sysctl extern cleanup: module
[safe/jmp/linux-2.6] / kernel / sched.c
index 82251c2..150b698 100644 (file)
@@ -141,7 +141,7 @@ struct rt_prio_array {
 
 struct rt_bandwidth {
        /* nests inside the rq lock: */
-       spinlock_t              rt_runtime_lock;
+       raw_spinlock_t          rt_runtime_lock;
        ktime_t                 rt_period;
        u64                     rt_runtime;
        struct hrtimer          rt_period_timer;
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
        rt_b->rt_period = ns_to_ktime(period);
        rt_b->rt_runtime = runtime;
 
-       spin_lock_init(&rt_b->rt_runtime_lock);
+       raw_spin_lock_init(&rt_b->rt_runtime_lock);
 
        hrtimer_init(&rt_b->rt_period_timer,
                        CLOCK_MONOTONIC, HRTIMER_MODE_REL);
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
        if (hrtimer_active(&rt_b->rt_period_timer))
                return;
 
-       spin_lock(&rt_b->rt_runtime_lock);
+       raw_spin_lock(&rt_b->rt_runtime_lock);
        for (;;) {
                unsigned long delta;
                ktime_t soft, hard;
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
                __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
                                HRTIMER_MODE_ABS_PINNED, 0);
        }
-       spin_unlock(&rt_b->rt_runtime_lock);
+       raw_spin_unlock(&rt_b->rt_runtime_lock);
 }
 
 #ifdef CONFIG_RT_GROUP_SCHED
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  */
 static DEFINE_MUTEX(sched_domains_mutex);
 
-#ifdef CONFIG_GROUP_SCHED
+#ifdef CONFIG_CGROUP_SCHED
 
 #include <linux/cgroup.h>
 
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups);
 
 /* task group related information */
 struct task_group {
-#ifdef CONFIG_CGROUP_SCHED
        struct cgroup_subsys_state css;
-#endif
-
-#ifdef CONFIG_USER_SCHED
-       uid_t uid;
-#endif
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
        /* schedulable entities of this group on each cpu */
@@ -274,35 +268,7 @@ struct task_group {
        struct list_head children;
 };
 
-#ifdef CONFIG_USER_SCHED
-
-/* Helper function to pass uid information to create_sched_user() */
-void set_tg_uid(struct user_struct *user)
-{
-       user->tg->uid = user->uid;
-}
-
-/*
- * Root task group.
- *     Every UID task group (including init_task_group aka UID-0) will
- *     be a child to this group.
- */
-struct task_group root_task_group;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/* Default task group's sched entity on each cpu */
-static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
-/* Default task group's cfs_rq on each cpu */
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
-#endif /* CONFIG_RT_GROUP_SCHED */
-#else /* !CONFIG_USER_SCHED */
 #define root_task_group init_task_group
-#endif /* CONFIG_USER_SCHED */
 
 /* task_group_lock serializes add/remove of task groups and also changes to
  * a task group's cpu shares.
@@ -318,11 +284,7 @@ static int root_task_group_empty(void)
 }
 #endif
 
-#ifdef CONFIG_USER_SCHED
-# define INIT_TASK_GROUP_LOAD  (2*NICE_0_LOAD)
-#else /* !CONFIG_USER_SCHED */
 # define INIT_TASK_GROUP_LOAD  NICE_0_LOAD
-#endif /* CONFIG_USER_SCHED */
 
 /*
  * A weight of 0 or 1 can cause arithmetics problems.
@@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p)
 {
        struct task_group *tg;
 
-#ifdef CONFIG_USER_SCHED
-       rcu_read_lock();
-       tg = __task_cred(p)->user->tg;
-       rcu_read_unlock();
-#elif defined(CONFIG_CGROUP_SCHED)
+#ifdef CONFIG_CGROUP_SCHED
        tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
                                struct task_group, css);
 #else
@@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p)
        return NULL;
 }
 
-#endif /* CONFIG_GROUP_SCHED */
+#endif /* CONFIG_CGROUP_SCHED */
 
 /* CFS-related fields in a runqueue */
 struct cfs_rq {
@@ -470,7 +428,7 @@ struct rt_rq {
        u64 rt_time;
        u64 rt_runtime;
        /* Nests inside the rq lock: */
-       spinlock_t rt_runtime_lock;
+       raw_spinlock_t rt_runtime_lock;
 
 #ifdef CONFIG_RT_GROUP_SCHED
        unsigned long rt_nr_boosted;
@@ -478,7 +436,6 @@ struct rt_rq {
        struct rq *rq;
        struct list_head leaf_rt_rq_list;
        struct task_group *tg;
-       struct sched_rt_entity *rt_se;
 #endif
 };
 
@@ -525,7 +482,7 @@ static struct root_domain def_root_domain;
  */
 struct rq {
        /* runqueue lock: */
-       spinlock_t lock;
+       raw_spinlock_t lock;
 
        /*
         * nr_running and cpu_load should be in the same cacheline because
@@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq)
 #endif
 }
 
+#define rcu_dereference_check_sched_domain(p) \
+       rcu_dereference_check((p), \
+                             rcu_read_lock_sched_held() || \
+                             lockdep_is_held(&sched_domains_mutex))
+
 /*
  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  * See detach_destroy_domains: synchronize_sched for details.
@@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq)
  * preempt-disabled sections.
  */
 #define for_each_domain(cpu, __sd) \
-       for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
+       for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
 #define this_rq()              (&__get_cpu_var(runqueues))
@@ -685,7 +647,7 @@ inline void update_rq_clock(struct rq *rq)
  */
 int runqueue_is_locked(int cpu)
 {
-       return spin_is_locked(&cpu_rq(cpu)->lock);
+       return raw_spin_is_locked(&cpu_rq(cpu)->lock);
 }
 
 /*
@@ -814,6 +776,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
  * default: 0.25ms
  */
 unsigned int sysctl_sched_shares_ratelimit = 250000;
+unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
 
 /*
  * Inject some fuzzyness into changing the per-cpu group shares
@@ -892,7 +855,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
         */
        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 
-       spin_unlock_irq(&rq->lock);
+       raw_spin_unlock_irq(&rq->lock);
 }
 
 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
@@ -916,9 +879,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
        next->oncpu = 1;
 #endif
 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-       spin_unlock_irq(&rq->lock);
+       raw_spin_unlock_irq(&rq->lock);
 #else
-       spin_unlock(&rq->lock);
+       raw_spin_unlock(&rq->lock);
 #endif
 }
 
@@ -940,18 +903,35 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 
 /*
+ * Check whether the task is waking, we use this to synchronize against
+ * ttwu() so that task_cpu() reports a stable number.
+ *
+ * We need to make an exception for PF_STARTING tasks because the fork
+ * path might require task_rq_lock() to work, eg. it can call
+ * set_cpus_allowed_ptr() from the cpuset clone_ns code.
+ */
+static inline int task_is_waking(struct task_struct *p)
+{
+       return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
+}
+
+/*
  * __task_rq_lock - lock the runqueue a given task resides on.
  * Must be called interrupts disabled.
  */
 static inline struct rq *__task_rq_lock(struct task_struct *p)
        __acquires(rq->lock)
 {
+       struct rq *rq;
+
        for (;;) {
-               struct rq *rq = task_rq(p);
-               spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
+               while (task_is_waking(p))
+                       cpu_relax();
+               rq = task_rq(p);
+               raw_spin_lock(&rq->lock);
+               if (likely(rq == task_rq(p) && !task_is_waking(p)))
                        return rq;
-               spin_unlock(&rq->lock);
+               raw_spin_unlock(&rq->lock);
        }
 }
 
@@ -966,12 +946,14 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
        struct rq *rq;
 
        for (;;) {
+               while (task_is_waking(p))
+                       cpu_relax();
                local_irq_save(*flags);
                rq = task_rq(p);
-               spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
+               raw_spin_lock(&rq->lock);
+               if (likely(rq == task_rq(p) && !task_is_waking(p)))
                        return rq;
-               spin_unlock_irqrestore(&rq->lock, *flags);
+               raw_spin_unlock_irqrestore(&rq->lock, *flags);
        }
 }
 
@@ -980,19 +962,19 @@ void task_rq_unlock_wait(struct task_struct *p)
        struct rq *rq = task_rq(p);
 
        smp_mb(); /* spin-unlock-wait is not a full memory barrier */
-       spin_unlock_wait(&rq->lock);
+       raw_spin_unlock_wait(&rq->lock);
 }
 
 static void __task_rq_unlock(struct rq *rq)
        __releases(rq->lock)
 {
-       spin_unlock(&rq->lock);
+       raw_spin_unlock(&rq->lock);
 }
 
 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
        __releases(rq->lock)
 {
-       spin_unlock_irqrestore(&rq->lock, *flags);
+       raw_spin_unlock_irqrestore(&rq->lock, *flags);
 }
 
 /*
@@ -1005,7 +987,7 @@ static struct rq *this_rq_lock(void)
 
        local_irq_disable();
        rq = this_rq();
-       spin_lock(&rq->lock);
+       raw_spin_lock(&rq->lock);
 
        return rq;
 }
@@ -1052,10 +1034,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
 
        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 
-       spin_lock(&rq->lock);
+       raw_spin_lock(&rq->lock);
        update_rq_clock(rq);
        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
-       spin_unlock(&rq->lock);
+       raw_spin_unlock(&rq->lock);
 
        return HRTIMER_NORESTART;
 }
@@ -1068,10 +1050,10 @@ static void __hrtick_start(void *arg)
 {
        struct rq *rq = arg;
 
-       spin_lock(&rq->lock);
+       raw_spin_lock(&rq->lock);
        hrtimer_restart(&rq->hrtick_timer);
        rq->hrtick_csd_pending = 0;
-       spin_unlock(&rq->lock);
+       raw_spin_unlock(&rq->lock);
 }
 
 /*
@@ -1178,7 +1160,7 @@ static void resched_task(struct task_struct *p)
 {
        int cpu;
 
-       assert_spin_locked(&task_rq(p)->lock);
+       assert_raw_spin_locked(&task_rq(p)->lock);
 
        if (test_tsk_need_resched(p))
                return;
@@ -1200,10 +1182,10 @@ static void resched_cpu(int cpu)
        struct rq *rq = cpu_rq(cpu);
        unsigned long flags;
 
-       if (!spin_trylock_irqsave(&rq->lock, flags))
+       if (!raw_spin_trylock_irqsave(&rq->lock, flags))
                return;
        resched_task(cpu_curr(cpu));
-       spin_unlock_irqrestore(&rq->lock, flags);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
 }
 
 #ifdef CONFIG_NO_HZ
@@ -1272,7 +1254,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 #else /* !CONFIG_SMP */
 static void resched_task(struct task_struct *p)
 {
-       assert_spin_locked(&task_rq(p)->lock);
+       assert_raw_spin_locked(&task_rq(p)->lock);
        set_tsk_need_resched(p);
 }
 
@@ -1389,32 +1371,6 @@ static const u32 prio_to_wmult[40] = {
  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 };
 
-static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
-
-/*
- * runqueue iterator, to support SMP load-balancing between different
- * scheduling classes, without having to expose their internal data
- * structures to the load-balancing proper:
- */
-struct rq_iterator {
-       void *arg;
-       struct task_struct *(*start)(void *);
-       struct task_struct *(*next)(void *);
-};
-
-#ifdef CONFIG_SMP
-static unsigned long
-balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             unsigned long max_load_move, struct sched_domain *sd,
-             enum cpu_idle_type idle, int *all_pinned,
-             int *this_best_prio, struct rq_iterator *iterator);
-
-static int
-iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                  struct sched_domain *sd, enum cpu_idle_type idle,
-                  struct rq_iterator *iterator);
-#endif
-
 /* Time spent by the tasks of the cpu accounting group executing in ... */
 enum cpuacct_stat_index {
        CPUACCT_STAT_USER,      /* ... user mode */
@@ -1530,7 +1486,7 @@ static unsigned long target_load(int cpu, int type)
 
 static struct sched_group *group_of(int cpu)
 {
-       struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
+       struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
 
        if (!sd)
                return NULL;
@@ -1565,7 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
 
-static __read_mostly unsigned long *update_shares_data;
+static __read_mostly unsigned long __percpu *update_shares_data;
 
 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
 
@@ -1599,11 +1555,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
                struct rq *rq = cpu_rq(cpu);
                unsigned long flags;
 
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
                tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
                __set_se_shares(tg->se[cpu], shares);
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
        }
 }
 
@@ -1614,7 +1570,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
  */
 static int tg_shares_up(struct task_group *tg, void *data)
 {
-       unsigned long weight, rq_weight = 0, shares = 0;
+       unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
        unsigned long *usd_rq_weight;
        struct sched_domain *sd = data;
        unsigned long flags;
@@ -1630,6 +1586,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
                weight = tg->cfs_rq[i]->load.weight;
                usd_rq_weight[i] = weight;
 
+               rq_weight += weight;
                /*
                 * If there are currently no tasks on the cpu pretend there
                 * is one of average load so that when a new task gets to
@@ -1638,10 +1595,13 @@ static int tg_shares_up(struct task_group *tg, void *data)
                if (!weight)
                        weight = NICE_0_LOAD;
 
-               rq_weight += weight;
+               sum_weight += weight;
                shares += tg->cfs_rq[i]->shares;
        }
 
+       if (!rq_weight)
+               rq_weight = sum_weight;
+
        if ((!shares && rq_weight) || shares > tg->shares)
                shares = tg->shares;
 
@@ -1696,16 +1656,6 @@ static void update_shares(struct sched_domain *sd)
        }
 }
 
-static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
-{
-       if (root_task_group_empty())
-               return;
-
-       spin_unlock(&rq->lock);
-       update_shares(sd);
-       spin_lock(&rq->lock);
-}
-
 static void update_h_load(long cpu)
 {
        if (root_task_group_empty())
@@ -1720,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd)
 {
 }
 
-static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
-{
-}
-
 #endif
 
 #ifdef CONFIG_PREEMPT
@@ -1743,7 +1689,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
        __acquires(busiest->lock)
        __acquires(this_rq->lock)
 {
-       spin_unlock(&this_rq->lock);
+       raw_spin_unlock(&this_rq->lock);
        double_rq_lock(this_rq, busiest);
 
        return 1;
@@ -1764,14 +1710,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 {
        int ret = 0;
 
-       if (unlikely(!spin_trylock(&busiest->lock))) {
+       if (unlikely(!raw_spin_trylock(&busiest->lock))) {
                if (busiest < this_rq) {
-                       spin_unlock(&this_rq->lock);
-                       spin_lock(&busiest->lock);
-                       spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
+                       raw_spin_unlock(&this_rq->lock);
+                       raw_spin_lock(&busiest->lock);
+                       raw_spin_lock_nested(&this_rq->lock,
+                                             SINGLE_DEPTH_NESTING);
                        ret = 1;
                } else
-                       spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
+                       raw_spin_lock_nested(&busiest->lock,
+                                             SINGLE_DEPTH_NESTING);
        }
        return ret;
 }
@@ -1785,7 +1733,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 {
        if (unlikely(!irqs_disabled())) {
                /* printk() doesn't work good under rq->lock */
-               spin_unlock(&this_rq->lock);
+               raw_spin_unlock(&this_rq->lock);
                BUG_ON(1);
        }
 
@@ -1795,9 +1743,54 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
        __releases(busiest->lock)
 {
-       spin_unlock(&busiest->lock);
+       raw_spin_unlock(&busiest->lock);
        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 }
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+{
+       BUG_ON(!irqs_disabled());
+       if (rq1 == rq2) {
+               raw_spin_lock(&rq1->lock);
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1 < rq2) {
+                       raw_spin_lock(&rq1->lock);
+                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+               } else {
+                       raw_spin_lock(&rq2->lock);
+                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+               }
+       }
+       update_rq_clock(rq1);
+       update_rq_clock(rq2);
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+{
+       raw_spin_unlock(&rq1->lock);
+       if (rq1 != rq2)
+               raw_spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
+}
+
 #endif
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1810,19 +1803,31 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
 #endif
 
 static void calc_load_account_active(struct rq *this_rq);
+static void update_sysctl(void);
+static int get_update_sysctl_factor(void);
 
-#include "sched_stats.h"
-#include "sched_idletask.c"
-#include "sched_fair.c"
-#include "sched_rt.c"
-#ifdef CONFIG_SCHED_DEBUG
-# include "sched_debug.c"
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+       set_task_rq(p, cpu);
+#ifdef CONFIG_SMP
+       /*
+        * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+        * successfuly executed on another CPU. We must ensure that updates of
+        * per-task data have been completed by this moment.
+        */
+       smp_wmb();
+       task_thread_info(p)->cpu = cpu;
 #endif
+}
+
+static const struct sched_class rt_sched_class;
 
