(void *addr, enum debug_obj_state state)
+{
+       struct timer_list *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               del_timer_sync(timer);
+               debug_object_init(timer, &timer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int timer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+       struct timer_list *timer = addr;
+
+       switch (state) {
+
+       case ODEBUG_STATE_NOTAVAILABLE:
+               /*
+                * This is not really a fixup. The timer was
+                * statically initialized. We just make sure that it
+                * is tracked in the object tracker.
+                */
+               if (timer->entry.next == NULL &&
+                   timer->entry.prev == TIMER_ENTRY_STATIC) {
+                       debug_object_init(timer, &timer_debug_descr);
+                       debug_object_activate(timer, &timer_debug_descr);
+                       return 0;
+               } else {
+                       WARN_ON_ONCE(1);
+               }
+               return 0;
+
+       case ODEBUG_STATE_ACTIVE:
+               WARN_ON(1);
+
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int timer_fixup_free(void *addr, enum debug_obj_state state)
+{
+       struct timer_list *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               del_timer_sync(timer);
+               debug_object_free(timer, &timer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+static struct debug_obj_descr timer_debug_descr = {
+       .name           = "timer_list",
+       .fixup_init     = timer_fixup_init,
+       .fixup_activate = timer_fixup_activate,
+       .fixup_free     = timer_fixup_free,
+};
+
+static inline void debug_timer_init(struct timer_list *timer)
+{
+       debug_object_init(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_activate(struct timer_list *timer)
+{
+       debug_object_activate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_deactivate(struct timer_list *timer)
+{
+       debug_object_deactivate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_free(struct timer_list *timer)
+{
+       debug_object_free(timer, &timer_debug_descr);
+}
+
+static void __init_timer(struct timer_list *timer);
+
+void init_timer_on_stack(struct timer_list *timer)
+{
+       debug_object_init_on_stack(timer, &timer_debug_descr);
+       __init_timer(timer);
+}
+EXPORT_SYMBOL_GPL(init_timer_on_stack);
+
+void destroy_timer_on_stack(struct timer_list *timer)
+{
+       debug_object_free(timer, &timer_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
+
+#else
+static inline void debug_timer_init(struct timer_list *timer) { }
+static inline void debug_timer_activate(struct timer_list *timer) { }
+static inline void debug_timer_deactivate(struct timer_list *timer) { }
+#endif
+
+static void __init_timer(struct timer_list *timer)
+{
+       timer->entry.next = NULL;
+       timer->base = __raw_get_cpu_var(tvec_bases);
+#ifdef CONFIG_TIMER_STATS
+       timer->start_site = NULL;
+       timer->start_pid = -1;
+       memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
+}
+
+/**
  * init_timer - initialize a timer.
  * @timer: the timer to be initialized
  *
  * init_timer() must be done to a timer prior calling *any* of the
  * other timer functions.
  */
-void fastcall init_timer(struct timer_list *timer)
+void init_timer(struct timer_list *timer)
 {
-       timer->entry.next = NULL;
-       timer->base = __raw_get_cpu_var(tvec_bases);
+       debug_timer_init(timer);
+       __init_timer(timer);
 }
 EXPORT_SYMBOL(init_timer);
 
+void init_timer_deferrable(struct timer_list *timer)
+{
+       init_timer(timer);
+       timer_set_deferrable(timer);
+}
+EXPORT_SYMBOL(init_timer_deferrable);
+
 static inline void detach_timer(struct timer_list *timer,
-                                       int clear_pending)
+                               int clear_pending)
 {
        struct list_head *entry = &timer->entry;
 
+       debug_timer_deactivate(timer);
+
        __list_del(entry->prev, entry->next);
        if (clear_pending)
                entry->next = NULL;
@@ -173,16 +569,18 @@ static inline void detach_timer(struct timer_list *timer,
  * possible to set timer->base = NULL and drop the lock: the timer remains
  * locked.
  */
-static tvec_base_t *lock_timer_base(struct timer_list *timer,
+static struct tvec_base *lock_timer_base(struct timer_list *timer,
                                        unsigned long *flags)
+       __acquires(timer->base->lock)
 {
-       tvec_base_t *base;
+       struct tvec_base *base;
 
        for (;;) {
-               base = timer->base;
+               struct tvec_base *prelock_base = timer->base;
+               base = tbase_get_base(prelock_base);
                if (likely(base != NULL)) {
                        spin_lock_irqsave(&base->lock, *flags);
-                       if (likely(base == timer->base))
+                       if (likely(prelock_base == timer->base))
                                return base;
                        /* The timer has migrated to another CPU */
                        spin_unlock_irqrestore(&base->lock, *flags);
@@ -193,10 +591,11 @@ static tvec_base_t *lock_timer_base(struct timer_list *timer,
 
 int __mod_timer(struct timer_list *timer, unsigned long expires)
 {
-       tvec_base_t *base, *new_base;
+       struct tvec_base *base, *new_base;
        unsigned long flags;
        int ret = 0;
 
+       timer_stats_timer_set_start_info(timer);
        BUG_ON(!timer->function);
 
        base = lock_timer_base(timer, &flags);
@@ -206,6 +605,8 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
                ret = 1;
        }
 
+       debug_timer_activate(timer);
+
        new_base = __get_cpu_var(tvec_bases);
 
        if (base != new_base) {
@@ -218,11 +619,11 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
                 */
                if (likely(base->running_timer != timer)) {
                        /* See the comment in lock_timer_base() */
-                       timer->base = NULL;
+                       timer_set_base(timer, NULL);
                        spin_unlock(&base->lock);
                        base = new_base;
                        spin_lock(&base->lock);
-                       timer->base = base;
+                       timer_set_base(timer, base);
                }
        }
 
@@ -235,7 +636,7 @@ int __mod_timer(struct timer_list *timer, unsigned long expires)
 
 EXPORT_SYMBOL(__mod_timer);
 
-/***
+/**
  * add_timer_on - start a timer on a particular CPU
  * @timer: the timer to be added
  * @cpu: the CPU to start it on
@@ -244,22 +645,33 @@ EXPORT_SYMBOL(__mod_timer);
  */
 void add_timer_on(struct timer_list *timer, int cpu)
 {
-       tvec_base_t *base = per_cpu(tvec_bases, cpu);
-       unsigned long flags;
+       struct tvec_base *base = per_cpu(tvec_bases, cpu);
+       unsigned long flags;
 
-       BUG_ON(timer_pending(timer) || !timer->function);
+       timer_stats_timer_set_start_info(timer);
+       BUG_ON(timer_pending(timer) || !timer->function);
        spin_lock_irqsave(&base->lock, flags);
-       timer->base = base;
+       timer_set_base(timer, base);
+       debug_timer_activate(timer);
        internal_add_timer(base, timer);
+       /*
+        * Check whether the other CPU is idle and needs to be
+        * triggered to reevaluate the timer wheel when nohz is
+        * active. We are protected against the other CPU fiddling
+        * with the timer by holding the timer base lock. This also
+        * makes sure that a CPU on the way to idle can not evaluate
+        * the timer wheel.
+        */
+       wake_up_idle_cpu(cpu);
        spin_unlock_irqrestore(&base->lock, flags);
 }
 
-
-/***
+/**
  * mod_timer - modify a timer's timeout
  * @timer: the timer to be modified
+ * @expires: new timeout in jiffies
  *
- * mod_timer is a more efficient way to update the expire field of an
+ * mod_timer() is a more efficient way to update the expire field of an
  * active timer (if the timer is inactive it will be activated)
  *
  * mod_timer(timer, expires) is equivalent to:
@@ -278,6 +690,7 @@ int mod_timer(struct timer_list *timer, unsigned long expires)
 {
        BUG_ON(!timer->function);
 
