sh: convert /proc/cpu/aligmnent, /proc/cpu/kernel_alignment to seq_file
[safe/jmp/linux-2.6] / kernel / sched_fair.c
index a097e90..37087a7 100644 (file)
@@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 
 #ifdef CONFIG_SCHED_DEBUG
 int sched_nr_latency_handler(struct ctl_table *table, int write,
-               struct file *filp, void __user *buffer, size_t *lenp,
+               void __user *buffer, size_t *lenp,
                loff_t *ppos)
 {
-       int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
+       int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 
        if (ret || !write)
                return ret;
@@ -710,24 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
        if (initial && sched_feat(START_DEBIT))
                vruntime += sched_vslice(cfs_rq, se);
 
-       if (!initial) {
-               /* sleeps upto a single latency don't count. */
-               if (sched_feat(NEW_FAIR_SLEEPERS)) {
-                       unsigned long thresh = sysctl_sched_latency;
+       /* sleeps up to a single latency don't count. */
+       if (!initial && sched_feat(FAIR_SLEEPERS)) {
+               unsigned long thresh = sysctl_sched_latency;
 
-                       /*
-                        * Convert the sleeper threshold into virtual time.
-                        * SCHED_IDLE is a special sub-class.  We care about
-                        * fairness only relative to other SCHED_IDLE tasks,
-                        * all of which have the same weight.
-                        */
-                       if (sched_feat(NORMALIZED_SLEEPER) &&
-                                       (!entity_is_task(se) ||
-                                        task_of(se)->policy != SCHED_IDLE))
-                               thresh = calc_delta_fair(thresh, se);
+               /*
+                * Convert the sleeper threshold into virtual time.
+                * SCHED_IDLE is a special sub-class.  We care about
+                * fairness only relative to other SCHED_IDLE tasks,
+                * all of which have the same weight.
+                */
+               if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
+                                task_of(se)->policy != SCHED_IDLE))
+                       thresh = calc_delta_fair(thresh, se);
 
-                       vruntime -= thresh;
-               }
+               /*
+                * Halve their sleep time's effect, to allow
+                * for a gentler effect of sleepers:
+                */
+               if (sched_feat(GENTLE_FAIR_SLEEPERS))
+                       thresh >>= 1;
+
+               vruntime -= thresh;
        }
 
        /* ensure we never gain time by being placed backwards. */
@@ -758,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 
 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       if (cfs_rq->last == se)
+       if (!se || cfs_rq->last == se)
                cfs_rq->last = NULL;
 
-       if (cfs_rq->next == se)
+       if (!se || cfs_rq->next == se)
                cfs_rq->next = NULL;
 }
 
@@ -818,6 +822,26 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
                 * re-elected due to buddy favours.
                 */
                clear_buddies(cfs_rq, curr);
+               return;
+       }
+
+       /*
+        * Ensure that a task that missed wakeup preemption by a
+        * narrow margin doesn't have to wait for a full slice.
+        * This also mitigates buddy induced latencies under load.
+        */
+       if (!sched_feat(WAKEUP_PREEMPT))
+               return;
+
+       if (delta_exec < sysctl_sched_min_granularity)
+               return;
+
+       if (cfs_rq->nr_running > 1) {
+               struct sched_entity *se = __pick_next_entity(cfs_rq);
+               s64 delta = curr->vruntime - se->vruntime;
+
+               if (delta > ideal_runtime)
+                       resched_task(rq_of(cfs_rq)->curr);
        }
 }
 
@@ -857,12 +881,18 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 {
        struct sched_entity *se = __pick_next_entity(cfs_rq);
+       struct sched_entity *left = se;
+
+       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
+               se = cfs_rq->next;
 
-       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
-               return cfs_rq->next;
+       /*
+        * Prefer last buddy, try to return the CPU to a preempted task.
+        */
+       if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
+               se = cfs_rq->last;
 
-       if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
-               return cfs_rq->last;
+       clear_buddies(cfs_rq, se);
 
        return se;
 }
@@ -1063,83 +1093,6 @@ static void yield_task_fair(struct rq *rq)
        se->vruntime = rightmost->vruntime + 1;
 }
 
