nfsd: clean up readdirplus encoding
[safe/jmp/linux-2.6] / kernel / sched.c
index 48862d4..1b59e26 100644 (file)
@@ -39,6 +39,7 @@
 #include <linux/completion.h>
 #include <linux/kernel_stat.h>
 #include <linux/debug_locks.h>
+#include <linux/perf_counter.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
 #include <linux/profile.h>
 #include <linux/pagemap.h>
 #include <linux/hrtimer.h>
 #include <linux/tick.h>
-#include <linux/bootmem.h>
 #include <linux/debugfs.h>
 #include <linux/ctype.h>
 #include <linux/ftrace.h>
-#include <trace/sched.h>
 
 #include <asm/tlb.h>
 #include <asm/irq_regs.h>
 
 #include "sched_cpupri.h"
 
+#define CREATE_TRACE_POINTS
+#include <trace/events/sched.h>
+
 /*
  * Convert user-nice values [ -20 ... 0 ... 19 ]
  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  */
 #define RUNTIME_INF    ((u64)~0ULL)
 
-DEFINE_TRACE(sched_wait_task);
-DEFINE_TRACE(sched_wakeup);
-DEFINE_TRACE(sched_wakeup_new);
-DEFINE_TRACE(sched_switch);
-DEFINE_TRACE(sched_migrate_task);
-
 #ifdef CONFIG_SMP
 
 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
@@ -231,13 +227,20 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 
        spin_lock(&rt_b->rt_runtime_lock);
        for (;;) {
+               unsigned long delta;
+               ktime_t soft, hard;
+
                if (hrtimer_active(&rt_b->rt_period_timer))
                        break;
 
                now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
                hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
-               hrtimer_start_expires(&rt_b->rt_period_timer,
-                               HRTIMER_MODE_ABS);
+
+               soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
+               hard = hrtimer_get_expires(&rt_b->rt_period_timer);
+               delta = ktime_to_ns(ktime_sub(hard, soft));
+               __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
+                               HRTIMER_MODE_ABS_PINNED, 0);
        }
        spin_unlock(&rt_b->rt_runtime_lock);
 }
@@ -331,6 +334,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  */
 static DEFINE_SPINLOCK(task_group_lock);
 
+#ifdef CONFIG_SMP
+static int root_task_group_empty(void)
+{
+       return list_empty(&root_task_group.children);
+}
+#endif
+
 #ifdef CONFIG_FAIR_GROUP_SCHED
 #ifdef CONFIG_USER_SCHED
 # define INIT_TASK_GROUP_LOAD  (2*NICE_0_LOAD)
@@ -391,6 +401,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 
 #else
 
+#ifdef CONFIG_SMP
+static int root_task_group_empty(void)
+{
+       return 1;
+}
+#endif
+
 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 static inline struct task_group *task_group(struct task_struct *p)
 {
@@ -467,11 +484,18 @@ struct rt_rq {
        struct rt_prio_array active;
        unsigned long rt_nr_running;
 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-       int highest_prio; /* highest queued rt task prio */
+       struct {
+               int curr; /* highest queued rt task prio */
+#ifdef CONFIG_SMP
+               int next; /* next highest */
+#endif
+       } highest_prio;
 #endif
 #ifdef CONFIG_SMP
        unsigned long rt_nr_migratory;
+       unsigned long rt_nr_total;
        int overloaded;
+       struct plist_head pushable_tasks;
 #endif
        int rt_throttled;
        u64 rt_time;
@@ -549,7 +573,6 @@ struct rq {
        unsigned long nr_running;
        #define CPU_LOAD_IDX_MAX 5
        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
-       unsigned char idle_at_tick;
 #ifdef CONFIG_NO_HZ
        unsigned long last_tick_seen;
        unsigned char in_nohz_recently;
@@ -558,6 +581,7 @@ struct rq {
        struct load_weight load;
        unsigned long nr_load_updates;
        u64 nr_switches;
+       u64 nr_migrations_in;
 
        struct cfs_rq cfs;
        struct rt_rq rt;
@@ -590,6 +614,7 @@ struct rq {
        struct root_domain *rd;
        struct sched_domain *sd;
 
+       unsigned char idle_at_tick;
        /* For active balancing */
        int active_balance;
        int push_cpu;
@@ -603,6 +628,10 @@ struct rq {
        struct list_head migration_queue;
 #endif
 
+       /* calc_load related fields */
+       unsigned long calc_load_update;
+       long calc_load_active;
+
 #ifdef CONFIG_SCHED_HRTICK
 #ifdef CONFIG_SMP
        int hrtick_csd_pending;
@@ -618,9 +647,6 @@ struct rq {
        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 
        /* sys_sched_yield() stats */
-       unsigned int yld_exp_empty;
-       unsigned int yld_act_empty;
-       unsigned int yld_both_empty;
        unsigned int yld_count;
 
        /* schedule() stats */
@@ -668,7 +694,7 @@ static inline int cpu_of(struct rq *rq)
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
 
-static inline void update_rq_clock(struct rq *rq)
+inline void update_rq_clock(struct rq *rq)
 {
        rq->clock = sched_clock_cpu(cpu_of(rq));
 }
@@ -1093,7 +1119,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
        if (rq == this_rq()) {
                hrtimer_restart(timer);
        } else if (!rq->hrtick_csd_pending) {
-               __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
+               __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
                rq->hrtick_csd_pending = 1;
        }
 }
@@ -1129,7 +1155,8 @@ static __init void init_hrtick(void)
  */
 static void hrtick_start(struct rq *rq, u64 delay)
 {
-       hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
+       __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
+                       HRTIMER_MODE_REL_PINNED, 0);
 }
 
 static inline void init_hrtick(void)
@@ -1183,10 +1210,10 @@ static void resched_task(struct task_struct *p)
 
        assert_spin_locked(&task_rq(p)->lock);
 
-       if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+       if (test_tsk_need_resched(p))
                return;
 
-       set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+       set_tsk_need_resched(p);
 
        cpu = task_cpu(p);
        if (cpu == smp_processor_id())
@@ -1242,7 +1269,7 @@ void wake_up_idle_cpu(int cpu)
         * lockless. The worst case is that the other CPU runs the
         * idle task through an additional NOOP schedule()
         */
-       set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
+       set_tsk_need_resched(rq->idle);
 
        /* NEED_RESCHED must be visible before we test polling */
        smp_mb();
@@ -1393,10 +1420,22 @@ iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
                   struct rq_iterator *iterator);
 #endif
 
+/* Time spent by the tasks of the cpu accounting group executing in ... */
+enum cpuacct_stat_index {
+       CPUACCT_STAT_USER,      /* ... user mode */
+       CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
+
+       CPUACCT_STAT_NSTATS,
+};
+
 #ifdef CONFIG_CGROUP_CPUACCT
 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
+static void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val);
 #else
 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
+static inline void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val) {}
 #endif
 
 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
@@ -1610,21 +1649,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
 
 #endif
 
+#ifdef CONFIG_PREEMPT
+
 /*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations.  This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below.  However, it
+ * also adds more overhead and therefore may reduce throughput.
  */
-static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       spin_unlock(&this_rq->lock);
+       double_rq_lock(this_rq, busiest);
+
+       return 1;
+}
+
+#else
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry.  This favors lower cpu-ids and will
+ * grant the double lock to lower cpus over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
        __releases(this_rq->lock)
        __acquires(busiest->lock)
        __acquires(this_rq->lock)
 {
        int ret = 0;
 
-       if (unlikely(!irqs_disabled())) {
-               /* printk() doesn't work good under rq->lock */
-               spin_unlock(&this_rq->lock);
-               BUG_ON(1);
-       }
        if (unlikely(!spin_trylock(&busiest->lock))) {
                if (busiest < this_rq) {
                        spin_unlock(&this_rq->lock);
@@ -1637,6 +1697,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
        return ret;
 }
 
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+       if (unlikely(!irqs_disabled())) {
+               /* printk() doesn't work good under rq->lock */
+               spin_unlock(&this_rq->lock);
+               BUG_ON(1);
+       }
+
+       return _double_lock_balance(this_rq, busiest);
+}
+
 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
        __releases(busiest->lock)
 {
@@ -1654,6 +1730,8 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
 }
 #endif
 
+static void calc_load_account_active(struct rq *this_rq);
+
 #include "sched_stats.h"
 #include "sched_idletask.c"
 #include "sched_fair.c"
@@ -1705,6 +1783,9 @@ static void update_avg(u64 *avg, u64 sample)
 
 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
 {
+       if (wakeup)
+               p->se.start_runtime = p->se.sum_exec_runtime;
+
        sched_info_queued(p);
        p->sched_class->enqueue_task(rq, p, wakeup);
        p->se.on_rq = 1;
@@ -1712,10 +1793,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
 
 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
 {
-       if (sleep && p->se.last_wakeup) {
-               update_avg(&p->se.avg_overlap,
-                          p->se.sum_exec_runtime - p->se.last_wakeup);
-               p->se.last_wakeup = 0;
+       if (sleep) {
+               if (p->se.last_wakeup) {
+                       update_avg(&p->se.avg_overlap,
+                               p->se.sum_exec_runtime - p->se.last_wakeup);
+                       p->se.last_wakeup = 0;
+               } else {
+                       update_avg(&p->se.avg_wakeup,
+                               sysctl_sched_wakeup_granularity);
+               }
        }
 
        sched_info_dequeued(p);
@@ -1876,7 +1962,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 
        clock_offset = old_rq->clock - new_rq->clock;
 
-       trace_sched_migrate_task(p, task_cpu(p), new_cpu);
+       trace_sched_migrate_task(p, new_cpu);
 
 #ifdef CONFIG_SCHEDSTATS
        if (p->se.wait_start)
@@ -1885,12 +1971,17 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
                p->se.sleep_start -= clock_offset;
        if (p->se.block_start)
                p->se.block_start -= clock_offset;
+#endif
        if (old_cpu != new_cpu) {
-               schedstat_inc(p, se.nr_migrations);
+               p->se.nr_migrations++;
+               new_rq->nr_migrations_in++;
+#ifdef CONFIG_SCHEDSTATS
                if (task_hot(p, old_rq->clock, NULL))
                        schedstat_inc(p, se.nr_forced2_migrations);
-       }
 #endif
+               perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
+                                    1, 1, NULL, 0);
+       }
        p->se.vruntime -= old_cfsrq->min_vruntime -
                                         new_cfsrq->min_vruntime;
 
@@ -1933,6 +2024,49 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
 }
 
 /*
+ * wait_task_context_switch -  wait for a thread to complete at least one
+ *                             context switch.
+ *
+ * @p must not be current.
+ */
+void wait_task_context_switch(struct task_struct *p)
+{
+       unsigned long nvcsw, nivcsw, flags;
+       int running;
+       struct rq *rq;
+
+       nvcsw   = p->nvcsw;
+       nivcsw  = p->nivcsw;
+       for (;;) {
+               /*
+                * The runqueue is assigned before the actual context
+                * switch. We need to take the runqueue lock.
+                *
+                * We could check initially without the lock but it is
+                * very likely that we need to take the lock in every
+                * iteration.
+                */
+               rq = task_rq_lock(p, &flags);
+               running = task_running(rq, p);
+               task_rq_unlock(rq, &flags);
+
+               if (likely(!running))
+                       break;
+               /*
+                * The switch count is incremented before the actual
+                * context switch. We thus wait for two switches to be
+                * sure at least one completed.
+                */
+               if ((p->nvcsw - nvcsw) > 1)
+                       break;
+               if ((p->nivcsw - nivcsw) > 1)
+                       break;
+
+               cpu_relax();
+       }
+}
+
+/*
  * wait_task_inactive - wait for a thread to unschedule.
  *
  * If @match_state is nonzero, it's the @p->state value just checked and
@@ -2017,7 +2151,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
                 * it must be off the runqueue _entirely_, and not
                 * preempted!
                 *
-                * So if it wa still runnable (but just not actively
+                * So if it was still runnable (but just not actively
                 * running right now), it's preempted, and we should
                 * yield - it could be a while.
                 */
@@ -2060,6 +2194,7 @@ void kick_process(struct task_struct *p)
                smp_send_reschedule(cpu);
        preempt_enable();
 }
+EXPORT_SYMBOL_GPL(kick_process);
 
 /*
  * Return a low guess at the load of a migration-source cpu weighted
@@ -2242,6 +2377,27 @@ static int sched_balance_self(int cpu, int flag)
 
 #endif /* CONFIG_SMP */
 
+/**
+ * task_oncpu_function_call - call a function on the cpu on which a task runs
+ * @p:         the task to evaluate
+ * @func:      the function to be called
+ * @info:      the function call argument
+ *
+ * Calls the function @func when the task is currently running. This might
+ * be on the current CPU, which just calls the function directly
+ */
+void task_oncpu_function_call(struct task_struct *p,
+                             void (*func) (void *info), void *info)
+{
+       int cpu;
+
+       preempt_disable();
+       cpu = task_cpu(p);
+       if (task_curr(p))
+               smp_call_function_single(cpu, func, info, 1);
+       preempt_enable();
+}
+
 /***
  * try_to_wake_up - wake up a thread
  * @p: the to-be-woken-up thread
@@ -2267,7 +2423,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
                sync = 0;
 
 #ifdef CONFIG_SMP
-       if (sched_feat(LB_WAKEUP_UPDATE)) {
+       if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
                struct sched_domain *sd;
 
                this_cpu = raw_smp_processor_id();
@@ -2345,6 +2501,22 @@ out_activate:
        activate_task(rq, p, 1);
        success = 1;
 
+       /*
+        * Only attribute actual wakeups done by this task.
+        */
+       if (!in_interrupt()) {
+               struct sched_entity *se = &current->se;
+               u64 sample = se->sum_exec_runtime;
+
+               if (se->last_wakeup)
+                       sample -= se->last_wakeup;
+               else
+                       sample -= se->start_runtime;
+               update_avg(&se->avg_wakeup, sample);
+
+               se->last_wakeup = se->sum_exec_runtime;
+       }
+
 out_running:
        trace_sched_wakeup(rq, p, success);
        check_preempt_curr(rq, p, sync);
@@ -2355,13 +2527,22 @@ out_running:
                p->sched_class->task_wake_up(rq, p);
 #endif
 out:
-       current->se.last_wakeup = current->se.sum_exec_runtime;
-
        task_rq_unlock(rq, &flags);
 
        return success;
 }
 
+/**
+ * wake_up_process - Wake up a specific process
+ * @p: The process to be woken up.
+ *
+ * Attempt to wake up the nominated process and move it to the set of runnable
+ * processes.  Returns 1 if the process was woken up, 0 if it was already
+ * running.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
 int wake_up_process(struct task_struct *p)
 {
        return try_to_wake_up(p, TASK_ALL, 0);
@@ -2384,19 +2565,44 @@ static void __sched_fork(struct task_struct *p)
        p->se.exec_start                = 0;
        p->se.sum_exec_runtime          = 0;
        p->se.prev_sum_exec_runtime     = 0;
+       p->se.nr_migrations             = 0;
        p->se.last_wakeup               = 0;
        p->se.avg_overlap               = 0;
+       p->se.start_runtime             = 0;
+       p->se.avg_wakeup                = sysctl_sched_wakeup_granularity;
 
 #ifdef CONFIG_SCHEDSTATS
-       p->se.wait_start                = 0;
-       p->se.sum_sleep_runtime         = 0;
-       p->se.sleep_start               = 0;
-       p->se.block_start               = 0;
-       p->se.sleep_max                 = 0;
-       p->se.block_max                 = 0;
-       p->se.exec_max                  = 0;
-       p->se.slice_max                 = 0;
-       p->se.wait_max                  = 0;
+       p->se.wait_start                        = 0;
+       p->se.wait_max                          = 0;
+       p->se.wait_count                        = 0;
+       p->se.wait_sum                          = 0;
+
+       p->se.sleep_start                       = 0;
+       p->se.sleep_max                         = 0;
+       p->se.sum_sleep_runtime                 = 0;
+
+       p->se.block_start                       = 0;
+       p->se.block_max                         = 0;
+       p->se.exec_max                          = 0;
+       p->se.slice_max                         = 0;
+
+       p->se.nr_migrations_cold                = 0;
+       p->se.nr_failed_migrations_affine       = 0;
+       p->se.nr_failed_migrations_running      = 0;
+       p->se.nr_failed_migrations_hot          = 0;
+       p->se.nr_forced_migrations              = 0;
+       p->se.nr_forced2_migrations             = 0;
+
+       p->se.nr_wakeups                        = 0;
+       p->se.nr_wakeups_sync                   = 0;
+       p->se.nr_wakeups_migrate                = 0;
+       p->se.nr_wakeups_local                  = 0;
+       p->se.nr_wakeups_remote                 = 0;
+       p->se.nr_wakeups_affine                 = 0;
+       p->se.nr_wakeups_affine_attempts        = 0;
+       p->se.nr_wakeups_passive                = 0;
+       p->se.nr_wakeups_idle                   = 0;
+
 #endif
 
        INIT_LIST_HEAD(&p->rt.run_list);
@@ -2448,6 +2654,8 @@ void sched_fork(struct task_struct *p, int clone_flags)
        /* Want to start with kernel preemption disabled. */
        task_thread_info(p)->preempt_count = 1;
 #endif
+       plist_node_init(&p->pushable_tasks, MAX_PRIO);
+
        put_cpu();
 }
 
@@ -2491,7 +2699,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
 #ifdef CONFIG_PREEMPT_NOTIFIERS
 
 /**
- * preempt_notifier_register - tell me when current is being being preempted & rescheduled
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
  * @notifier: notifier struct to register
  */
 void preempt_notifier_register(struct preempt_notifier *notifier)
@@ -2588,6 +2796,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
 {
        struct mm_struct *mm = rq->prev_mm;
        long prev_state;
+#ifdef CONFIG_SMP
+       int post_schedule = 0;
+
+       if (current->sched_class->needs_post_schedule)
+               post_schedule = current->sched_class->needs_post_schedule(rq);
+#endif
 
        rq->prev_mm = NULL;
 
@@ -2604,9 +2818,10 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
         */
        prev_state = prev->state;
        finish_arch_switch(prev);
+       perf_counter_task_sched_in(current, cpu_of(rq));
        finish_lock_switch(rq, prev);
 #ifdef CONFIG_SMP
-       if (current->sched_class->post_schedule)
+       if (post_schedule)
                current->sched_class->post_schedule(rq);
 #endif
 
@@ -2660,7 +2875,7 @@ context_switch(struct rq *rq, struct task_struct *prev,
         * combine the page table reload and the switch backend into
         * one hypercall.
         */
-       arch_enter_lazy_cpu_mode();
+       arch_start_context_switch(prev);
 
        if (unlikely(!mm)) {
                next->active_mm = oldmm;
@@ -2750,19 +2965,81 @@ unsigned long nr_iowait(void)
        return sum;
 }
 
-unsigned long nr_active(void)
+/* Variables and functions for calc_load */
+static atomic_long_t calc_load_tasks;
+static unsigned long calc_load_update;
+unsigned long avenrun[3];
+EXPORT_SYMBOL(avenrun);
+
+/**
+ * get_avenrun - get the load average array
+ * @loads:     pointer to dest load array
+ * @offset:    offset to add
+ * @shift:     shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+       loads[0] = (avenrun[0] + offset) << shift;
+       loads[1] = (avenrun[1] + offset) << shift;
+       loads[2] = (avenrun[2] + offset) << shift;
+}
+
+static unsigned long
+calc_load(unsigned long load, unsigned long exp, unsigned long active)
 {
-       unsigned long i, running = 0, uninterruptible = 0;
+       load *= exp;
+       load += active * (FIXED_1 - exp);
+       return load >> FSHIFT;
+}
 
-       for_each_online_cpu(i) {
-               running += cpu_rq(i)->nr_running;
-               uninterruptible += cpu_rq(i)->nr_uninterruptible;
-       }
+/*
+ * calc_load - update the avenrun load estimates 10 ticks after the
+ * CPUs have updated calc_load_tasks.
+ */
+void calc_global_load(void)
+{
+       unsigned long upd = calc_load_update + 10;
+       long active;
+
+       if (time_before(jiffies, upd))
+               return;
 
-       if (unlikely((long)uninterruptible < 0))
-               uninterruptible = 0;
+       active = atomic_long_read(&calc_load_tasks);
+       active = active > 0 ? active * FIXED_1 : 0;
 
-       return running + uninterruptible;
+       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
+
+       calc_load_update += LOAD_FREQ;
+}
+
+/*
+ * Either called from update_cpu_load() or from a cpu going idle
+ */
+static void calc_load_account_active(struct rq *this_rq)
+{
+       long nr_active, delta;
+
+       nr_active = this_rq->nr_running;
+       nr_active += (long) this_rq->nr_uninterruptible;
+
+       if (nr_active != this_rq->calc_load_active) {
+               delta = nr_active - this_rq->calc_load_active;
+               this_rq->calc_load_active = nr_active;
+               atomic_long_add(delta, &calc_load_tasks);
+       }
+}
+
+/*
+ * Externally visible per-cpu scheduler statistics:
+ * cpu_nr_migrations(cpu) - number of migrations into that cpu
+ */
+u64 cpu_nr_migrations(int cpu)
+{
+       return cpu_rq(cpu)->nr_migrations_in;
 }
 
 /*
@@ -2793,6 +3070,11 @@ static void update_cpu_load(struct rq *this_rq)
                        new_load += scale-1;
                this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
        }
+
+       if (time_after_eq(jiffies, this_rq->calc_load_update)) {
+               this_rq->calc_load_update += LOAD_FREQ;
+               calc_load_account_active(this_rq);
+       }
 }
 
 #ifdef CONFIG_SMP
@@ -2913,6 +3195,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
                     struct sched_domain *sd, enum cpu_idle_type idle,
                     int *all_pinned)
 {
+       int tsk_cache_hot = 0;
        /*
         * We do not migrate tasks that are:
         * 1) running (obviously), or
@@ -2936,10 +3219,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
         * 2) too many balance attempts have failed.
         */
 
-       if (!task_hot(p, rq->clock, sd) ||
-                       sd->nr_balance_failed > sd->cache_nice_tries) {
+       tsk_cache_hot = task_hot(p, rq->clock, sd);
+       if (!tsk_cache_hot ||
+               sd->nr_balance_failed > sd->cache_nice_tries) {
 #ifdef CONFIG_SCHEDSTATS
-               if (task_hot(p, rq->clock, sd)) {
+               if (tsk_cache_hot) {
                        schedstat_inc(sd, lb_hot_gained[idle]);
                        schedstat_inc(p, se.nr_forced_migrations);
                }
@@ -2947,7 +3231,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
                return 1;
        }
 
-       if (task_hot(p, rq->clock, sd)) {
+       if (tsk_cache_hot) {
                schedstat_inc(p, se.nr_failed_migrations_hot);
                return 0;
        }
@@ -2987,6 +3271,16 @@ next:
        pulled++;
        rem_load_move -= p->se.load.weight;
 
+#ifdef CONFIG_PREEMPT
+       /*
+        * NEWIDLE balancing is a source of latency, so preemptible kernels
+        * will stop after the first task is pulled to minimize the critical
+        * section.
+        */
+       if (idle == CPU_NEWLY_IDLE)
+               goto out;
+#endif
+
        /*
         * We only want to steal up to the prescribed amount of weighted load.
         */
@@ -3033,9 +3327,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
                                sd, idle, all_pinned, &this_best_prio);
                class = class->next;
 
+#ifdef CONFIG_PREEMPT
+               /*
+                * NEWIDLE balancing is a source of latency, so preemptible
+                * kernels will stop after the first task is pulled to minimize
+                * the critical section.
+                */
                if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
                        break;
-
+#endif
        } while (class && max_load_move > total_load_moved);
 
        return total_load_moved > 0;
@@ -3085,246 +3385,480 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
 
        return 0;
 }
-
+/********** Helpers for find_busiest_group ************************/
 /*
- * find_busiest_group finds and returns the busiest CPU group within the
- * domain. It calculates and returns the amount of weighted load which
- * should be moved to restore balance via the imbalance parameter.
+ * sd_lb_stats - Structure to store the statistics of a sched_domain
+ *             during load balancing.
  */
-static struct sched_group *
-find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum cpu_idle_type idle,
-                  int *sd_idle, const struct cpumask *cpus, int *balance)
-{
-       struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
-       unsigned long max_load, avg_load, total_load, this_load, total_pwr;
-       unsigned long max_pull;
-       unsigned long busiest_load_per_task, busiest_nr_running;
-       unsigned long this_load_per_task, this_nr_running;
-       int load_idx, group_imb = 0;
+struct sd_lb_stats {
+       struct sched_group *busiest; /* Busiest group in this sd */
+       struct sched_group *this;  /* Local group in this sd */
+       unsigned long total_load;  /* Total load of all groups in sd */
+       unsigned long total_pwr;   /*   Total power of all groups in sd */
+       unsigned long avg_load;    /* Average load across all groups in sd */
+
+       /** Statistics of this group */
+       unsigned long this_load;
+       unsigned long this_load_per_task;
+       unsigned long this_nr_running;
+
+       /* Statistics of the busiest group */
+       unsigned long max_load;
+       unsigned long busiest_load_per_task;
+       unsigned long busiest_nr_running;
+
+       int group_imb; /* Is there imbalance in this sd */
 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-       int power_savings_balance = 1;
-       unsigned long leader_nr_running = 0, min_load_per_task = 0;
-       unsigned long min_nr_running = ULONG_MAX;
-       struct sched_group *group_min = NULL, *group_leader = NULL;
+       int power_savings_balance; /* Is powersave balance needed for this sd */
+       struct sched_group *group_min; /* Least loaded group in sd */
+       struct sched_group *group_leader; /* Group which relieves group_min */
+       unsigned long min_load_per_task; /* load_per_task in group_min */
+       unsigned long leader_nr_running; /* Nr running of group_leader */
+       unsigned long min_nr_running; /* Nr running of group_min */
 #endif
+};
+
+/*
+ * sg_lb_stats - stats of a sched_group required for load_balancing
+ */
+struct sg_lb_stats {
+       unsigned long avg_load; /*Avg load across the CPUs of the group */
+       unsigned long group_load; /* Total load over the CPUs of the group */
+       unsigned long sum_nr_running; /* Nr tasks running in the group */
+       unsigned long sum_weighted_load; /* Weighted load of group's tasks */
+       unsigned long group_capacity;
+       int group_imb; /* Is there an imbalance in the group ? */
+};
 
-       max_load = this_load = total_load = total_pwr = 0;
-       busiest_load_per_task = busiest_nr_running = 0;
-       this_load_per_task = this_nr_running = 0;
+/**
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
+ * @group: The group whose first cpu is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+       return cpumask_first(sched_group_cpus(group));
+}
+
+/**
+ * get_sd_load_idx - Obtain the load index for a given sched domain.
+ * @sd: The sched_domain whose load_idx is to be obtained.
+ * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
+ */
+static inline int get_sd_load_idx(struct sched_domain *sd,
+                                       enum cpu_idle_type idle)
+{
+       int load_idx;
 
-       if (idle == CPU_NOT_IDLE)
+       switch (idle) {
+       case CPU_NOT_IDLE:
                load_idx = sd->busy_idx;
-       else if (idle == CPU_NEWLY_IDLE)
+               break;
+
+       case CPU_NEWLY_IDLE:
                load_idx = sd->newidle_idx;
-       else
+               break;
+       default:
                load_idx = sd->idle_idx;
+               break;
+       }
 
-       do {
-               unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
-               int local_group;
-               int i;
-               int __group_imb = 0;
-               unsigned int balance_cpu = -1, first_idle_cpu = 0;
-               unsigned long sum_nr_running, sum_weighted_load;
-               unsigned long sum_avg_load_per_task;
-               unsigned long avg_load_per_task;
+       return load_idx;
+}
 
-               local_group = cpumask_test_cpu(this_cpu,
-                                              sched_group_cpus(group));
 
-               if (local_group)
-                       balance_cpu = cpumask_first(sched_group_cpus(group));
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+/**
+ * init_sd_power_savings_stats - Initialize power savings statistics for
+ * the given sched_domain, during load balancing.
+ *
+ * @sd: Sched domain whose power-savings statistics are to be initialized.
+ * @sds: Variable containing the statistics for sd.
+ * @idle: Idle status of the CPU at which we're performing load-balancing.
+ */
+static inline void init_sd_power_savings_stats(struct sched_domain *sd,
+       struct sd_lb_stats *sds, enum cpu_idle_type idle)
+{
+       /*
+        * Busy processors will not participate in power savings
+        * balance.
+        */
+       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
+               sds->power_savings_balance = 0;
+       else {
+               sds->power_savings_balance = 1;
+               sds->min_nr_running = ULONG_MAX;
+               sds->leader_nr_running = 0;
+       }
+}
 
-               /* Tally up the load of all CPUs in the group */
-               sum_weighted_load = sum_nr_running = avg_load = 0;
-               sum_avg_load_per_task = avg_load_per_task = 0;
+/**
+ * update_sd_power_savings_stats - Update the power saving stats for a
+ * sched_domain while performing load balancing.
+ *
+ * @group: sched_group belonging to the sched_domain under consideration.
+ * @sds: Variable containing the statistics of the sched_domain
+ * @local_group: Does group contain the CPU for which we're performing
+ *             load balancing ?
+ * @sgs: Variable containing the statistics of the group.
+ */
+static inline void update_sd_power_savings_stats(struct sched_group *group,
+       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
+{
 
-               max_cpu_load = 0;
-               min_cpu_load = ~0UL;
+       if (!sds->power_savings_balance)
+               return;
 
-               for_each_cpu_and(i, sched_group_cpus(group), cpus) {
-                       struct rq *rq = cpu_rq(i);
+       /*
+        * If the local group is idle or completely loaded
+        * no need to do power savings balance at this domain
+        */
+       if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
+                               !sds->this_nr_running))
+               sds->power_savings_balance = 0;
 
-                       if (*sd_idle && rq->nr_running)
-                               *sd_idle = 0;
+       /*
+        * If a group is already running at full capacity or idle,
+        * don't include that group in power savings calculations
+        */
+       if (!sds->power_savings_balance ||
+               sgs->sum_nr_running >= sgs->group_capacity ||
+               !sgs->sum_nr_running)
+               return;
 
-                       /* Bias balancing toward cpus of our domain */
-                       if (local_group) {
-                               if (idle_cpu(i) && !first_idle_cpu) {
-                                       first_idle_cpu = 1;
-                                       balance_cpu = i;
-                               }
+       /*
+        * Calculate the group which has the least non-idle load.
+        * This is the group from where we need to pick up the load
+        * for saving power
+        */
+       if ((sgs->sum_nr_running < sds->min_nr_running) ||
+           (sgs->sum_nr_running == sds->min_nr_running &&
+            group_first_cpu(group) > group_first_cpu(sds->group_min))) {
+               sds->group_min = group;
+               sds->min_nr_running = sgs->sum_nr_running;
+               sds->min_load_per_task = sgs->sum_weighted_load /
+                                               sgs->sum_nr_running;
+       }
 
-                               load = target_load(i, load_idx);
-                       } else {
-                               load = source_load(i, load_idx);
-                               if (load > max_cpu_load)
-                                       max_cpu_load = load;
-                               if (min_cpu_load > load)
-                                       min_cpu_load = load;
-                       }
+       /*
+        * Calculate the group which is almost near its
+        * capacity but still has some space to pick up some load
+        * from other group and save more power
+        */
+       if (sgs->sum_nr_running > sgs->group_capacity - 1)
+               return;
 
-                       avg_load += load;
-                       sum_nr_running += rq->nr_running;
-                       sum_weighted_load += weighted_cpuload(i);
+       if (sgs->sum_nr_running > sds->leader_nr_running ||
+           (sgs->sum_nr_running == sds->leader_nr_running &&
+            group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
+               sds->group_leader = group;
+               sds->leader_nr_running = sgs->sum_nr_running;
+       }
+}
 
-                       sum_avg_load_per_task += cpu_avg_load_per_task(i);
-               }
+/**
+ * check_power_save_busiest_group - see if there is potential for some power-savings balance
+ * @sds: Variable containing the statistics of the sched_domain
+ *     under consideration.
+ * @this_cpu: Cpu at which we're currently performing load-balancing.
+ * @imbalance: Variable to store the imbalance.
+ *
+ * Description:
+ * Check if we have potential to perform some power-savings balance.
+ * If yes, set the busiest group to be the least loaded group in the
+ * sched_domain, so that it's CPUs can be put to idle.
+ *
+ * Returns 1 if there is potential to perform power-savings balance.
+ * Else returns 0.
+ */
+static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
+                                       int this_cpu, unsigned long *imbalance)
+{
+       if (!sds->power_savings_balance)
+               return 0;
 
-               /*
-                * First idle cpu or the first cpu(busiest) in this sched group
-                * is eligible for doing load balancing at this and above
-                * domains. In the newly idle case, we will allow all the cpu's
-                * to do the newly idle load balance.
-                */
-               if (idle != CPU_NEWLY_IDLE && local_group &&
-                   balance_cpu != this_cpu && balance) {
-                       *balance = 0;
-                       goto ret;
-               }
+       if (sds->this != sds->group_leader ||
+                       sds->group_leader == sds->group_min)
+               return 0;
 
-               total_load += avg_load;
-               total_pwr += group->__cpu_power;
+       *imbalance = sds->min_load_per_task;
+       sds->busiest = sds->group_min;
 
-               /* Adjust by relative CPU power of the group */
-               avg_load = sg_div_cpu_power(group,
-                               avg_load * SCHED_LOAD_SCALE);
+       if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
+               cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
+                       group_first_cpu(sds->group_leader);
+       }
 
+       return 1;
 
-               /*
-                * Consider the group unbalanced when the imbalance is larger
-                * than the average weight of two tasks.
-                *
-                * APZ: with cgroup the avg task weight can vary wildly and
-                *      might not be a suitable number - should we keep a
-                *      normalized nr_running number somewhere that negates
-                *      the hierarchy?
-                */
-               avg_load_per_task = sg_div_cpu_power(group,
-                               sum_avg_load_per_task * SCHED_LOAD_SCALE);
+}
+#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
+static inline void init_sd_power_savings_stats(struct sched_domain *sd,
+       struct sd_lb_stats *sds, enum cpu_idle_type idle)
+{
+       return;
+}
 
-               if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
-                       __group_imb = 1;
+static inline void update_sd_power_savings_stats(struct sched_group *group,
+       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
+{
+       return;
+}
 
-               group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
+static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
+                                       int this_cpu, unsigned long *imbalance)
+{
+       return 0;
+}
+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
 
+
+/**
+ * update_sg_lb_stats - Update sched_group's statistics for load balancing.
+ * @group: sched_group whose statistics are to be updated.
+ * @this_cpu: Cpu for which load balance is currently performed.
+ * @idle: Idle status of this_cpu
+ * @load_idx: Load index of sched_domain of this_cpu for load calc.
+ * @sd_idle: Idle status of the sched_domain containing group.
+ * @local_group: Does group contain this_cpu.
+ * @cpus: Set of cpus considered for load balancing.
+ * @balance: Should we balance.
+ * @sgs: variable to hold the statistics for this group.
+ */
+static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
+                       enum cpu_idle_type idle, int load_idx, int *sd_idle,
+                       int local_group, const struct cpumask *cpus,
+                       int *balance, struct sg_lb_stats *sgs)
+{
+       unsigned long load, max_cpu_load, min_cpu_load;
+       int i;
+       unsigned int balance_cpu = -1, first_idle_cpu = 0;
+       unsigned long sum_avg_load_per_task;
+       unsigned long avg_load_per_task;
+
+       if (local_group)
+               balance_cpu = group_first_cpu(group);
+
+       /* Tally up the load of all CPUs in the group */
+       sum_avg_load_per_task = avg_load_per_task = 0;
+       max_cpu_load = 0;
+       min_cpu_load = ~0UL;
+
+       for_each_cpu_and(i, sched_group_cpus(group), cpus) {
+               struct rq *rq = cpu_rq(i);
+
+               if (*sd_idle && rq->nr_running)
+                       *sd_idle = 0;
+
+               /* Bias balancing toward cpus of our domain */
                if (local_group) {
-                       this_load = avg_load;
-                       this = group;
-                       this_nr_running = sum_nr_running;
-                       this_load_per_task = sum_weighted_load;
-               } else if (avg_load > max_load &&
-                          (sum_nr_running > group_capacity || __group_imb)) {
-                       max_load = avg_load;
-                       busiest = group;
-                       busiest_nr_running = sum_nr_running;
-                       busiest_load_per_task = sum_weighted_load;
-                       group_imb = __group_imb;
+                       if (idle_cpu(i) && !first_idle_cpu) {
+                               first_idle_cpu = 1;
+                               balance_cpu = i;
+                       }
+
+                       load = target_load(i, load_idx);
+               } else {
+                       load = source_load(i, load_idx);
+                       if (load > max_cpu_load)
+                               max_cpu_load = load;
+                       if (min_cpu_load > load)
+                               min_cpu_load = load;
                }
 
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-               /*
-                * Busy processors will not participate in power savings
-                * balance.
-                */
-               if (idle == CPU_NOT_IDLE ||
-                               !(sd->flags & SD_POWERSAVINGS_BALANCE))
-                       goto group_next;
+               sgs->group_load += load;
+               sgs->sum_nr_running += rq->nr_running;
+               sgs->sum_weighted_load += weighted_cpuload(i);
 
-               /*
-                * If the local group is idle or completely loaded
-                * no need to do power savings balance at this domain
-                */
-               if (local_group && (this_nr_running >= group_capacity ||
-                                   !this_nr_running))
-                       power_savings_balance = 0;
+               sum_avg_load_per_task += cpu_avg_load_per_task(i);
+       }
 
-               /*
-                * If a group is already running at full capacity or idle,
-                * don't include that group in power savings calculations
-                */
-               if (!power_savings_balance || sum_nr_running >= group_capacity
-                   || !sum_nr_running)
-                       goto group_next;
+       /*
+        * First idle cpu or the first cpu(busiest) in this sched group
+        * is eligible for doing load balancing at this and above
+        * domains. In the newly idle case, we will allow all the cpu's
+        * to do the newly idle load balance.
+        */
+       if (idle != CPU_NEWLY_IDLE && local_group &&
+           balance_cpu != this_cpu && balance) {
+               *balance = 0;
+               return;
+       }
 
-               /*
-                * Calculate the group which has the least non-idle load.
-                * This is the group from where we need to pick up the load
-                * for saving power
-                */
-               if ((sum_nr_running < min_nr_running) ||
-                   (sum_nr_running == min_nr_running &&
-                    cpumask_first(sched_group_cpus(group)) >
-                    cpumask_first(sched_group_cpus(group_min)))) {
-                       group_min = group;
-                       min_nr_running = sum_nr_running;
-                       min_load_per_task = sum_weighted_load /
-                                               sum_nr_running;
-               }
+       /* Adjust by relative CPU power of the group */
+       sgs->avg_load = sg_div_cpu_power(group,
+                       sgs->group_load * SCHED_LOAD_SCALE);
 
-               /*
-                * Calculate the group which is almost near its
-                * capacity but still has some space to pick up some load
-                * from other group and save more power
-                */
-               if (sum_nr_running <= group_capacity - 1) {
-                       if (sum_nr_running > leader_nr_running ||
-                           (sum_nr_running == leader_nr_running &&
-                            cpumask_first(sched_group_cpus(group)) <
-                            cpumask_first(sched_group_cpus(group_leader)))) {
-                               group_leader = group;
-                               leader_nr_running = sum_nr_running;
-                       }
+
+       /*
+        * Consider the group unbalanced when the imbalance is larger
+        * than the average weight of two tasks.
+        *
+        * APZ: with cgroup the avg task weight can vary wildly and
+        *      might not be a suitable number - should we keep a
+        *      normalized nr_running number somewhere that negates
+        *      the hierarchy?
+        */
+       avg_load_per_task = sg_div_cpu_power(group,
+                       sum_avg_load_per_task * SCHED_LOAD_SCALE);
+
+       if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
+               sgs->group_imb = 1;
+
+       sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
+
+}
+
+/**
+ * update_sd_lb_stats - Update sched_group's statistics for load balancing.
+ * @sd: sched_domain whose statistics are to be updated.
+ * @this_cpu: Cpu for which load balance is currently performed.
+ * @idle: Idle status of this_cpu
+ * @sd_idle: Idle status of the sched_domain containing group.
+ * @cpus: Set of cpus considered for load balancing.
+ * @balance: Should we balance.
+ * @sds: variable to hold the statistics for this sched_domain.
+ */
+static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
+                       enum cpu_idle_type idle, int *sd_idle,
+                       const struct cpumask *cpus, int *balance,
+                       struct sd_lb_stats *sds)
+{
+       struct sched_group *group = sd->groups;
+       struct sg_lb_stats sgs;
+       int load_idx;
+
+       init_sd_power_savings_stats(sd, sds, idle);
+       load_idx = get_sd_load_idx(sd, idle);
+
+       do {
+               int local_group;
+
+               local_group = cpumask_test_cpu(this_cpu,
+                                              sched_group_cpus(group));
+               memset(&sgs, 0, sizeof(sgs));
+               update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
+                               local_group, cpus, balance, &sgs);
+
+               if (local_group && balance && !(*balance))
+                       return;
+
+               sds->total_load += sgs.group_load;
+               sds->total_pwr += group->__cpu_power;
+
+               if (local_group) {
+                       sds->this_load = sgs.avg_load;
+                       sds->this = group;
+                       sds->this_nr_running = sgs.sum_nr_running;
+                       sds->this_load_per_task = sgs.sum_weighted_load;
+               } else if (sgs.avg_load > sds->max_load &&
+                          (sgs.sum_nr_running > sgs.group_capacity ||
+                               sgs.group_imb)) {
+                       sds->max_load = sgs.avg_load;
+                       sds->busiest = group;
+                       sds->busiest_nr_running = sgs.sum_nr_running;
+                       sds->busiest_load_per_task = sgs.sum_weighted_load;
+                       sds->group_imb = sgs.group_imb;
                }
-group_next:
-#endif
+
+               update_sd_power_savings_stats(group, sds, local_group, &sgs);
                group = group->next;
        } while (group != sd->groups);
 
-       if (!busiest || this_load >= max_load || busiest_nr_running == 0)
-               goto out_balanced;
-
-       avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+}
 
-       if (this_load >= avg_load ||
-                       100*max_load <= sd->imbalance_pct*this_load)
-               goto out_balanced;
+/**
+ * fix_small_imbalance - Calculate the minor imbalance that exists
+ *                     amongst the groups of a sched_domain, during
+ *                     load balancing.
+ * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
+ * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
+ * @imbalance: Variable to store the imbalance.
+ */
+static inline void fix_small_imbalance(struct sd_lb_stats *sds,
+                               int this_cpu, unsigned long *imbalance)
+{
+       unsigned long tmp, pwr_now = 0, pwr_move = 0;
+       unsigned int imbn = 2;
+
+       if (sds->this_nr_running) {
+               sds->this_load_per_task /= sds->this_nr_running;
+               if (sds->busiest_load_per_task >
+                               sds->this_load_per_task)
+                       imbn = 1;
+       } else
+               sds->this_load_per_task =
+                       cpu_avg_load_per_task(this_cpu);
 
-       busiest_load_per_task /= busiest_nr_running;
-       if (group_imb)
-               busiest_load_per_task = min(busiest_load_per_task, avg_load);
+       if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
+                       sds->busiest_load_per_task * imbn) {
+               *imbalance = sds->busiest_load_per_task;
+               return;
+       }
 
        /*
-        * We're trying to get all the cpus to the average_load, so we don't
-        * want to push ourselves above the average load, nor do we wish to
-        * reduce the max loaded cpu below the average load, as either of these
-        * actions would just result in more rebalancing later, and ping-pong
-        * tasks around. Thus we look for the minimum possible imbalance.
-        * Negative imbalances (*we* are more loaded than anyone else) will
-        * be counted as no imbalance for these purposes -- we can't fix that
-        * by pulling tasks to us. Be careful of negative numbers as they'll
-        * appear as very large values with unsigned longs.
+        * OK, we don't have enough imbalance to justify moving tasks,
+        * however we may be able to increase total CPU power used by
+        * moving them.
         */
-       if (max_load <= busiest_load_per_task)
-               goto out_balanced;
 
+       pwr_now += sds->busiest->__cpu_power *
+                       min(sds->busiest_load_per_task, sds->max_load);
+       pwr_now += sds->this->__cpu_power *
+                       min(sds->this_load_per_task, sds->this_load);
+       pwr_now /= SCHED_LOAD_SCALE;
+
+       /* Amount of load we'd subtract */
+       tmp = sg_div_cpu_power(sds->busiest,
+                       sds->busiest_load_per_task * SCHED_LOAD_SCALE);
+       if (sds->max_load > tmp)
+               pwr_move += sds->busiest->__cpu_power *
+                       min(sds->busiest_load_per_task, sds->max_load - tmp);
+
+       /* Amount of load we'd add */
+       if (sds->max_load * sds->busiest->__cpu_power <
+               sds->busiest_load_per_task * SCHED_LOAD_SCALE)
+               tmp = sg_div_cpu_power(sds->this,
+                       sds->max_load * sds->busiest->__cpu_power);
+       else
+               tmp = sg_div_cpu_power(sds->this,
+                       sds->busiest_load_per_task * SCHED_LOAD_SCALE);
+       pwr_move += sds->this->__cpu_power *
+                       min(sds->this_load_per_task, sds->this_load + tmp);
+       pwr_move /= SCHED_LOAD_SCALE;
+
+       /* Move if we gain throughput */
+       if (pwr_move > pwr_now)
+               *imbalance = sds->busiest_load_per_task;
+}
+
+/**
+ * calculate_imbalance - Calculate the amount of imbalance present within the
+ *                      groups of a given sched_domain during load balance.
+ * @sds: statistics of the sched_domain whose imbalance is to be calculated.
+ * @this_cpu: Cpu for which currently load balance is being performed.
+ * @imbalance: The variable to store the imbalance.
+ */
+static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
+               unsigned long *imbalance)
+{
+       unsigned long max_pull;
        /*
         * In the presence of smp nice balancing, certain scenarios can have
         * max load less than avg load(as we skip the groups at or below
         * its cpu_power, while calculating max_load..)
         */
-       if (max_load < avg_load) {
+       if (sds->max_load < sds->avg_load) {
                *imbalance = 0;
-               goto small_imbalance;
+               return fix_small_imbalance(sds, this_cpu, imbalance);
        }
 
        /* Don't want to pull so many tasks that a group would go idle */
-       max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
+       max_pull = min(sds->max_load - sds->avg_load,
+                       sds->max_load - sds->busiest_load_per_task);
 
        /* How much load to actually move to equalise the imbalance */
-       *imbalance = min(max_pull * busiest->__cpu_power,
-                               (avg_load - this_load) * this->__cpu_power)
+       *imbalance = min(max_pull * sds->busiest->__cpu_power,
+               (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
                        / SCHED_LOAD_SCALE;
 
        /*
@@ -3333,78 +3867,110 @@ group_next:
         * a think about bumping its value to force at least one task to be
         * moved
         */
-       if (*imbalance < busiest_load_per_task) {
-               unsigned long tmp, pwr_now, pwr_move;
-               unsigned int imbn;
-
-small_imbalance:
-               pwr_move = pwr_now = 0;
-               imbn = 2;
-               if (this_nr_running) {
-                       this_load_per_task /= this_nr_running;
-                       if (busiest_load_per_task > this_load_per_task)
-                               imbn = 1;
-               } else
-                       this_load_per_task = cpu_avg_load_per_task(this_cpu);
+       if (*imbalance < sds->busiest_load_per_task)
+               return fix_small_imbalance(sds, this_cpu, imbalance);
 
-               if (max_load - this_load + busiest_load_per_task >=
-                                       busiest_load_per_task * imbn) {
-                       *imbalance = busiest_load_per_task;
-                       return busiest;
-               }
+}
+/******* find_busiest_group() helpers end here *********************/
 
-               /*
-                * OK, we don't have enough imbalance to justify moving tasks,
-                * however we may be able to increase total CPU power used by
-                * moving them.
-                */
+/**
+ * find_busiest_group - Returns the busiest group within the sched_domain
+ * if there is an imbalance. If there isn't an imbalance, and
+ * the user has opted for power-savings, it returns a group whose
+ * CPUs can be put to idle by rebalancing those tasks elsewhere, if
+ * such a group exists.
+ *
+ * Also calculates the amount of weighted load which should be moved
+ * to restore balance.
+ *
+ * @sd: The sched_domain whose busiest group is to be returned.
+ * @this_cpu: The cpu for which load balancing is currently being performed.
+ * @imbalance: Variable which stores amount of weighted load which should
+ *             be moved to restore balance/put a group to idle.
+ * @idle: The idle status of this_cpu.
+ * @sd_idle: The idleness of sd
+ * @cpus: The set of CPUs under consideration for load-balancing.
+ * @balance: Pointer to a variable indicating if this_cpu
+ *     is the appropriate cpu to perform load balancing at this_level.
+ *
+ * Returns:    - the busiest group if imbalance exists.
+ *             - If no imbalance and user has opted for power-savings balance,
+ *                return the least loaded group whose CPUs can be
+ *                put to idle by rebalancing its tasks onto our group.
+ */
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+                  unsigned long *imbalance, enum cpu_idle_type idle,
+                  int *sd_idle, const struct cpumask *cpus, int *balance)
+{
+       struct sd_lb_stats sds;
 
-               pwr_now += busiest->__cpu_power *
-                               min(busiest_load_per_task, max_load);
-               pwr_now += this->__cpu_power *
-                               min(this_load_per_task, this_load);
-               pwr_now /= SCHED_LOAD_SCALE;
-
-               /* Amount of load we'd subtract */
-               tmp = sg_div_cpu_power(busiest,
-                               busiest_load_per_task * SCHED_LOAD_SCALE);
-               if (max_load > tmp)
-                       pwr_move += busiest->__cpu_power *
-                               min(busiest_load_per_task, max_load - tmp);
-
-               /* Amount of load we'd add */
-               if (max_load * busiest->__cpu_power <
-                               busiest_load_per_task * SCHED_LOAD_SCALE)
-                       tmp = sg_div_cpu_power(this,
-                                       max_load * busiest->__cpu_power);
-               else
-                       tmp = sg_div_cpu_power(this,
-                               busiest_load_per_task * SCHED_LOAD_SCALE);
-               pwr_move += this->__cpu_power *
-                               min(this_load_per_task, this_load + tmp);
-               pwr_move /= SCHED_LOAD_SCALE;
+       memset(&sds, 0, sizeof(sds));
 
-               /* Move if we gain throughput */
-               if (pwr_move > pwr_now)
-                       *imbalance = busiest_load_per_task;
-       }
+       /*
+        * Compute the various statistics relavent for load balancing at
+        * this level.
+        */
+       update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
+                                       balance, &sds);
+
+       /* Cases where imbalance does not exist from POV of this_cpu */
+       /* 1) this_cpu is not the appropriate cpu to perform load balancing
+        *    at this level.
+        * 2) There is no busy sibling group to pull from.
+        * 3) This group is the busiest group.
+        * 4) This group is more busy than the avg busieness at this
+        *    sched_domain.
+        * 5) The imbalance is within the specified limit.
+        * 6) Any rebalance would lead to ping-pong
+        */
+       if (balance && !(*balance))
+               goto ret;
 
-       return busiest;
+       if (!sds.busiest || sds.busiest_nr_running == 0)
+               goto out_balanced;
 
-out_balanced:
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-               goto ret;
+       if (sds.this_load >= sds.max_load)
+               goto out_balanced;
 
-       if (this == group_leader && group_leader != group_min) {
-               *imbalance = min_load_per_task;
-               if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
-                       cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
-                               cpumask_first(sched_group_cpus(group_leader));
-               }
-               return group_min;
-       }
-#endif
+       sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
+
+       if (sds.this_load >= sds.avg_load)
+               goto out_balanced;
+
+       if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
+               goto out_balanced;
+
+       sds.busiest_load_per_task /= sds.busiest_nr_running;
+       if (sds.group_imb)
+               sds.busiest_load_per_task =
+                       min(sds.busiest_load_per_task, sds.avg_load);
+
+       /*
+        * We're trying to get all the cpus to the average_load, so we don't
+        * want to push ourselves above the average load, nor do we wish to
+        * reduce the max loaded cpu below the average load, as either of these
+        * actions would just result in more rebalancing later, and ping-pong
+        * tasks around. Thus we look for the minimum possible imbalance.
+        * Negative imbalances (*we* are more loaded than anyone else) will
+        * be counted as no imbalance for these purposes -- we can't fix that
+        * by pulling tasks to us. Be careful of negative numbers as they'll
+        * appear as very large values with unsigned longs.
+        */
+       if (sds.max_load <= sds.busiest_load_per_task)
+               goto out_balanced;
+
+       /* Looks like there is an imbalance. Compute it */
+       calculate_imbalance(&sds, this_cpu, imbalance);
+       return sds.busiest;
+
+out_balanced:
+       /*
+        * There is no obvious imbalance. But check if we can do some balancing
+        * to save power.
+        */
+       if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
+               return sds.busiest;
 ret:
        *imbalance = 0;
        return NULL;
@@ -3795,64 +4361,185 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
        }
 }
 
-/*
- * active_load_balance is run by migration threads. It pushes running tasks
- * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
- * running on each physical CPU where possible, and avoids physical /
- * logical imbalances.
+/*
+ * active_load_balance is run by migration threads. It pushes running tasks
+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
+ * running on each physical CPU where possible, and avoids physical /
+ * logical imbalances.
+ *
+ * Called with busiest_rq locked.
+ */
+static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
+{
+       int target_cpu = busiest_rq->push_cpu;
+       struct sched_domain *sd;
+       struct rq *target_rq;
+
+       /* Is there any task to move? */
+       if (busiest_rq->nr_running <= 1)
+               return;
+
+       target_rq = cpu_rq(target_cpu);
+
+       /*
+        * This condition is "impossible", if it occurs
+        * we need to fix it. Originally reported by
+        * Bjorn Helgaas on a 128-cpu setup.
+        */
+       BUG_ON(busiest_rq == target_rq);
+
+       /* move a task from busiest_rq to target_rq */
+       double_lock_balance(busiest_rq, target_rq);
+       update_rq_clock(busiest_rq);
+       update_rq_clock(target_rq);
+
+       /* Search for an sd spanning us and the target CPU. */
+       for_each_domain(target_cpu, sd) {
+               if ((sd->flags & SD_LOAD_BALANCE) &&
+                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
+                               break;
+       }
+
+       if (likely(sd)) {
+               schedstat_inc(sd, alb_count);
+
+               if (move_one_task(target_rq, target_cpu, busiest_rq,
+                                 sd, CPU_IDLE))
+                       schedstat_inc(sd, alb_pushed);
+               else
+                       schedstat_inc(sd, alb_failed);
+       }
+       double_unlock_balance(busiest_rq, target_rq);
+}
+
+#ifdef CONFIG_NO_HZ
+static struct {
+       atomic_t load_balancer;
+       cpumask_var_t cpu_mask;
+       cpumask_var_t ilb_grp_nohz_mask;
+} nohz ____cacheline_aligned = {
+       .load_balancer = ATOMIC_INIT(-1),
+};
+
+int get_nohz_load_balancer(void)
+{
+       return atomic_read(&nohz.load_balancer);
+}
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+/**
+ * lowest_flag_domain - Return lowest sched_domain containing flag.
+ * @cpu:       The cpu whose lowest level of sched domain is to
+ *             be returned.
+ * @flag:      The flag to check for the lowest sched_domain
+ *             for the given cpu.
+ *
+ * Returns the lowest sched_domain of a cpu which contains the given flag.
+ */
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+       struct sched_domain *sd;
+
+       for_each_domain(cpu, sd)
+               if (sd && (sd->flags & flag))
+                       break;
+
+       return sd;
+}
+
+/**
+ * for_each_flag_domain - Iterates over sched_domains containing the flag.
+ * @cpu:       The cpu whose domains we're iterating over.
+ * @sd:                variable holding the value of the power_savings_sd
+ *             for cpu.
+ * @flag:      The flag to filter the sched_domains to be iterated.
+ *
+ * Iterates over all the scheduler domains for a given cpu that has the 'flag'
+ * set, starting from the lowest sched_domain to the highest.
+ */
+#define for_each_flag_domain(cpu, sd, flag) \
+       for (sd = lowest_flag_domain(cpu, flag); \
+               (sd && (sd->flags & flag)); sd = sd->parent)
+
+/**
+ * is_semi_idle_group - Checks if the given sched_group is semi-idle.
+ * @ilb_group: group to be checked for semi-idleness
+ *
+ * Returns:    1 if the group is semi-idle. 0 otherwise.
+ *
+ * We define a sched_group to be semi idle if it has atleast one idle-CPU
+ * and atleast one non-idle CPU. This helper function checks if the given
+ * sched_group is semi-idle or not.
+ */
+static inline int is_semi_idle_group(struct sched_group *ilb_group)
+{
+       cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
+                                       sched_group_cpus(ilb_group));
+
+       /*
+        * A sched_group is semi-idle when it has atleast one busy cpu
+        * and atleast one idle cpu.
+        */
+       if (cpumask_empty(nohz.ilb_grp_nohz_mask))
+               return 0;
+
+       if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
+               return 0;
+
+       return 1;
+}
+/**
+ * find_new_ilb - Finds the optimum idle load balancer for nomination.
+ * @cpu:       The cpu which is nominating a new idle_load_balancer.
  *
- * Called with busiest_rq locked.
+ * Returns:    Returns the id of the idle load balancer if it exists,
+ *             Else, returns >= nr_cpu_ids.
+ *
+ * This algorithm picks the idle load balancer such that it belongs to a
+ * semi-idle powersavings sched_domain. The idea is to try and avoid
+ * completely idle packages/cores just for the purpose of idle load balancing
+ * when there are other idle cpu's which are better suited for that job.
  */
-static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
+static int find_new_ilb(int cpu)
 {
-       int target_cpu = busiest_rq->push_cpu;
        struct sched_domain *sd;
-       struct rq *target_rq;
-
-       /* Is there any task to move? */
-       if (busiest_rq->nr_running <= 1)
-               return;
+       struct sched_group *ilb_group;
 
-       target_rq = cpu_rq(target_cpu);
+       /*
+        * Have idle load balancer selection from semi-idle packages only
+        * when power-aware load balancing is enabled
+        */
+       if (!(sched_smt_power_savings || sched_mc_power_savings))
+               goto out_done;
 
        /*
-        * This condition is "impossible", if it occurs
-        * we need to fix it. Originally reported by
-        * Bjorn Helgaas on a 128-cpu setup.
+        * Optimize for the case when we have no idle CPUs or only one
+        * idle CPU. Don't walk the sched_domain hierarchy in such cases
         */
-       BUG_ON(busiest_rq == target_rq);
+       if (cpumask_weight(nohz.cpu_mask) < 2)
+               goto out_done;
 
-       /* move a task from busiest_rq to target_rq */
-       double_lock_balance(busiest_rq, target_rq);
-       update_rq_clock(busiest_rq);
-       update_rq_clock(target_rq);
+       for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
+               ilb_group = sd->groups;
 
-       /* Search for an sd spanning us and the target CPU. */
-       for_each_domain(target_cpu, sd) {
-               if ((sd->flags & SD_LOAD_BALANCE) &&
-                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
-                               break;
-       }
+               do {
+                       if (is_semi_idle_group(ilb_group))
+                               return cpumask_first(nohz.ilb_grp_nohz_mask);
 
-       if (likely(sd)) {
-               schedstat_inc(sd, alb_count);
+                       ilb_group = ilb_group->next;
 
-               if (move_one_task(target_rq, target_cpu, busiest_rq,
-                                 sd, CPU_IDLE))
-                       schedstat_inc(sd, alb_pushed);
-               else
-                       schedstat_inc(sd, alb_failed);
+               } while (ilb_group != sd->groups);
        }
-       double_unlock_balance(busiest_rq, target_rq);
-}
 
-#ifdef CONFIG_NO_HZ
-static struct {
-       atomic_t load_balancer;
-       cpumask_var_t cpu_mask;
-} nohz ____cacheline_aligned = {
-       .load_balancer = ATOMIC_INIT(-1),
-};
+out_done:
+       return cpumask_first(nohz.cpu_mask);
+}
+#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
+static inline int find_new_ilb(int call_cpu)
+{
+       return cpumask_first(nohz.cpu_mask);
+}
+#endif
 
 /*
  * This routine will try to nominate the ilb (idle load balancing)
@@ -3908,8 +4595,24 @@ int select_nohz_load_balancer(int stop_tick)
                        /* make me the ilb owner */
                        if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
                                return 1;
-               } else if (atomic_read(&nohz.load_balancer) == cpu)
+               } else if (atomic_read(&nohz.load_balancer) == cpu) {
+                       int new_ilb;
+
+                       if (!(sched_smt_power_savings ||
+                                               sched_mc_power_savings))
+                               return 1;
+                       /*
+                        * Check to see if there is a more power-efficient
+                        * ilb.
+                        */
+                       new_ilb = find_new_ilb(cpu);
+                       if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
+                               atomic_set(&nohz.load_balancer, -1);
+                               resched_cpu(new_ilb);
+                               return 0;
+                       }
                        return 1;
+               }
        } else {
                if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
                        return 0;
@@ -4049,6 +4752,11 @@ static void run_rebalance_domains(struct softirq_action *h)
 #endif
 }
 
+static inline int on_null_domain(int cpu)
+{
+       return !rcu_dereference(cpu_rq(cpu)->sd);
+}
+
 /*
  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  *
@@ -4073,15 +4781,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
                }
 
                if (atomic_read(&nohz.load_balancer) == -1) {
-                       /*
-                        * simple selection for now: Nominate the
-                        * first cpu in the nohz list to be the next
-                        * ilb owner.
-                        *
-                        * TBD: Traverse the sched domains and nominate
-                        * the nearest cpu in the nohz.cpu_mask.
-                        */
-                       int ilb = cpumask_first(nohz.cpu_mask);
+                       int ilb = find_new_ilb(cpu);
 
                        if (ilb < nr_cpu_ids)
                                resched_cpu(ilb);
@@ -4106,7 +4806,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
            cpumask_test_cpu(cpu, nohz.cpu_mask))
                return;
 #endif
-       if (time_after_eq(jiffies, rq->next_balance))
+       /* Don't need to rebalance while attached to NULL domain */
+       if (time_after_eq(jiffies, rq->next_balance) &&
+           likely(!on_null_domain(cpu)))
                raise_softirq(SCHED_SOFTIRQ);
 }
 
@@ -4126,9 +4828,25 @@ DEFINE_PER_CPU(struct kernel_stat, kstat);
 EXPORT_PER_CPU_SYMBOL(kstat);
 
 /*
- * Return any ns on the sched_clock that have not yet been banked in
+ * Return any ns on the sched_clock that have not yet been accounted in
  * @p in case that task is currently running.
+ *
+ * Called with task_rq_lock() held on @rq.
  */
+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
+{
+       u64 ns = 0;
+
+       if (task_current(rq, p)) {
+               update_rq_clock(rq);
+               ns = rq->clock - p->se.exec_start;
+               if ((s64)ns < 0)
+                       ns = 0;
+       }
+
+       return ns;
+}
+
 unsigned long long task_delta_exec(struct task_struct *p)
 {
        unsigned long flags;
@@ -4136,16 +4854,49 @@ unsigned long long task_delta_exec(struct task_struct *p)
        u64 ns = 0;
 
        rq = task_rq_lock(p, &flags);
+       ns = do_task_delta_exec(p, rq);
+       task_rq_unlock(rq, &flags);
 
-       if (task_current(rq, p)) {
-               u64 delta_exec;
+       return ns;
+}
 
-               update_rq_clock(rq);
-               delta_exec = rq->clock - p->se.exec_start;
-               if ((s64)delta_exec > 0)
-                       ns = delta_exec;
-       }
+/*
+ * Return accounted runtime for the task.
+ * In case the task is currently running, return the runtime plus current's
+ * pending runtime that have not been accounted yet.
+ */
+unsigned long long task_sched_runtime(struct task_struct *p)
+{
+       unsigned long flags;
+       struct rq *rq;
+       u64 ns = 0;
+
+       rq = task_rq_lock(p, &flags);
+       ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
+       task_rq_unlock(rq, &flags);
+
+       return ns;
+}
+
+/*
+ * Return sum_exec_runtime for the thread group.
+ * In case the task is currently running, return the sum plus current's
+ * pending runtime that have not been accounted yet.
+ *
+ * Note that the thread group might have other running tasks as well,
+ * so the return value not includes other pending runtime that other
+ * running tasks might have.
+ */
+unsigned long long thread_group_sched_runtime(struct task_struct *p)
+{
+       struct task_cputime totals;
+       unsigned long flags;
+       struct rq *rq;
+       u64 ns;
 
+       rq = task_rq_lock(p, &flags);
+       thread_group_cputime(p, &totals);
+       ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
        task_rq_unlock(rq, &flags);
 
        return ns;
@@ -4174,6 +4925,8 @@ void account_user_time(struct task_struct *p, cputime_t cputime,
                cpustat->nice = cputime64_add(cpustat->nice, tmp);
        else
                cpustat->user = cputime64_add(cpustat->user, tmp);
+
+       cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
        /* Account for user time used */
        acct_update_integrals(p);
 }
@@ -4235,6 +4988,8 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
        else
                cpustat->system = cputime64_add(cpustat->system, tmp);
 
+       cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
+
        /* Account for system time used */
        acct_update_integrals(p);
 }
@@ -4282,7 +5037,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
 
        if (user_tick)
                account_user_time(p, one_jiffy, one_jiffy_scaled);
-       else if (p != rq->idle)
+       else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
                account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
                                    one_jiffy_scaled);
        else
@@ -4390,16 +5145,15 @@ void scheduler_tick(void)
        curr->sched_class->task_tick(rq, curr, 0);
        spin_unlock(&rq->lock);
 
+       perf_counter_task_tick(curr, cpu);
+
 #ifdef CONFIG_SMP
        rq->idle_at_tick = idle_cpu(cpu);
        trigger_load_balance(rq, cpu);
 #endif
 }
 
-#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-                               defined(CONFIG_PREEMPT_TRACER))
-
-static inline unsigned long get_parent_ip(unsigned long addr)
+notrace unsigned long get_parent_ip(unsigned long addr)
 {
        if (in_lock_functions(addr)) {
                addr = CALLER_ADDR2;
@@ -4409,6 +5163,9 @@ static inline unsigned long get_parent_ip(unsigned long addr)
        return addr;
 }
 
+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
+                               defined(CONFIG_PREEMPT_TRACER))
+
 void __kprobes add_preempt_count(int val)
 {
 #ifdef CONFIG_DEBUG_PREEMPT
@@ -4500,11 +5257,33 @@ static inline void schedule_debug(struct task_struct *prev)
 #endif
 }
 
+static void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+       if (prev->state == TASK_RUNNING) {
+               u64 runtime = prev->se.sum_exec_runtime;
+
+               runtime -= prev->se.prev_sum_exec_runtime;
+               runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
+
+               /*
+                * In order to avoid avg_overlap growing stale when we are
+                * indeed overlapping and hence not getting put to sleep, grow
+                * the avg_overlap on preemption.
+                *
+                * We use the average preemption runtime because that
+                * correlates to the amount of cache footprint a task can
+                * build up.
+                */
+               update_avg(&prev->se.avg_overlap, runtime);
+       }
+       prev->sched_class->put_prev_task(rq, prev);
+}
+
 /*
  * Pick up the highest-prio task:
  */
 static inline struct task_struct *
-pick_next_task(struct rq *rq, struct task_struct *prev)
+pick_next_task(struct rq *rq)
 {
        const struct sched_class *class;
        struct task_struct *p;
@@ -4578,11 +5357,12 @@ need_resched_nonpreemptible:
        if (unlikely(!rq->nr_running))
                idle_balance(cpu, rq);
 
-       prev->sched_class->put_prev_task(rq, prev);
-       next = pick_next_task(rq, prev);
+       put_prev_task(rq, prev);
+       next = pick_next_task(rq);
 
        if (likely(prev != next)) {
                sched_info_switch(prev, next);
+               perf_counter_task_sched_out(prev, next, cpu);
 
                rq->nr_switches++;
                rq->curr = next;
@@ -4602,11 +5382,72 @@ need_resched_nonpreemptible:
                goto need_resched_nonpreemptible;
 
        preempt_enable_no_resched();
-       if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+       if (need_resched())
                goto need_resched;
 }
 EXPORT_SYMBOL(schedule);
 
+#ifdef CONFIG_SMP
+/*
+ * Look out! "owner" is an entirely speculative pointer
+ * access and not reliable.
+ */
+int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
+{
+       unsigned int cpu;
+       struct rq *rq;
+
+       if (!sched_feat(OWNER_SPIN))
+               return 0;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+       /*
+        * Need to access the cpu field knowing that
+        * DEBUG_PAGEALLOC could have unmapped it if
+        * the mutex owner just released it and exited.
+        */
+       if (probe_kernel_address(&owner->cpu, cpu))
+               goto out;
+#else
+       cpu = owner->cpu;
+#endif
+
+       /*
+        * Even if the access succeeded (likely case),
+        * the cpu field may no longer be valid.
+        */
+       if (cpu >= nr_cpumask_bits)
+               goto out;
+
+       /*
+        * We need to validate that we can do a
+        * get_cpu() and that we have the percpu area.
+        */
+       if (!cpu_online(cpu))
+               goto out;
+
+       rq = cpu_rq(cpu);
+
+       for (;;) {
+               /*
+                * Owner changed, break to re-assess state.
+                */
+               if (lock->owner != owner)
+                       break;
+
+               /*
+                * Is that owner really running on that cpu?
+                */
+               if (task_thread_info(rq->curr) != owner || need_resched())
+                       return 0;
+
+               cpu_relax();
+       }
+out:
+       return 1;
+}
+#endif
+
 #ifdef CONFIG_PREEMPT
 /*
  * this is the entry point to schedule() from in-kernel preemption
@@ -4634,7 +5475,7 @@ asmlinkage void __sched preempt_schedule(void)
                 * between schedule and now.
                 */
                barrier();
-       } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
+       } while (need_resched());
 }
 EXPORT_SYMBOL(preempt_schedule);
 
@@ -4663,7 +5504,7 @@ asmlinkage void __sched preempt_schedule_irq(void)
                 * between schedule and now.
                 */
                barrier();
-       } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
+       } while (need_resched());
 }
 
 #endif /* CONFIG_PREEMPT */
@@ -4684,7 +5525,7 @@ EXPORT_SYMBOL(default_wake_function);
  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  * zero in this (rare) case, and we handle it by continuing to scan the queue.
  */
-void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
                        int nr_exclusive, int sync, void *key)
 {
        wait_queue_t *curr, *next;
@@ -4704,6 +5545,9 @@ void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
  * @key: is directly passed to the wakeup function
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
  */
 void __wake_up(wait_queue_head_t *q, unsigned int mode,
                        int nr_exclusive, void *key)
@@ -4724,11 +5568,17 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
        __wake_up_common(q, mode, 1, 0, NULL);
 }
 
+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
+{
+       __wake_up_common(q, mode, 1, 0, key);
+}
+
 /**
- * __wake_up_sync - wake up threads blocked on a waitqueue.
+ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  * @q: the waitqueue
  * @mode: which threads
  * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: opaque value to be passed to wakeup targets
  *
  * The sync wakeup differs that the waker knows that it will schedule
  * away soon, so while the target thread will be woken up, it will not
@@ -4736,9 +5586,12 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  * with each other. This can prevent needless bouncing between CPUs.
  *
  * On UP it can prevent extra preemption.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
  */
-void
-__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
+                       int nr_exclusive, void *key)
 {
        unsigned long flags;
        int sync = 1;
@@ -4750,9 +5603,18 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
                sync = 0;
 
        spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, sync, NULL);
+       __wake_up_common(q, mode, nr_exclusive, sync, key);
        spin_unlock_irqrestore(&q->lock, flags);
 }
+EXPORT_SYMBOL_GPL(__wake_up_sync_key);
+
+/*
+ * __wake_up_sync - see __wake_up_sync_key()
+ */
+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+{
+       __wake_up_sync_key(q, mode, nr_exclusive, NULL);
+}
 EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
 
 /**
@@ -4763,6 +5625,9 @@ EXPORT_SYMBOL_GPL(__wake_up_sync);        /* For internal use only */
  * awakened in the same order in which they were queued.
  *
  * See also complete_all(), wait_for_completion() and related routines.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
  */
 void complete(struct completion *x)
 {
@@ -4780,6 +5645,9 @@ EXPORT_SYMBOL(complete);
  * @x:  holds the state of this particular completion
  *
  * This will wake up all threads waiting on this particular completion event.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
  */
 void complete_all(struct completion *x)
 {
@@ -5137,7 +6005,7 @@ SYSCALL_DEFINE1(nice, int, increment)
        if (increment > 40)
                increment = 40;
 
-       nice = PRIO_TO_NICE(current->static_prio) + increment;
+       nice = TASK_NICE(current) + increment;
        if (nice < -20)
                nice = -20;
        if (nice > 19)
@@ -5696,6 +6564,11 @@ SYSCALL_DEFINE0(sched_yield)
        return 0;
 }
 
+static inline int should_resched(void)
+{
+       return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
+}
+
 static void __cond_resched(void)
 {
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
@@ -5715,8 +6588,7 @@ static void __cond_resched(void)
 
 int __sched _cond_resched(void)
 {
-       if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
-                                       system_state == SYSTEM_RUNNING) {
+       if (should_resched()) {
                __cond_resched();
                return 1;
        }
@@ -5734,12 +6606,12 @@ EXPORT_SYMBOL(_cond_resched);
  */
 int cond_resched_lock(spinlock_t *lock)
 {
-       int resched = need_resched() && system_state == SYSTEM_RUNNING;
+       int resched = should_resched();
        int ret = 0;
 
        if (spin_needbreak(lock) || resched) {
                spin_unlock(lock);
-               if (resched && need_resched())
+               if (resched)
                        __cond_resched();
                else
                        cpu_relax();
@@ -5754,7 +6626,7 @@ int __sched cond_resched_softirq(void)
 {
        BUG_ON(!in_softirq());
 
-       if (need_resched() && system_state == SYSTEM_RUNNING) {
+       if (should_resched()) {
                local_bh_enable();
                __cond_resched();
                local_bh_disable();
@@ -5938,8 +6810,9 @@ void sched_show_task(struct task_struct *p)
 #ifdef CONFIG_DEBUG_STACK_USAGE
        free = stack_not_used(p);
 #endif
-       printk(KERN_CONT "%5lu %5d %6d\n", free,
-               task_pid_nr(p), task_pid_nr(p->real_parent));
+       printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
+               task_pid_nr(p), task_pid_nr(p->real_parent),
+               (unsigned long)task_thread_info(p)->flags);
 
        show_stack(p, NULL);
 }
@@ -6200,7 +7073,7 @@ static int migration_thread(void *data)
 
                if (cpu_is_offline(cpu)) {
                        spin_unlock_irq(&rq->lock);
-                       goto wait_to_die;
+                       break;
                }
 
                if (rq->active_balance) {
@@ -6226,16 +7099,7 @@ static int migration_thread(void *data)
                complete(&req->done);
        }
        __set_current_state(TASK_RUNNING);
-       return 0;
 
-wait_to_die:
-       /* Wait for kthread_stop */
-       set_current_state(TASK_INTERRUPTIBLE);
-       while (!kthread_should_stop()) {
-               schedule();
-               set_current_state(TASK_INTERRUPTIBLE);
-       }
-       __set_current_state(TASK_RUNNING);
        return 0;
 }
 
@@ -6410,7 +7274,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
                if (!rq->nr_running)
                        break;
                update_rq_clock(rq);
-               next = pick_next_task(rq, rq->curr);
+               next = pick_next_task(rq);
                if (!next)
                        break;
                next->sched_class->put_prev_task(rq, next);
@@ -6418,6 +7282,15 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
 
        }
 }
+
+/*
+ * remove the tasks which were accounted by rq from calc_load_tasks.
+ */
+static void calc_global_load_remove(struct rq *rq)
+{
+       atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
+       rq->calc_load_active = 0;
+}
 #endif /* CONFIG_HOTPLUG_CPU */
 
 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
@@ -6641,7 +7514,9 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                rq = task_rq_lock(p, &flags);
                __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
                task_rq_unlock(rq, &flags);
+               get_task_struct(p);
                cpu_rq(cpu)->migration_thread = p;
+               rq->calc_load_update = calc_load_update;
                break;
 
        case CPU_ONLINE:
@@ -6669,6 +7544,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                kthread_bind(cpu_rq(cpu)->migration_thread,
                             cpumask_any(cpu_online_mask));
                kthread_stop(cpu_rq(cpu)->migration_thread);
+               put_task_struct(cpu_rq(cpu)->migration_thread);
                cpu_rq(cpu)->migration_thread = NULL;
                break;
 
@@ -6678,6 +7554,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                migrate_live_tasks(cpu);
                rq = cpu_rq(cpu);
                kthread_stop(rq->migration_thread);
+               put_task_struct(rq->migration_thread);
                rq->migration_thread = NULL;
                /* Idle task back to normal (off runqueue, low prio) */
                spin_lock_irq(&rq->lock);
@@ -6691,7 +7568,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                cpuset_unlock();
                migrate_nr_uninterruptible(rq);
                BUG_ON(rq->nr_running != 0);
-
+               calc_global_load_remove(rq);
                /*
                 * No need to migrate the tasks: it was best-effort if
                 * they didn't take sched_hotcpu_mutex. Just wake up
@@ -6727,8 +7604,10 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
        return NOTIFY_OK;
 }
 
-/* Register at highest priority so that task migration (migrate_all_tasks)
- * happens before everything else.
+/*
+ * Register at high priority so that task migration (migrate_all_tasks)
+ * happens before everything else.  This has to be lower priority than
+ * the notifier in the perf_counter subsystem, though.
  */
 static struct notifier_block __cpuinitdata migration_notifier = {
        .notifier_call = migration_call,
@@ -6815,7 +7694,12 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
 
                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
+
                printk(KERN_CONT " %s", str);
+               if (group->__cpu_power != SCHED_LOAD_SCALE) {
+                       printk(KERN_CONT " (__cpu_power = %d)",
+                               group->__cpu_power);
+               }
 
                group = group->next;
        } while (group != sd->groups);
@@ -6966,26 +7850,23 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
                free_rootdomain(old_rd);
 }
 
-static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
+static int init_rootdomain(struct root_domain *rd, bool bootmem)
 {
+       gfp_t gfp = GFP_KERNEL;
+
        memset(rd, 0, sizeof(*rd));
 
-       if (bootmem) {
-               alloc_bootmem_cpumask_var(&def_root_domain.span);
-               alloc_bootmem_cpumask_var(&def_root_domain.online);
-               alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
-               cpupri_init(&rd->cpupri, true);
-               return 0;
-       }
+       if (bootmem)
+               gfp = GFP_NOWAIT;
 
-       if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
+       if (!alloc_cpumask_var(&rd->span, gfp))
                goto out;
-       if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
+       if (!alloc_cpumask_var(&rd->online, gfp))
                goto free_span;
-       if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+       if (!alloc_cpumask_var(&rd->rto_mask, gfp))
                goto free_online;
 
-       if (cpupri_init(&rd->cpupri, false) != 0)
+       if (cpupri_init(&rd->cpupri, bootmem) != 0)
                goto free_rto_mask;
        return 0;
 
@@ -7196,8 +8077,9 @@ int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
 
 /*
  * The cpus mask in sched_group and sched_domain hangs off the end.
- * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
- * for nr_cpu_ids < CONFIG_NR_CPUS.
+ *
+ * ( See the the comments in include/linux/sched.h:struct sched_group
+ *   and struct sched_domain. )
  */
 struct static_sched_group {
        struct sched_group sg;
@@ -7318,7 +8200,7 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
                        struct sched_domain *sd;
 
                        sd = &per_cpu(phys_domains, j).sd;
-                       if (j != cpumask_first(sched_group_cpus(sd->groups))) {
+                       if (j != group_first_cpu(sd->groups)) {
                                /*
                                 * Only add "power" once for each
                                 * physical package.
@@ -7396,7 +8278,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
 
        WARN_ON(!sd || !sd->groups);
 
-       if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
+       if (cpu != group_first_cpu(sd->groups))
                return;
 
        child = sd->child;
@@ -8174,6 +9056,8 @@ void __init sched_init_smp(void)
 }
 #endif /* CONFIG_SMP */
 
+const_debug unsigned int sysctl_timer_migration = 1;
+
 int in_sched_functions(unsigned long addr)
 {
        return in_lock_functions(addr) ||
@@ -8205,11 +9089,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
        __set_bit(MAX_RT_PRIO, array->bitmap);
 
 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-       rt_rq->highest_prio = MAX_RT_PRIO;
+       rt_rq->highest_prio.curr = MAX_RT_PRIO;
+#ifdef CONFIG_SMP
+       rt_rq->highest_prio.next = MAX_RT_PRIO;
+#endif
 #endif
 #ifdef CONFIG_SMP
        rt_rq->rt_nr_migratory = 0;
        rt_rq->overloaded = 0;
+       plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
 #endif
 
        rt_rq->rt_time = 0;
@@ -8297,14 +9185,14 @@ void __init sched_init(void)
        alloc_size *= 2;
 #endif
 #ifdef CONFIG_CPUMASK_OFFSTACK
-       alloc_size *= num_possible_cpus() * cpumask_size();
+       alloc_size += num_possible_cpus() * cpumask_size();
 #endif
        /*
         * As sched_init() is called before page_alloc is setup,
         * we use alloc_bootmem().
         */
        if (alloc_size) {
-               ptr = (unsigned long)alloc_bootmem(alloc_size);
+               ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
                init_task_group.se = (struct sched_entity **)ptr;
@@ -8377,6 +9265,8 @@ void __init sched_init(void)
                rq = cpu_rq(i);
                spin_lock_init(&rq->lock);
                rq->nr_running = 0;
+               rq->calc_load_active = 0;
+               rq->calc_load_update = jiffies + LOAD_FREQ;
                init_cfs_rq(&rq->cfs, rq);
                init_rt_rq(&rq->rt, rq);
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -8397,7 +9287,7 @@ void __init sched_init(void)
                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
                 * then A0's share of the cpu resource is:
                 *
-                *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
+                *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
                 *
                 * We achieve this by letting init_task_group's tasks sit
                 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
@@ -8484,20 +9374,26 @@ void __init sched_init(void)
         * when this runqueue becomes "idle".
         */
        init_idle(current, smp_processor_id());
+
+       calc_load_update = jiffies + LOAD_FREQ;
+
        /*
         * During early bootup we pretend to be a normal task:
         */
        current->sched_class = &fair_sched_class;
 
        /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
-       alloc_bootmem_cpumask_var(&nohz_cpu_mask);
+       alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
 #ifdef CONFIG_SMP
 #ifdef CONFIG_NO_HZ
-       alloc_bootmem_cpumask_var(&nohz.cpu_mask);
+       alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
+       alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
 #endif
-       alloc_bootmem_cpumask_var(&cpu_isolated_map);
+       alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
 #endif /* SMP */
 
+       perf_counter_init();
+
        scheduler_running = 1;
 }
 
@@ -9239,6 +10135,13 @@ static int sched_rt_global_constraints(void)
        if (sysctl_sched_rt_period <= 0)
                return -EINVAL;
 
+       /*
+        * There's always some RT tasks in the root group
+        * -- migration, kstopmachine etc..
+        */
+       if (sysctl_sched_rt_runtime == 0)
+               return -EBUSY;
+
        spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
        for_each_possible_cpu(i) {
                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
@@ -9434,6 +10337,7 @@ struct cpuacct {
        struct cgroup_subsys_state css;
        /* cpuusage holds pointer to a u64-type object on every cpu */
        u64 *cpuusage;
+       struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
        struct cpuacct *parent;
 };
 
@@ -9458,20 +10362,32 @@ static struct cgroup_subsys_state *cpuacct_create(
        struct cgroup_subsys *ss, struct cgroup *cgrp)
 {
        struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+       int i;
 
        if (!ca)
-               return ERR_PTR(-ENOMEM);
+               goto out;
 
        ca->cpuusage = alloc_percpu(u64);
-       if (!ca->cpuusage) {
-               kfree(ca);
-               return ERR_PTR(-ENOMEM);
-       }
+       if (!ca->cpuusage)
+               goto out_free_ca;
+
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
+               if (percpu_counter_init(&ca->cpustat[i], 0))
+                       goto out_free_counters;
 
        if (cgrp->parent)
                ca->parent = cgroup_ca(cgrp->parent);
 
        return &ca->css;
+
+out_free_counters:
+       while (--i >= 0)
+               percpu_counter_destroy(&ca->cpustat[i]);
+       free_percpu(ca->cpuusage);
+out_free_ca:
+       kfree(ca);
+out:
+       return ERR_PTR(-ENOMEM);
 }
 
 /* destroy an existing cpu accounting group */
@@ -9479,7 +10395,10 @@ static void
 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 {
        struct cpuacct *ca = cgroup_ca(cgrp);
+       int i;
 
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
+               percpu_counter_destroy(&ca->cpustat[i]);
        free_percpu(ca->cpuusage);
        kfree(ca);
 }
@@ -9566,6 +10485,25 @@ static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
        return 0;
 }
 
+static const char *cpuacct_stat_desc[] = {
+       [CPUACCT_STAT_USER] = "user",
+       [CPUACCT_STAT_SYSTEM] = "system",
+};
+
+static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
+               struct cgroup_map_cb *cb)
+{
+       struct cpuacct *ca = cgroup_ca(cgrp);
+       int i;
+
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
+               s64 val = percpu_counter_read(&ca->cpustat[i]);
+               val = cputime64_to_clock_t(val);
+               cb->fill(cb, cpuacct_stat_desc[i], val);
+       }
+       return 0;
+}
+
 static struct cftype files[] = {
        {
                .name = "usage",
@@ -9576,7 +10514,10 @@ static struct cftype files[] = {
                .name = "usage_percpu",
                .read_seq_string = cpuacct_percpu_seq_read,
        },
-
+       {
+               .name = "stat",
+               .read_map = cpuacct_stats_show,
+       },
 };
 
 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
@@ -9594,16 +10535,42 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
        struct cpuacct *ca;
        int cpu;
 
-       if (!cpuacct_subsys.active)
+       if (unlikely(!cpuacct_subsys.active))
                return;
 
        cpu = task_cpu(tsk);
+
+       rcu_read_lock();
+
        ca = task_ca(tsk);
 
        for (; ca; ca = ca->parent) {
                u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
                *cpuusage += cputime;
        }
+
+       rcu_read_unlock();
+}
+
+/*
+ * Charge the system/user time to the task's accounting group.
+ */
+static void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val)
+{
+       struct cpuacct *ca;
+
+       if (unlikely(!cpuacct_subsys.active))
+               return;
+
+       rcu_read_lock();
+       ca = task_ca(tsk);
+
+       do {
+               percpu_counter_add(&ca->cpustat[idx], val);
+               ca = ca->parent;
+       } while (ca);
+       rcu_read_unlock();
 }
 
 struct cgroup_subsys cpuacct_subsys = {