+       timer_stats_timer_set_start_info(timer);
        /*
         * This is a common optimization triggered by the
         * networking code - if the timer is re-modified
@@ -291,7 +704,7 @@ int mod_timer(struct timer_list *timer, unsigned long expires)
 
 EXPORT_SYMBOL(mod_timer);
 
-/***
+/**
  * del_timer - deactive a timer.
  * @timer: the timer to be deactivated
  *
@@ -304,10 +717,11 @@ EXPORT_SYMBOL(mod_timer);
  */
 int del_timer(struct timer_list *timer)
 {
-       tvec_base_t *base;
+       struct tvec_base *base;
        unsigned long flags;
        int ret = 0;
 
+       timer_stats_timer_clear_start_info(timer);
        if (timer_pending(timer)) {
                base = lock_timer_base(timer, &flags);
                if (timer_pending(timer)) {
@@ -323,7 +737,10 @@ int del_timer(struct timer_list *timer)
 EXPORT_SYMBOL(del_timer);
 
 #ifdef CONFIG_SMP
-/*
+/**
+ * try_to_del_timer_sync - Try to deactivate a timer
+ * @timer: timer do del
+ *
  * This function tries to deactivate a timer. Upon successful (ret >= 0)
  * exit the timer is not queued and the handler is not running on any CPU.
  *
@@ -331,7 +748,7 @@ EXPORT_SYMBOL(del_timer);
  */
 int try_to_del_timer_sync(struct timer_list *timer)
 {
-       tvec_base_t *base;
+       struct tvec_base *base;
        unsigned long flags;
        int ret = -1;
 