-/*
- * wake_idle() will wake a task on an idle cpu if task->cpu is
- * not idle and an idle cpu is available.  The span of cpus to
- * search starts with cpus closest then further out as needed,
- * so we always favor a closer, idle cpu.
- * Domains may include CPUs that are not usable for migration,
- * hence we need to mask them out (rq->rd->online)
- *
- * Returns the CPU we should wake onto.
- */
-#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
-
-#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
-
-static int wake_idle(int cpu, struct task_struct *p)
-{
-       struct sched_domain *sd;
-       int i;
-       unsigned int chosen_wakeup_cpu;
-       int this_cpu;
-       struct rq *task_rq = task_rq(p);
-
-       /*
-        * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
-        * are idle and this is not a kernel thread and this task's affinity
-        * allows it to be moved to preferred cpu, then just move!
-        */
-
-       this_cpu = smp_processor_id();
-       chosen_wakeup_cpu =
-               cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
-
-       if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
-               idle_cpu(cpu) && idle_cpu(this_cpu) &&
-               p->mm && !(p->flags & PF_KTHREAD) &&
-               cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
-               return chosen_wakeup_cpu;
-
-       /*
-        * If it is idle, then it is the best cpu to run this task.
-        *
-        * This cpu is also the best, if it has more than one task already.
-        * Siblings must be also busy(in most cases) as they didn't already
-        * pickup the extra load from this cpu and hence we need not check
-        * sibling runqueue info. This will avoid the checks and cache miss
-        * penalities associated with that.
-        */
-       if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
-               return cpu;
-
-       for_each_domain(cpu, sd) {
-               if ((sd->flags & SD_WAKE_IDLE)
-                   || ((sd->flags & SD_WAKE_IDLE_FAR)
-                       && !task_hot(p, task_rq->clock, sd))) {
-                       for_each_cpu_and(i, sched_domain_span(sd),
-                                        &p->cpus_allowed) {
-                               if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
-                                       if (i != task_cpu(p)) {
-                                               schedstat_inc(p,
-                                                      se.nr_wakeups_idle);
-                                       }
-                                       return i;
-                               }
-                       }
-               } else {
-                       break;
-               }
-       }
-       return cpu;
-}
-#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
-static inline int wake_idle(int cpu, struct task_struct *p)
-{
-       return cpu;
-}
-#endif
-
 #ifdef CONFIG_SMP
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1226,25 +1179,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
 
 #endif
 
-static int
-wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
-           struct task_struct *p, int prev_cpu, int this_cpu, int sync,
-           int idx, unsigned long load, unsigned long this_load,
-           unsigned int imbalance)
+static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 {
-       struct task_struct *curr = this_rq->curr;
-       struct task_group *tg;
-       unsigned long tl = this_load;
+       struct task_struct *curr = current;
+       unsigned long this_load, load;
+       int idx, this_cpu, prev_cpu;
        unsigned long tl_per_task;
+       unsigned int imbalance;
+       struct task_group *tg;
        unsigned long weight;
        int balanced;
 
-       if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
-               return 0;
+       idx       = sd->wake_idx;
+       this_cpu  = smp_processor_id();
+       prev_cpu  = task_cpu(p);
+       load      = source_load(prev_cpu, idx);
+       this_load = target_load(this_cpu, idx);
 
-       if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
-                       p->se.avg_overlap > sysctl_sched_migration_cost))
-               sync = 0;
+       if (sync) {
+              if (sched_feat(SYNC_LESS) &&
+                  (curr->se.avg_overlap > sysctl_sched_migration_cost ||
+                   p->se.avg_overlap > sysctl_sched_migration_cost))
+                      sync = 0;
+       } else {
+               if (sched_feat(SYNC_MORE) &&
+                   (curr->se.avg_overlap < sysctl_sched_migration_cost &&
+                    p->se.avg_overlap < sysctl_sched_migration_cost))
+                       sync = 1;
+       }
 
        /*
         * If sync wakeup then subtract the (maximum possible)
@@ -1255,24 +1217,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
                tg = task_group(current);
                weight = current->se.load.weight;
 
-               tl += effective_load(tg, this_cpu, -weight, -weight);
+               this_load += effective_load(tg, this_cpu, -weight, -weight);
                load += effective_load(tg, prev_cpu, 0, -weight);
        }
 
        tg = task_group(p);
        weight = p->se.load.weight;
 
+       imbalance = 100 + (sd->imbalance_pct - 100) / 2;
+
        /*
         * In low-load situations, where prev_cpu is idle and this_cpu is idle
-        * due to the sync cause above having dropped tl to 0, we'll always have
-        * an imbalance, but there's really nothing you can do about that, so
-        * that's good too.
+        * due to the sync cause above having dropped this_load to 0, we'll
+        * always have an imbalance, but there's really nothing you can do
+        * about that, so that's good too.
         *
         * Otherwise check if either cpus are near enough in load to allow this
         * task to be woken on this_cpu.
         */
-       balanced = !tl ||
-               100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
+       balanced = !this_load ||
+               100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
                imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
 
        /*
@@ -1286,14 +1250,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
        schedstat_inc(p, se.nr_wakeups_affine_attempts);
        tl_per_task = cpu_avg_load_per_task(this_cpu);
 
-       if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
-                       tl_per_task)) {
+       if (balanced ||
+           (this_load <= load &&
+            this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
                /*
                 * This domain has SD_WAKE_AFFINE and
                 * p is cache cold in this domain, and
                 * there is no bad imbalance.
                 */
-               schedstat_inc(this_sd, ttwu_move_affine);
+               schedstat_inc(sd, ttwu_move_affine);
                schedstat_inc(p, se.nr_wakeups_affine);
 
                return 1;
@@ -1301,65 +1266,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
        return 0;
 }
 
-static int select_task_rq_fair(struct task_struct *p, int sync)
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p,
+                 int this_cpu, int load_idx)
 {
-       struct sched_domain *sd, *this_sd = NULL;
-       int prev_cpu, this_cpu, new_cpu;
-       unsigned long load, this_load;
-       struct rq *this_rq;
-       unsigned int imbalance;
-       int idx;
+       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
 
-       prev_cpu        = task_cpu(p);
-       this_cpu        = smp_processor_id();
-       this_rq         = cpu_rq(this_cpu);
-       new_cpu         = prev_cpu;
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
 
-       /*
-        * 'this_sd' is the first domain that both
-        * this_cpu and prev_cpu are present in:
-        */
-       for_each_domain(this_cpu, sd) {
-               if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
-                       this_sd = sd;
-                       break;
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpumask_intersects(sched_group_cpus(group),
+                                       &p->cpus_allowed))
+                       continue;
+
+               local_group = cpumask_test_cpu(this_cpu,
+                                              sched_group_cpus(group));
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu(i, sched_group_cpus(group)) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+               if (local_group) {
+                       this_load = avg_load;
+                       this = group;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+       } while (group = group->next, group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_cpu - find the idlest cpu among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
+               load = weighted_cpuload(i);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
                }
        }
 
-       if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
-               goto out;
+       return idlest;
+}
 
-       /*
-        * Check for affine wakeup and passive balancing possibilities.
-        */
-       if (!this_sd)
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
+{
+       struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
+       int cpu = smp_processor_id();
+       int prev_cpu = task_cpu(p);
+       int new_cpu = cpu;
+       int want_affine = 0;
+       int want_sd = 1;
+       int sync = wake_flags & WF_SYNC;
+
+       if (sd_flag & SD_BALANCE_WAKE) {
+               if (sched_feat(AFFINE_WAKEUPS) &&
+                   cpumask_test_cpu(cpu, &p->cpus_allowed))
+                       want_affine = 1;
+               new_cpu = prev_cpu;
+       }
+
+       rcu_read_lock();
+       for_each_domain(cpu, tmp) {
+               /*
+                * If power savings logic is enabled for a domain, see if we
+                * are not overloaded, if so, don't balance wider.
+                */
+               if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
+                       unsigned long power = 0;
+                       unsigned long nr_running = 0;
+                       unsigned long capacity;
+                       int i;
+
+                       for_each_cpu(i, sched_domain_span(tmp)) {
+                               power += power_of(i);
+                               nr_running += cpu_rq(i)->cfs.nr_running;
+                       }
+
+                       capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
+
+                       if (tmp->flags & SD_POWERSAVINGS_BALANCE)
+                               nr_running /= 2;
+
+                       if (nr_running < capacity)
+                               want_sd = 0;
+               }
+
+               if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
+                   cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
+
+                       affine_sd = tmp;
+                       want_affine = 0;
+               }
+
+               if (!want_sd && !want_affine)
+                       break;
+
+               if (!(tmp->flags & sd_flag))
+                       continue;
+
+               if (want_sd)
+                       sd = tmp;
+       }
+
+       if (sched_feat(LB_SHARES_UPDATE)) {
+               /*
+                * Pick the largest domain to update shares over
+                */
+               tmp = sd;
+               if (affine_sd && (!tmp ||
+                                 cpumask_weight(sched_domain_span(affine_sd)) >
+                                 cpumask_weight(sched_domain_span(sd))))
+                       tmp = affine_sd;
+
+               if (tmp)
+                       update_shares(tmp);
+       }
+
+       if (affine_sd && wake_affine(affine_sd, p, sync)) {
+               new_cpu = cpu;
                goto out;
+       }
 
-       idx = this_sd->wake_idx;
+       while (sd) {
+               int load_idx = sd->forkexec_idx;
+               struct sched_group *group;
+               int weight;
 
-       imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
+               if (!(sd->flags & sd_flag)) {
+                       sd = sd->child;
+                       continue;
+               }
 
-       load = source_load(prev_cpu, idx);
-       this_load = target_load(this_cpu, idx);
+               if (sd_flag & SD_BALANCE_WAKE)
+                       load_idx = sd->wake_idx;
+
+               group = find_idlest_group(sd, p, cpu, load_idx);
+               if (!group) {
+                       sd = sd->child;
+                       continue;
+               }
 
-       if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
-                                    load, this_load, imbalance))
-               return this_cpu;
+               new_cpu = find_idlest_cpu(group, p, cpu);
+               if (new_cpu == -1 || new_cpu == cpu) {
+                       /* Now try balancing at a lower domain level of cpu */
+                       sd = sd->child;
+                       continue;
+               }
 
-       /*
-        * Start passive balancing when half the imbalance_pct
-        * limit is reached.
-        */
-       if (this_sd->flags & SD_WAKE_BALANCE) {
-               if (imbalance*this_load <= 100*load) {
-                       schedstat_inc(this_sd, ttwu_move_balance);
-                       schedstat_inc(p, se.nr_wakeups_passive);
-                       return this_cpu;
+               /* Now try balancing at a lower domain level of new_cpu */
+               cpu = new_cpu;
+               weight = cpumask_weight(sched_domain_span(sd));
+               sd = NULL;
+               for_each_domain(cpu, tmp) {
+                       if (weight <= cpumask_weight(sched_domain_span(tmp)))
+                               break;
+                       if (tmp->flags & sd_flag)
+                               sd = tmp;
                }
+               /* while loop will break here if sd == NULL */
        }
 
 out:
-       return wake_idle(new_cpu, p);
+       rcu_read_unlock();
+       return new_cpu;
 }
 #endif /* CONFIG_SMP */
 
@@ -1472,11 +1588,13 @@ static void set_next_buddy(struct sched_entity *se)
 /*
  * Preempt the current task with a newly woken task if needed:
  */
-static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
+static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 {
        struct task_struct *curr = rq->curr;
        struct sched_entity *se = &curr->se, *pse = &p->se;
        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       int sync = wake_flags & WF_SYNC;
+       int scale = cfs_rq->nr_running >= sched_nr_latency;
 
        update_curr(cfs_rq);
 
@@ -1491,18 +1609,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
        if (unlikely(se == pse))
                return;
 
-       /*
-        * Only set the backward buddy when the current task is still on the
-        * rq. This can happen when a wakeup gets interleaved with schedule on
-        * the ->pre_schedule() or idle_balance() point, either of which can
-        * drop the rq lock.
-        *
-        * Also, during early boot the idle thread is in the fair class, for
-        * obvious reasons its a bad idea to schedule back to the idle thread.
-        */
-       if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
-               set_last_buddy(se);
-       set_next_buddy(pse);
+       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
+               set_next_buddy(pse);
 
        /*
         * We can come here with TIF_NEED_RESCHED already set from new task
@@ -1524,22 +1632,45 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
                return;
        }
 
-       if (!sched_feat(WAKEUP_PREEMPT))
-               return;
-
-       if (sched_feat(WAKEUP_OVERLAP) && (sync ||
-                       (se->avg_overlap < sysctl_sched_migration_cost &&
-                        pse->avg_overlap < sysctl_sched_migration_cost))) {
+       if ((sched_feat(WAKEUP_SYNC) && sync) ||
+           (sched_feat(WAKEUP_OVERLAP) &&
+            (se->avg_overlap < sysctl_sched_migration_cost &&
+             pse->avg_overlap < sysctl_sched_migration_cost))) {
                resched_task(curr);
                return;
        }
 
+       if (sched_feat(WAKEUP_RUNNING)) {
+               if (pse->avg_running < se->avg_running) {
+                       set_next_buddy(pse);
+                       resched_task(curr);
+                       return;
+               }
+       }
+
+       if (!sched_feat(WAKEUP_PREEMPT))
+               return;
+
        find_matching_se(&se, &pse);
 
        BUG_ON(!pse);
 
-       if (wakeup_preempt_entity(se, pse) == 1)
+       if (wakeup_preempt_entity(se, pse) == 1) {
                resched_task(curr);
+               /*
+                * Only set the backward buddy when the current task is still
+                * on the rq. This can happen when a wakeup gets interleaved
+                * with schedule on the ->pre_schedule() or idle_balance()
+                * point, either of which can * drop the rq lock.
+                *
+                * Also, during early boot the idle thread is in the fair class,
+                * for obvious reasons its a bad idea to schedule back to it.
+                */
+               if (unlikely(!se->on_rq || curr == rq->idle))
+                       return;
+               if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
+                       set_last_buddy(se);
+       }
 }
 
 static struct task_struct *pick_next_task_fair(struct rq *rq)
@@ -1553,11 +1684,6 @@ static struct task_struct *pick_next_task_fair(struct rq *rq)
 
        do {
                se = pick_next_entity(cfs_rq);
-               /*
-                * If se was a buddy, clear it so that it will have to earn
-                * the favour again.
-                */
-               __clear_buddies(cfs_rq, se);
                set_next_entity(cfs_rq, se);
                cfs_rq = group_cfs_rq(se);
        } while (cfs_rq);
@@ -1833,6 +1959,25 @@ static void moved_group_fair(struct task_struct *p)
 }
 #endif
 
+unsigned int get_rr_interval_fair(struct task_struct *task)
+{
+       struct sched_entity *se = &task->se;
+       unsigned long flags;
+       struct rq *rq;
+       unsigned int rr_interval = 0;
+
+       /*
+        * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
+        * idle runqueue:
+        */
+       rq = task_rq_lock(task, &flags);
+       if (rq->cfs.load.weight)
+               rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
+       task_rq_unlock(rq, &flags);
+
+       return rr_interval;
+}
+
 /*
  * All the scheduling class methods:
  */
@@ -1861,6 +2006,8 @@ static const struct sched_class fair_sched_class = {
        .prio_changed           = prio_changed_fair,
        .switched_to            = switched_to_fair,
 
+       .get_rr_interval        = get_rr_interval_fair,
+
 #ifdef CONFIG_FAIR_GROUP_SCHED
        .moved_group            = moved_group_fair,
 #endif