nfs: prepare to share nfs_set_port
[safe/jmp/linux-2.6] / kernel / sched_fair.c
index 0eb0ae8..fb8994c 100644 (file)
@@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
 
 /*
  * SCHED_OTHER wake-up granularity.
- * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
+unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
 
 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
@@ -334,6 +334,34 @@ int sched_nr_latency_handler(struct ctl_table *table, int write,
 #endif
 
 /*
+ * delta *= w / rw
+ */
+static inline unsigned long
+calc_delta_weight(unsigned long delta, struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               delta = calc_delta_mine(delta,
+                               se->load.weight, &cfs_rq_of(se)->load);
+       }
+
+       return delta;
+}
+
+/*
+ * delta *= rw / w
+ */
+static inline unsigned long
+calc_delta_fair(unsigned long delta, struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               delta = calc_delta_mine(delta,
+                               cfs_rq_of(se)->load.weight, &se->load);
+       }
+
+       return delta;
+}
+
+/*
  * The idea is to set a period in which each task runs once.
  *
  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
@@ -362,47 +390,80 @@ static u64 __sched_period(unsigned long nr_running)
  */
 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       u64 slice = __sched_period(cfs_rq->nr_running);
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-
-               slice *= se->load.weight;
-               do_div(slice, cfs_rq->load.weight);
-       }
-
-
-       return slice;
+       return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
 }
 
 /*
  * We calculate the vruntime slice of a to be inserted task
  *
- * vs = s/w = p/rw
+ * vs = s*rw/w = p
  */
 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        unsigned long nr_running = cfs_rq->nr_running;
-       unsigned long weight;
-       u64 vslice;
 
        if (!se->on_rq)
                nr_running++;
 
-       vslice = __sched_period(nr_running);
+       return __sched_period(nr_running);
+}
+
+/*
+ * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
+ * that it favours >=0 over <0.
+ *
+ *   -20         |
+ *               |
+ *     0 --------+-------
+ *             .'
+ *    19     .'
+ *
+ */
+static unsigned long
+calc_delta_asym(unsigned long delta, struct sched_entity *se)
+{
+       struct load_weight lw = {
+               .weight = NICE_0_LOAD,
+               .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
+       };
 
        for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
+               struct load_weight *se_lw = &se->load;
+               unsigned long rw = cfs_rq_of(se)->load.weight;
+
+#ifdef CONFIG_FAIR_SCHED_GROUP
+               struct cfs_rq *cfs_rq = se->my_q;
+               struct task_group *tg = NULL
+
+               if (cfs_rq)
+                       tg = cfs_rq->tg;
+
+               if (tg && tg->shares < NICE_0_LOAD) {
+                       /*
+                        * scale shares to what it would have been had
+                        * tg->weight been NICE_0_LOAD:
+                        *
+                        *   weight = 1024 * shares / tg->weight
+                        */
+                       lw.weight *= se->load.weight;
+                       lw.weight /= tg->shares;
+
+                       lw.inv_weight = 0;
+
+                       se_lw = &lw;
+                       rw += lw.weight - se->load.weight;
+               } else
+#endif
 
-               weight = cfs_rq->load.weight;
-               if (!se->on_rq)
-                       weight += se->load.weight;
+               if (se->load.weight < NICE_0_LOAD) {
+                       se_lw = &lw;
+                       rw += NICE_0_LOAD - se->load.weight;
+               }
 
-               vslice *= NICE_0_LOAD;
-               do_div(vslice, weight);
+               delta = calc_delta_mine(delta, rw, se_lw);
        }
 
-       return vslice;
+       return delta;
 }
 
 /*
@@ -419,11 +480,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 
        curr->sum_exec_runtime += delta_exec;
        schedstat_add(cfs_rq, exec_clock, delta_exec);
-       delta_exec_weighted = delta_exec;
-       if (unlikely(curr->load.weight != NICE_0_LOAD)) {
-               delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
-                                                       &curr->load);
-       }
+       delta_exec_weighted = calc_delta_fair(delta_exec, curr);
        curr->vruntime += delta_exec_weighted;
 }
 
@@ -630,8 +687,17 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 
        if (!initial) {
                /* sleeps upto a single latency don't count. */
-               if (sched_feat(NEW_FAIR_SLEEPERS))
-                       vruntime -= sysctl_sched_latency;
+               if (sched_feat(NEW_FAIR_SLEEPERS)) {
+                       unsigned long thresh = sysctl_sched_latency;
+
+                       /*
+                        * convert the sleeper threshold into virtual time
+                        */
+                       if (sched_feat(NORMALIZED_SLEEPER))
+                               thresh = calc_delta_fair(thresh, se);
+
+                       vruntime -= thresh;
+               }
 
                /* ensure we never gain time by being placed backwards. */
                vruntime = max_vruntime(se->vruntime, vruntime);
@@ -660,21 +726,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
                __enqueue_entity(cfs_rq, se);
 }
 