@@ -351,7 +768,9 @@ out:
        return ret;
 }
 
-/***
+EXPORT_SYMBOL(try_to_del_timer_sync);
+
+/**
  * del_timer_sync - deactivate a timer and wait for the handler to finish.
  * @timer: the timer to be deactivated
  *
@@ -359,7 +778,7 @@ out:
  * the timer it also makes sure the handler has finished executing on other
  * CPUs.
  *
- * Synchronization rules: callers must prevent restarting of the timer,
+ * Synchronization rules: Callers must prevent restarting of the timer,
  * otherwise this function is meaningless. It must not be called from
  * interrupt contexts. The caller must not hold locks which would prevent
  * completion of the timer's handler. The timer's handler must not call
@@ -374,707 +793,233 @@ int del_timer_sync(struct timer_list *timer)
                int ret = try_to_del_timer_sync(timer);
                if (ret >= 0)
                        return ret;
-       }
-}
-
-EXPORT_SYMBOL(del_timer_sync);
-#endif
-
-static int cascade(tvec_base_t *base, tvec_t *tv, int index)
-{
-       /* cascade all the timers from tv up one level */
-       struct timer_list *timer, *tmp;
-       struct list_head tv_list;
-
-       list_replace_init(tv->vec + index, &tv_list);
-
-       /*
-        * We are removing _all_ timers from the list, so we
-        * don't have to detach them individually.
-        */
-       list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
-               BUG_ON(timer->base != base);
-               internal_add_timer(base, timer);
-       }
-
-       return index;
-}
-
-/***
- * __run_timers - run all expired timers (if any) on this CPU.
- * @base: the timer vector to be processed.
- *
- * This function cascades all vectors and executes all expired timer
- * vectors.
- */
-#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
-
-static inline void __run_timers(tvec_base_t *base)
-{
-       struct timer_list *timer;
-
-       spin_lock_irq(&base->lock);
-       while (time_after_eq(jiffies, base->timer_jiffies)) {
-               struct list_head work_list;
-               struct list_head *head = &work_list;
-               int index = base->timer_jiffies & TVR_MASK;
-
-               /*
-                * Cascade timers:
-                */
-               if (!index &&
-                       (!cascade(base, &base->tv2, INDEX(0))) &&
-                               (!cascade(base, &base->tv3, INDEX(1))) &&
-                                       !cascade(base, &base->tv4, INDEX(2)))
-                       cascade(base, &base->tv5, INDEX(3));
-               ++base->timer_jiffies;
-               list_replace_init(base->tv1.vec + index, &work_list);
-               while (!list_empty(head)) {
-                       void (*fn)(unsigned long);
-                       unsigned long data;
-
-                       timer = list_entry(head->next,struct timer_list,entry);
-                       fn = timer->function;
-                       data = timer->data;
-
-                       set_running_timer(base, timer);
-                       detach_timer(timer, 1);
-                       spin_unlock_irq(&base->lock);
-                       {
-                               int preempt_count = preempt_count();
-                               fn(data);
-                               if (preempt_count != preempt_count()) {
-                                       printk(KERN_WARNING "huh, entered %p "
-                                              "with preempt_count %08x, exited"
-                                              " with %08x?\n",
-                                              fn, preempt_count,
-                                              preempt_count());
-                                       BUG();
-                               }
-                       }
-                       spin_lock_irq(&base->lock);
-               }
-       }
-       set_running_timer(base, NULL);
-       spin_unlock_irq(&base->lock);
-}
-
-#ifdef CONFIG_NO_IDLE_HZ
-/*
- * Find out when the next timer event is due to happen. This
- * is used on S/390 to stop all activity when a cpus is idle.
- * This functions needs to be called disabled.
- */
-unsigned long next_timer_interrupt(void)
-{
-       tvec_base_t *base;
-       struct list_head *list;
-       struct timer_list *nte;
-       unsigned long expires;
-       unsigned long hr_expires = MAX_JIFFY_OFFSET;
-       ktime_t hr_delta;
-       tvec_t *varray[4];
-       int i, j;
-
-       hr_delta = hrtimer_get_next_event();
-       if (hr_delta.tv64 != KTIME_MAX) {
-               struct timespec tsdelta;
-               tsdelta = ktime_to_timespec(hr_delta);
-               hr_expires = timespec_to_jiffies(&tsdelta);
-               if (hr_expires < 3)
-                       return hr_expires + jiffies;
-       }
-       hr_expires += jiffies;
-
-       base = __get_cpu_var(tvec_bases);
-       spin_lock(&base->lock);
-       expires = base->timer_jiffies + (LONG_MAX >> 1);
-       list = NULL;
-
-       /* Look for timer events in tv1. */
-       j = base->timer_jiffies & TVR_MASK;
-       do {
-               list_for_each_entry(nte, base->tv1.vec + j, entry) {
-                       expires = nte->expires;
-                       if (j < (base->timer_jiffies & TVR_MASK))
-                               list = base->tv2.vec + (INDEX(0));
-                       goto found;
-               }
-               j = (j + 1) & TVR_MASK;
-       } while (j != (base->timer_jiffies & TVR_MASK));
-
-       /* Check tv2-tv5. */
-       varray[0] = &base->tv2;
-       varray[1] = &base->tv3;
-       varray[2] = &base->tv4;
-       varray[3] = &base->tv5;
-       for (i = 0; i < 4; i++) {
-               j = INDEX(i);
-               do {
-                       if (list_empty(varray[i]->vec + j)) {
-                               j = (j + 1) & TVN_MASK;
-                               continue;
-                       }
-                       list_for_each_entry(nte, varray[i]->vec + j, entry)
-                               if (time_before(nte->expires, expires))
-                                       expires = nte->expires;
-                       if (j < (INDEX(i)) && i < 3)
-                               list = varray[i + 1]->vec + (INDEX(i + 1));
-                       goto found;
-               } while (j != (INDEX(i)));
-       }
-found:
-       if (list) {
-               /*
-                * The search wrapped. We need to look at the next list
-                * from next tv element that would cascade into tv element
-                * where we found the timer element.
-                */
-               list_for_each_entry(nte, list, entry) {
-                       if (time_before(nte->expires, expires))
-                               expires = nte->expires;
-               }
-       }
-       spin_unlock(&base->lock);
-
-       /*
-        * It can happen that other CPUs service timer IRQs and increment
-        * jiffies, but we have not yet got a local timer tick to process
-        * the timer wheels.  In that case, the expiry time can be before
-        * jiffies, but since the high-resolution timer here is relative to
-        * jiffies, the default expression when high-resolution timers are
-        * not active,
-        *
-        *   time_before(MAX_JIFFY_OFFSET + jiffies, expires)
-        *
-        * would falsely evaluate to true.  If that is the case, just
-        * return jiffies so that we can immediately fire the local timer
-        */
-       if (time_before(expires, jiffies))
-               return jiffies;
-
-       if (time_before(hr_expires, expires))
-               return hr_expires;
-
-       return expires;
-}
-#endif
-
-/******************************************************************/
-
-/*
- * Timekeeping variables
- */
-unsigned long tick_usec = TICK_USEC;           /* USER_HZ period (usec) */
-unsigned long tick_nsec = TICK_NSEC;           /* ACTHZ period (nsec) */
-
-/* 
- * The current time 
- * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
- * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
- * at zero at system boot time, so wall_to_monotonic will be negative,
- * however, we will ALWAYS keep the tv_nsec part positive so we can use
- * the usual normalization.
- */
-struct timespec xtime __attribute__ ((aligned (16)));
-struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
-
-EXPORT_SYMBOL(xtime);
-
-/* Don't completely fail for HZ > 500.  */
-int tickadj = 500/HZ ? : 1;            /* microsecs */
-
-
-/*
- * phase-lock loop variables
- */
-/* TIME_ERROR prevents overwriting the CMOS clock */
-int time_state = TIME_OK;              /* clock synchronization status */
-int time_status = STA_UNSYNC;          /* clock status bits            */
-long time_offset;                      /* time adjustment (us)         */
-long time_constant = 2;                        /* pll time constant            */
-long time_tolerance = MAXFREQ;         /* frequency tolerance (ppm)    */
-long time_precision = 1;               /* clock precision (us)         */
-long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us)           */
-long time_esterror = NTP_PHASE_LIMIT;  /* estimated error (us)         */
-long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
-                                       /* frequency offset (scaled ppm)*/
-static long time_adj;                  /* tick adjust (scaled 1 / HZ)  */
-long time_reftime;                     /* time at last adjustment (s)  */
-long time_adjust;
-long time_next_adjust;
-
-/*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- */
-static void second_overflow(void)
-{
-       long ltemp;
-
-       /* Bump the maxerror field */
-       time_maxerror += time_tolerance >> SHIFT_USEC;
-       if (time_maxerror > NTP_PHASE_LIMIT) {
-               time_maxerror = NTP_PHASE_LIMIT;
-               time_status |= STA_UNSYNC;
-       }
-
-       /*
-        * Leap second processing. If in leap-insert state at the end of the
-        * day, the system clock is set back one second; if in leap-delete
-        * state, the system clock is set ahead one second. The microtime()
-        * routine or external clock driver will insure that reported time is
-        * always monotonic. The ugly divides should be replaced.
-        */
-       switch (time_state) {
-       case TIME_OK:
-               if (time_status & STA_INS)
-                       time_state = TIME_INS;
-               else if (time_status & STA_DEL)
-                       time_state = TIME_DEL;
-               break;
-       case TIME_INS:
-               if (xtime.tv_sec % 86400 == 0) {
-                       xtime.tv_sec--;
-                       wall_to_monotonic.tv_sec++;
-                       /*
-                        * The timer interpolator will make time change
-                        * gradually instead of an immediate jump by one second
-                        */
-                       time_interpolator_update(-NSEC_PER_SEC);
-                       time_state = TIME_OOP;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: inserting leap second "
-                                       "23:59:60 UTC\n");
-               }
-               break;
-       case TIME_DEL:
-               if ((xtime.tv_sec + 1) % 86400 == 0) {
-                       xtime.tv_sec++;
-                       wall_to_monotonic.tv_sec--;
-                       /*
-                        * Use of time interpolator for a gradual change of
-                        * time
-                        */
-                       time_interpolator_update(NSEC_PER_SEC);
-                       time_state = TIME_WAIT;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: deleting leap second "
-                                       "23:59:59 UTC\n");
-               }
-               break;
-       case TIME_OOP:
-               time_state = TIME_WAIT;
-               break;
-       case TIME_WAIT:
-               if (!(time_status & (STA_INS | STA_DEL)))
-               time_state = TIME_OK;
-       }
-
-       /*
-        * Compute the phase adjustment for the next second. In PLL mode, the
-        * offset is reduced by a fixed factor times the time constant. In FLL
-        * mode the offset is used directly. In either mode, the maximum phase
-        * adjustment for each second is clamped so as to spread the adjustment
-        * over not more than the number of seconds between updates.
-        */
-       ltemp = time_offset;
-       if (!(time_status & STA_FLL))
-               ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
-       ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       time_offset -= ltemp;
-       time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
-
-       /*
-        * Compute the frequency estimate and additional phase adjustment due
-        * to frequency error for the next second.
-        */
-       ltemp = time_freq;
-       time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
-
-#if HZ == 100
-       /*
-        * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
-        * get 128.125; => only 0.125% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
-#endif
-#if HZ == 250
-       /*
-        * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
-#endif
-#if HZ == 1000
-       /*
-        * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
-#endif
-}
-
-/*
- * Returns how many microseconds we need to add to xtime this tick
- * in doing an adjustment requested with adjtime.
- */
-static long adjtime_adjustment(void)
-{
-       long time_adjust_step;
-
-       time_adjust_step = time_adjust;
-       if (time_adjust_step) {
-               /*
-                * We are doing an adjtime thing.  Prepare time_adjust_step to
-                * be within bounds.  Note that a positive time_adjust means we
-                * want the clock to run faster.
-                *
-                * Limit the amount of the step to be in the range
-                * -tickadj .. +tickadj
-                */
-               time_adjust_step = min(time_adjust_step, (long)tickadj);
-               time_adjust_step = max(time_adjust_step, (long)-tickadj);
-       }
-       return time_adjust_step;
-}
-
-/* in the NTP reference this is called "hardclock()" */
-static void update_ntp_one_tick(void)
-{
-       long time_adjust_step;
-
-       time_adjust_step = adjtime_adjustment();
-       if (time_adjust_step)
-               /* Reduce by this step the amount of time left  */
-               time_adjust -= time_adjust_step;
-
-       /* Changes by adjtime() do not take effect till next tick. */
-       if (time_next_adjust != 0) {
-               time_adjust = time_next_adjust;
-               time_next_adjust = 0;
-       }
-}
-
-/*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds shifted by the
- * specified number of bits to the right of the binary point.
- * This function has no side-effects.
- */
-u64 current_tick_length(long shift)
-{
-       long delta_nsec;
-       u64 ret;
-
-       /* calculate the finest interval NTP will allow.
-        *    ie: nanosecond value shifted by (SHIFT_SCALE - 10)
-        */
-       delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
-       ret = ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
-
-       /* convert from (SHIFT_SCALE - 10) to specified shift scale: */
-       shift = shift - (SHIFT_SCALE - 10);
-       if (shift < 0)
-               ret >>= -shift;
-       else
-               ret <<= shift;
-
-       return ret;
-}
-
-/* XXX - all of this timekeeping code should be later moved to time.c */
-#include <linux/clocksource.h>
-static struct clocksource *clock; /* pointer to current clocksource */
-static cycle_t last_clock_cycle;  /* cycle value at last update_wall_time */
-
-#ifdef CONFIG_GENERIC_TIME
-/**
- * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
- *
- * private function, must hold xtime_lock lock when being
- * called. Returns the number of nanoseconds since the
- * last call to update_wall_time() (adjusted by NTP scaling)
- */
-static inline s64 __get_nsec_offset(void)
-{
-       cycle_t cycle_now, cycle_delta;
-       s64 ns_offset;
-
-       /* read clocksource: */
-       cycle_now = read_clocksource(clock);
-
-       /* calculate the delta since the last update_wall_time: */
-       cycle_delta = (cycle_now - last_clock_cycle) & clock->mask;
-
-       /* convert to nanoseconds: */
-       ns_offset = cyc2ns(clock, cycle_delta);
-
-       return ns_offset;
-}
-
-/**
- * __get_realtime_clock_ts - Returns the time of day in a timespec
- * @ts:                pointer to the timespec to be set
- *
- * Returns the time of day in a timespec. Used by
- * do_gettimeofday() and get_realtime_clock_ts().
- */
-static inline void __get_realtime_clock_ts(struct timespec *ts)
-{
-       unsigned long seq;
-       s64 nsecs;
-
-       do {
-               seq = read_seqbegin(&xtime_lock);
-
-               *ts = xtime;
-               nsecs = __get_nsec_offset();
-
-       } while (read_seqretry(&xtime_lock, seq));
-
-       timespec_add_ns(ts, nsecs);
-}
-
-/**
- * get_realtime_clock_ts - Returns the time of day in a timespec
- * @ts:                pointer to the timespec to be set
- *
- * Returns the time of day in a timespec.
- */
-void getnstimeofday(struct timespec *ts)
-{
-       __get_realtime_clock_ts(ts);
+               cpu_relax();
+       }
 }
 