 #define sched_class_highest (&rt_sched_class)
 #define for_each_class(class) \
    for (class = sched_class_highest; class; class = class->next)
 
+#include "sched_stats.h"
+
 static void inc_nr_running(struct rq *rq)
 {
        rq->nr_running++;
@@ -1860,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample)
        *avg += diff >> 3;
 }
 
-static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
+static void
+enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
 {
        if (wakeup)
                p->se.start_runtime = p->se.sum_exec_runtime;
 
        sched_info_queued(p);
-       p->sched_class->enqueue_task(rq, p, wakeup);
+       p->sched_class->enqueue_task(rq, p, wakeup, head);
        p->se.on_rq = 1;
 }
 
@@ -1889,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
 }
 
 /*
+ * activate_task - move a task to the runqueue.
+ */
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
+{
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible--;
+
+       enqueue_task(rq, p, wakeup, false);
+       inc_nr_running(rq);
+}
+
+/*
+ * deactivate_task - remove a task from the runqueue.
+ */
+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
+{
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible++;
+
+       dequeue_task(rq, p, sleep);
+       dec_nr_running(rq);
+}
+
+#include "sched_idletask.c"
+#include "sched_fair.c"
+#include "sched_rt.c"
+#ifdef CONFIG_SCHED_DEBUG
+# include "sched_debug.c"
+#endif
+
+/*
  * __normal_prio - return the priority that is based on the static prio
  */
 static inline int __normal_prio(struct task_struct *p)
@@ -1934,30 +1971,6 @@ static int effective_prio(struct task_struct *p)
        return p->prio;
 }
 
-/*
- * activate_task - move a task to the runqueue.
- */
-static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible--;
-
-       enqueue_task(rq, p, wakeup);
-       inc_nr_running(rq);
-}
-
-/*
- * deactivate_task - remove a task from the runqueue.
- */
-static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible++;
-
-       dequeue_task(rq, p, sleep);
-       dec_nr_running(rq);
-}
-
 /**
  * task_curr - is this task currently executing on a CPU?
  * @p: the task in question.
@@ -1967,20 +1980,6 @@ inline int task_curr(const struct task_struct *p)
        return cpu_curr(task_cpu(p)) == p;
 }
 
-static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
-{
-       set_task_rq(p, cpu);
-#ifdef CONFIG_SMP
-       /*
-        * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
-        * successfuly executed on another CPU. We must ensure that updates of
-        * per-task data have been completed by this moment.
-        */
-       smp_wmb();
-       task_thread_info(p)->cpu = cpu;
-#endif
-}
-
 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
                                       const struct sched_class *prev_class,
                                       int oldprio, int running)
@@ -1993,39 +1992,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
                p->sched_class->prio_changed(rq, p, oldprio, running);
 }
 
-/**
- * kthread_bind - bind a just-created kthread to a cpu.
- * @p: thread created by kthread_create().
- * @cpu: cpu (might not be online, must be possible) for @k to run on.
- *
- * Description: This function is equivalent to set_cpus_allowed(),
- * except that @cpu doesn't need to be online, and the thread must be
- * stopped (i.e., just returned from kthread_create()).
- *
- * Function lives here instead of kthread.c because it messes with
- * scheduler internals which require locking.
- */
-void kthread_bind(struct task_struct *p, unsigned int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       /* Must have done schedule() in kthread() before we set_task_cpu */
-       if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
-               WARN_ON(1);
-               return;
-       }
-
-       spin_lock_irqsave(&rq->lock, flags);
-       update_rq_clock(rq);
-       set_task_cpu(p, cpu);
-       p->cpus_allowed = cpumask_of_cpu(cpu);
-       p->rt.nr_cpus_allowed = 1;
-       p->flags |= PF_THREAD_BOUND;
-       spin_unlock_irqrestore(&rq->lock, flags);
-}
-EXPORT_SYMBOL(kthread_bind);
-
 #ifdef CONFIG_SMP
 /*
  * Is this task likely cache-hot:
@@ -2035,6 +2001,9 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
 {
        s64 delta;
 
+       if (p->sched_class != &fair_sched_class)
+               return 0;
+
        /*
         * Buddy candidates are cache hot:
         */
@@ -2043,9 +2012,6 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
                         &p->se == cfs_rq_of(&p->se)->last))
                return 1;
 
-       if (p->sched_class != &fair_sched_class)
-               return 0;
-
        if (sysctl_sched_migration_cost == -1)
                return 1;
        if (sysctl_sched_migration_cost == 0)
@@ -2056,38 +2022,23 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
        return delta < (s64)sysctl_sched_migration_cost;
 }
 
-
 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 {
-       int old_cpu = task_cpu(p);
-       struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
-       struct cfs_rq *old_cfsrq = task_cfs_rq(p),
-                     *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
-       u64 clock_offset;
-
-       clock_offset = old_rq->clock - new_rq->clock;
+#ifdef CONFIG_SCHED_DEBUG
+       /*
+        * We should never call set_task_cpu() on a blocked task,
+        * ttwu() will sort out the placement.
+        */
+       WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
+                       !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
+#endif
 
        trace_sched_migrate_task(p, new_cpu);
 
-#ifdef CONFIG_SCHEDSTATS
-       if (p->se.wait_start)
-               p->se.wait_start -= clock_offset;
-       if (p->se.sleep_start)
-               p->se.sleep_start -= clock_offset;
-       if (p->se.block_start)
-               p->se.block_start -= clock_offset;
-#endif
-       if (old_cpu != new_cpu) {
+       if (task_cpu(p) != new_cpu) {
                p->se.nr_migrations++;
-#ifdef CONFIG_SCHEDSTATS
-               if (task_hot(p, old_rq->clock, NULL))
-                       schedstat_inc(p, se.nr_forced2_migrations);
-#endif
-               perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
-                                    1, 1, NULL, 0);
+               perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
        }
-       p->se.vruntime -= old_cfsrq->min_vruntime -
-                                        new_cfsrq->min_vruntime;
 
        __set_task_cpu(p, new_cpu);
 }
@@ -2112,13 +2063,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
 
        /*
         * If the task is not on a runqueue (and not running), then
-        * it is sufficient to simply update the task's cpu field.
+        * the next wake-up will properly place the task.
         */
-       if (!p->se.on_rq && !task_running(rq, p)) {
-               update_rq_clock(rq);
-               set_task_cpu(p, dest_cpu);
+       if (!p->se.on_rq && !task_running(rq, p))
                return 0;
-       }
 
        init_completion(&req->done);
        req->task = p;
@@ -2323,39 +2271,108 @@ void task_oncpu_function_call(struct task_struct *p,
        preempt_enable();
 }
 
-/***
- * try_to_wake_up - wake up a thread
- * @p: the to-be-woken-up thread
- * @state: the mask of task states that can be woken
- * @sync: do a synchronous wakeup?
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * returns failure only if the task is already active.
- */
-static int try_to_wake_up(struct task_struct *p, unsigned int state,
-                         int wake_flags)
+#ifdef CONFIG_SMP
+static int select_fallback_rq(int cpu, struct task_struct *p)
 {
-       int cpu, orig_cpu, this_cpu, success = 0;
-       unsigned long flags;
-       struct rq *rq, *orig_rq;
+       int dest_cpu;
+       const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
 
-       if (!sched_feat(SYNC_WAKEUPS))
-               wake_flags &= ~WF_SYNC;
+       /* Look for allowed, online CPU in same node. */
+       for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
+               if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
+                       return dest_cpu;
 
-       this_cpu = get_cpu();
+       /* Any allowed, online CPU? */
+       dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
+       if (dest_cpu < nr_cpu_ids)
+               return dest_cpu;
 
-       smp_wmb();
-       rq = orig_rq = task_rq_lock(p, &flags);
-       update_rq_clock(rq);
-       if (!(p->state & state))
-               goto out;
+       /* No more Mr. Nice Guy. */
+       if (dest_cpu >= nr_cpu_ids) {
+               rcu_read_lock();
+               cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
+               rcu_read_unlock();
+               dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
 
-       if (p->se.on_rq)
+               /*
+                * Don't tell them about moving exiting tasks or
+                * kernel threads (both mm NULL), since they never
+                * leave kernel.
+                */
+               if (p->mm && printk_ratelimit()) {
+                       printk(KERN_INFO "process %d (%s) no "
+                              "longer affine to cpu%d\n",
+                              task_pid_nr(p), p->comm, cpu);
+               }
+       }
+
+       return dest_cpu;
+}
+
+/*
+ * Gets called from 3 sites (exec, fork, wakeup), since it is called without
+ * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
+ * by:
+ *
+ *  exec:           is unstable, retry loop
+ *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
+ */
+static inline
+int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
+{
+       int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
+
+       /*
+        * In order not to call set_task_cpu() on a blocking task we need
+        * to rely on ttwu() to place the task on a valid ->cpus_allowed
+        * cpu.
+        *
+        * Since this is common to all placement strategies, this lives here.
+        *
+        * [ this allows ->select_task() to simply return task_cpu(p) and
+        *   not worry about this generic constraint ]
+        */
+       if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
+                    !cpu_online(cpu)))
+               cpu = select_fallback_rq(task_cpu(p), p);
+
+       return cpu;
+}
+#endif
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the to-be-woken-up thread
+ * @state: the mask of task states that can be woken
+ * @sync: do a synchronous wakeup?
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * returns failure only if the task is already active.
+ */
+static int try_to_wake_up(struct task_struct *p, unsigned int state,
+                         int wake_flags)
+{
+       int cpu, orig_cpu, this_cpu, success = 0;
+       unsigned long flags;
+       struct rq *rq, *orig_rq;
+
+       if (!sched_feat(SYNC_WAKEUPS))
+               wake_flags &= ~WF_SYNC;
+
+       this_cpu = get_cpu();
+
+       smp_wmb();
+       rq = orig_rq = task_rq_lock(p, &flags);
+       update_rq_clock(rq);
+       if (!(p->state & state))
+               goto out;
+
+       if (p->se.on_rq)
                goto out_running;
 
        cpu = task_cpu(p);
@@ -2374,20 +2391,34 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
        if (task_contributes_to_load(p))
                rq->nr_uninterruptible--;
        p->state = TASK_WAKING;
-       task_rq_unlock(rq, &flags);
 
-       cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
+       if (p->sched_class->task_waking)
+               p->sched_class->task_waking(rq, p);
+
+       __task_rq_unlock(rq);
+
+       cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
        if (cpu != orig_cpu) {
-               local_irq_save(flags);
-               rq = cpu_rq(cpu);
-               update_rq_clock(rq);
+               /*
+                * Since we migrate the task without holding any rq->lock,
+                * we need to be careful with task_rq_lock(), since that
+                * might end up locking an invalid rq.
+                */
                set_task_cpu(p, cpu);
-               local_irq_restore(flags);
        }
-       rq = task_rq_lock(p, &flags);
 
+       rq = cpu_rq(cpu);
+       raw_spin_lock(&rq->lock);
+       update_rq_clock(rq);
+
+       /*
+        * We migrated the task without holding either rq->lock, however
+        * since the task is not on the task list itself, nobody else
+        * will try and migrate the task, hence the rq should match the
+        * cpu we just moved it to.
+        */
+       WARN_ON(task_cpu(p) != cpu);
        WARN_ON(p->state != TASK_WAKING);
-       cpu = task_cpu(p);
 
 #ifdef CONFIG_SCHEDSTATS
        schedstat_inc(rq, ttwu_count);
@@ -2440,8 +2471,8 @@ out_running:
 
        p->state = TASK_RUNNING;
 #ifdef CONFIG_SMP
-       if (p->sched_class->task_wake_up)
-               p->sched_class->task_wake_up(rq, p);
+       if (p->sched_class->task_woken)
+               p->sched_class->task_woken(rq, p);
 
        if (unlikely(rq->idle_stamp)) {
                u64 delta = rq->clock - rq->idle_stamp;
@@ -2499,7 +2530,6 @@ static void __sched_fork(struct task_struct *p)
        p->se.avg_overlap               = 0;
        p->se.start_runtime             = 0;
        p->se.avg_wakeup                = sysctl_sched_wakeup_granularity;
-       p->se.avg_running               = 0;
 
 #ifdef CONFIG_SCHEDSTATS
        p->se.wait_start                        = 0;
@@ -2521,7 +2551,6 @@ static void __sched_fork(struct task_struct *p)
        p->se.nr_failed_migrations_running      = 0;
        p->se.nr_failed_migrations_hot          = 0;
        p->se.nr_forced_migrations              = 0;
-       p->se.nr_forced2_migrations             = 0;
 
        p->se.nr_wakeups                        = 0;
        p->se.nr_wakeups_sync                   = 0;
@@ -2542,14 +2571,6 @@ static void __sched_fork(struct task_struct *p)
 #ifdef CONFIG_PREEMPT_NOTIFIERS
        INIT_HLIST_HEAD(&p->preempt_notifiers);
 #endif
-
-       /*
-        * We mark the process as running here, but have not actually
-        * inserted it onto the runqueue yet. This guarantees that
-        * nobody will actually run it, and a signal or other external
-        * event cannot wake it up and insert it on the runqueue either.
-        */
-       p->state = TASK_RUNNING;
 }
 
 /*
@@ -2558,9 +2579,14 @@ static void __sched_fork(struct task_struct *p)
 void sched_fork(struct task_struct *p, int clone_flags)
 {
        int cpu = get_cpu();
-       unsigned long flags;
 
        __sched_fork(p);
+       /*
+        * We mark the process as waking here. This guarantees that
+        * nobody will actually run it, and a signal or other external
+        * event cannot wake it up and insert it on the runqueue either.
+        */
+       p->state = TASK_WAKING;
 
        /*
         * Revert to default priority/policy on fork if requested.
@@ -2592,13 +2618,10 @@ void sched_fork(struct task_struct *p, int clone_flags)
        if (!rt_prio(p->prio))
                p->sched_class = &fair_sched_class;
 
-#ifdef CONFIG_SMP
-       cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
-#endif
-       local_irq_save(flags);
-       update_rq_clock(cpu_rq(cpu));
+       if (p->sched_class->task_fork)
+               p->sched_class->task_fork(p);
+
        set_task_cpu(p, cpu);
-       local_irq_restore(flags);
 
 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
        if (likely(sched_info_on()))
@@ -2627,28 +2650,41 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
 {
        unsigned long flags;
        struct rq *rq;
+       int cpu = get_cpu();
 
-       rq = task_rq_lock(p, &flags);
-       BUG_ON(p->state != TASK_RUNNING);
-       update_rq_clock(rq);
+#ifdef CONFIG_SMP
+       /*
+        * Fork balancing, do it here and not earlier because:
+        *  - cpus_allowed can change in the fork path
+        *  - any previously selected cpu might disappear through hotplug
+        *
+        * We still have TASK_WAKING but PF_STARTING is gone now, meaning
+        * ->cpus_allowed is stable, we have preemption disabled, meaning
+        * cpu_online_mask is stable.
+        */
+       cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
+       set_task_cpu(p, cpu);
+#endif
 
-       if (!p->sched_class->task_new || !current->se.on_rq) {
-               activate_task(rq, p, 0);
-       } else {
-               /*
-                * Let the scheduling class do new task startup
-                * management (if any):
-                */
-               p->sched_class->task_new(rq, p);
-               inc_nr_running(rq);
-       }
+       /*
+        * Since the task is not on the rq and we still have TASK_WAKING set
+        * nobody else will migrate this task.
+        */
+       rq = cpu_rq(cpu);
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       BUG_ON(p->state != TASK_WAKING);
+       p->state = TASK_RUNNING;
+       update_rq_clock(rq);
+       activate_task(rq, p, 0);
        trace_sched_wakeup_new(rq, p, 1);
        check_preempt_curr(rq, p, WF_FORK);
 #ifdef CONFIG_SMP
-       if (p->sched_class->task_wake_up)
-               p->sched_class->task_wake_up(rq, p);
+       if (p->sched_class->task_woken)
+               p->sched_class->task_woken(rq, p);
 #endif
        task_rq_unlock(rq, &flags);
+       put_cpu();
 }
 
 #ifdef CONFIG_PREEMPT_NOTIFIERS
@@ -2767,10 +2803,16 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
         */
        prev_state = prev->state;
        finish_arch_switch(prev);
-       perf_event_task_sched_in(current, cpu_of(rq));
-       fire_sched_in_preempt_notifiers(current);
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_disable();
+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
+       perf_event_task_sched_in(current);
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
        finish_lock_switch(rq, prev);
 