-static void update_avg(u64 *avg, u64 sample)
-{
-       s64 diff = sample - *avg;
-       *avg += diff >> 3;
-}
-
-static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       if (!se->last_wakeup)
-               return;
-
-       update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
-       se->last_wakeup = 0;
-}
-
 static void
 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 {
@@ -685,7 +736,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 
        update_stats_dequeue(cfs_rq, se);
        if (sleep) {
-               update_avg_stats(cfs_rq, se);
 #ifdef CONFIG_SCHEDSTATS
                if (entity_is_task(se)) {
                        struct task_struct *tsk = task_of(se);
@@ -747,17 +797,16 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
        se->prev_sum_exec_runtime = se->sum_exec_runtime;
 }
 
-static int
-wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
-
 static struct sched_entity *
 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       if (!cfs_rq->next)
-               return se;
+       struct rq *rq = rq_of(cfs_rq);
+       u64 pair_slice = rq->clock - cfs_rq->pair_start;
 
-       if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
+       if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
+               cfs_rq->pair_start = rq->clock;
                return se;
+       }
 
        return cfs_rq->next;
 }
@@ -829,7 +878,6 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 #ifdef CONFIG_SCHED_HRTICK
 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
-       int requeue = rq->curr == p;
        struct sched_entity *se = &p->se;
        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
@@ -850,13 +898,13 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
                 * Don't schedule slices shorter than 10000ns, that just
                 * doesn't make sense. Rely on vruntime for fairness.
                 */
-               if (!requeue)
-                       delta = max(10000LL, delta);
+               if (rq->curr != p)
+                       delta = max_t(s64, 10000LL, delta);
 
-               hrtick_start(rq, delta, requeue);
+               hrtick_start(rq, delta);
        }
 }
-#else
+#else /* !CONFIG_SCHED_HRTICK */
 static inline void
 hrtick_start_fair(struct rq *rq, struct task_struct *p)
 {
@@ -955,6 +1003,8 @@ static void yield_task_fair(struct rq *rq)
  * not idle and an idle cpu is available.  The span of cpus to
  * search starts with cpus closest then further out as needed,
  * so we always favor a closer, idle cpu.
+ * Domains may include CPUs that are not usable for migration,
+ * hence we need to mask them out (cpu_active_map)
  *
  * Returns the CPU we should wake onto.
  */
@@ -982,7 +1032,8 @@ static int wake_idle(int cpu, struct task_struct *p)
                    || ((sd->flags & SD_WAKE_IDLE_FAR)
                        && !task_hot(p, task_rq(p)->clock, sd))) {
                        cpus_and(tmp, sd->span, p->cpus_allowed);
-                       for_each_cpu_mask(i, tmp) {
+                       cpus_and(tmp, tmp, cpu_active_map);
+                       for_each_cpu_mask_nr(i, tmp) {
                                if (idle_cpu(i)) {
                                        if (i != task_cpu(p)) {
                                                schedstat_inc(p,
@@ -997,7 +1048,7 @@ static int wake_idle(int cpu, struct task_struct *p)
        }
        return cpu;
 }
-#else
+#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
 static inline int wake_idle(int cpu, struct task_struct *p)
 {
        return cpu;
@@ -1008,6 +1059,89 @@ static inline int wake_idle(int cpu, struct task_struct *p)
 
 static const struct sched_class fair_sched_class;
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * effective_load() calculates the load change as seen from the root_task_group
+ *
+ * Adding load to a group doesn't make a group heavier, but can cause movement
+ * of group shares between cpus. Assuming the shares were perfectly aligned one
+ * can calculate the shift in shares.
+ *
+ * The problem is that perfectly aligning the shares is rather expensive, hence
+ * we try to avoid doing that too often - see update_shares(), which ratelimits
+ * this change.
+ *
+ * We compensate this by not only taking the current delta into account, but
+ * also considering the delta between when the shares were last adjusted and
+ * now.
+ *
+ * We still saw a performance dip, some tracing learned us that between
+ * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
+ * significantly. Therefore try to bias the error in direction of failing
+ * the affine wakeup.
+ *
+ */
+static long effective_load(struct task_group *tg, int cpu,
+               long wl, long wg)
+{
+       struct sched_entity *se = tg->se[cpu];
+       long more_w;
+
+       if (!tg->parent)
+               return wl;
+
+       /*
+        * By not taking the decrease of shares on the other cpu into
+        * account our error leans towards reducing the affine wakeups.
+        */
+       if (!wl && sched_feat(ASYM_EFF_LOAD))
+               return wl;
+
+       /*
+        * Instead of using this increment, also add the difference
+        * between when the shares were last updated and now.
+        */
+       more_w = se->my_q->load.weight - se->my_q->rq_weight;
+       wl += more_w;
+       wg += more_w;
+
+       for_each_sched_entity(se) {
+#define D(n) (likely(n) ? (n) : 1)
+
+               long S, rw, s, a, b;
+
+               S = se->my_q->tg->shares;
+               s = se->my_q->shares;
+               rw = se->my_q->rq_weight;
+
+               a = S*(rw + wl);
+               b = S*rw + s*wg;
+
+               wl = s*(a-b)/D(b);
+               /*
+                * Assume the group is already running and will
+                * thus already be accounted for in the weight.
+                *
+                * That is, moving shares between CPUs, does not
+                * alter the group weight.
+                */
+               wg = 0;
+#undef D
+       }
+
+       return wl;
+}
+
+#else
+
+static inline unsigned long effective_load(struct task_group *tg, int cpu,
+               unsigned long wl, unsigned long wg)
+{
+       return wl;
+}
+
+#endif
+
 static int
 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
            struct task_struct *p, int prev_cpu, int this_cpu, int sync,
@@ -1015,36 +1149,50 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
            unsigned int imbalance)
 {
        struct task_struct *curr = this_rq->curr;
+       struct task_group *tg;
        unsigned long tl = this_load;
        unsigned long tl_per_task;
+       unsigned long weight;
+       int balanced;
 