-EXPORT_SYMBOL(getnstimeofday);
+EXPORT_SYMBOL(del_timer_sync);
+#endif
 
-/**
- * do_gettimeofday - Returns the time of day in a timeval
- * @tv:                pointer to the timeval to be set
- *
- * NOTE: Users should be converted to using get_realtime_clock_ts()
- */
-void do_gettimeofday(struct timeval *tv)
+static int cascade(struct tvec_base *base, struct tvec *tv, int index)
 {
-       struct timespec now;
+       /* cascade all the timers from tv up one level */
+       struct timer_list *timer, *tmp;
+       struct list_head tv_list;
+
+       list_replace_init(tv->vec + index, &tv_list);
+
+       /*
+        * We are removing _all_ timers from the list, so we
+        * don't have to detach them individually.
+        */
+       list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
+               BUG_ON(tbase_get_base(timer->base) != base);
+               internal_add_timer(base, timer);
+       }
 
-       __get_realtime_clock_ts(&now);
-       tv->tv_sec = now.tv_sec;
-       tv->tv_usec = now.tv_nsec/1000;
+       return index;
 }
 
-EXPORT_SYMBOL(do_gettimeofday);
+#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
+
 /**
- * do_settimeofday - Sets the time of day
- * @tv:                pointer to the timespec variable containing the new time
+ * __run_timers - run all expired timers (if any) on this CPU.
+ * @base: the timer vector to be processed.
  *
- * Sets the time of day to the new time and update NTP and notify hrtimers
+ * This function cascades all vectors and executes all expired timer
+ * vectors.
  */
-int do_settimeofday(struct timespec *tv)
+static inline void __run_timers(struct tvec_base *base)
 {
-       unsigned long flags;
-       time_t wtm_sec, sec = tv->tv_sec;
-       long wtm_nsec, nsec = tv->tv_nsec;
-
-       if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
-               return -EINVAL;
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-
-       nsec -= __get_nsec_offset();
-
-       wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
-       wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
-
-       set_normalized_timespec(&xtime, sec, nsec);
-       set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
-
-       ntp_clear();
+       struct timer_list *timer;
 
-       write_sequnlock_irqrestore(&xtime_lock, flags);
+       spin_lock_irq(&base->lock);
+       while (time_after_eq(jiffies, base->timer_jiffies)) {
+               struct list_head work_list;
+               struct list_head *head = &work_list;
+               int index = base->timer_jiffies & TVR_MASK;
 
-       /* signal hrtimers about time change */
-       clock_was_set();
+               /*
+                * Cascade timers:
+                */
+               if (!index &&
+                       (!cascade(base, &base->tv2, INDEX(0))) &&
+                               (!cascade(base, &base->tv3, INDEX(1))) &&
+                                       !cascade(base, &base->tv4, INDEX(2)))
+                       cascade(base, &base->tv5, INDEX(3));
+               ++base->timer_jiffies;
+               list_replace_init(base->tv1.vec + index, &work_list);
+               while (!list_empty(head)) {
+                       void (*fn)(unsigned long);
+                       unsigned long data;
 
-       return 0;
-}
+                       timer = list_first_entry(head, struct timer_list,entry);
+                       fn = timer->function;
+                       data = timer->data;
 
-EXPORT_SYMBOL(do_settimeofday);
+                       timer_stats_account_timer(timer);
 
-/**
- * change_clocksource - Swaps clocksources if a new one is available
- *
- * Accumulates current time interval and initializes new clocksource
- */
-static int change_clocksource(void)
-{
-       struct clocksource *new;
-       cycle_t now;
-       u64 nsec;
-       new = get_next_clocksource();
-       if (clock != new) {
-               now = read_clocksource(new);
-               nsec =  __get_nsec_offset();
-               timespec_add_ns(&xtime, nsec);
-
-               clock = new;
-               last_clock_cycle = now;
-               printk(KERN_INFO "Time: %s clocksource has been installed.\n",
-                                       clock->name);
-               return 1;
-       } else if (clock->update_callback) {
-               return clock->update_callback();
+                       set_running_timer(base, timer);
+                       detach_timer(timer, 1);
+                       spin_unlock_irq(&base->lock);
+                       {
+                               int preempt_count = preempt_count();
+                               fn(data);
+                               if (preempt_count != preempt_count()) {
+                                       printk(KERN_ERR "huh, entered %p "
+                                              "with preempt_count %08x, exited"
+                                              " with %08x?\n",
+                                              fn, preempt_count,
+                                              preempt_count());
+                                       BUG();
+                               }
+                       }
+                       spin_lock_irq(&base->lock);
+               }
        }
-       return 0;
+       set_running_timer(base, NULL);
+       spin_unlock_irq(&base->lock);
 }
-#else
-#define change_clocksource() (0)
-#endif
 
-/**
- * timeofday_is_continuous - check to see if timekeeping is free running
+#ifdef CONFIG_NO_HZ
+/*
+ * Find out when the next timer event is due to happen. This
+ * is used on S/390 to stop all activity when a cpus is idle.
+ * This functions needs to be called disabled.
  */
-int timekeeping_is_continuous(void)
+static unsigned long __next_timer_interrupt(struct tvec_base *base)
 {
-       unsigned long seq;
-       int ret;
+       unsigned long timer_jiffies = base->timer_jiffies;
+       unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
+       int index, slot, array, found = 0;
+       struct timer_list *nte;
+       struct tvec *varray[4];
 
+       /* Look for timer events in tv1. */
+       index = slot = timer_jiffies & TVR_MASK;
        do {
-               seq = read_seqbegin(&xtime_lock);
+               list_for_each_entry(nte, base->tv1.vec + slot, entry) {
+                       if (tbase_get_deferrable(nte->base))
+                               continue;
 
-               ret = clock->is_continuous;
+                       found = 1;
+                       expires = nte->expires;
+                       /* Look at the cascade bucket(s)? */
+                       if (!index || slot < index)
+                               goto cascade;
+                       return expires;
+               }
+               slot = (slot + 1) & TVR_MASK;
+       } while (slot != index);
 
-       } while (read_seqretry(&xtime_lock, seq));
+cascade:
+       /* Calculate the next cascade event */
+       if (index)
+               timer_jiffies += TVR_SIZE - index;
+       timer_jiffies >>= TVR_BITS;
 
-       return ret;
-}
+       /* Check tv2-tv5. */
+       varray[0] = &base->tv2;
+       varray[1] = &base->tv3;
+       varray[2] = &base->tv4;
+       varray[3] = &base->tv5;
 
-/*
- * timekeeping_init - Initializes the clocksource and common timekeeping values
- */
-void __init timekeeping_init(void)
-{
-       unsigned long flags;
+       for (array = 0; array < 4; array++) {
+               struct tvec *varp = varray[array];
 
-       write_seqlock_irqsave(&xtime_lock, flags);
-       clock = get_next_clocksource();
-       calculate_clocksource_interval(clock, tick_nsec);
-       last_clock_cycle = read_clocksource(clock);
-       ntp_clear();
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-}
+               index = slot = timer_jiffies & TVN_MASK;
+               do {
+                       list_for_each_entry(nte, varp->vec + slot, entry) {
+                               found = 1;
+                               if (time_before(nte->expires, expires))
+                                       expires = nte->expires;
+                       }
+                       /*
+                        * Do we still search for the first timer or are
+                        * we looking up the cascade buckets ?
+                        */
+                       if (found) {
+                               /* Look at the cascade bucket(s)? */
+                               if (!index || slot < index)
+                                       break;
+                               return expires;
+                       }
+                       slot = (slot + 1) & TVN_MASK;
+               } while (slot != index);
 
+               if (index)
+                       timer_jiffies += TVN_SIZE - index;
+               timer_jiffies >>= TVN_BITS;
+       }
+       return expires;
+}
 
 /*
- * timekeeping_resume - Resumes the generic timekeeping subsystem.
- * @dev:       unused
- *
- * This is for the generic clocksource timekeeping.
- * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
- * still managed by arch specific suspend/resume code.
+ * Check, if the next hrtimer event is before the next timer wheel
+ * event:
  */
-static int timekeeping_resume(struct sys_device *dev)
+static unsigned long cmp_next_hrtimer_event(unsigned long now,
+                                           unsigned long expires)
 {
-       unsigned long flags;
+       ktime_t hr_delta = hrtimer_get_next_event();
+       struct timespec tsdelta;
+       unsigned long delta;
 
-       write_seqlock_irqsave(&xtime_lock, flags);
-       /* restart the last cycle value */
-       last_clock_cycle = read_clocksource(clock);
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       return 0;
-}
+       if (hr_delta.tv64 == KTIME_MAX)
+               return expires;
 
-/* sysfs resume/suspend bits for timekeeping */
-static struct sysdev_class timekeeping_sysclass = {
-       .resume         = timekeeping_resume,
-       set_kset_name("timekeeping"),
-};
+       /*
+        * Expired timer available, let it expire in the next tick
+        */
+       if (hr_delta.tv64 <= 0)
+               return now + 1;
 
-static struct sys_device device_timer = {
-       .id             = 0,
-       .cls            = &timekeeping_sysclass,
-};
+       tsdelta = ktime_to_timespec(hr_delta);
+       delta = timespec_to_jiffies(&tsdelta);
 
-static int __init timekeeping_init_device(void)
-{
-       int error = sysdev_class_register(&timekeeping_sysclass);
-       if (!error)
-               error = sysdev_register(&device_timer);
-       return error;
-}
+       /*
+        * Limit the delta to the max value, which is checked in
+        * tick_nohz_stop_sched_tick():
+        */
+       if (delta > NEXT_TIMER_MAX_DELTA)
+               delta = NEXT_TIMER_MAX_DELTA;
 
-device_initcall(timekeeping_init_device);
+       /*
+        * Take rounding errors in to account and make sure, that it
+        * expires in the next tick. Otherwise we go into an endless
+        * ping pong due to tick_nohz_stop_sched_tick() retriggering
+        * the timer softirq
+        */
+       if (delta < 1)
+               delta = 1;
+       now += delta;
+       if (time_before(now, expires))
+               return now;
+       return expires;
+}
 
-/*
- * update_wall_time - Uses the current clocksource to increment the wall time
- *
- * Called from the timer interrupt, must hold a write on xtime_lock.
+/**
+ * get_next_timer_interrupt - return the jiffy of the next pending timer
+ * @now: current time (in jiffies)
  */
-static void update_wall_time(void)
+unsigned long get_next_timer_interrupt(unsigned long now)
 {
-       static s64 remainder_snsecs, error;
-       s64 snsecs_per_sec;
-       cycle_t now, offset;
+       struct tvec_base *base = __get_cpu_var(tvec_bases);
+       unsigned long expires;
 
-       snsecs_per_sec = (s64)NSEC_PER_SEC << clock->shift;
-       remainder_snsecs += (s64)xtime.tv_nsec << clock->shift;
+       spin_lock(&base->lock);
+       expires = __next_timer_interrupt(base);
+       spin_unlock(&base->lock);
 
-       now = read_clocksource(clock);
-       offset = (now - last_clock_cycle)&clock->mask;
+       if (time_before_eq(expires, now))
+               return now;
 
-       /* normally this loop will run just once, however in the
-        * case of lost or late ticks, it will accumulate correctly.
-        */
-       while (offset > clock->interval_cycles) {
-               /* get the ntp interval in clock shifted nanoseconds */
-               s64 ntp_snsecs  = current_tick_length(clock->shift);
-
-               /* accumulate one interval */
-               remainder_snsecs += clock->interval_snsecs;
-               last_clock_cycle += clock->interval_cycles;
-               offset -= clock->interval_cycles;
-
-               /* interpolator bits */
-               time_interpolator_update(clock->interval_snsecs
-                                               >> clock->shift);
-               /* increment the NTP state machine */
-               update_ntp_one_tick();
-
-               /* accumulate error between NTP and clock interval */
-               error += (ntp_snsecs - (s64)clock->interval_snsecs);
-
-               /* correct the clock when NTP error is too big */
-               remainder_snsecs += make_ntp_adj(clock, offset, &error);
-
-               if (remainder_snsecs >= snsecs_per_sec) {
-                       remainder_snsecs -= snsecs_per_sec;
-                       xtime.tv_sec++;
-                       second_overflow();
-               }
-       }
-       /* store full nanoseconds into xtime */
-       xtime.tv_nsec = remainder_snsecs >> clock->shift;
-       remainder_snsecs -= (s64)xtime.tv_nsec << clock->shift;
-
-       /* check to see if there is a new clocksource to use */
-       if (change_clocksource()) {
-               error = 0;
-               remainder_snsecs = 0;
-               calculate_clocksource_interval(clock, tick_nsec);
-       }
+       return cmp_next_hrtimer_event(now, expires);
 }
+#endif
 
 /*
- * Called from the timer interrupt handler to charge one tick to the current 
+ * Called from the timer interrupt handler to charge one tick to the current
  * process.  user_tick is 1 if the tick is user time, 0 for system.
  */
 void update_process_times(int user_tick)
@@ -1083,15 +1028,13 @@ void update_process_times(int user_tick)
        int cpu = smp_processor_id();
 
        /* Note: this timer irq context must be accounted for as well. */
-       if (user_tick)
-               account_user_time(p, jiffies_to_cputime(1));
-       else
-               account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
+       account_process_tick(p, user_tick);
        run_local_timers();
        if (rcu_pending(cpu))
                rcu_check_callbacks(cpu, user_tick);
+       printk_tick();
        scheduler_tick();
-       run_posix_cpu_timers(p);
+       run_posix_cpu_timers(p);
 }
 
 /*
@@ -1124,36 +1067,26 @@ static inline void calc_load(unsigned long ticks)
        static int count = LOAD_FREQ;
 
        count -= ticks;
-       if (count < 0) {
-               count += LOAD_FREQ;
+       if (unlikely(count < 0)) {
                active_tasks = count_active_tasks();
-               CALC_LOAD(avenrun[0], EXP_1, active_tasks);
-               CALC_LOAD(avenrun[1], EXP_5, active_tasks);
-               CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+               do {
+                       CALC_LOAD(avenrun[0], EXP_1, active_tasks);
+                       CALC_LOAD(avenrun[1], EXP_5, active_tasks);
+                       CALC_LOAD(avenrun[2], EXP_15, active_tasks);
+                       count += LOAD_FREQ;
+               } while (count < 0);
        }
 }
 
-/* jiffies at the most recent update of wall time */
-unsigned long wall_jiffies = INITIAL_JIFFIES;
-
-/*
- * This read-write spinlock protects us from races in SMP while
- * playing with xtime and avenrun.
- */
-#ifndef ARCH_HAVE_XTIME_LOCK
-seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
-
-EXPORT_SYMBOL(xtime_lock);
-#endif
-
 /*
  * This function runs timers and the timer-tq in bottom half context.
  */
 static void run_timer_softirq(struct softirq_action *h)
 {
-       tvec_base_t *base = __get_cpu_var(tvec_bases);
+       struct tvec_base *base = __get_cpu_var(tvec_bases);
+
+       hrtimer_run_pending();
 
-       hrtimer_run_queues();
        if (time_after_eq(jiffies, base->timer_jiffies))
                __run_timers(base);
 }
@@ -1163,6 +1096,7 @@ static void run_timer_softirq(struct softirq_action *h)
  */
 void run_local_timers(void)
 {
+       hrtimer_run_queues();
        raise_softirq(TIMER_SOFTIRQ);
        softlockup_tick();
 }
@@ -1171,28 +1105,22 @@ void run_local_timers(void)
  * Called by the timer interrupt. xtime_lock must already be taken
  * by the timer IRQ!
  */
-static inline void update_times(void)
+static inline void update_times(unsigned long ticks)
 {
-       unsigned long ticks;
-
-       ticks = jiffies - wall_jiffies;
-       wall_jiffies += ticks;
        update_wall_time();
        calc_load(ticks);
 }
-  
+
 /*
  * The 64-bit jiffies value is not atomic - you MUST NOT read it
  * without sampling the sequence number in xtime_lock.
  * jiffies is defined in the linker script...
  */
 
-void do_timer(struct pt_regs *regs)
+void do_timer(unsigned long ticks)
 {
-       jiffies_64++;
-       /* prevent loading jiffies before storing new jiffies_64 value. */
-       barrier();
-       update_times();
+       jiffies_64 += ticks;
+       update_times(ticks);
 }
 
 #ifdef __ARCH_WANT_SYS_ALARM
@@ -1201,7 +1129,7 @@ void do_timer(struct pt_regs *regs)
  * For backwards compatibility?  This can be done in libc so Alpha
  * and all newer ports shouldn't need it.
  */
-asmlinkage unsigned long sys_alarm(unsigned int seconds)
+SYSCALL_DEFINE1(alarm, unsigned int, seconds)
 {
        return alarm_setitimer(seconds);
 }
@@ -1224,84 +1152,57 @@ asmlinkage unsigned long sys_alarm(unsigned int seconds)
  *
  * This is SMP safe as current->tgid does not change.
  */
-asmlinkage long sys_getpid(void)
+SYSCALL_DEFINE0(getpid)
 {
-       return current->tgid;
+       return task_tgid_vnr(current);
 }
 
 /*
- * Accessing ->group_leader->real_parent is not SMP-safe, it could
- * change from under us. However, rather than getting any lock
- * we can use an optimistic algorithm: get the parent
- * pid, and go back and check that the parent is still
- * the same. If it has changed (which is extremely unlikely
- * indeed), we just try again..
- *
- * NOTE! This depends on the fact that even if we _do_
- * get an old value of "parent", we can happily dereference
- * the pointer (it was and remains a dereferencable kernel pointer
- * no matter what): we just can't necessarily trust the result
- * until we know that the parent pointer is valid.
- *
- * NOTE2: ->group_leader never changes from under us.
+ * Accessing ->real_parent is not SMP-safe, it could
+ * change from under us. However, we can use a stale
+ * value of ->real_parent under rcu_read_lock(), see
+ * release_task()->call_rcu(delayed_put_task_struct).
  */
-asmlinkage long sys_getppid(void)
+SYSCALL_DEFINE0(getppid)
 {
        int pid;
-       struct task_struct *me = current;
-       struct task_struct *parent;
 
-       parent = me->group_leader->real_parent;
-       for (;;) {
-               pid = parent->tgid;
-#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
-{
-               struct task_struct *old = parent;
+       rcu_read_lock();
+       pid = task_tgid_vnr(current->real_parent);
+       rcu_read_unlock();
 
-               /*
-                * Make sure we read the pid before re-reading the
-                * parent pointer:
-                */
-               smp_rmb();
-               parent = me->group_leader->real_parent;
-               if (old != parent)
-                       continue;
-}
-#endif
-               break;
-       }
        return pid;
 }
 
-asmlinkage long sys_getuid(void)
+SYSCALL_DEFINE0(getuid)
 {
        /* Only we change this so SMP safe */
-       return current->uid;
+       return current_uid();
 }
 
-asmlinkage long sys_geteuid(void)
+SYSCALL_DEFINE0(geteuid)
 {
        /* Only we change this so SMP safe */
-       return current->euid;
+       return current_euid();
 }
 
-asmlinkage long sys_getgid(void)
+SYSCALL_DEFINE0(getgid)
 {
        /* Only we change this so SMP safe */
-       return current->gid;
+       return current_gid();
 }
 
-asmlinkage long sys_getegid(void)
+SYSCALL_DEFINE0(getegid)
 {
        /* Only we change this so SMP safe */
-       return  current->egid;
+       return  current_egid();
 }
 
 #endif
 
 static void process_timeout(unsigned long __data)
 {
-       wake_up_process((task_t *)__data);
+       wake_up_process((struct task_struct *)__data);
 }
 
 /**
@@ -1330,7 +1231,7 @@ static void process_timeout(unsigned long __data)
  *
  * In all cases the return value is guaranteed to be non-negative.
  */
-fastcall signed long __sched schedule_timeout(signed long timeout)
+signed long __sched schedule_timeout(signed long timeout)
 {
        struct timer_list timer;
        unsigned long expire;
@@ -1355,11 +1256,10 @@ fastcall signed long __sched schedule_timeout(signed long timeout)
                 * should never happens anyway). You just have the printk()
                 * that will tell you if something is gone wrong and where.
                 */
-               if (timeout < 0)
-               {
+               if (timeout < 0) {
                        printk(KERN_ERR "schedule_timeout: wrong timeout "
-                               "value %lx from %p\n", timeout,
-                               __builtin_return_address(0));
+                               "value %lx\n", timeout);
+                       dump_stack();
                        current->state = TASK_RUNNING;
                        goto out;
                }
@@ -1367,11 +1267,14 @@ fastcall signed long __sched schedule_timeout(signed long timeout)
 
        expire = timeout + jiffies;
 
-       setup_timer(&timer, process_timeout, (unsigned long)current);
+       setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
        __mod_timer(&timer, expire);
        schedule();
        del_singleshot_timer_sync(&timer);
 
+       /* Remove the timer from the object tracker */
+       destroy_timer_on_stack(&timer);
+
        timeout = expire - jiffies;
 
  out:
@@ -1390,6 +1293,13 @@ signed long __sched schedule_timeout_interruptible(signed long timeout)
 }
 EXPORT_SYMBOL(schedule_timeout_interruptible);
 
+signed long __sched schedule_timeout_killable(signed long timeout)
+{
+       __set_current_state(TASK_KILLABLE);
+       return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_killable);
+
 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
 {
        __set_current_state(TASK_UNINTERRUPTIBLE);
@@ -1398,22 +1308,22 @@ signed long __sched schedule_timeout_uninterruptible(signed long timeout)
 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
 
 /* Thread ID - the internal kernel "pid" */
-asmlinkage long sys_gettid(void)
+SYSCALL_DEFINE0(gettid)
 {
-       return current->pid;
+       return task_pid_vnr(current);
 }
 
-/*
- * sys_sysinfo - fill in sysinfo struct
- */ 
-asmlinkage long sys_sysinfo(struct sysinfo __user *info)
+/**
+ * do_sysinfo - fill in sysinfo struct
+ * @info: pointer to buffer to fill
+ */
+int do_sysinfo(struct sysinfo *info)
 {
-       struct sysinfo val;
        unsigned long mem_total, sav_total;
        unsigned int mem_unit, bitcount;
        unsigned long seq;
 
-       memset((char *)&val, 0, sizeof(struct sysinfo));
+       memset(info, 0, sizeof(struct sysinfo));
 
        do {
                struct timespec tp;
@@ -1429,21 +1339,22 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info)
                getnstimeofday(&tp);
                tp.tv_sec += wall_to_monotonic.tv_sec;
                tp.tv_nsec += wall_to_monotonic.tv_nsec;
+               monotonic_to_bootbased(&tp);
                if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
                        tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
                        tp.tv_sec++;
                }
-               val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
+               info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
 
-               val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
-               val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
-               val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
+               info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
+               info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
+               info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
 
-               val.procs = nr_threads;
+               info->procs = nr_threads;
        } while (read_seqretry(&xtime_lock, seq));
 
-       si_meminfo(&val);
-       si_swapinfo(&val);
+       si_meminfo(info);
+       si_swapinfo(info);
 
        /*
         * If the sum of all the available memory (i.e. ram + swap)
@@ -1454,11 +1365,11 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info)
         *  -Erik Andersen <andersee@debian.org>
         */
 
-       mem_total = val.totalram + val.totalswap;
-       if (mem_total < val.totalram || mem_total < val.totalswap)
+       mem_total = info->totalram + info->totalswap;
+       if (mem_total < info->totalram || mem_total < info->totalswap)
                goto out;
        bitcount = 0;
-       mem_unit = val.mem_unit;
+       mem_unit = info->mem_unit;
        while (mem_unit > 1) {
                bitcount++;
                mem_unit >>= 1;
@@ -1470,33 +1381,42 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info)
 
        /*
         * If mem_total did not overflow, multiply all memory values by
-        * val.mem_unit and set it to 1.  This leaves things compatible
+        * info->mem_unit and set it to 1.  This leaves things compatible
         * with 2.2.x, and also retains compatibility with earlier 2.4.x
         * kernels...
         */
 
-       val.mem_unit = 1;
-       val.totalram <<= bitcount;
-       val.freeram <<= bitcount;
-       val.sharedram <<= bitcount;
-       val.bufferram <<= bitcount;
-       val.totalswap <<= bitcount;
-       val.freeswap <<= bitcount;
-       val.totalhigh <<= bitcount;
-       val.freehigh <<= bitcount;
+       info->mem_unit = 1;
+       info->totalram <<= bitcount;
+       info->freeram <<= bitcount;
+       info->sharedram <<= bitcount;
+       info->bufferram <<= bitcount;
+       info->totalswap <<= bitcount;
+       info->freeswap <<= bitcount;
+       info->totalhigh <<= bitcount;
+       info->freehigh <<= bitcount;
+
+out:
+       return 0;
+}
+
+SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
+{
+       struct sysinfo val;
+
+       do_sysinfo(&val);
 
- out:
        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
                return -EFAULT;
 
        return 0;
 }
 
-static int __devinit init_timers_cpu(int cpu)
+static int __cpuinit init_timers_cpu(int cpu)
 {
        int j;
-       tvec_base_t *base;
-       static char __devinitdata tvec_base_done[NR_CPUS];
+       struct tvec_base *base;
+       static char __cpuinitdata tvec_base_done[NR_CPUS];
 
        if (!tvec_base_done[cpu]) {
                static char boot_done;
@@ -1505,11 +1425,18 @@ static int __devinit init_timers_cpu(int cpu)
                        /*
                         * The APs use this path later in boot
                         */
-                       base = kmalloc_node(sizeof(*base), GFP_KERNEL,
+                       base = kmalloc_node(sizeof(*base),
+                                               GFP_KERNEL | __GFP_ZERO,
                                                cpu_to_node(cpu));
                        if (!base)
                                return -ENOMEM;
-                       memset(base, 0, sizeof(*base));
+
+                       /* Make sure that tvec_base is 2 byte aligned */
+                       if (tbase_get_deferrable(base)) {
+                               WARN_ON(1);
+                               kfree(base);
+                               return -ENOMEM;
+                       }
                        per_cpu(tvec_bases, cpu) = base;
                } else {
                        /*
@@ -1527,6 +1454,7 @@ static int __devinit init_timers_cpu(int cpu)
        }
 
        spin_lock_init(&base->lock);
+
        for (j = 0; j < TVN_SIZE; j++) {
                INIT_LIST_HEAD(base->tv5.vec + j);
                INIT_LIST_HEAD(base->tv4.vec + j);
@@ -1541,31 +1469,33 @@ static int __devinit init_timers_cpu(int cpu)
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
-static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
+static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
 {
        struct timer_list *timer;
 
        while (!list_empty(head)) {
-               timer = list_entry(head->next, struct timer_list, entry);
+               timer = list_first_entry(head, struct timer_list, entry);
                detach_timer(timer, 0);
-               timer->base = new_base;
+               timer_set_base(timer, new_base);
                internal_add_timer(new_base, timer);
        }
 }
 
-static void __devinit migrate_timers(int cpu)
+static void __cpuinit migrate_timers(int cpu)
 {
-       tvec_base_t *old_base;
-       tvec_base_t *new_base;
+       struct tvec_base *old_base;
+       struct tvec_base *new_base;
        int i;
 
        BUG_ON(cpu_online(cpu));
        old_base = per_cpu(tvec_bases, cpu);
        new_base = get_cpu_var(tvec_bases);
-
-       local_irq_disable();
-       spin_lock(&new_base->lock);
-       spin_lock(&old_base->lock);
+       /*
+        * The caller is globally serialized and nobody else
+        * takes two locks at once, deadlock is not possible.
+        */
+       spin_lock_irq(&new_base->lock);
+       spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
 
        BUG_ON(old_base->running_timer);
 
@@ -1579,23 +1509,24 @@ static void __devinit migrate_timers(int cpu)
        }
 
        spin_unlock(&old_base->lock);
-       spin_unlock(&new_base->lock);
-       local_irq_enable();
+       spin_unlock_irq(&new_base->lock);
        put_cpu_var(tvec_bases);
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
-static int timer_cpu_notify(struct notifier_block *self,
+static int __cpuinit timer_cpu_notify(struct notifier_block *self,
                                unsigned long action, void *hcpu)
 {
        long cpu = (long)hcpu;
        switch(action) {
        case CPU_UP_PREPARE:
+       case CPU_UP_PREPARE_FROZEN:
                if (init_timers_cpu(cpu) < 0)
                        return NOTIFY_BAD;
                break;
 #ifdef CONFIG_HOTPLUG_CPU
        case CPU_DEAD:
+       case CPU_DEAD_FROZEN:
                migrate_timers(cpu);
                break;
 #endif
@@ -1605,206 +1536,22 @@ static int timer_cpu_notify(struct notifier_block *self,
        return NOTIFY_OK;
 }
 
-static struct notifier_block timers_nb = {
+static struct notifier_block __cpuinitdata timers_nb = {
        .notifier_call  = timer_cpu_notify,
 };
 
 
 void __init init_timers(void)
 {
-       timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
+       int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
                                (void *)(long)smp_processor_id());
-       register_cpu_notifier(&timers_nb);
-       open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
-}
-
-#ifdef CONFIG_TIME_INTERPOLATION
-
-struct time_interpolator *time_interpolator __read_mostly;
-static struct time_interpolator *time_interpolator_list __read_mostly;
-static DEFINE_SPINLOCK(time_interpolator_lock);
-
-static inline u64 time_interpolator_get_cycles(unsigned int src)
-{
-       unsigned long (*x)(void);
-
-       switch (src)
-       {
-               case TIME_SOURCE_FUNCTION:
-                       x = time_interpolator->addr;
-                       return x();
-
-               case TIME_SOURCE_MMIO64 :
-                       return readq_relaxed((void __iomem *)time_interpolator->addr);
-
-               case TIME_SOURCE_MMIO32 :
-                       return readl_relaxed((void __iomem *)time_interpolator->addr);
-
-               default: return get_cycles();
-       }
-}
-
-static inline u64 time_interpolator_get_counter(int writelock)
-{
-       unsigned int src = time_interpolator->source;
-
-       if (time_interpolator->jitter)
-       {
-               u64 lcycle;
-               u64 now;
-
-               do {
-                       lcycle = time_interpolator->last_cycle;
-                       now = time_interpolator_get_cycles(src);
-                       if (lcycle && time_after(lcycle, now))
-                               return lcycle;
-
-                       /* When holding the xtime write lock, there's no need
-                        * to add the overhead of the cmpxchg.  Readers are
-                        * force to retry until the write lock is released.
-                        */
-                       if (writelock) {
-                               time_interpolator->last_cycle = now;
-                               return now;
-                       }
-                       /* Keep track of the last timer value returned. The use of cmpxchg here
-                        * will cause contention in an SMP environment.
-                        */
-               } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
-               return now;
-       }
-       else
-               return time_interpolator_get_cycles(src);
-}
-
-void time_interpolator_reset(void)
-{
-       time_interpolator->offset = 0;
-       time_interpolator->last_counter = time_interpolator_get_counter(1);
-}
-
-#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
-
-unsigned long time_interpolator_get_offset(void)
-{
-       /* If we do not have a time interpolator set up then just return zero */
-       if (!time_interpolator)
-               return 0;
-
-       return time_interpolator->offset +
-               GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
-}
-
-#define INTERPOLATOR_ADJUST 65536
-#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
-
-static void time_interpolator_update(long delta_nsec)
-{
-       u64 counter;
-       unsigned long offset;
 
-       /* If there is no time interpolator set up then do nothing */
-       if (!time_interpolator)
-               return;
-
-       /*
-        * The interpolator compensates for late ticks by accumulating the late
-        * time in time_interpolator->offset. A tick earlier than expected will
-        * lead to a reset of the offset and a corresponding jump of the clock
-        * forward. Again this only works if the interpolator clock is running
-        * slightly slower than the regular clock and the tuning logic insures
-        * that.
-        */
-
-       counter = time_interpolator_get_counter(1);
-       offset = time_interpolator->offset +
-                       GET_TI_NSECS(counter, time_interpolator);
-
-       if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
-               time_interpolator->offset = offset - delta_nsec;
-       else {
-               time_interpolator->skips++;
-               time_interpolator->ns_skipped += delta_nsec - offset;
-               time_interpolator->offset = 0;
-       }
-       time_interpolator->last_counter = counter;
-
-       /* Tuning logic for time interpolator invoked every minute or so.
-        * Decrease interpolator clock speed if no skips occurred and an offset is carried.
-        * Increase interpolator clock speed if we skip too much time.
-        */
-       if (jiffies % INTERPOLATOR_ADJUST == 0)
-       {
-               if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
-                       time_interpolator->nsec_per_cyc--;
-               if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
-                       time_interpolator->nsec_per_cyc++;
-               time_interpolator->skips = 0;
-               time_interpolator->ns_skipped = 0;
-       }
-}
-
-static inline int
-is_better_time_interpolator(struct time_interpolator *new)
-{
-       if (!time_interpolator)
-               return 1;
-       return new->frequency > 2*time_interpolator->frequency ||
-           (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
-}
+       init_timer_stats();
 
-void
-register_time_interpolator(struct time_interpolator *ti)
-{
-       unsigned long flags;
-
-       /* Sanity check */
-       BUG_ON(ti->frequency == 0 || ti->mask == 0);
-
-       ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
-       spin_lock(&time_interpolator_lock);
-       write_seqlock_irqsave(&xtime_lock, flags);
-       if (is_better_time_interpolator(ti)) {
-               time_interpolator = ti;
-               time_interpolator_reset();
-       }
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-
-       ti->next = time_interpolator_list;
-       time_interpolator_list = ti;
-       spin_unlock(&time_interpolator_lock);
-}
-
-void
-unregister_time_interpolator(struct time_interpolator *ti)
-{
-       struct time_interpolator *curr, **prev;
-       unsigned long flags;
-
-       spin_lock(&time_interpolator_lock);
-       prev = &time_interpolator_list;
-       for (curr = *prev; curr; curr = curr->next) {
-               if (curr == ti) {
-                       *prev = curr->next;
-                       break;
-               }
-               prev = &curr->next;
-       }
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-       if (ti == time_interpolator) {
-               /* we lost the best time-interpolator: */
-               time_interpolator = NULL;
-               /* find the next-best interpolator */
-               for (curr = time_interpolator_list; curr; curr = curr->next)
-                       if (is_better_time_interpolator(curr))
-                               time_interpolator = curr;
-               time_interpolator_reset();
-       }
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       spin_unlock(&time_interpolator_lock);
+       BUG_ON(err == NOTIFY_BAD);
+       register_cpu_notifier(&timers_nb);
+       open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
 }
-#endif /* CONFIG_TIME_INTERPOLATION */
 
 /**
  * msleep - sleep safely even with waitqueue interruptions