+       fire_sched_in_preempt_notifiers(current);
        if (mm)
                mmdrop(mm);
        if (unlikely(prev_state == TASK_DEAD)) {
@@ -2798,10 +2840,10 @@ static inline void post_schedule(struct rq *rq)
        if (rq->post_schedule) {
                unsigned long flags;
 
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                if (rq->curr->sched_class->post_schedule)
                        rq->curr->sched_class->post_schedule(rq);
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
 
                rq->post_schedule = 0;
        }
@@ -3011,1923 +3053,112 @@ void calc_global_load(void)
        active = active > 0 ? active * FIXED_1 : 0;
 
        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-
-       calc_load_update += LOAD_FREQ;
-}
-
-/*
- * Either called from update_cpu_load() or from a cpu going idle
- */
-static void calc_load_account_active(struct rq *this_rq)
-{
-       long nr_active, delta;
-
-       nr_active = this_rq->nr_running;
-       nr_active += (long) this_rq->nr_uninterruptible;
-
-       if (nr_active != this_rq->calc_load_active) {
-               delta = nr_active - this_rq->calc_load_active;
-               this_rq->calc_load_active = nr_active;
-               atomic_long_add(delta, &calc_load_tasks);
-       }
-}
-
-/*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC).
- */
-static void update_cpu_load(struct rq *this_rq)
-{
-       unsigned long this_load = this_rq->load.weight;
-       int i, scale;
-
-       this_rq->nr_load_updates++;
-
-       /* Update our load: */
-       for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-               unsigned long old_load, new_load;
-
-               /* scale is effectively 1 << i now, and >> i divides by scale */
-
-               old_load = this_rq->cpu_load[i];
-               new_load = this_load;
-               /*
-                * Round up the averaging division if load is increasing. This
-                * prevents us from getting stuck on 9 if the load is 10, for
-                * example.
-                */
-               if (new_load > old_load)
-                       new_load += scale-1;
-               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
-       }
-
-       if (time_after_eq(jiffies, this_rq->calc_load_update)) {
-               this_rq->calc_load_update += LOAD_FREQ;
-               calc_load_account_active(this_rq);
-       }
-}
-
-#ifdef CONFIG_SMP
-
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static void double_rq_lock(struct rq *rq1, struct rq *rq2)
-       __acquires(rq1->lock)
-       __acquires(rq2->lock)
-{
-       BUG_ON(!irqs_disabled());
-       if (rq1 == rq2) {
-               spin_lock(&rq1->lock);
-               __acquire(rq2->lock);   /* Fake it out ;) */
-       } else {
-               if (rq1 < rq2) {
-                       spin_lock(&rq1->lock);
-                       spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
-               } else {
-                       spin_lock(&rq2->lock);
-                       spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
-               }
-       }
-       update_rq_clock(rq1);
-       update_rq_clock(rq2);
-}
-
-/*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
-static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
-       __releases(rq1->lock)
-       __releases(rq2->lock)
-{
-       spin_unlock(&rq1->lock);
-       if (rq1 != rq2)
-               spin_unlock(&rq2->lock);
-       else
-               __release(rq2->lock);
-}
-
-/*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu. Then
- * the cpu_allowed mask is restored.
- */
-static void sched_migrate_task(struct task_struct *p, int dest_cpu)
-{
-       struct migration_req req;
-       unsigned long flags;
-       struct rq *rq;
-
-       rq = task_rq_lock(p, &flags);
-       if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
-           || unlikely(!cpu_active(dest_cpu)))
-               goto out;
-
-       /* force the process onto the specified CPU */
-       if (migrate_task(p, dest_cpu, &req)) {
-               /* Need to wait for migration thread (might exit: take ref). */
-               struct task_struct *mt = rq->migration_thread;
-
-               get_task_struct(mt);
-               task_rq_unlock(rq, &flags);
-               wake_up_process(mt);
-               put_task_struct(mt);
-               wait_for_completion(&req.done);
-
-               return;
-       }
-out:
-       task_rq_unlock(rq, &flags);
-}
-
-/*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
-void sched_exec(void)
-{
-       int new_cpu, this_cpu = get_cpu();
-       new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
-       put_cpu();
-       if (new_cpu != this_cpu)
-               sched_migrate_task(current, new_cpu);
-}
-
-/*
- * pull_task - move a task from a remote runqueue to the local runqueue.
- * Both runqueues must be locked.
- */
-static void pull_task(struct rq *src_rq, struct task_struct *p,
-                     struct rq *this_rq, int this_cpu)
-{
-       deactivate_task(src_rq, p, 0);
-       set_task_cpu(p, this_cpu);
-       activate_task(this_rq, p, 0);
-       /*
-        * Note that idle threads have a prio of MAX_PRIO, for this test
-        * to be always true for them.
-        */
-       check_preempt_curr(this_rq, p, 0);
-}
-
-/*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
-static
-int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
-                    struct sched_domain *sd, enum cpu_idle_type idle,
-                    int *all_pinned)
-{
-       int tsk_cache_hot = 0;
-       /*
-        * We do not migrate tasks that are:
-        * 1) running (obviously), or
-        * 2) cannot be migrated to this CPU due to cpus_allowed, or
-        * 3) are cache-hot on their current CPU.
-        */
-       if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
-               schedstat_inc(p, se.nr_failed_migrations_affine);
-               return 0;
-       }
-       *all_pinned = 0;
-
-       if (task_running(rq, p)) {
-               schedstat_inc(p, se.nr_failed_migrations_running);
-               return 0;
-       }
-
-       /*
-        * Aggressive migration if:
-        * 1) task is cache cold, or
-        * 2) too many balance attempts have failed.
-        */
-
-       tsk_cache_hot = task_hot(p, rq->clock, sd);
-       if (!tsk_cache_hot ||
-               sd->nr_balance_failed > sd->cache_nice_tries) {
-#ifdef CONFIG_SCHEDSTATS
-               if (tsk_cache_hot) {
-                       schedstat_inc(sd, lb_hot_gained[idle]);
-                       schedstat_inc(p, se.nr_forced_migrations);
-               }
-#endif
-               return 1;
-       }
-
-       if (tsk_cache_hot) {
-               schedstat_inc(p, se.nr_failed_migrations_hot);
-               return 0;
-       }
-       return 1;
-}
-
-static unsigned long
-balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             unsigned long max_load_move, struct sched_domain *sd,
-             enum cpu_idle_type idle, int *all_pinned,
-             int *this_best_prio, struct rq_iterator *iterator)
-{
-       int loops = 0, pulled = 0, pinned = 0;
-       struct task_struct *p;
-       long rem_load_move = max_load_move;
-
-       if (max_load_move == 0)
-               goto out;
-
-       pinned = 1;
-
-       /*
-        * Start the load-balancing iterator:
-        */
-       p = iterator->start(iterator->arg);
-next:
-       if (!p || loops++ > sysctl_sched_nr_migrate)
-               goto out;
-
-       if ((p->se.load.weight >> 1) > rem_load_move ||
-           !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-               p = iterator->next(iterator->arg);
-               goto next;
-       }
-
-       pull_task(busiest, p, this_rq, this_cpu);
-       pulled++;
-       rem_load_move -= p->se.load.weight;
-
-#ifdef CONFIG_PREEMPT
-       /*
-        * NEWIDLE balancing is a source of latency, so preemptible kernels
-        * will stop after the first task is pulled to minimize the critical
-        * section.
-        */
-       if (idle == CPU_NEWLY_IDLE)
-               goto out;
-#endif
-
-       /*
-        * We only want to steal up to the prescribed amount of weighted load.
-        */
-       if (rem_load_move > 0) {
-               if (p->prio < *this_best_prio)
-                       *this_best_prio = p->prio;
-               p = iterator->next(iterator->arg);
-               goto next;
-       }
-out:
-       /*
-        * Right now, this is one of only two places pull_task() is called,
-        * so we can safely collect pull_task() stats here rather than
-        * inside pull_task().
-        */
-       schedstat_add(sd, lb_gained[idle], pulled);
-
-       if (all_pinned)
-               *all_pinned = pinned;
-
-       return max_load_move - rem_load_move;
-}
-
-/*
- * move_tasks tries to move up to max_load_move weighted load from busiest to
- * this_rq, as part of a balancing operation within domain "sd".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                     unsigned long max_load_move,
-                     struct sched_domain *sd, enum cpu_idle_type idle,
-                     int *all_pinned)
-{
-       const struct sched_class *class = sched_class_highest;
-       unsigned long total_load_moved = 0;
-       int this_best_prio = this_rq->curr->prio;
-
-       do {
-               total_load_moved +=
-                       class->load_balance(this_rq, this_cpu, busiest,
-                               max_load_move - total_load_moved,
-                               sd, idle, all_pinned, &this_best_prio);
-               class = class->next;
-
-#ifdef CONFIG_PREEMPT
-               /*
-                * NEWIDLE balancing is a source of latency, so preemptible
-                * kernels will stop after the first task is pulled to minimize
-                * the critical section.
-                */
-               if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
-                       break;
-#endif
-       } while (class && max_load_move > total_load_moved);
-
-       return total_load_moved > 0;
-}
-
-static int
-iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                  struct sched_domain *sd, enum cpu_idle_type idle,
-                  struct rq_iterator *iterator)
-{
-       struct task_struct *p = iterator->start(iterator->arg);
-       int pinned = 0;
-
-       while (p) {
-               if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
-                       pull_task(busiest, p, this_rq, this_cpu);
-                       /*
-                        * Right now, this is only the second place pull_task()
-                        * is called, so we can safely collect pull_task()
-                        * stats here rather than inside pull_task().
-                        */
-                       schedstat_inc(sd, lb_gained[idle]);
-
-                       return 1;
-               }
-               p = iterator->next(iterator->arg);
-       }
-
-       return 0;
-}
-
-/*
- * move_one_task tries to move exactly one task from busiest to this_rq, as
- * part of active balancing operations within "domain".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
-static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                        struct sched_domain *sd, enum cpu_idle_type idle)
-{
-       const struct sched_class *class;
-
-       for_each_class(class) {
-               if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
-                       return 1;
-       }
-
-       return 0;
-}
-/********** Helpers for find_busiest_group ************************/
-/*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- *             during load balancing.
- */
-struct sd_lb_stats {
-       struct sched_group *busiest; /* Busiest group in this sd */
-       struct sched_group *this;  /* Local group in this sd */
-       unsigned long total_load;  /* Total load of all groups in sd */
-       unsigned long total_pwr;   /*   Total power of all groups in sd */
-       unsigned long avg_load;    /* Average load across all groups in sd */
-
-       /** Statistics of this group */
-       unsigned long this_load;
-       unsigned long this_load_per_task;
-       unsigned long this_nr_running;
-
-       /* Statistics of the busiest group */
-       unsigned long max_load;
-       unsigned long busiest_load_per_task;
-       unsigned long busiest_nr_running;
-
-       int group_imb; /* Is there imbalance in this sd */
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-       int power_savings_balance; /* Is powersave balance needed for this sd */
-       struct sched_group *group_min; /* Least loaded group in sd */
-       struct sched_group *group_leader; /* Group which relieves group_min */
-       unsigned long min_load_per_task; /* load_per_task in group_min */
-       unsigned long leader_nr_running; /* Nr running of group_leader */
-       unsigned long min_nr_running; /* Nr running of group_min */
-#endif
-};
-
-/*
- * sg_lb_stats - stats of a sched_group required for load_balancing
- */
-struct sg_lb_stats {
-       unsigned long avg_load; /*Avg load across the CPUs of the group */
-       unsigned long group_load; /* Total load over the CPUs of the group */
-       unsigned long sum_nr_running; /* Nr tasks running in the group */
-       unsigned long sum_weighted_load; /* Weighted load of group's tasks */
-       unsigned long group_capacity;
-       int group_imb; /* Is there an imbalance in the group ? */
-};
-
-/**
- * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
- * @group: The group whose first cpu is to be returned.
- */
-static inline unsigned int group_first_cpu(struct sched_group *group)
-{
-       return cpumask_first(sched_group_cpus(group));
-}
-
-/**
- * get_sd_load_idx - Obtain the load index for a given sched domain.
- * @sd: The sched_domain whose load_idx is to be obtained.
- * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
- */
-static inline int get_sd_load_idx(struct sched_domain *sd,
-                                       enum cpu_idle_type idle)
-{
-       int load_idx;
-
-       switch (idle) {
-       case CPU_NOT_IDLE:
-               load_idx = sd->busy_idx;
-               break;
-
-       case CPU_NEWLY_IDLE:
-               load_idx = sd->newidle_idx;
-               break;
-       default:
-               load_idx = sd->idle_idx;
-               break;
-       }
-
-       return load_idx;
-}
-
-
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-/**
- * init_sd_power_savings_stats - Initialize power savings statistics for
- * the given sched_domain, during load balancing.
- *
- * @sd: Sched domain whose power-savings statistics are to be initialized.
- * @sds: Variable containing the statistics for sd.
- * @idle: Idle status of the CPU at which we're performing load-balancing.
- */
-static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
-{
-       /*
-        * Busy processors will not participate in power savings
-        * balance.
-        */
-       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-               sds->power_savings_balance = 0;
-       else {
-               sds->power_savings_balance = 1;
-               sds->min_nr_running = ULONG_MAX;
-               sds->leader_nr_running = 0;
-       }
-}
-
-/**
- * update_sd_power_savings_stats - Update the power saving stats for a
- * sched_domain while performing load balancing.
- *
- * @group: sched_group belonging to the sched_domain under consideration.
- * @sds: Variable containing the statistics of the sched_domain
- * @local_group: Does group contain the CPU for which we're performing
- *             load balancing ?
- * @sgs: Variable containing the statistics of the group.
- */
-static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
-{
-
-       if (!sds->power_savings_balance)
-               return;
-
-       /*
-        * If the local group is idle or completely loaded
-        * no need to do power savings balance at this domain
-        */
-       if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
-                               !sds->this_nr_running))
-               sds->power_savings_balance = 0;
-
-       /*
-        * If a group is already running at full capacity or idle,
-        * don't include that group in power savings calculations
-        */
-       if (!sds->power_savings_balance ||
-               sgs->sum_nr_running >= sgs->group_capacity ||
-               !sgs->sum_nr_running)
-               return;
-
-       /*
-        * Calculate the group which has the least non-idle load.
-        * This is the group from where we need to pick up the load
-        * for saving power
-        */
-       if ((sgs->sum_nr_running < sds->min_nr_running) ||
-           (sgs->sum_nr_running == sds->min_nr_running &&
-            group_first_cpu(group) > group_first_cpu(sds->group_min))) {
-               sds->group_min = group;
-               sds->min_nr_running = sgs->sum_nr_running;
-               sds->min_load_per_task = sgs->sum_weighted_load /
-                                               sgs->sum_nr_running;
-       }
-
-       /*
-        * Calculate the group which is almost near its
-        * capacity but still has some space to pick up some load
-        * from other group and save more power
-        */
-       if (sgs->sum_nr_running + 1 > sgs->group_capacity)
-               return;
-
-       if (sgs->sum_nr_running > sds->leader_nr_running ||
-           (sgs->sum_nr_running == sds->leader_nr_running &&
-            group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
-               sds->group_leader = group;
-               sds->leader_nr_running = sgs->sum_nr_running;
-       }
-}
-
-/**
- * check_power_save_busiest_group - see if there is potential for some power-savings balance
- * @sds: Variable containing the statistics of the sched_domain
- *     under consideration.
- * @this_cpu: Cpu at which we're currently performing load-balancing.
- * @imbalance: Variable to store the imbalance.
- *
- * Description:
- * Check if we have potential to perform some power-savings balance.
- * If yes, set the busiest group to be the least loaded group in the
- * sched_domain, so that it's CPUs can be put to idle.
- *
- * Returns 1 if there is potential to perform power-savings balance.
- * Else returns 0.
- */
-static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
-{
-       if (!sds->power_savings_balance)
-               return 0;
-
-       if (sds->this != sds->group_leader ||
-                       sds->group_leader == sds->group_min)
-               return 0;
-
-       *imbalance = sds->min_load_per_task;
-       sds->busiest = sds->group_min;
-
-       return 1;
-
-}
-#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
-{
-       return;
-}
-
-static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
-{
-       return;
-}
-
-static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
-{
-       return 0;
-}
-#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-
-
-unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
-{
-       return SCHED_LOAD_SCALE;
-}
-
-unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
-{
-       return default_scale_freq_power(sd, cpu);
-}
-
-unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
-{
-       unsigned long weight = cpumask_weight(sched_domain_span(sd));
-       unsigned long smt_gain = sd->smt_gain;
-
-       smt_gain /= weight;
-
-       return smt_gain;
-}
-
-unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
-{
-       return default_scale_smt_power(sd, cpu);
-}
-
-unsigned long scale_rt_power(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       u64 total, available;
-
-       sched_avg_update(rq);
-
-       total = sched_avg_period() + (rq->clock - rq->age_stamp);
-       available = total - rq->rt_avg;
-
-       if (unlikely((s64)total < SCHED_LOAD_SCALE))
-               total = SCHED_LOAD_SCALE;
-
-       total >>= SCHED_LOAD_SHIFT;
-
-       return div_u64(available, total);
-}
-
-static void update_cpu_power(struct sched_domain *sd, int cpu)
-{
-       unsigned long weight = cpumask_weight(sched_domain_span(sd));
-       unsigned long power = SCHED_LOAD_SCALE;
-       struct sched_group *sdg = sd->groups;
-
-       if (sched_feat(ARCH_POWER))
-               power *= arch_scale_freq_power(sd, cpu);
-       else
-               power *= default_scale_freq_power(sd, cpu);
-
-       power >>= SCHED_LOAD_SHIFT;
-
-       if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
-               if (sched_feat(ARCH_POWER))
-                       power *= arch_scale_smt_power(sd, cpu);
-               else
-                       power *= default_scale_smt_power(sd, cpu);
-
-               power >>= SCHED_LOAD_SHIFT;
-       }
-
-       power *= scale_rt_power(cpu);
-       power >>= SCHED_LOAD_SHIFT;
-
-       if (!power)
-               power = 1;
-
-       sdg->cpu_power = power;
-}
-
-static void update_group_power(struct sched_domain *sd, int cpu)
-{
-       struct sched_domain *child = sd->child;
-       struct sched_group *group, *sdg = sd->groups;
-       unsigned long power;
-
-       if (!child) {
-               update_cpu_power(sd, cpu);
-               return;
-       }
-
-       power = 0;
-
-       group = child->groups;
-       do {
-               power += group->cpu_power;
-               group = group->next;
-       } while (group != child->groups);
-
-       sdg->cpu_power = power;
-}
-
-/**
- * update_sg_lb_stats - Update sched_group's statistics for load balancing.
- * @sd: The sched_domain whose statistics are to be updated.
- * @group: sched_group whose statistics are to be updated.
- * @this_cpu: Cpu for which load balance is currently performed.
- * @idle: Idle status of this_cpu
- * @load_idx: Load index of sched_domain of this_cpu for load calc.
- * @sd_idle: Idle status of the sched_domain containing group.
- * @local_group: Does group contain this_cpu.
- * @cpus: Set of cpus considered for load balancing.
- * @balance: Should we balance.
- * @sgs: variable to hold the statistics for this group.
- */
-static inline void update_sg_lb_stats(struct sched_domain *sd,
-                       struct sched_group *group, int this_cpu,
-                       enum cpu_idle_type idle, int load_idx, int *sd_idle,
-                       int local_group, const struct cpumask *cpus,
-                       int *balance, struct sg_lb_stats *sgs)
-{
-       unsigned long load, max_cpu_load, min_cpu_load;
-       int i;
-       unsigned int balance_cpu = -1, first_idle_cpu = 0;
-       unsigned long sum_avg_load_per_task;
-       unsigned long avg_load_per_task;
-
-       if (local_group) {
-               balance_cpu = group_first_cpu(group);
-               if (balance_cpu == this_cpu)
-                       update_group_power(sd, this_cpu);
-       }
-
-       /* Tally up the load of all CPUs in the group */
-       sum_avg_load_per_task = avg_load_per_task = 0;
-       max_cpu_load = 0;
-       min_cpu_load = ~0UL;
-
-       for_each_cpu_and(i, sched_group_cpus(group), cpus) {
-               struct rq *rq = cpu_rq(i);
-
-               if (*sd_idle && rq->nr_running)
-                       *sd_idle = 0;
-
-               /* Bias balancing toward cpus of our domain */
-               if (local_group) {
-                       if (idle_cpu(i) && !first_idle_cpu) {
-                               first_idle_cpu = 1;
-                               balance_cpu = i;
-                       }
-
-                       load = target_load(i, load_idx);
-               } else {
-                       load = source_load(i, load_idx);
-                       if (load > max_cpu_load)
-                               max_cpu_load = load;
-                       if (min_cpu_load > load)
-                               min_cpu_load = load;
-               }
-
-               sgs->group_load += load;
-               sgs->sum_nr_running += rq->nr_running;
-               sgs->sum_weighted_load += weighted_cpuload(i);
-
-               sum_avg_load_per_task += cpu_avg_load_per_task(i);
-       }
-
-       /*
-        * First idle cpu or the first cpu(busiest) in this sched group
-        * is eligible for doing load balancing at this and above
-        * domains. In the newly idle case, we will allow all the cpu's
-        * to do the newly idle load balance.
-        */
-       if (idle != CPU_NEWLY_IDLE && local_group &&
-           balance_cpu != this_cpu && balance) {
-               *balance = 0;
-               return;
-       }
-
-       /* Adjust by relative CPU power of the group */
-       sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
-
-
-       /*
-        * Consider the group unbalanced when the imbalance is larger
-        * than the average weight of two tasks.
-        *
-        * APZ: with cgroup the avg task weight can vary wildly and
-        *      might not be a suitable number - should we keep a
-        *      normalized nr_running number somewhere that negates
-        *      the hierarchy?
-        */
-       avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
-               group->cpu_power;
-
-       if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
-               sgs->group_imb = 1;
-
-       sgs->group_capacity =
-               DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
-}
-
-/**
- * update_sd_lb_stats - Update sched_group's statistics for load balancing.
- * @sd: sched_domain whose statistics are to be updated.
- * @this_cpu: Cpu for which load balance is currently performed.
- * @idle: Idle status of this_cpu
- * @sd_idle: Idle status of the sched_domain containing group.
- * @cpus: Set of cpus considered for load balancing.
- * @balance: Should we balance.
- * @sds: variable to hold the statistics for this sched_domain.
- */
-static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
-                       enum cpu_idle_type idle, int *sd_idle,
-                       const struct cpumask *cpus, int *balance,
-                       struct sd_lb_stats *sds)
-{
-       struct sched_domain *child = sd->child;
-       struct sched_group *group = sd->groups;
-       struct sg_lb_stats sgs;
-       int load_idx, prefer_sibling = 0;
-
-       if (child && child->flags & SD_PREFER_SIBLING)
-               prefer_sibling = 1;
-
-       init_sd_power_savings_stats(sd, sds, idle);
-       load_idx = get_sd_load_idx(sd, idle);
-
-       do {
-               int local_group;
-
-               local_group = cpumask_test_cpu(this_cpu,
-                                              sched_group_cpus(group));
-               memset(&sgs, 0, sizeof(sgs));
-               update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
-                               local_group, cpus, balance, &sgs);
-
-               if (local_group && balance && !(*balance))
-                       return;
-
-               sds->total_load += sgs.group_load;
-               sds->total_pwr += group->cpu_power;
-
-               /*
-                * In case the child domain prefers tasks go to siblings
-                * first, lower the group capacity to one so that we'll try
-                * and move all the excess tasks away.
-                */
-               if (prefer_sibling)
-                       sgs.group_capacity = min(sgs.group_capacity, 1UL);
-
-               if (local_group) {
-                       sds->this_load = sgs.avg_load;
-                       sds->this = group;
-                       sds->this_nr_running = sgs.sum_nr_running;
-                       sds->this_load_per_task = sgs.sum_weighted_load;
-               } else if (sgs.avg_load > sds->max_load &&
-                          (sgs.sum_nr_running > sgs.group_capacity ||
-                               sgs.group_imb)) {
-                       sds->max_load = sgs.avg_load;
-                       sds->busiest = group;
-                       sds->busiest_nr_running = sgs.sum_nr_running;
-                       sds->busiest_load_per_task = sgs.sum_weighted_load;
-                       sds->group_imb = sgs.group_imb;
-               }
-
-               update_sd_power_savings_stats(group, sds, local_group, &sgs);
-               group = group->next;
-       } while (group != sd->groups);
-}
-
-/**
- * fix_small_imbalance - Calculate the minor imbalance that exists
- *                     amongst the groups of a sched_domain, during
- *                     load balancing.
- * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
- * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
- * @imbalance: Variable to store the imbalance.
- */
-static inline void fix_small_imbalance(struct sd_lb_stats *sds,
-                               int this_cpu, unsigned long *imbalance)
-{
-       unsigned long tmp, pwr_now = 0, pwr_move = 0;
-       unsigned int imbn = 2;
-
-       if (sds->this_nr_running) {
-               sds->this_load_per_task /= sds->this_nr_running;
-               if (sds->busiest_load_per_task >
-                               sds->this_load_per_task)
-                       imbn = 1;
-       } else
-               sds->this_load_per_task =
-                       cpu_avg_load_per_task(this_cpu);
-
-       if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
-                       sds->busiest_load_per_task * imbn) {
-               *imbalance = sds->busiest_load_per_task;
-               return;
-       }
-
-       /*
-        * OK, we don't have enough imbalance to justify moving tasks,
-        * however we may be able to increase total CPU power used by
-        * moving them.
-        */
-
-       pwr_now += sds->busiest->cpu_power *
-                       min(sds->busiest_load_per_task, sds->max_load);
-       pwr_now += sds->this->cpu_power *
-                       min(sds->this_load_per_task, sds->this_load);
-       pwr_now /= SCHED_LOAD_SCALE;
-
-       /* Amount of load we'd subtract */
-       tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-               sds->busiest->cpu_power;
-       if (sds->max_load > tmp)
-               pwr_move += sds->busiest->cpu_power *
-                       min(sds->busiest_load_per_task, sds->max_load - tmp);
-
-       /* Amount of load we'd add */
-       if (sds->max_load * sds->busiest->cpu_power <
-               sds->busiest_load_per_task * SCHED_LOAD_SCALE)
-               tmp = (sds->max_load * sds->busiest->cpu_power) /
-                       sds->this->cpu_power;
-       else
-               tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-                       sds->this->cpu_power;
-       pwr_move += sds->this->cpu_power *
-                       min(sds->this_load_per_task, sds->this_load + tmp);
-       pwr_move /= SCHED_LOAD_SCALE;
-
-       /* Move if we gain throughput */
-       if (pwr_move > pwr_now)
-               *imbalance = sds->busiest_load_per_task;
-}
-
-/**
- * calculate_imbalance - Calculate the amount of imbalance present within the
- *                      groups of a given sched_domain during load balance.
- * @sds: statistics of the sched_domain whose imbalance is to be calculated.
- * @this_cpu: Cpu for which currently load balance is being performed.
- * @imbalance: The variable to store the imbalance.
- */
-static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
-               unsigned long *imbalance)
-{
-       unsigned long max_pull;
-       /*
-        * In the presence of smp nice balancing, certain scenarios can have
-        * max load less than avg load(as we skip the groups at or below
-        * its cpu_power, while calculating max_load..)
-        */
-       if (sds->max_load < sds->avg_load) {
-               *imbalance = 0;
-               return fix_small_imbalance(sds, this_cpu, imbalance);
-       }
-
-       /* Don't want to pull so many tasks that a group would go idle */
-       max_pull = min(sds->max_load - sds->avg_load,
-                       sds->max_load - sds->busiest_load_per_task);
-
-       /* How much load to actually move to equalise the imbalance */
-       *imbalance = min(max_pull * sds->busiest->cpu_power,
-               (sds->avg_load - sds->this_load) * sds->this->cpu_power)
-                       / SCHED_LOAD_SCALE;
-
-       /*
-        * if *imbalance is less than the average load per runnable task
-        * there is no gaurantee that any tasks will be moved so we'll have
-        * a think about bumping its value to force at least one task to be
-        * moved
-        */
-       if (*imbalance < sds->busiest_load_per_task)
-               return fix_small_imbalance(sds, this_cpu, imbalance);
-
-}
-/******* find_busiest_group() helpers end here *********************/
-
-/**
- * find_busiest_group - Returns the busiest group within the sched_domain
- * if there is an imbalance. If there isn't an imbalance, and
- * the user has opted for power-savings, it returns a group whose
- * CPUs can be put to idle by rebalancing those tasks elsewhere, if
- * such a group exists.
- *
- * Also calculates the amount of weighted load which should be moved
- * to restore balance.
- *
- * @sd: The sched_domain whose busiest group is to be returned.
- * @this_cpu: The cpu for which load balancing is currently being performed.
- * @imbalance: Variable which stores amount of weighted load which should
- *             be moved to restore balance/put a group to idle.
- * @idle: The idle status of this_cpu.
- * @sd_idle: The idleness of sd
- * @cpus: The set of CPUs under consideration for load-balancing.
- * @balance: Pointer to a variable indicating if this_cpu
- *     is the appropriate cpu to perform load balancing at this_level.
- *
- * Returns:    - the busiest group if imbalance exists.
- *             - If no imbalance and user has opted for power-savings balance,
- *                return the least loaded group whose CPUs can be
- *                put to idle by rebalancing its tasks onto our group.
- */
-static struct sched_group *
-find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum cpu_idle_type idle,
-                  int *sd_idle, const struct cpumask *cpus, int *balance)
-{
-       struct sd_lb_stats sds;
-
-       memset(&sds, 0, sizeof(sds));
-
-       /*
-        * Compute the various statistics relavent for load balancing at
-        * this level.
-        */
-       update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
-                                       balance, &sds);
-
-       /* Cases where imbalance does not exist from POV of this_cpu */
-       /* 1) this_cpu is not the appropriate cpu to perform load balancing
-        *    at this level.
-        * 2) There is no busy sibling group to pull from.
-        * 3) This group is the busiest group.
-        * 4) This group is more busy than the avg busieness at this
-        *    sched_domain.
-        * 5) The imbalance is within the specified limit.
-        * 6) Any rebalance would lead to ping-pong
-        */
-       if (balance && !(*balance))
-               goto ret;
-
-       if (!sds.busiest || sds.busiest_nr_running == 0)
-               goto out_balanced;
-
-       if (sds.this_load >= sds.max_load)
-               goto out_balanced;
-
-       sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
-
-       if (sds.this_load >= sds.avg_load)
-               goto out_balanced;
-
-       if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
-               goto out_balanced;
-
-       sds.busiest_load_per_task /= sds.busiest_nr_running;
-       if (sds.group_imb)
-               sds.busiest_load_per_task =
-                       min(sds.busiest_load_per_task, sds.avg_load);
-
-       /*
-        * We're trying to get all the cpus to the average_load, so we don't
-        * want to push ourselves above the average load, nor do we wish to
-        * reduce the max loaded cpu below the average load, as either of these
-        * actions would just result in more rebalancing later, and ping-pong
-        * tasks around. Thus we look for the minimum possible imbalance.
-        * Negative imbalances (*we* are more loaded than anyone else) will
-        * be counted as no imbalance for these purposes -- we can't fix that
-        * by pulling tasks to us. Be careful of negative numbers as they'll
-        * appear as very large values with unsigned longs.
-        */
-       if (sds.max_load <= sds.busiest_load_per_task)
-               goto out_balanced;
-
-       /* Looks like there is an imbalance. Compute it */
-       calculate_imbalance(&sds, this_cpu, imbalance);
-       return sds.busiest;
-
-out_balanced:
-       /*
-        * There is no obvious imbalance. But check if we can do some balancing
-        * to save power.
-        */
-       if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
-               return sds.busiest;
-ret:
-       *imbalance = 0;
-       return NULL;
-}
-
-/*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
- */
-static struct rq *
-find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
-                  unsigned long imbalance, const struct cpumask *cpus)
-{
-       struct rq *busiest = NULL, *rq;
-       unsigned long max_load = 0;
-       int i;
-
-       for_each_cpu(i, sched_group_cpus(group)) {
-               unsigned long power = power_of(i);
-               unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
-               unsigned long wl;
-
-               if (!cpumask_test_cpu(i, cpus))
-                       continue;
-
-               rq = cpu_rq(i);
-               wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
-               wl /= power;
-
-               if (capacity && rq->nr_running == 1 && wl > imbalance)
-                       continue;
-
-               if (wl > max_load) {
-                       max_load = wl;
-                       busiest = rq;
-               }
-       }
-
-       return busiest;
-}
-
-/*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
-#define MAX_PINNED_INTERVAL    512
-
-/* Working cpumask for load_balance and load_balance_newidle. */
-static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
-
-/*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
-static int load_balance(int this_cpu, struct rq *this_rq,
-                       struct sched_domain *sd, enum cpu_idle_type idle,
-                       int *balance)
-{
-       int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
-       struct sched_group *group;
-       unsigned long imbalance;
-       struct rq *busiest;
-       unsigned long flags;
-       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
-
-       cpumask_copy(cpus, cpu_online_mask);
-
-       /*
-        * When power savings policy is enabled for the parent domain, idle
-        * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as CPU_IDLE, instead of
-        * portraying it as CPU_NOT_IDLE.
-        */
-       if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               sd_idle = 1;
-
-       schedstat_inc(sd, lb_count[idle]);
-
-redo:
-       update_shares(sd);
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
-                                  cpus, balance);
-
-       if (*balance == 0)
-               goto out_balanced;
-
-       if (!group) {
-               schedstat_inc(sd, lb_nobusyg[idle]);
-               goto out_balanced;
-       }
-
-       busiest = find_busiest_queue(group, idle, imbalance, cpus);
-       if (!busiest) {
-               schedstat_inc(sd, lb_nobusyq[idle]);
-               goto out_balanced;
-       }
-
-       BUG_ON(busiest == this_rq);
-
-       schedstat_add(sd, lb_imbalance[idle], imbalance);
-
-       ld_moved = 0;
-       if (busiest->nr_running > 1) {
-               /*
-                * Attempt to move tasks. If find_busiest_group has found
-                * an imbalance but busiest->nr_running <= 1, the group is
-                * still unbalanced. ld_moved simply stays zero, so it is
-                * correctly treated as an imbalance.
-                */
-               local_irq_save(flags);
-               double_rq_lock(this_rq, busiest);
-               ld_moved = move_tasks(this_rq, this_cpu, busiest,
-                                     imbalance, sd, idle, &all_pinned);
-               double_rq_unlock(this_rq, busiest);
-               local_irq_restore(flags);
-
-               /*
-                * some other cpu did the load balance for us.
-                */
-               if (ld_moved && this_cpu != smp_processor_id())
-                       resched_cpu(this_cpu);
-
-               /* All tasks on this runqueue were pinned by CPU affinity */
-               if (unlikely(all_pinned)) {
-                       cpumask_clear_cpu(cpu_of(busiest), cpus);
-                       if (!cpumask_empty(cpus))
-                               goto redo;
-                       goto out_balanced;
-               }
-       }
-
-       if (!ld_moved) {
-               schedstat_inc(sd, lb_failed[idle]);
-               sd->nr_balance_failed++;
-
-               if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
-
-                       spin_lock_irqsave(&busiest->lock, flags);
-
-                       /* don't kick the migration_thread, if the curr
-                        * task on busiest cpu can't be moved to this_cpu
-                        */
-                       if (!cpumask_test_cpu(this_cpu,
-                                             &busiest->curr->cpus_allowed)) {
-                               spin_unlock_irqrestore(&busiest->lock, flags);
-                               all_pinned = 1;
-                               goto out_one_pinned;
-                       }
-
-                       if (!busiest->active_balance) {
-                               busiest->active_balance = 1;
-                               busiest->push_cpu = this_cpu;
-                               active_balance = 1;
-                       }
-                       spin_unlock_irqrestore(&busiest->lock, flags);
-                       if (active_balance)
-                               wake_up_process(busiest->migration_thread);
-
-                       /*
-                        * We've kicked active balancing, reset the failure
-                        * counter.
-                        */
-                       sd->nr_balance_failed = sd->cache_nice_tries+1;
-               }
-       } else
-               sd->nr_balance_failed = 0;
-
-       if (likely(!active_balance)) {
-               /* We were unbalanced, so reset the balancing interval */
-               sd->balance_interval = sd->min_interval;
-       } else {
-               /*
-                * If we've begun active balancing, start to back off. This
-                * case may not be covered by the all_pinned logic if there
-                * is only 1 task on the busy runqueue (because we don't call
-                * move_tasks).
-                */
-               if (sd->balance_interval < sd->max_interval)
-                       sd->balance_interval *= 2;
-       }
-
-       if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-
-       goto out;
-
-out_balanced:
-       schedstat_inc(sd, lb_balanced[idle]);
-
-       sd->nr_balance_failed = 0;
-
-out_one_pinned:
-       /* tune up the balancing interval */
-       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
-                       (sd->balance_interval < sd->max_interval))
-               sd->balance_interval *= 2;
-
-       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-       else
-               ld_moved = 0;
-out:
-       if (ld_moved)
-               update_shares(sd);
-       return ld_moved;
-}
-
-/*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- *
- * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
- * this_rq is locked.
- */
-static int
-load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
-{
-       struct sched_group *group;
-       struct rq *busiest = NULL;
-       unsigned long imbalance;
-       int ld_moved = 0;
-       int sd_idle = 0;
-       int all_pinned = 0;
-       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
-
-       cpumask_copy(cpus, cpu_online_mask);
-
-       /*
-        * When power savings policy is enabled for the parent domain, idle
-        * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as IDLE, instead of
-        * portraying it as CPU_NOT_IDLE.
-        */
-       if (sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               sd_idle = 1;
-
-       schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
-redo:
-       update_shares_locked(this_rq, sd);
-       group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
-                                  &sd_idle, cpus, NULL);
-       if (!group) {
-               schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
-               goto out_balanced;
-       }
-
-       busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
-       if (!busiest) {
-               schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
-               goto out_balanced;
-       }
-
-       BUG_ON(busiest == this_rq);
-
-       schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
-
-       ld_moved = 0;
-       if (busiest->nr_running > 1) {
-               /* Attempt to move tasks */
-               double_lock_balance(this_rq, busiest);
-               /* this_rq->clock is already updated */
-               update_rq_clock(busiest);
-               ld_moved = move_tasks(this_rq, this_cpu, busiest,
-                                       imbalance, sd, CPU_NEWLY_IDLE,
-                                       &all_pinned);
-               double_unlock_balance(this_rq, busiest);
-
-               if (unlikely(all_pinned)) {
-                       cpumask_clear_cpu(cpu_of(busiest), cpus);
-                       if (!cpumask_empty(cpus))
-                               goto redo;
-               }
-       }
-
-       if (!ld_moved) {
-               int active_balance = 0;
-
-               schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
-               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-                   !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-                       return -1;
-
-               if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
-                       return -1;
-
-               if (sd->nr_balance_failed++ < 2)
-                       return -1;
-
-               /*
-                * The only task running in a non-idle cpu can be moved to this
-                * cpu in an attempt to completely freeup the other CPU
-                * package. The same method used to move task in load_balance()
-                * have been extended for load_balance_newidle() to speedup
-                * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
-                *
-                * The package power saving logic comes from
-                * find_busiest_group().  If there are no imbalance, then
-                * f_b_g() will return NULL.  However when sched_mc={1,2} then
-                * f_b_g() will select a group from which a running task may be
-                * pulled to this cpu in order to make the other package idle.
-                * If there is no opportunity to make a package idle and if
-                * there are no imbalance, then f_b_g() will return NULL and no
-                * action will be taken in load_balance_newidle().
-                *
-                * Under normal task pull operation due to imbalance, there
-                * will be more than one task in the source run queue and
-                * move_tasks() will succeed.  ld_moved will be true and this
-                * active balance code will not be triggered.
-                */
-
-               /* Lock busiest in correct order while this_rq is held */
-               double_lock_balance(this_rq, busiest);
-
-               /*
-                * don't kick the migration_thread, if the curr
-                * task on busiest cpu can't be moved to this_cpu
-                */
-               if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
-                       double_unlock_balance(this_rq, busiest);
-                       all_pinned = 1;
-                       return ld_moved;
-               }
-
-               if (!busiest->active_balance) {
-                       busiest->active_balance = 1;
-                       busiest->push_cpu = this_cpu;
-                       active_balance = 1;
-               }
-
-               double_unlock_balance(this_rq, busiest);
-               /*
-                * Should not call ttwu while holding a rq->lock
-                */
-               spin_unlock(&this_rq->lock);
-               if (active_balance)
-                       wake_up_process(busiest->migration_thread);
-               spin_lock(&this_rq->lock);
-
-       } else
-               sd->nr_balance_failed = 0;
-
-       update_shares_locked(this_rq, sd);
-       return ld_moved;
-
-out_balanced:
-       schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
-       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               return -1;
-       sd->nr_balance_failed = 0;
-
-       return 0;
-}
-
-/*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
-static void idle_balance(int this_cpu, struct rq *this_rq)
-{
-       struct sched_domain *sd;
-       int pulled_task = 0;
-       unsigned long next_balance = jiffies + HZ;
-
-       this_rq->idle_stamp = this_rq->clock;
-
-       if (this_rq->avg_idle < sysctl_sched_migration_cost)
-               return;
-
-       for_each_domain(this_cpu, sd) {
-               unsigned long interval;
-
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
-
-               if (sd->flags & SD_BALANCE_NEWIDLE)
-                       /* If we've pulled tasks over stop searching: */
-                       pulled_task = load_balance_newidle(this_cpu, this_rq,
-                                                          sd);
-
-               interval = msecs_to_jiffies(sd->balance_interval);
-               if (time_after(next_balance, sd->last_balance + interval))
-                       next_balance = sd->last_balance + interval;
-               if (pulled_task) {
-                       this_rq->idle_stamp = 0;
-                       break;
-               }
-       }
-       if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
-               /*
-                * We are going idle. next_balance may be set based on
-                * a busy processor. So reset next_balance.
-                */
-               this_rq->next_balance = next_balance;
-       }
-}
-
-/*
- * active_load_balance is run by migration threads. It pushes running tasks
- * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
- * running on each physical CPU where possible, and avoids physical /
- * logical imbalances.
- *
- * Called with busiest_rq locked.
- */
-static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
-{
-       int target_cpu = busiest_rq->push_cpu;
-       struct sched_domain *sd;
-       struct rq *target_rq;
-
-       /* Is there any task to move? */
-       if (busiest_rq->nr_running <= 1)
-               return;
-
-       target_rq = cpu_rq(target_cpu);
-
-       /*
-        * This condition is "impossible", if it occurs
-        * we need to fix it. Originally reported by
-        * Bjorn Helgaas on a 128-cpu setup.
-        */
-       BUG_ON(busiest_rq == target_rq);
-
-       /* move a task from busiest_rq to target_rq */
-       double_lock_balance(busiest_rq, target_rq);
-       update_rq_clock(busiest_rq);
-       update_rq_clock(target_rq);
-
-       /* Search for an sd spanning us and the target CPU. */
-       for_each_domain(target_cpu, sd) {
-               if ((sd->flags & SD_LOAD_BALANCE) &&
-                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
-                               break;
-       }
-
-       if (likely(sd)) {
-               schedstat_inc(sd, alb_count);
-
-               if (move_one_task(target_rq, target_cpu, busiest_rq,
-                                 sd, CPU_IDLE))
-                       schedstat_inc(sd, alb_pushed);
-               else
-                       schedstat_inc(sd, alb_failed);
-       }
-       double_unlock_balance(busiest_rq, target_rq);
-}
-
-#ifdef CONFIG_NO_HZ
-static struct {
-       atomic_t load_balancer;
-       cpumask_var_t cpu_mask;
-       cpumask_var_t ilb_grp_nohz_mask;
-} nohz ____cacheline_aligned = {
-       .load_balancer = ATOMIC_INIT(-1),
-};
-
-int get_nohz_load_balancer(void)
-{
-       return atomic_read(&nohz.load_balancer);
-}
-
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-/**
- * lowest_flag_domain - Return lowest sched_domain containing flag.
- * @cpu:       The cpu whose lowest level of sched domain is to
- *             be returned.
- * @flag:      The flag to check for the lowest sched_domain
- *             for the given cpu.
- *
- * Returns the lowest sched_domain of a cpu which contains the given flag.
- */
-static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
-{
-       struct sched_domain *sd;
-
-       for_each_domain(cpu, sd)
-               if (sd && (sd->flags & flag))
-                       break;
-
-       return sd;
-}
-
-/**
- * for_each_flag_domain - Iterates over sched_domains containing the flag.
- * @cpu:       The cpu whose domains we're iterating over.
- * @sd:                variable holding the value of the power_savings_sd
- *             for cpu.
- * @flag:      The flag to filter the sched_domains to be iterated.
- *
- * Iterates over all the scheduler domains for a given cpu that has the 'flag'
- * set, starting from the lowest sched_domain to the highest.
- */
-#define for_each_flag_domain(cpu, sd, flag) \
-       for (sd = lowest_flag_domain(cpu, flag); \
-               (sd && (sd->flags & flag)); sd = sd->parent)
-
-/**
- * is_semi_idle_group - Checks if the given sched_group is semi-idle.
- * @ilb_group: group to be checked for semi-idleness
- *
- * Returns:    1 if the group is semi-idle. 0 otherwise.
- *
- * We define a sched_group to be semi idle if it has atleast one idle-CPU
- * and atleast one non-idle CPU. This helper function checks if the given
- * sched_group is semi-idle or not.
- */
-static inline int is_semi_idle_group(struct sched_group *ilb_group)
-{
-       cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
-                                       sched_group_cpus(ilb_group));
-
-       /*
-        * A sched_group is semi-idle when it has atleast one busy cpu
-        * and atleast one idle cpu.
-        */
-       if (cpumask_empty(nohz.ilb_grp_nohz_mask))
-               return 0;
-
-       if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
-               return 0;
-
-       return 1;
-}
-/**
- * find_new_ilb - Finds the optimum idle load balancer for nomination.
- * @cpu:       The cpu which is nominating a new idle_load_balancer.
- *
- * Returns:    Returns the id of the idle load balancer if it exists,
- *             Else, returns >= nr_cpu_ids.
- *
- * This algorithm picks the idle load balancer such that it belongs to a
- * semi-idle powersavings sched_domain. The idea is to try and avoid
- * completely idle packages/cores just for the purpose of idle load balancing
- * when there are other idle cpu's which are better suited for that job.
- */
-static int find_new_ilb(int cpu)
-{
-       struct sched_domain *sd;
-       struct sched_group *ilb_group;
-
-       /*
-        * Have idle load balancer selection from semi-idle packages only
-        * when power-aware load balancing is enabled
-        */
-       if (!(sched_smt_power_savings || sched_mc_power_savings))
-               goto out_done;
-
-       /*
-        * Optimize for the case when we have no idle CPUs or only one
-        * idle CPU. Don't walk the sched_domain hierarchy in such cases
-        */
-       if (cpumask_weight(nohz.cpu_mask) < 2)
-               goto out_done;
-
-       for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
-               ilb_group = sd->groups;
-
-               do {
-                       if (is_semi_idle_group(ilb_group))
-                               return cpumask_first(nohz.ilb_grp_nohz_mask);
-
-                       ilb_group = ilb_group->next;
-
-               } while (ilb_group != sd->groups);
-       }
-
-out_done:
-       return cpumask_first(nohz.cpu_mask);
-}
-#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
-static inline int find_new_ilb(int call_cpu)
-{
-       return cpumask_first(nohz.cpu_mask);
-}
-#endif
-
-/*
- * This routine will try to nominate the ilb (idle load balancing)
- * owner among the cpus whose ticks are stopped. ilb owner will do the idle
- * load balancing on behalf of all those cpus. If all the cpus in the system
- * go into this tickless mode, then there will be no ilb owner (as there is
- * no need for one) and all the cpus will sleep till the next wakeup event
- * arrives...
- *
- * For the ilb owner, tick is not stopped. And this tick will be used
- * for idle load balancing. ilb owner will still be part of
- * nohz.cpu_mask..
- *
- * While stopping the tick, this cpu will become the ilb owner if there
- * is no other owner. And will be the owner till that cpu becomes busy
- * or if all cpus in the system stop their ticks at which point
- * there is no need for ilb owner.
- *
- * When the ilb owner becomes busy, it nominates another owner, during the
- * next busy scheduler_tick()
- */
-int select_nohz_load_balancer(int stop_tick)
-{
-       int cpu = smp_processor_id();
-
-       if (stop_tick) {
-               cpu_rq(cpu)->in_nohz_recently = 1;
-
-               if (!cpu_active(cpu)) {
-                       if (atomic_read(&nohz.load_balancer) != cpu)
-                               return 0;
-
-                       /*
-                        * If we are going offline and still the leader,
-                        * give up!
-                        */
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-                               BUG();
-
-                       return 0;
-               }
-
-               cpumask_set_cpu(cpu, nohz.cpu_mask);
-
-               /* time for ilb owner also to sleep */
-               if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
-                       if (atomic_read(&nohz.load_balancer) == cpu)
-                               atomic_set(&nohz.load_balancer, -1);
-                       return 0;
-               }
-
-               if (atomic_read(&nohz.load_balancer) == -1) {
-                       /* make me the ilb owner */
-                       if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
-                               return 1;
-               } else if (atomic_read(&nohz.load_balancer) == cpu) {
-                       int new_ilb;
-
-                       if (!(sched_smt_power_savings ||
-                                               sched_mc_power_savings))
-                               return 1;
-                       /*
-                        * Check to see if there is a more power-efficient
-                        * ilb.
-                        */
-                       new_ilb = find_new_ilb(cpu);
-                       if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
-                               atomic_set(&nohz.load_balancer, -1);
-                               resched_cpu(new_ilb);
-                               return 0;
-                       }
-                       return 1;
-               }
-       } else {
-               if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
-                       return 0;
-
-               cpumask_clear_cpu(cpu, nohz.cpu_mask);
-
-               if (atomic_read(&nohz.load_balancer) == cpu)
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-                               BUG();
-       }
-       return 0;
-}
-#endif
-
-static DEFINE_SPINLOCK(balancing);
-
-/*
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in arch_init_sched_domains.
- */
-static void rebalance_domains(int cpu, enum cpu_idle_type idle)
-{
-       int balance = 1;
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long interval;
-       struct sched_domain *sd;
-       /* Earliest time when we have to do rebalance again */
-       unsigned long next_balance = jiffies + 60*HZ;
-       int update_next_balance = 0;
-       int need_serialize;
-
-       for_each_domain(cpu, sd) {
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
-
-               interval = sd->balance_interval;
-               if (idle != CPU_IDLE)
-                       interval *= sd->busy_factor;
-
-               /* scale ms to jiffies */
-               interval = msecs_to_jiffies(interval);
-               if (unlikely(!interval))
-                       interval = 1;
-               if (interval > HZ*NR_CPUS/10)
-                       interval = HZ*NR_CPUS/10;
+       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
 
-               need_serialize = sd->flags & SD_SERIALIZE;
+       calc_load_update += LOAD_FREQ;
+}
 
-               if (need_serialize) {
-                       if (!spin_trylock(&balancing))
-                               goto out;
-               }
+/*
+ * Either called from update_cpu_load() or from a cpu going idle
+ */
+static void calc_load_account_active(struct rq *this_rq)
+{
+       long nr_active, delta;
 
-               if (time_after_eq(jiffies, sd->last_balance + interval)) {
-                       if (load_balance(cpu, rq, sd, idle, &balance)) {
-                               /*
-                                * We've pulled tasks over so either we're no
-                                * longer idle, or one of our SMT siblings is
-                                * not idle.
-                                */
-                               idle = CPU_NOT_IDLE;
-                       }
-                       sd->last_balance = jiffies;
-               }
-               if (need_serialize)
-                       spin_unlock(&balancing);
-out:
-               if (time_after(next_balance, sd->last_balance + interval)) {
-                       next_balance = sd->last_balance + interval;
-                       update_next_balance = 1;
-               }
+       nr_active = this_rq->nr_running;
+       nr_active += (long) this_rq->nr_uninterruptible;
 
-               /*
-                * Stop the load balance at this level. There is another
-                * CPU in our sched group which is doing load balancing more
-                * actively.
-                */
-               if (!balance)
-                       break;
+       if (nr_active != this_rq->calc_load_active) {
+               delta = nr_active - this_rq->calc_load_active;
+               this_rq->calc_load_active = nr_active;
+               atomic_long_add(delta, &calc_load_tasks);
        }
-
-       /*
-        * next_balance will be updated only when there is a need.
-        * When the cpu is attached to null domain for ex, it will not be
-        * updated.
-        */
-       if (likely(update_next_balance))
-               rq->next_balance = next_balance;
 }
 
 /*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * In CONFIG_NO_HZ case, the idle load balance owner will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
+ * Update rq->cpu_load[] statistics. This function is usually called every
+ * scheduler tick (TICK_NSEC).
  */
-static void run_rebalance_domains(struct softirq_action *h)
+static void update_cpu_load(struct rq *this_rq)
 {
-       int this_cpu = smp_processor_id();
-       struct rq *this_rq = cpu_rq(this_cpu);
-       enum cpu_idle_type idle = this_rq->idle_at_tick ?
-                                               CPU_IDLE : CPU_NOT_IDLE;
-
-       rebalance_domains(this_cpu, idle);
+       unsigned long this_load = this_rq->load.weight;
+       int i, scale;
 
-#ifdef CONFIG_NO_HZ
-       /*
-        * If this cpu is the owner for idle load balancing, then do the
-        * balancing on behalf of the other idle cpus whose ticks are
-        * stopped.
-        */
-       if (this_rq->idle_at_tick &&
-           atomic_read(&nohz.load_balancer) == this_cpu) {
-               struct rq *rq;
-               int balance_cpu;
+       this_rq->nr_load_updates++;
 
-               for_each_cpu(balance_cpu, nohz.cpu_mask) {
-                       if (balance_cpu == this_cpu)
-                               continue;
+       /* Update our load: */
+       for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+               unsigned long old_load, new_load;
 
-                       /*
-                        * If this cpu gets work to do, stop the load balancing
-                        * work being done for other cpus. Next load
-                        * balancing owner will pick it up.
-                        */
-                       if (need_resched())
-                               break;
+               /* scale is effectively 1 << i now, and >> i divides by scale */
 
-                       rebalance_domains(balance_cpu, CPU_IDLE);
+               old_load = this_rq->cpu_load[i];
+               new_load = this_load;
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale-1;
+               this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+       }
 
-                       rq = cpu_rq(balance_cpu);
-                       if (time_after(this_rq->next_balance, rq->next_balance))
-                               this_rq->next_balance = rq->next_balance;
-               }
+       if (time_after_eq(jiffies, this_rq->calc_load_update)) {
+               this_rq->calc_load_update += LOAD_FREQ;
+               calc_load_account_active(this_rq);
        }
-#endif
 }
 
-static inline int on_null_domain(int cpu)
-{
-       return !rcu_dereference(cpu_rq(cpu)->sd);
-}
+#ifdef CONFIG_SMP
 
 /*
- * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
- *
- * In case of CONFIG_NO_HZ, this is the place where we nominate a new
- * idle load balancing owner or decide to stop the periodic load balancing,
- * if the whole system is idle.
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
  */
-static inline void trigger_load_balance(struct rq *rq, int cpu)
+void sched_exec(void)
 {
-#ifdef CONFIG_NO_HZ
-       /*
-        * If we were in the nohz mode recently and busy at the current
-        * scheduler tick, then check if we need to nominate new idle
-        * load balancer.
-        */
-       if (rq->in_nohz_recently && !rq->idle_at_tick) {
-               rq->in_nohz_recently = 0;
-
-               if (atomic_read(&nohz.load_balancer) == cpu) {
-                       cpumask_clear_cpu(cpu, nohz.cpu_mask);
-                       atomic_set(&nohz.load_balancer, -1);
-               }
-
-               if (atomic_read(&nohz.load_balancer) == -1) {
-                       int ilb = find_new_ilb(cpu);
+       struct task_struct *p = current;
+       struct migration_req req;
+       int dest_cpu, this_cpu;
+       unsigned long flags;
+       struct rq *rq;
 
-                       if (ilb < nr_cpu_ids)
-                               resched_cpu(ilb);
-               }
+again:
+       this_cpu = get_cpu();
+       dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
+       if (dest_cpu == this_cpu) {
+               put_cpu();
+               return;
        }
 
+       rq = task_rq_lock(p, &flags);
+       put_cpu();
+
        /*
-        * If this cpu is idle and doing idle load balancing for all the
-        * cpus with ticks stopped, is it time for that to stop?
+        * select_task_rq() can race against ->cpus_allowed
         */
-       if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
-           cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
-               resched_cpu(cpu);
-               return;
+       if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
+           || unlikely(!cpu_active(dest_cpu))) {
+               task_rq_unlock(rq, &flags);
+               goto again;
        }
 
-       /*
-        * If this cpu is idle and the idle load balancing is done by
-        * someone else, then no need raise the SCHED_SOFTIRQ
-        */
-       if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
-           cpumask_test_cpu(cpu, nohz.cpu_mask))
-               return;
-#endif
-       /* Don't need to rebalance while attached to NULL domain */
-       if (time_after_eq(jiffies, rq->next_balance) &&
-           likely(!on_null_domain(cpu)))
-               raise_softirq(SCHED_SOFTIRQ);
-}
+       /* force the process onto the specified CPU */
+       if (migrate_task(p, dest_cpu, &req)) {
+               /* Need to wait for migration thread (might exit: take ref). */
+               struct task_struct *mt = rq->migration_thread;
 
-#else  /* CONFIG_SMP */
+               get_task_struct(mt);
+               task_rq_unlock(rq, &flags);
+               wake_up_process(mt);
+               put_task_struct(mt);
+               wait_for_completion(&req.done);
 
-/*
- * on UP we do not need to balance between CPUs:
- */
-static inline void idle_balance(int cpu, struct rq *rq)
-{
+               return;
+       }
+       task_rq_unlock(rq, &flags);
 }
 
 #endif
@@ -5184,21 +3415,28 @@ void account_idle_ticks(unsigned long ticks)
 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 {
-       if (ut)
-               *ut = p->utime;
-       if (st)
-               *st = p->stime;
+       *ut = p->utime;
+       *st = p->stime;
+}
+
+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       struct task_cputime cputime;
+
+       thread_group_cputime(p, &cputime);
+
+       *ut = cputime.utime;
+       *st = cputime.stime;
 }
 #else
 
 #ifndef nsecs_to_cputime
-# define nsecs_to_cputime(__nsecs) \
-       msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
+# define nsecs_to_cputime(__nsecs)     nsecs_to_jiffies(__nsecs)
 #endif
 
 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
 {
-       cputime_t rtime, utime = p->utime, total = utime + p->stime;
+       cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
 
        /*
         * Use CFS's precise accounting:
@@ -5218,12 +3456,41 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
         * Compare with previous values, to keep monotonicity:
         */
        p->prev_utime = max(p->prev_utime, utime);
-       p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
+       p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
+
+       *ut = p->prev_utime;
+       *st = p->prev_stime;
+}
+
+/*
+ * Must be called with siglock held.
+ */
+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       struct signal_struct *sig = p->signal;
+       struct task_cputime cputime;
+       cputime_t rtime, utime, total;
+
+       thread_group_cputime(p, &cputime);
+
+       total = cputime_add(cputime.utime, cputime.stime);
+       rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
+
+       if (total) {
+               u64 temp;
 
-       if (ut)
-               *ut = p->prev_utime;
-       if (st)
-               *st = p->prev_stime;
+               temp = (u64)(rtime * cputime.utime);
+               do_div(temp, total);
+               utime = (cputime_t)temp;
+       } else
+               utime = rtime;
+
+       sig->prev_utime = max(sig->prev_utime, utime);
+       sig->prev_stime = max(sig->prev_stime,
+                             cputime_sub(rtime, sig->prev_utime));
+
+       *ut = sig->prev_utime;
+       *st = sig->prev_stime;
 }
 #endif
 
@@ -5242,13 +3509,13 @@ void scheduler_tick(void)
 
        sched_clock_tick();
 
-       spin_lock(&rq->lock);
+       raw_spin_lock(&rq->lock);
        update_rq_clock(rq);
        update_cpu_load(rq);
        curr->sched_class->task_tick(rq, curr, 0);
-       spin_unlock(&rq->lock);
+       raw_spin_unlock(&rq->lock);
 
-       perf_event_task_tick(curr, cpu);
+       perf_event_task_tick(curr);
 
 #ifdef CONFIG_SMP
        rq->idle_at_tick = idle_cpu(cpu);
@@ -5360,13 +3627,14 @@ static inline void schedule_debug(struct task_struct *prev)
 #endif
 }
 
-static void put_prev_task(struct rq *rq, struct task_struct *p)
+static void put_prev_task(struct rq *rq, struct task_struct *prev)
 {
-       u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
+       if (prev->state == TASK_RUNNING) {
+               u64 runtime = prev->se.sum_exec_runtime;
 
-       update_avg(&p->se.avg_running, runtime);
+               runtime -= prev->se.prev_sum_exec_runtime;
+               runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
 
-       if (p->state == TASK_RUNNING) {
                /*
                 * In order to avoid avg_overlap growing stale when we are
                 * indeed overlapping and hence not getting put to sleep, grow
@@ -5376,12 +3644,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p)
                 * correlates to the amount of cache footprint a task can
                 * build up.
                 */
-               runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
-               update_avg(&p->se.avg_overlap, runtime);
-       } else {
-               update_avg(&p->se.avg_running, 0);
+               update_avg(&prev->se.avg_overlap, runtime);
        }
-       p->sched_class->put_prev_task(rq, p);
+       prev->sched_class->put_prev_task(rq, prev);
 }
 
 /*
@@ -5442,7 +3707,7 @@ need_resched_nonpreemptible:
        if (sched_feat(HRTICK))
                hrtick_clear(rq);
 
-       spin_lock_irq(&rq->lock);
+       raw_spin_lock_irq(&rq->lock);
        update_rq_clock(rq);
        clear_tsk_need_resched(prev);
 
@@ -5464,7 +3729,7 @@ need_resched_nonpreemptible:
 
        if (likely(prev != next)) {
                sched_info_switch(prev, next);
-               perf_event_task_sched_out(prev, next, cpu);
+               perf_event_task_sched_out(prev, next);
 
                rq->nr_switches++;
                rq->curr = next;
@@ -5478,12 +3743,15 @@ need_resched_nonpreemptible:
                cpu = smp_processor_id();
                rq = cpu_rq(cpu);
        } else
-               spin_unlock_irq(&rq->lock);
+               raw_spin_unlock_irq(&rq->lock);
 
        post_schedule(rq);
 
-       if (unlikely(reacquire_kernel_lock(current) < 0))
+       if (unlikely(reacquire_kernel_lock(current) < 0)) {
+               prev = rq->curr;
+               switch_count = &prev->nivcsw;
                goto need_resched_nonpreemptible;
+       }
 
        preempt_enable_no_resched();
        if (need_resched())
@@ -5491,7 +3759,7 @@ need_resched_nonpreemptible:
 }
 EXPORT_SYMBOL(schedule);
 
-#ifdef CONFIG_SMP
+#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 /*
  * Look out! "owner" is an entirely speculative pointer
  * access and not reliable.
@@ -5895,14 +4163,15 @@ EXPORT_SYMBOL(wait_for_completion_killable);
  */
 bool try_wait_for_completion(struct completion *x)
 {
+       unsigned long flags;
        int ret = 1;
 
-       spin_lock_irq(&x->wait.lock);
+       spin_lock_irqsave(&x->wait.lock, flags);
        if (!x->done)
                ret = 0;
        else
                x->done--;
-       spin_unlock_irq(&x->wait.lock);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
        return ret;
 }
 EXPORT_SYMBOL(try_wait_for_completion);
@@ -5917,12 +4186,13 @@ EXPORT_SYMBOL(try_wait_for_completion);
  */
 bool completion_done(struct completion *x)
 {
+       unsigned long flags;
        int ret = 1;
 
-       spin_lock_irq(&x->wait.lock);
+       spin_lock_irqsave(&x->wait.lock, flags);
        if (!x->done)
                ret = 0;
-       spin_unlock_irq(&x->wait.lock);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
        return ret;
 }
 EXPORT_SYMBOL(completion_done);
@@ -5990,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
        unsigned long flags;
        int oldprio, on_rq, running;
        struct rq *rq;
-       const struct sched_class *prev_class = p->sched_class;
+       const struct sched_class *prev_class;
 
        BUG_ON(prio < 0 || prio > MAX_PRIO);
 
@@ -5998,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
        update_rq_clock(rq);
 
        oldprio = p->prio;
+       prev_class = p->sched_class;
        on_rq = p->se.on_rq;
        running = task_current(rq, p);
        if (on_rq)
@@ -6015,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
        if (running)
                p->sched_class->set_curr_task(rq);
        if (on_rq) {
-               enqueue_task(rq, p, 0);
+               enqueue_task(rq, p, 0, oldprio < prio);
 
                check_class_changed(rq, p, prev_class, oldprio, running);
        }
@@ -6059,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice)
        delta = p->prio - old_prio;
 
        if (on_rq) {
-               enqueue_task(rq, p, 0);
+               enqueue_task(rq, p, 0, false);
                /*
                 * If the task increased its priority or is running and
                 * lowered its priority, then reschedule its CPU:
@@ -6082,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice)
        /* convert nice value [19,-20] to rlimit style value [1,40] */
        int nice_rlim = 20 - nice;
 
-       return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
+       return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
                capable(CAP_SYS_NICE));
 }
 
@@ -6217,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy,
 {
        int retval, oldprio, oldpolicy = -1, on_rq, running;
        unsigned long flags;
-       const struct sched_class *prev_class = p->sched_class;
+       const struct sched_class *prev_class;
        struct rq *rq;
        int reset_on_fork;
 
@@ -6259,7 +4530,7 @@ recheck:
 
                        if (!lock_task_sighand(p, &flags))
                                return -ESRCH;
-                       rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
+                       rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
                        unlock_task_sighand(p, &flags);
 
                        /* can't set/change the rt policy */
@@ -6307,7 +4578,7 @@ recheck:
         * make sure no PI-waiters arrive (or leave) while we are
         * changing the priority of the task:
         */
-       spin_lock_irqsave(&p->pi_lock, flags);
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
        /*
         * To be able to change p->policy safely, the apropriate
         * runqueue lock must be held.
@@ -6317,7 +4588,7 @@ recheck:
        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
                policy = oldpolicy = -1;
                __task_rq_unlock(rq);
-               spin_unlock_irqrestore(&p->pi_lock, flags);
+               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
                goto recheck;
        }
        update_rq_clock(rq);
@@ -6331,6 +4602,7 @@ recheck:
        p->sched_reset_on_fork = reset_on_fork;
 
        oldprio = p->prio;
+       prev_class = p->sched_class;
        __setscheduler(rq, p, policy, param->sched_priority);
 
        if (running)
@@ -6341,7 +4613,7 @@ recheck:
                check_class_changed(rq, p, prev_class, oldprio, running);
        }
        __task_rq_unlock(rq);
-       spin_unlock_irqrestore(&p->pi_lock, flags);
+       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
        rt_mutex_adjust_pi(p);
 
@@ -6441,7 +4713,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
                return -EINVAL;
 
        retval = -ESRCH;
-       read_lock(&tasklist_lock);
+       rcu_read_lock();
        p = find_process_by_pid(pid);
        if (p) {
                retval = security_task_getscheduler(p);
@@ -6449,7 +4721,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
                        retval = p->policy
                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
        }
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
        return retval;
 }
 
@@ -6467,7 +4739,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
        if (!param || pid < 0)
                return -EINVAL;
 
-       read_lock(&tasklist_lock);
+       rcu_read_lock();
        p = find_process_by_pid(pid);
        retval = -ESRCH;
        if (!p)
@@ -6478,7 +4750,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
                goto out_unlock;
 
        lp.sched_priority = p->rt_priority;
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
 
        /*
         * This one might sleep, we cannot do it with a spinlock held ...
@@ -6488,7 +4760,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
        return retval;
 
 out_unlock:
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
        return retval;
 }
 
@@ -6499,22 +4771,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
        int retval;
 
        get_online_cpus();
-       read_lock(&tasklist_lock);
+       rcu_read_lock();
 
        p = find_process_by_pid(pid);
        if (!p) {
-               read_unlock(&tasklist_lock);
+               rcu_read_unlock();
                put_online_cpus();
                return -ESRCH;
        }
 
-       /*
-        * It is not safe to call set_cpus_allowed with the
-        * tasklist_lock held. We will bump the task_struct's
-        * usage count and then drop tasklist_lock.
-        */
+       /* Prevent p going away */
        get_task_struct(p);
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
 
        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
                retval = -ENOMEM;
@@ -6595,10 +4863,12 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 long sched_getaffinity(pid_t pid, struct cpumask *mask)
 {
        struct task_struct *p;
+       unsigned long flags;
+       struct rq *rq;
        int retval;
 
        get_online_cpus();
-       read_lock(&tasklist_lock);
+       rcu_read_lock();
 
        retval = -ESRCH;
        p = find_process_by_pid(pid);
@@ -6609,10 +4879,12 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
        if (retval)
                goto out_unlock;
 
+       rq = task_rq_lock(p, &flags);
        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
+       task_rq_unlock(rq, &flags);
 
 out_unlock:
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
        put_online_cpus();
 
        return retval;
@@ -6667,7 +4939,7 @@ SYSCALL_DEFINE0(sched_yield)
         */
        __release(rq->lock);
        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-       _raw_spin_unlock(&rq->lock);
+       do_raw_spin_unlock(&rq->lock);
        preempt_enable_no_resched();
 
        schedule();
@@ -6847,6 +5119,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 {
        struct task_struct *p;
        unsigned int time_slice;
+       unsigned long flags;
+       struct rq *rq;
        int retval;
        struct timespec t;
 
@@ -6854,7 +5128,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
                return -EINVAL;
 
        retval = -ESRCH;
-       read_lock(&tasklist_lock);
+       rcu_read_lock();
        p = find_process_by_pid(pid);
        if (!p)
                goto out_unlock;
@@ -6863,15 +5137,17 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
        if (retval)
                goto out_unlock;
 
-       time_slice = p->sched_class->get_rr_interval(p);
+       rq = task_rq_lock(p, &flags);
+       time_slice = p->sched_class->get_rr_interval(rq, p);
+       task_rq_unlock(rq, &flags);
 
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
        jiffies_to_timespec(time_slice, &t);
        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
        return retval;
 
 out_unlock:
-       read_unlock(&tasklist_lock);
+       rcu_read_unlock();
        return retval;
 }
 
@@ -6959,12 +5235,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
        struct rq *rq = cpu_rq(cpu);
        unsigned long flags;
 
-       spin_lock_irqsave(&rq->lock, flags);
+       raw_spin_lock_irqsave(&rq->lock, flags);
 
        __sched_fork(idle);
+       idle->state = TASK_RUNNING;
        idle->se.exec_start = sched_clock();
 
-       idle->prio = idle->normal_prio = MAX_PRIO;
        cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
        __set_task_cpu(idle, cpu);
 
@@ -6972,7 +5248,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
        idle->oncpu = 1;
 #endif
-       spin_unlock_irqrestore(&rq->lock, flags);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
 
        /* Set the preempt count _outside_ the spinlocks! */
 #if defined(CONFIG_PREEMPT)
@@ -7005,22 +5281,43 @@ cpumask_var_t nohz_cpu_mask;
  *
  * This idea comes from the SD scheduler of Con Kolivas:
  */
-static inline void sched_init_granularity(void)
+static int get_update_sysctl_factor(void)
 {
-       unsigned int factor = 1 + ilog2(num_online_cpus());
-       const unsigned long limit = 200000000;
+       unsigned int cpus = min_t(int, num_online_cpus(), 8);
+       unsigned int factor;
+
+       switch (sysctl_sched_tunable_scaling) {
+       case SCHED_TUNABLESCALING_NONE:
+               factor = 1;
+               break;
+       case SCHED_TUNABLESCALING_LINEAR:
+               factor = cpus;
+               break;
+       case SCHED_TUNABLESCALING_LOG:
+       default:
+               factor = 1 + ilog2(cpus);
+               break;
+       }
 
-       sysctl_sched_min_granularity *= factor;
-       if (sysctl_sched_min_granularity > limit)
-               sysctl_sched_min_granularity = limit;
+       return factor;
+}
 
-       sysctl_sched_latency *= factor;
-       if (sysctl_sched_latency > limit)
-               sysctl_sched_latency = limit;
+static void update_sysctl(void)
+{
+       unsigned int factor = get_update_sysctl_factor();
 
-       sysctl_sched_wakeup_granularity *= factor;
+#define SET_SYSCTL(name) \
+       (sysctl_##name = (factor) * normalized_sysctl_##name)
+       SET_SYSCTL(sched_min_granularity);
+       SET_SYSCTL(sched_latency);
+       SET_SYSCTL(sched_wakeup_granularity);
+       SET_SYSCTL(sched_shares_ratelimit);
+#undef SET_SYSCTL
+}
 
-       sysctl_sched_shares_ratelimit *= factor;
+static inline void sched_init_granularity(void)
+{
+       update_sysctl();
 }
 
 #ifdef CONFIG_SMP
@@ -7057,7 +5354,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
        int ret = 0;
 
        rq = task_rq_lock(p, &flags);
-       if (!cpumask_intersects(new_mask, cpu_online_mask)) {
+
+       if (!cpumask_intersects(new_mask, cpu_active_mask)) {
                ret = -EINVAL;
                goto out;
        }
@@ -7079,7 +5377,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
        if (cpumask_test_cpu(task_cpu(p), new_mask))
                goto out;
 
-       if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
+       if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
                /* Need help from migration thread: drop lock and wait. */
                struct task_struct *mt = rq->migration_thread;
 
@@ -7112,7 +5410,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
        struct rq *rq_dest, *rq_src;
-       int ret = 0, on_rq;
+       int ret = 0;
 
        if (unlikely(!cpu_active(dest_cpu)))
                return ret;
@@ -7128,12 +5426,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
        if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
                goto fail;
 
-       on_rq = p->se.on_rq;
-       if (on_rq)
+       /*
+        * If we're not on a rq, the next wake-up will ensure we're
+        * placed properly.
+        */
+       if (p->se.on_rq) {
                deactivate_task(rq_src, p, 0);
-
-       set_task_cpu(p, dest_cpu);
-       if (on_rq) {
+               set_task_cpu(p, dest_cpu);
                activate_task(rq_dest, p, 0);
                check_preempt_curr(rq_dest, p, 0);
        }
@@ -7168,10 +5467,10 @@ static int migration_thread(void *data)
                struct migration_req *req;
                struct list_head *head;
 
-               spin_lock_irq(&rq->lock);
+               raw_spin_lock_irq(&rq->lock);
 
                if (cpu_is_offline(cpu)) {
-                       spin_unlock_irq(&rq->lock);
+                       raw_spin_unlock_irq(&rq->lock);
                        break;
                }
 
@@ -7183,7 +5482,7 @@ static int migration_thread(void *data)
                head = &rq->migration_queue;
 
                if (list_empty(head)) {
-                       spin_unlock_irq(&rq->lock);
+                       raw_spin_unlock_irq(&rq->lock);
                        schedule();
                        set_current_state(TASK_INTERRUPTIBLE);
                        continue;
@@ -7192,14 +5491,14 @@ static int migration_thread(void *data)
                list_del_init(head->next);
 
                if (req->task != NULL) {
-                       spin_unlock(&rq->lock);
+                       raw_spin_unlock(&rq->lock);
                        __migrate_task(req->task, cpu, req->dest_cpu);
                } else if (likely(cpu == (badcpu = smp_processor_id()))) {
                        req->dest_cpu = RCU_MIGRATION_GOT_QS;
-                       spin_unlock(&rq->lock);
+                       raw_spin_unlock(&rq->lock);
                } else {
                        req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
-                       spin_unlock(&rq->lock);
+                       raw_spin_unlock(&rq->lock);
                        WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
                }
                local_irq_enable();
@@ -7229,37 +5528,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
 {
        int dest_cpu;
-       const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
 
 again:
-       /* Look for allowed, online CPU in same node. */
-       for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
-               if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
-                       goto move;
-
-       /* Any allowed, online CPU? */
-       dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
-       if (dest_cpu < nr_cpu_ids)
-               goto move;
-
-       /* No more Mr. Nice Guy. */
-       if (dest_cpu >= nr_cpu_ids) {
-               cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
-               dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
-
-               /*
-                * Don't tell them about moving exiting tasks or
-                * kernel threads (both mm NULL), since they never
-                * leave kernel.
-                */
-               if (p->mm && printk_ratelimit()) {
-                       printk(KERN_INFO "process %d (%s) no "
-                              "longer affine to cpu%d\n",
-                              task_pid_nr(p), p->comm, dead_cpu);
-               }
-       }
+       dest_cpu = select_fallback_rq(dead_cpu, p);
 
-move:
        /* It can have affinity changed while we were choosing. */
        if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
                goto again;
@@ -7274,7 +5546,7 @@ move:
  */
 static void migrate_nr_uninterruptible(struct rq *rq_src)
 {
-       struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
+       struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
        unsigned long flags;
 
        local_irq_save(flags);
@@ -7322,14 +5594,14 @@ void sched_idle_next(void)
         * Strictly not necessary since rest of the CPUs are stopped by now
         * and interrupts disabled on the current cpu.
         */
-       spin_lock_irqsave(&rq->lock, flags);
+       raw_spin_lock_irqsave(&rq->lock, flags);
 
        __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
 
        update_rq_clock(rq);
        activate_task(rq, p, 0);
 
-       spin_unlock_irqrestore(&rq->lock, flags);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
 }
 
 /*
@@ -7365,9 +5637,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
         * that's OK. No task can be added to this CPU, so iteration is
         * fine.
         */
-       spin_unlock_irq(&rq->lock);
+       raw_spin_unlock_irq(&rq->lock);
        move_task_off_dead_cpu(dead_cpu, p);
-       spin_lock_irq(&rq->lock);
+       raw_spin_lock_irq(&rq->lock);
 
        put_task_struct(p);
 }
@@ -7408,17 +5680,16 @@ static struct ctl_table sd_ctl_dir[] = {
                .procname       = "sched_domain",
                .mode           = 0555,
        },
-       {0, },
+       {}
 };
 
 static struct ctl_table sd_ctl_root[] = {
        {
-               .ctl_name       = CTL_KERN,
                .procname       = "kernel",
                .mode           = 0555,
                .child          = sd_ctl_dir,
        },
-       {0, },
+       {}
 };
 
 static struct ctl_table *sd_alloc_ctl_entry(int n)
@@ -7528,7 +5799,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 static struct ctl_table_header *sd_sysctl_header;
 static void register_sched_domain_sysctl(void)
 {
-       int i, cpu_num = num_online_cpus();
+       int i, cpu_num = num_possible_cpus();
        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
        char buf[32];
 
@@ -7538,7 +5809,7 @@ static void register_sched_domain_sysctl(void)
        if (entry == NULL)
                return;
 
-       for_each_online_cpu(i) {
+       for_each_possible_cpu(i) {
                snprintf(buf, 32, "cpu%d", i);
                entry->procname = kstrdup(buf, GFP_KERNEL);
                entry->mode = 0555;
@@ -7634,13 +5905,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 
                /* Update our root-domain */
                rq = cpu_rq(cpu);
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                if (rq->rd) {
                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 
                        set_rq_online(rq);
                }
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
                break;
 
 #ifdef CONFIG_HOTPLUG_CPU
@@ -7665,14 +5936,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                put_task_struct(rq->migration_thread);
                rq->migration_thread = NULL;
                /* Idle task back to normal (off runqueue, low prio) */
-               spin_lock_irq(&rq->lock);
+               raw_spin_lock_irq(&rq->lock);
                update_rq_clock(rq);
                deactivate_task(rq, rq->idle, 0);
-               rq->idle->static_prio = MAX_PRIO;
                __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
                rq->idle->sched_class = &idle_sched_class;
                migrate_dead_tasks(cpu);
-               spin_unlock_irq(&rq->lock);
+               raw_spin_unlock_irq(&rq->lock);
                cpuset_unlock();
                migrate_nr_uninterruptible(rq);
                BUG_ON(rq->nr_running != 0);
@@ -7682,30 +5952,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
                 * they didn't take sched_hotcpu_mutex. Just wake up
                 * the requestors.
                 */
-               spin_lock_irq(&rq->lock);
+               raw_spin_lock_irq(&rq->lock);
                while (!list_empty(&rq->migration_queue)) {
                        struct migration_req *req;
 
                        req = list_entry(rq->migration_queue.next,
                                         struct migration_req, list);
                        list_del_init(&req->list);
-                       spin_unlock_irq(&rq->lock);
+                       raw_spin_unlock_irq(&rq->lock);
                        complete(&req->done);
-                       spin_lock_irq(&rq->lock);
+                       raw_spin_lock_irq(&rq->lock);
                }
-               spin_unlock_irq(&rq->lock);
+               raw_spin_unlock_irq(&rq->lock);
                break;
 
        case CPU_DYING:
        case CPU_DYING_FROZEN:
                /* Update our root-domain */
                rq = cpu_rq(cpu);
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                if (rq->rd) {
                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
                        set_rq_offline(rq);
                }
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
                break;
 #endif
        }
@@ -7935,7 +6205,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
        struct root_domain *old_rd = NULL;
        unsigned long flags;
 
-       spin_lock_irqsave(&rq->lock, flags);
+       raw_spin_lock_irqsave(&rq->lock, flags);
 
        if (rq->rd) {
                old_rd = rq->rd;
@@ -7961,7 +6231,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
                set_rq_online(rq);
 
-       spin_unlock_irqrestore(&rq->lock, flags);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
 
        if (old_rd)
                free_rootdomain(old_rd);
@@ -8062,6 +6332,7 @@ static cpumask_var_t cpu_isolated_map;
 /* Setup the mask of cpus configured for isolated domains */
 static int __init isolated_cpu_setup(char *str)
 {
+       alloc_bootmem_cpumask_var(&cpu_isolated_map);
        cpulist_parse(str, cpu_isolated_map);
        return 1;
 }
@@ -8246,14 +6517,14 @@ enum s_alloc {
  */
 #ifdef CONFIG_SCHED_SMT
 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
-static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
+static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
 
 static int
 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
                 struct sched_group **sg, struct cpumask *unused)
 {
        if (sg)
-               *sg = &per_cpu(sched_group_cpus, cpu).sg;
+               *sg = &per_cpu(sched_groups, cpu).sg;
        return cpu;
 }
 #endif /* CONFIG_SCHED_SMT */
@@ -9063,7 +7334,7 @@ match1:
        if (doms_new == NULL) {
                ndoms_cur = 0;
                doms_new = &fallback_doms;
-               cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
+               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
                WARN_ON_ONCE(dattr_new);
        }
 
@@ -9135,11 +7406,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
 
 #ifdef CONFIG_SCHED_MC
 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
+                                          struct sysdev_class_attribute *attr,
                                           char *page)
 {
        return sprintf(page, "%u\n", sched_mc_power_savings);
 }
 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
+                                           struct sysdev_class_attribute *attr,
                                            const char *buf, size_t count)
 {
        return sched_power_savings_store(buf, count, 0);
@@ -9151,11 +7424,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
 
 #ifdef CONFIG_SCHED_SMT
 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
+                                           struct sysdev_class_attribute *attr,
                                            char *page)
 {
        return sprintf(page, "%u\n", sched_smt_power_savings);
 }
 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
+                                            struct sysdev_class_attribute *attr,
                                             const char *buf, size_t count)
 {
        return sched_power_savings_store(buf, count, 1);
@@ -9194,8 +7469,10 @@ static int update_sched_domains(struct notifier_block *nfb,
        switch (action) {
        case CPU_ONLINE:
        case CPU_ONLINE_FROZEN:
-       case CPU_DEAD:
-       case CPU_DEAD_FROZEN:
+       case CPU_DOWN_PREPARE:
+       case CPU_DOWN_PREPARE_FROZEN:
+       case CPU_DOWN_FAILED:
+       case CPU_DOWN_FAILED_FROZEN:
                partition_sched_domains(1, NULL, NULL);
                return NOTIFY_OK;
 
@@ -9242,7 +7519,7 @@ void __init sched_init_smp(void)
 #endif
        get_online_cpus();
        mutex_lock(&sched_domains_mutex);
-       arch_init_sched_domains(cpu_online_mask);
+       arch_init_sched_domains(cpu_active_mask);
        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
        if (cpumask_empty(non_isolated_cpus))
                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
@@ -9315,13 +7592,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
 #ifdef CONFIG_SMP
        rt_rq->rt_nr_migratory = 0;
        rt_rq->overloaded = 0;
-       plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
+       plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
 #endif
 
        rt_rq->rt_time = 0;
        rt_rq->rt_throttled = 0;
        rt_rq->rt_runtime = 0;
-       spin_lock_init(&rt_rq->rt_runtime_lock);
+       raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 
 #ifdef CONFIG_RT_GROUP_SCHED
        rt_rq->rt_nr_boosted = 0;
@@ -9368,7 +7645,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
        tg->rt_rq[cpu] = rt_rq;
        init_rt_rq(rt_rq, rq);
        rt_rq->tg = tg;
-       rt_rq->rt_se = rt_se;
        rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
        if (add)
                list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
@@ -9399,9 +7675,6 @@ void __init sched_init(void)
 #ifdef CONFIG_RT_GROUP_SCHED
        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
 #endif
-#ifdef CONFIG_USER_SCHED
-       alloc_size *= 2;
-#endif
 #ifdef CONFIG_CPUMASK_OFFSTACK
        alloc_size += num_possible_cpus() * cpumask_size();
 #endif
@@ -9415,13 +7688,6 @@ void __init sched_init(void)
                init_task_group.cfs_rq = (struct cfs_rq **)ptr;
                ptr += nr_cpu_ids * sizeof(void **);
 
-#ifdef CONFIG_USER_SCHED
-               root_task_group.se = (struct sched_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.cfs_rq = (struct cfs_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-#endif /* CONFIG_USER_SCHED */
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 #ifdef CONFIG_RT_GROUP_SCHED
                init_task_group.rt_se = (struct sched_rt_entity **)ptr;
@@ -9430,13 +7696,6 @@ void __init sched_init(void)
                init_task_group.rt_rq = (struct rt_rq **)ptr;
                ptr += nr_cpu_ids * sizeof(void **);
 
-#ifdef CONFIG_USER_SCHED
-               root_task_group.rt_se = (struct sched_rt_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.rt_rq = (struct rt_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-#endif /* CONFIG_USER_SCHED */
 #endif /* CONFIG_RT_GROUP_SCHED */
 #ifdef CONFIG_CPUMASK_OFFSTACK
                for_each_possible_cpu(i) {
@@ -9456,22 +7715,13 @@ void __init sched_init(void)
 #ifdef CONFIG_RT_GROUP_SCHED
        init_rt_bandwidth(&init_task_group.rt_bandwidth,
                        global_rt_period(), global_rt_runtime());
-#ifdef CONFIG_USER_SCHED
-       init_rt_bandwidth(&root_task_group.rt_bandwidth,
-                       global_rt_period(), RUNTIME_INF);
-#endif /* CONFIG_USER_SCHED */
 #endif /* CONFIG_RT_GROUP_SCHED */
 
-#ifdef CONFIG_GROUP_SCHED
+#ifdef CONFIG_CGROUP_SCHED
        list_add(&init_task_group.list, &task_groups);
        INIT_LIST_HEAD(&init_task_group.children);
 
-#ifdef CONFIG_USER_SCHED
-       INIT_LIST_HEAD(&root_task_group.children);
-       init_task_group.parent = &root_task_group;
-       list_add(&init_task_group.siblings, &root_task_group.children);
-#endif /* CONFIG_USER_SCHED */
-#endif /* CONFIG_GROUP_SCHED */
+#endif /* CONFIG_CGROUP_SCHED */
 
 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
        update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
@@ -9481,7 +7731,7 @@ void __init sched_init(void)
                struct rq *rq;
 
                rq = cpu_rq(i);
-               spin_lock_init(&rq->lock);
+               raw_spin_lock_init(&rq->lock);
                rq->nr_running = 0;
                rq->calc_load_active = 0;
                rq->calc_load_update = jiffies + LOAD_FREQ;
@@ -9511,25 +7761,6 @@ void __init sched_init(void)
                 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
                 */
                init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
-#elif defined CONFIG_USER_SCHED
-               root_task_group.shares = NICE_0_LOAD;
-               init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
-               /*
-                * In case of task-groups formed thr' the user id of tasks,
-                * init_task_group represents tasks belonging to root user.
-                * Hence it forms a sibling of all subsequent groups formed.
-                * In this case, init_task_group gets only a fraction of overall
-                * system cpu resource, based on the weight assigned to root
-                * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
-                * by letting tasks of init_task_group sit in a separate cfs_rq
-                * (init_tg_cfs_rq) and having one entity represent this group of
-                * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
-                */
-               init_tg_cfs_entry(&init_task_group,
-                               &per_cpu(init_tg_cfs_rq, i),
-                               &per_cpu(init_sched_entity, i), i, 1,
-                               root_task_group.se[i]);
-
 #endif
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 
@@ -9538,12 +7769,6 @@ void __init sched_init(void)
                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
 #ifdef CONFIG_CGROUP_SCHED
                init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
-#elif defined CONFIG_USER_SCHED
-               init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
-               init_tg_rt_entry(&init_task_group,
-                               &per_cpu(init_rt_rq, i),
-                               &per_cpu(init_sched_rt_entity, i), i, 1,
-                               root_task_group.rt_se[i]);
 #endif
 #endif
 
@@ -9579,7 +7804,7 @@ void __init sched_init(void)
 #endif
 
 #ifdef CONFIG_RT_MUTEXES
-       plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
+       plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
 #endif
 
        /*
@@ -9610,7 +7835,9 @@ void __init sched_init(void)
        zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
        alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
 #endif
-       zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
+       /* May be allocated at isolcpus cmdline parse time */
+       if (cpu_isolated_map == NULL)
+               zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
 #endif /* SMP */
 
        perf_event_init();
@@ -9621,12 +7848,12 @@ void __init sched_init(void)
 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
 static inline int preempt_count_equals(int preempt_offset)
 {
-       int nested = preempt_count() & ~PREEMPT_ACTIVE;
+       int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
 
        return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
 }
 
-void __might_sleep(char *file, int line, int preempt_offset)
+void __might_sleep(const char *file, int line, int preempt_offset)
 {
 #ifdef in_atomic
        static unsigned long prev_jiffy;        /* ratelimiting */
@@ -9702,13 +7929,13 @@ void normalize_rt_tasks(void)
                        continue;
                }
 
-               spin_lock(&p->pi_lock);
+               raw_spin_lock(&p->pi_lock);
                rq = __task_rq_lock(p);
 
                normalize_task(rq, p);
 
                __task_rq_unlock(rq);
-               spin_unlock(&p->pi_lock);
+               raw_spin_unlock(&p->pi_lock);
        } while_each_thread(g, p);
 
        read_unlock_irqrestore(&tasklist_lock, flags);
@@ -9804,13 +8031,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
                se = kzalloc_node(sizeof(struct sched_entity),
                                  GFP_KERNEL, cpu_to_node(i));
                if (!se)
-                       goto err;
+                       goto err_free_rq;
 
                init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
        }
 
        return 1;
 
+ err_free_rq:
+       kfree(cfs_rq);
  err:
        return 0;
 }
@@ -9892,13 +8121,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
                                     GFP_KERNEL, cpu_to_node(i));
                if (!rt_se)
-                       goto err;
+                       goto err_free_rq;
 
                init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
        }
 
        return 1;
 
+ err_free_rq:
+       kfree(rt_rq);
  err:
        return 0;
 }
@@ -9933,7 +8164,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
 }
 #endif /* CONFIG_RT_GROUP_SCHED */
 
-#ifdef CONFIG_GROUP_SCHED
+#ifdef CONFIG_CGROUP_SCHED
 static void free_sched_group(struct task_group *tg)
 {
        free_fair_sched_group(tg);
@@ -10032,17 +8263,17 @@ void sched_move_task(struct task_struct *tsk)
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
        if (tsk->sched_class->moved_group)
-               tsk->sched_class->moved_group(tsk);
+               tsk->sched_class->moved_group(tsk, on_rq);
 #endif
 
        if (unlikely(running))
                tsk->sched_class->set_curr_task(rq);
        if (on_rq)
-               enqueue_task(rq, tsk, 0);
+               enqueue_task(rq, tsk, 0, false);
 
        task_rq_unlock(rq, &flags);
 }
-#endif /* CONFIG_GROUP_SCHED */
+#endif /* CONFIG_CGROUP_SCHED */
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
@@ -10067,9 +8298,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares)
        struct rq *rq = cfs_rq->rq;
        unsigned long flags;
 
-       spin_lock_irqsave(&rq->lock, flags);
+       raw_spin_lock_irqsave(&rq->lock, flags);
        __set_se_shares(se, shares);
-       spin_unlock_irqrestore(&rq->lock, flags);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
 }
 
 static DEFINE_MUTEX(shares_mutex);
@@ -10184,13 +8415,6 @@ static int tg_schedulable(struct task_group *tg, void *data)
                runtime = d->rt_runtime;
        }
 
-#ifdef CONFIG_USER_SCHED
-       if (tg == &root_task_group) {
-               period = global_rt_period();
-               runtime = global_rt_runtime();
-       }
-#endif
-
        /*
         * Cannot have more runtime than the period.
         */
@@ -10254,18 +8478,18 @@ static int tg_set_bandwidth(struct task_group *tg,
        if (err)
                goto unlock;
 
-       spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+       raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
        tg->rt_bandwidth.rt_runtime = rt_runtime;
 
        for_each_possible_cpu(i) {
                struct rt_rq *rt_rq = tg->rt_rq[i];
 
-               spin_lock(&rt_rq->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
                rt_rq->rt_runtime = rt_runtime;
-               spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
        }
-       spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+       raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  unlock:
        read_unlock(&tasklist_lock);
        mutex_unlock(&rt_constraints_mutex);
@@ -10370,15 +8594,15 @@ static int sched_rt_global_constraints(void)
        if (sysctl_sched_rt_runtime == 0)
                return -EBUSY;
 
-       spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
+       raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
        for_each_possible_cpu(i) {
                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 
-               spin_lock(&rt_rq->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
                rt_rq->rt_runtime = global_rt_runtime();
-               spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
        }
-       spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
+       raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
 
        return 0;
 }
@@ -10593,7 +8817,7 @@ struct cgroup_subsys cpu_cgroup_subsys = {
 struct cpuacct {
        struct cgroup_subsys_state css;
        /* cpuusage holds pointer to a u64-type object on every cpu */
-       u64 *cpuusage;
+       u64 __percpu *cpuusage;
        struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
        struct cpuacct *parent;
 };
@@ -10669,9 +8893,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
        /*
         * Take rq->lock to make 64-bit read safe on 32-bit platforms.
         */
-       spin_lock_irq(&cpu_rq(cpu)->lock);
+       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
        data = *cpuusage;
-       spin_unlock_irq(&cpu_rq(cpu)->lock);
+       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 #else
        data = *cpuusage;
 #endif
@@ -10687,9 +8911,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
        /*
         * Take rq->lock to make 64-bit write safe on 32-bit platforms.
         */
-       spin_lock_irq(&cpu_rq(cpu)->lock);
+       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
        *cpuusage = val;
-       spin_unlock_irq(&cpu_rq(cpu)->lock);
+       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
 #else
        *cpuusage = val;
 #endif
@@ -10810,12 +9034,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
 }
 
 /*
+ * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
+ * in cputime_t units. As a result, cpuacct_update_stats calls
+ * percpu_counter_add with values large enough to always overflow the
+ * per cpu batch limit causing bad SMP scalability.
+ *
+ * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
+ * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
+ * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
+ */
+#ifdef CONFIG_SMP
+#define CPUACCT_BATCH  \
+       min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
+#else
+#define CPUACCT_BATCH  0
+#endif
+
+/*
  * Charge the system/user time to the task's accounting group.
  */
 static void cpuacct_update_stats(struct task_struct *tsk,
                enum cpuacct_stat_index idx, cputime_t val)
 {
        struct cpuacct *ca;
+       int batch = CPUACCT_BATCH;
 
        if (unlikely(!cpuacct_subsys.active))
                return;
@@ -10824,7 +9066,7 @@ static void cpuacct_update_stats(struct task_struct *tsk,
        ca = task_ca(tsk);
 
        do {
-               percpu_counter_add(&ca->cpustat[idx], val);
+               __percpu_counter_add(&ca->cpustat[idx], val, batch);
                ca = ca->parent;
        } while (ca);
        rcu_read_unlock();
@@ -10923,9 +9165,9 @@ void synchronize_sched_expedited(void)
                init_completion(&req->done);
                req->task = NULL;
                req->dest_cpu = RCU_MIGRATION_NEED_QS;
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                list_add(&req->list, &rq->migration_queue);
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
                wake_up_process(rq->migration_thread);
        }
        for_each_online_cpu(cpu) {
@@ -10933,13 +9175,14 @@ void synchronize_sched_expedited(void)
                req = &per_cpu(rcu_migration_req, cpu);
                rq = cpu_rq(cpu);
                wait_for_completion(&req->done);
-               spin_lock_irqsave(&rq->lock, flags);
+               raw_spin_lock_irqsave(&rq->lock, flags);
                if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
                        need_full_sync = 1;
                req->dest_cpu = RCU_MIGRATION_IDLE;
-               spin_unlock_irqrestore(&rq->lock, flags);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
        }
        rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
+       synchronize_sched_expedited_count++;
        mutex_unlock(&rcu_sched_expedited_mutex);
        put_online_cpus();
        if (need_full_sync)