-       if (!(this_sd->flags & SD_WAKE_AFFINE))
+       if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
                return 0;
 
        /*
+        * If sync wakeup then subtract the (maximum possible)
+        * effect of the currently running task from the load
+        * of the current CPU:
+        */
+       if (sync) {
+               tg = task_group(current);
+               weight = current->se.load.weight;
+
+               tl += effective_load(tg, this_cpu, -weight, -weight);
+               load += effective_load(tg, prev_cpu, 0, -weight);
+       }
+
+       tg = task_group(p);
+       weight = p->se.load.weight;
+
+       balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
+               imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
+
+       /*
         * If the currently running task will sleep within
         * a reasonable amount of time then attract this newly
         * woken task:
         */
-       if (sync && curr->sched_class == &fair_sched_class) {
+       if (sync && balanced) {
                if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
-                               p->se.avg_overlap < sysctl_sched_migration_cost)
+                   p->se.avg_overlap < sysctl_sched_migration_cost)
                        return 1;
        }
 
        schedstat_inc(p, se.nr_wakeups_affine_attempts);
        tl_per_task = cpu_avg_load_per_task(this_cpu);
 
-       /*
-        * If sync wakeup then subtract the (maximum possible)
-        * effect of the currently running task from the load
-        * of the current CPU:
-        */
-       if (sync)
-               tl -= current->se.load.weight;
-
        if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
-                       100*(tl + p->se.load.weight) <= imbalance*load) {
+                       balanced) {
                /*
                 * This domain has SD_WAKE_AFFINE and
                 * p is cache cold in this domain, and
@@ -1129,11 +1277,13 @@ static unsigned long wakeup_gran(struct sched_entity *se)
        unsigned long gran = sysctl_sched_wakeup_granularity;
 
        /*
-        * More easily preempt - nice tasks, while not making
-        * it harder for + nice tasks.
+        * More easily preempt - nice tasks, while not making it harder for
+        * + nice tasks.
         */
-       if (unlikely(se->load.weight > NICE_0_LOAD))
-               gran = calc_delta_fair(gran, &se->load);
+       if (sched_feat(ASYM_GRAN))
+               gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
+       else
+               gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
 
        return gran;
 }
@@ -1195,7 +1345,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
                return;
        }
 
-       se->last_wakeup = se->sum_exec_runtime;
        if (unlikely(se == pse))
                return;
 
@@ -1356,40 +1505,32 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
        struct task_group *tg;
 
        rcu_read_lock();
+       update_h_load(busiest_cpu);
+
        list_for_each_entry(tg, &task_groups, list) {
-               long imbalance;
-               unsigned long this_weight, busiest_weight;
-               long rem_load, max_load, moved_load;
+               struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
+               unsigned long busiest_h_load = busiest_cfs_rq->h_load;
+               unsigned long busiest_weight = busiest_cfs_rq->load.weight;
+               u64 rem_load, moved_load;
 
                /*
                 * empty group
                 */
-               if (!aggregate(tg, sd)->task_weight)
+               if (!busiest_cfs_rq->task_weight)
                        continue;
 
-               rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
-               rem_load /= aggregate(tg, sd)->load + 1;
-
-               this_weight = tg->cfs_rq[this_cpu]->task_weight;
-               busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
-
-               imbalance = (busiest_weight - this_weight) / 2;
-
-               if (imbalance < 0)
-                       imbalance = busiest_weight;
+               rem_load = (u64)rem_load_move * busiest_weight;
+               rem_load = div_u64(rem_load, busiest_h_load + 1);
 
-               max_load = max(rem_load, imbalance);
                moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
-                               max_load, sd, idle, all_pinned, this_best_prio,
+                               rem_load, sd, idle, all_pinned, this_best_prio,
                                tg->cfs_rq[busiest_cpu]);
 
                if (!moved_load)
                        continue;
 
-               move_group_shares(tg, sd, busiest_cpu, this_cpu);
-
-               moved_load *= aggregate(tg, sd)->load;
-               moved_load /= aggregate(tg, sd)->rq_weight + 1;
+               moved_load *= busiest_h_load;
+               moved_load = div_u64(moved_load, busiest_weight + 1);
 
                rem_load_move -= moved_load;
                if (rem_load_move < 0)
@@ -1435,7 +1576,7 @@ move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 
        return 0;
 }
-#endif
+#endif /* CONFIG_SMP */
 
 /*
  * scheduler tick hitting a task of our scheduling class: