string: factorize skip_spaces and export it to be generally available
[safe/jmp/linux-2.6] / kernel / hrtimer.c
index 04ccab0..d2f9239 100644 (file)
@@ -1,8 +1,9 @@
 /*
  *  linux/kernel/hrtimer.c
  *
- *  Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
- *  Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
+ *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
+ *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  *
  *  High-resolution kernel timers
  *
  *  Credits:
  *     based on kernel/timer.c
  *
+ *     Help, testing, suggestions, bugfixes, improvements were
+ *     provided by:
+ *
+ *     George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
+ *     et. al.
+ *
  *  For licencing details see kernel-base/COPYING
  */
 
 #include <linux/hrtimer.h>
 #include <linux/notifier.h>
 #include <linux/syscalls.h>
+#include <linux/kallsyms.h>
 #include <linux/interrupt.h>
+#include <linux/tick.h>
+#include <linux/seq_file.h>
+#include <linux/err.h>
+#include <linux/debugobjects.h>
+#include <linux/sched.h>
+#include <linux/timer.h>
 
 #include <asm/uaccess.h>
 
-/**
- * ktime_get - get the monotonic time in ktime_t format
- *
- * returns the time in ktime_t format
- */
-static ktime_t ktime_get(void)
-{
-       struct timespec now;
-
-       ktime_get_ts(&now);
-
-       return timespec_to_ktime(now);
-}
-
-/**
- * ktime_get_real - get the real (wall-) time in ktime_t format
- *
- * returns the time in ktime_t format
- */
-static ktime_t ktime_get_real(void)
-{
-       struct timespec now;
-
-       getnstimeofday(&now);
-
-       return timespec_to_ktime(now);
-}
-
-EXPORT_SYMBOL_GPL(ktime_get_real);
+#include <trace/events/timer.h>
 
 /*
  * The timer bases:
+ *
+ * Note: If we want to add new timer bases, we have to skip the two
+ * clock ids captured by the cpu-timers. We do this by holding empty
+ * entries rather than doing math adjustment of the clock ids.
+ * This ensures that we capture erroneous accesses to these clock ids
+ * rather than moving them into the range of valid clock id's.
  */
-
-#define MAX_HRTIMER_BASES 2
-
-static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
+DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
 {
+
+       .clock_base =
        {
-               .index = CLOCK_REALTIME,
-               .get_time = &ktime_get_real,
-               .resolution = KTIME_REALTIME_RES,
-       },
-       {
-               .index = CLOCK_MONOTONIC,
-               .get_time = &ktime_get,
-               .resolution = KTIME_MONOTONIC_RES,
-       },
+               {
+                       .index = CLOCK_REALTIME,
+                       .get_time = &ktime_get_real,
+                       .resolution = KTIME_LOW_RES,
+               },
+               {
+                       .index = CLOCK_MONOTONIC,
+                       .get_time = &ktime_get,
+                       .resolution = KTIME_LOW_RES,
+               },
+       }
 };
 
-/**
- * ktime_get_ts - get the monotonic clock in timespec format
- *
- * @ts:                pointer to timespec variable
- *
- * The function calculates the monotonic clock from the realtime
- * clock and the wall_to_monotonic offset and stores the result
- * in normalized timespec format in the variable pointed to by ts.
+/*
+ * Get the coarse grained time at the softirq based on xtime and
+ * wall_to_monotonic.
  */
-void ktime_get_ts(struct timespec *ts)
+static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 {
-       struct timespec tomono;
+       ktime_t xtim, tomono;
+       struct timespec xts, tom;
        unsigned long seq;
 
        do {
                seq = read_seqbegin(&xtime_lock);
-               getnstimeofday(ts);
-               tomono = wall_to_monotonic;
-
+               xts = current_kernel_time();
+               tom = wall_to_monotonic;
        } while (read_seqretry(&xtime_lock, seq));
 
-       set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
-                               ts->tv_nsec + tomono.tv_nsec);
+       xtim = timespec_to_ktime(xts);
+       tomono = timespec_to_ktime(tom);
+       base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
+       base->clock_base[CLOCK_MONOTONIC].softirq_time =
+               ktime_add(xtim, tomono);
 }
-EXPORT_SYMBOL_GPL(ktime_get_ts);
 
 /*
  * Functions and macros which are different for UP/SMP systems are kept in a
@@ -116,8 +106,6 @@ EXPORT_SYMBOL_GPL(ktime_get_ts);
  */
 #ifdef CONFIG_SMP
 
-#define set_curr_timer(b, t)           do { (b)->curr_timer = (t); } while (0)
-
 /*
  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  * means that all timers which are tied to this base via timer->base are
@@ -130,37 +118,84 @@ EXPORT_SYMBOL_GPL(ktime_get_ts);
  * possible to set timer->base = NULL and drop the lock: the timer remains
  * locked.
  */
-static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
-                                             unsigned long *flags)
+static
+struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
+                                            unsigned long *flags)
 {
-       struct hrtimer_base *base;
+       struct hrtimer_clock_base *base;
 
        for (;;) {
                base = timer->base;
                if (likely(base != NULL)) {
-                       spin_lock_irqsave(&base->lock, *flags);
+                       spin_lock_irqsave(&base->cpu_base->lock, *flags);
                        if (likely(base == timer->base))
                                return base;
                        /* The timer has migrated to another CPU: */
-                       spin_unlock_irqrestore(&base->lock, *flags);
+                       spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
                }
                cpu_relax();
        }
 }
 
+
+/*
+ * Get the preferred target CPU for NOHZ
+ */
+static int hrtimer_get_target(int this_cpu, int pinned)
+{
+#ifdef CONFIG_NO_HZ
+       if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
+               int preferred_cpu = get_nohz_load_balancer();
+
+               if (preferred_cpu >= 0)
+                       return preferred_cpu;
+       }
+#endif
+       return this_cpu;
+}
+
+/*
+ * With HIGHRES=y we do not migrate the timer when it is expiring
+ * before the next event on the target cpu because we cannot reprogram
+ * the target cpu hardware and we would cause it to fire late.
+ *
+ * Called with cpu_base->lock of target cpu held.
+ */
+static int
+hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+       ktime_t expires;
+
+       if (!new_base->cpu_base->hres_active)
+               return 0;
+
+       expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
+       return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
+#else
+       return 0;
+#endif
+}
+
 /*
  * Switch the timer base to the current CPU when possible.
  */
-static inline struct hrtimer_base *
-switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
+static inline struct hrtimer_clock_base *
+switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
+                   int pinned)
 {
-       struct hrtimer_base *new_base;
+       struct hrtimer_clock_base *new_base;
+       struct hrtimer_cpu_base *new_cpu_base;
+       int this_cpu = smp_processor_id();
+       int cpu = hrtimer_get_target(this_cpu, pinned);
 
-       new_base = &__get_cpu_var(hrtimer_bases[base->index]);
+again:
+       new_cpu_base = &per_cpu(hrtimer_bases, cpu);
+       new_base = &new_cpu_base->clock_base[base->index];
 
        if (base != new_base) {
                /*
-                * We are trying to schedule the timer on the local CPU.
+                * We are trying to move timer to new_base.
                 * However we can't change timer's base while it is running,
                 * so we keep it on the same CPU. No hassle vs. reprogramming
                 * the event source in the high resolution case. The softirq
@@ -168,13 +203,21 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
                 * completed. There is no conflict as we hold the lock until
                 * the timer is enqueued.
                 */
-               if (unlikely(base->curr_timer == timer))
+               if (unlikely(hrtimer_callback_running(timer)))
                        return base;
 
                /* See the comment in lock_timer_base() */
                timer->base = NULL;
-               spin_unlock(&base->lock);
-               spin_lock(&new_base->lock);
+               spin_unlock(&base->cpu_base->lock);
+               spin_lock(&new_base->cpu_base->lock);
+
+               if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
+                       cpu = this_cpu;
+                       spin_unlock(&new_base->cpu_base->lock);
+                       spin_lock(&base->cpu_base->lock);
+                       timer->base = base;
+                       goto again;
+               }
                timer->base = new_base;
        }
        return new_base;
@@ -182,19 +225,17 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
 
 #else /* CONFIG_SMP */
 
-#define set_curr_timer(b, t)           do { } while (0)
-
-static inline struct hrtimer_base *
+static inline struct hrtimer_clock_base *
 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 {
-       struct hrtimer_base *base = timer->base;
+       struct hrtimer_clock_base *base = timer->base;
 
-       spin_lock_irqsave(&base->lock, *flags);
+       spin_lock_irqsave(&base->cpu_base->lock, *flags);
 
        return base;
 }
 
-#define switch_hrtimer_base(t, b)      (b)
+# define switch_hrtimer_base(t, b, p)  (b)
 
 #endif /* !CONFIG_SMP */
 
@@ -206,7 +247,6 @@ lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 # ifndef CONFIG_KTIME_SCALAR
 /**
  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
- *
  * @kt:                addend
  * @nsec:      the scalar nsec value to add
  *
@@ -227,20 +267,42 @@ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
        return ktime_add(kt, tmp);
 }
 
-#else /* CONFIG_KTIME_SCALAR */
+EXPORT_SYMBOL_GPL(ktime_add_ns);
+
+/**
+ * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
+ * @kt:                minuend
+ * @nsec:      the scalar nsec value to subtract
+ *
+ * Returns the subtraction of @nsec from @kt in ktime_t format
+ */
+ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
+{
+       ktime_t tmp;
 
+       if (likely(nsec < NSEC_PER_SEC)) {
+               tmp.tv64 = nsec;
+       } else {
+               unsigned long rem = do_div(nsec, NSEC_PER_SEC);
+
+               tmp = ktime_set((long)nsec, rem);
+       }
+
+       return ktime_sub(kt, tmp);
+}
+
+EXPORT_SYMBOL_GPL(ktime_sub_ns);
 # endif /* !CONFIG_KTIME_SCALAR */
 
 /*
  * Divide a ktime value by a nanosecond value
  */
-static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
+u64 ktime_divns(const ktime_t kt, s64 div)
 {
-       u64 dclc, inc, dns;
+       u64 dclc;
        int sft = 0;
 
-       dclc = dns = ktime_to_ns(kt);
-       inc = div;
+       dclc = ktime_to_ns(kt);
        /* Make sure the divisor is less than 2^32: */
        while (div >> 32) {
                sft++;
@@ -249,40 +311,503 @@ static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
        dclc >>= sft;
        do_div(dclc, (unsigned long) div);
 
-       return (unsigned long) dclc;
+       return dclc;
 }
-
-#else /* BITS_PER_LONG < 64 */
-# define ktime_divns(kt, div)          (unsigned long)((kt).tv64 / (div))
 #endif /* BITS_PER_LONG >= 64 */
 
 /*
- * Counterpart to lock_timer_base above:
+ * Add two ktime values and do a safety check for overflow:
+ */
+ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
+{
+       ktime_t res = ktime_add(lhs, rhs);
+
+       /*
+        * We use KTIME_SEC_MAX here, the maximum timeout which we can
+        * return to user space in a timespec:
+        */
+       if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
+               res = ktime_set(KTIME_SEC_MAX, 0);
+
+       return res;
+}
+
+EXPORT_SYMBOL_GPL(ktime_add_safe);
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr hrtimer_debug_descr;
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
+{
+       struct hrtimer *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               hrtimer_cancel(timer);
+               debug_object_init(timer, &hrtimer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+       switch (state) {
+
+       case ODEBUG_STATE_NOTAVAILABLE:
+               WARN_ON_ONCE(1);
+               return 0;
+
+       case ODEBUG_STATE_ACTIVE:
+               WARN_ON(1);
+
+       default:
+               return 0;
+       }
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
+{
+       struct hrtimer *timer = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               hrtimer_cancel(timer);
+               debug_object_free(timer, &hrtimer_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
+}
+
+static struct debug_obj_descr hrtimer_debug_descr = {
+       .name           = "hrtimer",
+       .fixup_init     = hrtimer_fixup_init,
+       .fixup_activate = hrtimer_fixup_activate,
+       .fixup_free     = hrtimer_fixup_free,
+};
+
+static inline void debug_hrtimer_init(struct hrtimer *timer)
+{
+       debug_object_init(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_activate(struct hrtimer *timer)
+{
+       debug_object_activate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
+{
+       debug_object_deactivate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_free(struct hrtimer *timer)
+{
+       debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode);
+
+void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode)
+{
+       debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+       __hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
+
+void destroy_hrtimer_on_stack(struct hrtimer *timer)
+{
+       debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+#else
+static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
+#endif
+
+static inline void
+debug_init(struct hrtimer *timer, clockid_t clockid,
+          enum hrtimer_mode mode)
+{
+       debug_hrtimer_init(timer);
+       trace_hrtimer_init(timer, clockid, mode);
+}
+
+static inline void debug_activate(struct hrtimer *timer)
+{
+       debug_hrtimer_activate(timer);
+       trace_hrtimer_start(timer);
+}
+
+static inline void debug_deactivate(struct hrtimer *timer)
+{
+       debug_hrtimer_deactivate(timer);
+       trace_hrtimer_cancel(timer);
+}
+
+/* High resolution timer related functions */
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer enabled ?
+ */
+static int hrtimer_hres_enabled __read_mostly  = 1;
+
+/*
+ * Enable / Disable high resolution mode
+ */
+static int __init setup_hrtimer_hres(char *str)
+{
+       if (!strcmp(str, "off"))
+               hrtimer_hres_enabled = 0;
+       else if (!strcmp(str, "on"))
+               hrtimer_hres_enabled = 1;
+       else
+               return 0;
+       return 1;
+}
+
+__setup("highres=", setup_hrtimer_hres);
+
+/*
+ * hrtimer_high_res_enabled - query, if the highres mode is enabled
+ */
+static inline int hrtimer_is_hres_enabled(void)
+{
+       return hrtimer_hres_enabled;
+}
+
+/*
+ * Is the high resolution mode active ?
+ */
+static inline int hrtimer_hres_active(void)
+{
+       return __get_cpu_var(hrtimer_bases).hres_active;
+}
+
+/*
+ * Reprogram the event source with checking both queues for the
+ * next event
+ * Called with interrupts disabled and base->lock held
+ */
+static void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+{
+       int i;
+       struct hrtimer_clock_base *base = cpu_base->clock_base;
+       ktime_t expires, expires_next;
+
+       expires_next.tv64 = KTIME_MAX;
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
+               struct hrtimer *timer;
+
+               if (!base->first)
+                       continue;
+               timer = rb_entry(base->first, struct hrtimer, node);
+               expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+               /*
+                * clock_was_set() has changed base->offset so the
+                * result might be negative. Fix it up to prevent a
+                * false positive in clockevents_program_event()
+                */
+               if (expires.tv64 < 0)
+                       expires.tv64 = 0;
+               if (expires.tv64 < expires_next.tv64)
+                       expires_next = expires;
+       }
+
+       if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
+               return;
+
+       cpu_base->expires_next.tv64 = expires_next.tv64;
+
+       if (cpu_base->expires_next.tv64 != KTIME_MAX)
+               tick_program_event(cpu_base->expires_next, 1);
+}
+
+/*
+ * Shared reprogramming for clock_realtime and clock_monotonic
+ *
+ * When a timer is enqueued and expires earlier than the already enqueued
+ * timers, we have to check, whether it expires earlier than the timer for
+ * which the clock event device was armed.
+ *
+ * Called with interrupts disabled and base->cpu_base.lock held
+ */
+static int hrtimer_reprogram(struct hrtimer *timer,
+                            struct hrtimer_clock_base *base)
+{
+       struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
+       ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+       int res;
+
+       WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
+
+       /*
+        * When the callback is running, we do not reprogram the clock event
+        * device. The timer callback is either running on a different CPU or
+        * the callback is executed in the hrtimer_interrupt context. The
+        * reprogramming is handled either by the softirq, which called the
+        * callback or at the end of the hrtimer_interrupt.
+        */
+       if (hrtimer_callback_running(timer))
+               return 0;
+
+       /*
+        * CLOCK_REALTIME timer might be requested with an absolute
+        * expiry time which is less than base->offset. Nothing wrong
+        * about that, just avoid to call into the tick code, which
+        * has now objections against negative expiry values.
+        */
+       if (expires.tv64 < 0)
+               return -ETIME;
+
+       if (expires.tv64 >= cpu_base->expires_next.tv64)
+               return 0;
+
+       /*
+        * If a hang was detected in the last timer interrupt then we
+        * do not schedule a timer which is earlier than the expiry
+        * which we enforced in the hang detection. We want the system
+        * to make progress.
+        */
+       if (cpu_base->hang_detected)
+               return 0;
+
+       /*
+        * Clockevents returns -ETIME, when the event was in the past.
+        */
+       res = tick_program_event(expires, 0);
+       if (!IS_ERR_VALUE(res))
+               cpu_base->expires_next = expires;
+       return res;
+}
+
+
+/*
+ * Retrigger next event is called after clock was set
+ *
+ * Called with interrupts disabled via on_each_cpu()
+ */
+static void retrigger_next_event(void *arg)
+{
+       struct hrtimer_cpu_base *base;
+       struct timespec realtime_offset;
+       unsigned long seq;
+
+       if (!hrtimer_hres_active())
+               return;
+
+       do {
+               seq = read_seqbegin(&xtime_lock);
+               set_normalized_timespec(&realtime_offset,
+                                       -wall_to_monotonic.tv_sec,
+                                       -wall_to_monotonic.tv_nsec);
+       } while (read_seqretry(&xtime_lock, seq));
+
+       base = &__get_cpu_var(hrtimer_bases);
+
+       /* Adjust CLOCK_REALTIME offset */
+       spin_lock(&base->lock);
+       base->clock_base[CLOCK_REALTIME].offset =
+               timespec_to_ktime(realtime_offset);
+
+       hrtimer_force_reprogram(base, 0);
+       spin_unlock(&base->lock);
+}
+
+/*
+ * Clock realtime was set
+ *
+ * Change the offset of the realtime clock vs. the monotonic
+ * clock.
+ *
+ * We might have to reprogram the high resolution timer interrupt. On
+ * SMP we call the architecture specific code to retrigger _all_ high
+ * resolution timer interrupts. On UP we just disable interrupts and
+ * call the high resolution interrupt code.
+ */
+void clock_was_set(void)
+{
+       /* Retrigger the CPU local events everywhere */
+       on_each_cpu(retrigger_next_event, NULL, 1);
+}
+
+/*
+ * During resume we might have to reprogram the high resolution timer
+ * interrupt (on the local CPU):
+ */
+void hres_timers_resume(void)
+{
+       WARN_ONCE(!irqs_disabled(),
+                 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
+
+       retrigger_next_event(NULL);
+}
+
+/*
+ * Initialize the high resolution related parts of cpu_base
+ */
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
+{
+       base->expires_next.tv64 = KTIME_MAX;
+       base->hres_active = 0;
+}
+
+/*
+ * Initialize the high resolution related parts of a hrtimer
+ */
+static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
+{
+}
+
+
+/*
+ * When High resolution timers are active, try to reprogram. Note, that in case
+ * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
+ * check happens. The timer gets enqueued into the rbtree. The reprogramming
+ * and expiry check is done in the hrtimer_interrupt or in the softirq.
+ */
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+                                           struct hrtimer_clock_base *base,
+                                           int wakeup)
+{
+       if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
+               if (wakeup) {
+                       spin_unlock(&base->cpu_base->lock);
+                       raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+                       spin_lock(&base->cpu_base->lock);
+               } else
+                       __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+
+               return 1;
+       }
+
+       return 0;
+}
+
+/*
+ * Switch to high resolution mode
+ */
+static int hrtimer_switch_to_hres(void)
+{
+       int cpu = smp_processor_id();
+       struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
+       unsigned long flags;
+
+       if (base->hres_active)
+               return 1;
+
+       local_irq_save(flags);
+
+       if (tick_init_highres()) {
+               local_irq_restore(flags);
+               printk(KERN_WARNING "Could not switch to high resolution "
+                                   "mode on CPU %d\n", cpu);
+               return 0;
+       }
+       base->hres_active = 1;
+       base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
+       base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
+
+       tick_setup_sched_timer();
+
+       /* "Retrigger" the interrupt to get things going */
+       retrigger_next_event(NULL);
+       local_irq_restore(flags);
+       return 1;
+}
+
+#else
+
+static inline int hrtimer_hres_active(void) { return 0; }
+static inline int hrtimer_is_hres_enabled(void) { return 0; }
+static inline int hrtimer_switch_to_hres(void) { return 0; }
+static inline void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
+static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
+                                           struct hrtimer_clock_base *base,
+                                           int wakeup)
+{
+       return 0;
+}
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
+static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
+
+#endif /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       if (timer->start_site)
+               return;
+       timer->start_site = __builtin_return_address(0);
+       memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+       timer->start_pid = current->pid;
+#endif
+}
+
+static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       timer->start_site = NULL;
+#endif
+}
+
+static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+       if (likely(!timer_stats_active))
+               return;
+       timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+                                timer->function, timer->start_comm, 0);
+#endif
+}
+
+/*
+ * Counterpart to lock_hrtimer_base above:
  */
 static inline
 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 {
-       spin_unlock_irqrestore(&timer->base->lock, *flags);
+       spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 }
 
 /**
  * hrtimer_forward - forward the timer expiry
- *
  * @timer:     hrtimer to forward
+ * @now:       forward past this time
  * @interval:  the interval to forward
  *
  * Forward the timer expiry so it will expire in the future.
- * The number of overruns is added to the overrun field.
+ * Returns the number of overruns.
  */
-unsigned long
-hrtimer_forward(struct hrtimer *timer, ktime_t interval)
+u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 {
-       unsigned long orun = 1;
-       ktime_t delta, now;
-
-       now = timer->base->get_time();
+       u64 orun = 1;
+       ktime_t delta;
 
-       delta = ktime_sub(now, timer->expires);
+       delta = ktime_sub(now, hrtimer_get_expires(timer));
 
        if (delta.tv64 < 0)
                return 0;
@@ -291,11 +816,11 @@ hrtimer_forward(struct hrtimer *timer, ktime_t interval)
                interval.tv64 = timer->base->resolution.tv64;
 
        if (unlikely(delta.tv64 >= interval.tv64)) {
-               nsec_t incr = ktime_to_ns(interval);
+               s64 incr = ktime_to_ns(interval);
 
                orun = ktime_divns(delta, incr);
-               timer->expires = ktime_add_ns(timer->expires, incr * orun);
-               if (timer->expires.tv64 > now.tv64)
+               hrtimer_add_expires_ns(timer, incr * orun);
+               if (hrtimer_get_expires_tv64(timer) > now.tv64)
                        return orun;
                /*
                 * This (and the ktime_add() below) is the
@@ -303,22 +828,29 @@ hrtimer_forward(struct hrtimer *timer, ktime_t interval)
                 */
                orun++;
        }
-       timer->expires = ktime_add(timer->expires, interval);
+       hrtimer_add_expires(timer, interval);
 
        return orun;
 }
+EXPORT_SYMBOL_GPL(hrtimer_forward);
 
 /*
  * enqueue_hrtimer - internal function to (re)start a timer
  *
  * The timer is inserted in expiry order. Insertion into the
  * red black tree is O(log(n)). Must hold the base lock.
+ *
+ * Returns 1 when the new timer is the leftmost timer in the tree.
  */
-static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
+static int enqueue_hrtimer(struct hrtimer *timer,
+                          struct hrtimer_clock_base *base)
 {
        struct rb_node **link = &base->active.rb_node;
        struct rb_node *parent = NULL;
        struct hrtimer *entry;
+       int leftmost = 1;
+
+       debug_activate(timer);
 
        /*
         * Find the right place in the rbtree:
@@ -330,59 +862,170 @@ static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
                 * We dont care about collisions. Nodes with
                 * the same expiry time stay together.
                 */
-               if (timer->expires.tv64 < entry->expires.tv64)
+               if (hrtimer_get_expires_tv64(timer) <
+                               hrtimer_get_expires_tv64(entry)) {
                        link = &(*link)->rb_left;
-               else
+               } else {
                        link = &(*link)->rb_right;
+                       leftmost = 0;
+               }
        }
 
        /*
         * Insert the timer to the rbtree and check whether it
         * replaces the first pending timer
         */
+       if (leftmost)
+               base->first = &timer->node;
+
        rb_link_node(&timer->node, parent, link);
        rb_insert_color(&timer->node, &base->active);
+       /*
+        * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
+        * state of a possibly running callback.
+        */
+       timer->state |= HRTIMER_STATE_ENQUEUED;
 
-       timer->state = HRTIMER_PENDING;
-
-       if (!base->first || timer->expires.tv64 <
-           rb_entry(base->first, struct hrtimer, node)->expires.tv64)
-               base->first = &timer->node;
+       return leftmost;
 }
 
 /*
  * __remove_hrtimer - internal function to remove a timer
  *
  * Caller must hold the base lock.
+ *
+ * High resolution timer mode reprograms the clock event device when the
+ * timer is the one which expires next. The caller can disable this by setting
+ * reprogram to zero. This is useful, when the context does a reprogramming
+ * anyway (e.g. timer interrupt)
  */
-static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
+static void __remove_hrtimer(struct hrtimer *timer,
+                            struct hrtimer_clock_base *base,
+                            unsigned long newstate, int reprogram)
+{
+       if (!(timer->state & HRTIMER_STATE_ENQUEUED))
+               goto out;
+
+       /*
+        * Remove the timer from the rbtree and replace the first
+        * entry pointer if necessary.
+        */
+       if (base->first == &timer->node) {
+               base->first = rb_next(&timer->node);
+#ifdef CONFIG_HIGH_RES_TIMERS
+               /* Reprogram the clock event device. if enabled */
+               if (reprogram && hrtimer_hres_active()) {
+                       ktime_t expires;
+
+                       expires = ktime_sub(hrtimer_get_expires(timer),
+                                           base->offset);
+                       if (base->cpu_base->expires_next.tv64 == expires.tv64)
+                               hrtimer_force_reprogram(base->cpu_base, 1);
+               }
+#endif
+       }
+       rb_erase(&timer->node, &base->active);
+out:
+       timer->state = newstate;
+}
+
+/*
+ * remove hrtimer, called with base lock held
+ */
+static inline int
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
+{
+       if (hrtimer_is_queued(timer)) {
+               int reprogram;
+
+               /*
+                * Remove the timer and force reprogramming when high
+                * resolution mode is active and the timer is on the current
+                * CPU. If we remove a timer on another CPU, reprogramming is
+                * skipped. The interrupt event on this CPU is fired and
+                * reprogramming happens in the interrupt handler. This is a
+                * rare case and less expensive than a smp call.
+                */
+               debug_deactivate(timer);
+               timer_stats_hrtimer_clear_start_info(timer);
+               reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
+               __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
+                                reprogram);
+               return 1;
+       }
+       return 0;
+}
+
+int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+               unsigned long delta_ns, const enum hrtimer_mode mode,
+               int wakeup)
 {
+       struct hrtimer_clock_base *base, *new_base;
+       unsigned long flags;
+       int ret, leftmost;
+
+       base = lock_hrtimer_base(timer, &flags);
+
+       /* Remove an active timer from the queue: */
+       ret = remove_hrtimer(timer, base);
+
+       /* Switch the timer base, if necessary: */
+       new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
+
+       if (mode & HRTIMER_MODE_REL) {
+               tim = ktime_add_safe(tim, new_base->get_time());
+               /*
+                * CONFIG_TIME_LOW_RES is a temporary way for architectures
+                * to signal that they simply return xtime in
+                * do_gettimeoffset(). In this case we want to round up by
+                * resolution when starting a relative timer, to avoid short
+                * timeouts. This will go away with the GTOD framework.
+                */
+#ifdef CONFIG_TIME_LOW_RES
+               tim = ktime_add_safe(tim, base->resolution);
+#endif
+       }
+
+       hrtimer_set_expires_range_ns(timer, tim, delta_ns);
+
+       timer_stats_hrtimer_set_start_info(timer);
+
+       leftmost = enqueue_hrtimer(timer, new_base);
+
        /*
-        * Remove the timer from the rbtree and replace the
-        * first entry pointer if necessary.
+        * Only allow reprogramming if the new base is on this CPU.
+        * (it might still be on another CPU if the timer was pending)
+        *
+        * XXX send_remote_softirq() ?
         */
-       if (base->first == &timer->node)
-               base->first = rb_next(&timer->node);
-       rb_erase(&timer->node, &base->active);
+       if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
+               hrtimer_enqueue_reprogram(timer, new_base, wakeup);
+
+       unlock_hrtimer_base(timer, &flags);
+
+       return ret;
 }
 
-/*
- * remove hrtimer, called with base lock held
+/**
+ * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
+ * @timer:     the timer to be added
+ * @tim:       expiry time
+ * @delta_ns:  "slack" range for the timer
+ * @mode:      expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
+ *
+ * Returns:
+ *  0 on success
+ *  1 when the timer was active
  */
-static inline int
-remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
+int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+               unsigned long delta_ns, const enum hrtimer_mode mode)
 {
-       if (hrtimer_active(timer)) {
-               __remove_hrtimer(timer, base);
-               timer->state = HRTIMER_INACTIVE;
-               return 1;
-       }
-       return 0;
+       return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
 }
+EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
 
 /**
- * hrtimer_start - (re)start an relative timer on the current CPU
- *
+ * hrtimer_start - (re)start an hrtimer on the current CPU
  * @timer:     the timer to be added
  * @tim:       expiry time
  * @mode:      expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
@@ -394,49 +1037,30 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
 int
 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
 {
-       struct hrtimer_base *base, *new_base;
-       unsigned long flags;
-       int ret;
-
-       base = lock_hrtimer_base(timer, &flags);
-
-       /* Remove an active timer from the queue: */
-       ret = remove_hrtimer(timer, base);
-
-       /* Switch the timer base, if necessary: */
-       new_base = switch_hrtimer_base(timer, base);
-
-       if (mode == HRTIMER_REL)
-               tim = ktime_add(tim, new_base->get_time());
-       timer->expires = tim;
-
-       enqueue_hrtimer(timer, new_base);
-
-       unlock_hrtimer_base(timer, &flags);
-
-       return ret;
+       return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
 }
+EXPORT_SYMBOL_GPL(hrtimer_start);
+
 
 /**
  * hrtimer_try_to_cancel - try to deactivate a timer
- *
  * @timer:     hrtimer to stop
  *
  * Returns:
  *  0 when the timer was not active
  *  1 when the timer was active
  * -1 when the timer is currently excuting the callback function and
- *    can not be stopped
+ *    cannot be stopped
  */
 int hrtimer_try_to_cancel(struct hrtimer *timer)
 {
-       struct hrtimer_base *base;
+       struct hrtimer_clock_base *base;
        unsigned long flags;
        int ret = -1;
 
        base = lock_hrtimer_base(timer, &flags);
 
-       if (base->curr_timer != timer)
+       if (!hrtimer_callback_running(timer))
                ret = remove_hrtimer(timer, base);
 
        unlock_hrtimer_base(timer, &flags);
@@ -444,10 +1068,10 @@ int hrtimer_try_to_cancel(struct hrtimer *timer)
        return ret;
 
 }
+EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
 
 /**
  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
- *
  * @timer:     the timer to be cancelled
  *
  * Returns:
@@ -461,260 +1085,526 @@ int hrtimer_cancel(struct hrtimer *timer)
 
                if (ret >= 0)
                        return ret;
+               cpu_relax();
        }
 }
+EXPORT_SYMBOL_GPL(hrtimer_cancel);
 
 /**
  * hrtimer_get_remaining - get remaining time for the timer
- *
  * @timer:     the timer to read
  */
 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
 {
-       struct hrtimer_base *base;
+       struct hrtimer_clock_base *base;
        unsigned long flags;
        ktime_t rem;
 
        base = lock_hrtimer_base(timer, &flags);
-       rem = ktime_sub(timer->expires, timer->base->get_time());
+       rem = hrtimer_expires_remaining(timer);
        unlock_hrtimer_base(timer, &flags);
 
        return rem;
 }
+EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
 
+#ifdef CONFIG_NO_HZ
 /**
- * hrtimer_rebase - rebase an initialized hrtimer to a different base
+ * hrtimer_get_next_event - get the time until next expiry event
  *
- * @timer:     the timer to be rebased
- * @clock_id:  the clock to be used
+ * Returns the delta to the next expiry event or KTIME_MAX if no timer
+ * is pending.
  */
-void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id)
+ktime_t hrtimer_get_next_event(void)
+{
+       struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
+       struct hrtimer_clock_base *base = cpu_base->clock_base;
+       ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
+       unsigned long flags;
+       int i;
+
+       spin_lock_irqsave(&cpu_base->lock, flags);
+
+       if (!hrtimer_hres_active()) {
+               for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
+                       struct hrtimer *timer;
+
+                       if (!base->first)
+                               continue;
+
+                       timer = rb_entry(base->first, struct hrtimer, node);
+                       delta.tv64 = hrtimer_get_expires_tv64(timer);
+                       delta = ktime_sub(delta, base->get_time());
+                       if (delta.tv64 < mindelta.tv64)
+                               mindelta.tv64 = delta.tv64;
+               }
+       }
+
+       spin_unlock_irqrestore(&cpu_base->lock, flags);
+
+       if (mindelta.tv64 < 0)
+               mindelta.tv64 = 0;
+       return mindelta;
+}
+#endif
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                          enum hrtimer_mode mode)
 {
-       struct hrtimer_base *bases;
+       struct hrtimer_cpu_base *cpu_base;
 
-       bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
-       timer->base = &bases[clock_id];
+       memset(timer, 0, sizeof(struct hrtimer));
+
+       cpu_base = &__raw_get_cpu_var(hrtimer_bases);
+
+       if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
+               clock_id = CLOCK_MONOTONIC;
+
+       timer->base = &cpu_base->clock_base[clock_id];
+       hrtimer_init_timer_hres(timer);
+
+#ifdef CONFIG_TIMER_STATS
+       timer->start_site = NULL;
+       timer->start_pid = -1;
+       memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
 }
 
 /**
  * hrtimer_init - initialize a timer to the given clock
- *
  * @timer:     the timer to be initialized
  * @clock_id:  the clock to be used
+ * @mode:      timer mode abs/rel
  */
-void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id)
+void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+                 enum hrtimer_mode mode)
 {
-       memset(timer, 0, sizeof(struct hrtimer));
-       hrtimer_rebase(timer, clock_id);
+       debug_init(timer, clock_id, mode);
+       __hrtimer_init(timer, clock_id, mode);
 }
+EXPORT_SYMBOL_GPL(hrtimer_init);
 
 /**
  * hrtimer_get_res - get the timer resolution for a clock
- *
  * @which_clock: which clock to query
  * @tp:                 pointer to timespec variable to store the resolution
  *
- * Store the resolution of the clock selected by which_clock in the
- * variable pointed to by tp.
+ * Store the resolution of the clock selected by @which_clock in the
+ * variable pointed to by @tp.
  */
 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
 {
-       struct hrtimer_base *bases;
+       struct hrtimer_cpu_base *cpu_base;
 
-       bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
-       *tp = ktime_to_timespec(bases[which_clock].resolution);
+       cpu_base = &__raw_get_cpu_var(hrtimer_bases);
+       *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
 
        return 0;
 }
+EXPORT_SYMBOL_GPL(hrtimer_get_res);
+
+static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
+{
+       struct hrtimer_clock_base *base = timer->base;
+       struct hrtimer_cpu_base *cpu_base = base->cpu_base;
+       enum hrtimer_restart (*fn)(struct hrtimer *);
+       int restart;
+
+       WARN_ON(!irqs_disabled());
+
+       debug_deactivate(timer);
+       __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
+       timer_stats_account_hrtimer(timer);
+       fn = timer->function;
+
+       /*
+        * Because we run timers from hardirq context, there is no chance
+        * they get migrated to another cpu, therefore its safe to unlock
+        * the timer base.
+        */
+       spin_unlock(&cpu_base->lock);
+       trace_hrtimer_expire_entry(timer, now);
+       restart = fn(timer);
+       trace_hrtimer_expire_exit(timer);
+       spin_lock(&cpu_base->lock);
+
+       /*
+        * Note: We clear the CALLBACK bit after enqueue_hrtimer and
+        * we do not reprogramm the event hardware. Happens either in
+        * hrtimer_start_range_ns() or in hrtimer_interrupt()
+        */
+       if (restart != HRTIMER_NORESTART) {
+               BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
+               enqueue_hrtimer(timer, base);
+       }
+       timer->state &= ~HRTIMER_STATE_CALLBACK;
+}
+
+#ifdef CONFIG_HIGH_RES_TIMERS
 
 /*
- * Expire the per base hrtimer-queue:
+ * High resolution timer interrupt
+ * Called with interrupts disabled
  */
-static inline void run_hrtimer_queue(struct hrtimer_base *base)
+void hrtimer_interrupt(struct clock_event_device *dev)
 {
-       ktime_t now = base->get_time();
-       struct rb_node *node;
+       struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
+       struct hrtimer_clock_base *base;
+       ktime_t expires_next, now, entry_time, delta;
+       int i, retries = 0;
 
-       spin_lock_irq(&base->lock);
+       BUG_ON(!cpu_base->hres_active);
+       cpu_base->nr_events++;
+       dev->next_event.tv64 = KTIME_MAX;
 
-       while ((node = base->first)) {
-               struct hrtimer *timer;
-               int (*fn)(void *);
-               int restart;
-               void *data;
+       entry_time = now = ktime_get();
+retry:
+       expires_next.tv64 = KTIME_MAX;
 
-               timer = rb_entry(node, struct hrtimer, node);
-               if (now.tv64 <= timer->expires.tv64)
-                       break;
+       spin_lock(&cpu_base->lock);
+       /*
+        * We set expires_next to KTIME_MAX here with cpu_base->lock
+        * held to prevent that a timer is enqueued in our queue via
+        * the migration code. This does not affect enqueueing of
+        * timers which run their callback and need to be requeued on
+        * this CPU.
+        */
+       cpu_base->expires_next.tv64 = KTIME_MAX;
 
-               fn = timer->function;
-               data = timer->data;
-               set_curr_timer(base, timer);
-               __remove_hrtimer(timer, base);
-               spin_unlock_irq(&base->lock);
+       base = cpu_base->clock_base;
 
-               /*
-                * fn == NULL is special case for the simplest timer
-                * variant - wake up process and do not restart:
-                */
-               if (!fn) {
-                       wake_up_process(data);
-                       restart = HRTIMER_NORESTART;
-               } else
-                       restart = fn(data);
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+               ktime_t basenow;
+               struct rb_node *node;
+
+               basenow = ktime_add(now, base->offset);
+
+               while ((node = base->first)) {
+                       struct hrtimer *timer;
 
-               spin_lock_irq(&base->lock);
+                       timer = rb_entry(node, struct hrtimer, node);
 
-               if (restart == HRTIMER_RESTART)
-                       enqueue_hrtimer(timer, base);
-               else
-                       timer->state = HRTIMER_EXPIRED;
+                       /*
+                        * The immediate goal for using the softexpires is
+                        * minimizing wakeups, not running timers at the
+                        * earliest interrupt after their soft expiration.
+                        * This allows us to avoid using a Priority Search
+                        * Tree, which can answer a stabbing querry for
+                        * overlapping intervals and instead use the simple
+                        * BST we already have.
+                        * We don't add extra wakeups by delaying timers that
+                        * are right-of a not yet expired timer, because that
+                        * timer will have to trigger a wakeup anyway.
+                        */
+
+                       if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
+                               ktime_t expires;
+
+                               expires = ktime_sub(hrtimer_get_expires(timer),
+                                                   base->offset);
+                               if (expires.tv64 < expires_next.tv64)
+                                       expires_next = expires;
+                               break;
+                       }
+
+                       __run_hrtimer(timer, &basenow);
+               }
+               base++;
+       }
+
+       /*
+        * Store the new expiry value so the migration code can verify
+        * against it.
+        */
+       cpu_base->expires_next = expires_next;
+       spin_unlock(&cpu_base->lock);
+
+       /* Reprogramming necessary ? */
+       if (expires_next.tv64 == KTIME_MAX ||
+           !tick_program_event(expires_next, 0)) {
+               cpu_base->hang_detected = 0;
+               return;
        }
-       set_curr_timer(base, NULL);
-       spin_unlock_irq(&base->lock);
+
+       /*
+        * The next timer was already expired due to:
+        * - tracing
+        * - long lasting callbacks
+        * - being scheduled away when running in a VM
+        *
+        * We need to prevent that we loop forever in the hrtimer
+        * interrupt routine. We give it 3 attempts to avoid
+        * overreacting on some spurious event.
+        */
+       now = ktime_get();
+       cpu_base->nr_retries++;
+       if (++retries < 3)
+               goto retry;
+       /*
+        * Give the system a chance to do something else than looping
+        * here. We stored the entry time, so we know exactly how long
+        * we spent here. We schedule the next event this amount of
+        * time away.
+        */
+       cpu_base->nr_hangs++;
+       cpu_base->hang_detected = 1;
+       delta = ktime_sub(now, entry_time);
+       if (delta.tv64 > cpu_base->max_hang_time.tv64)
+               cpu_base->max_hang_time = delta;
+       /*
+        * Limit it to a sensible value as we enforce a longer
+        * delay. Give the CPU at least 100ms to catch up.
+        */
+       if (delta.tv64 > 100 * NSEC_PER_MSEC)
+               expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
+       else
+               expires_next = ktime_add(now, delta);
+       tick_program_event(expires_next, 1);
+       printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
+                   ktime_to_ns(delta));
 }
 
 /*
- * Called from timer softirq every jiffy, expire hrtimers:
+ * local version of hrtimer_peek_ahead_timers() called with interrupts
+ * disabled.
  */
-void hrtimer_run_queues(void)
+static void __hrtimer_peek_ahead_timers(void)
 {
-       struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
-       int i;
+       struct tick_device *td;
 
-       for (i = 0; i < MAX_HRTIMER_BASES; i++)
-               run_hrtimer_queue(&base[i]);
-}
+       if (!hrtimer_hres_active())
+               return;
 
-/*
- * Sleep related functions:
- */
+       td = &__get_cpu_var(tick_cpu_device);
+       if (td && td->evtdev)
+               hrtimer_interrupt(td->evtdev);
+}
 
 /**
- * schedule_hrtimer - sleep until timeout
- *
- * @timer:     hrtimer variable initialized with the correct clock base
- * @mode:      timeout value is abs/rel
- *
- * Make the current task sleep until @timeout is
- * elapsed.
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
- * pass before the routine returns. The routine will return 0
+ * hrtimer_peek_ahead_timers -- run soft-expired timers now
  *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task. In this case the remaining time
- * will be returned
+ * hrtimer_peek_ahead_timers will peek at the timer queue of
+ * the current cpu and check if there are any timers for which
+ * the soft expires time has passed. If any such timers exist,
+ * they are run immediately and then removed from the timer queue.
  *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
  */
-static ktime_t __sched
-schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
+void hrtimer_peek_ahead_timers(void)
 {
-       /* fn stays NULL, meaning single-shot wakeup: */
-       timer->data = current;
-
-       hrtimer_start(timer, timer->expires, mode);
+       unsigned long flags;
 
-       schedule();
-       hrtimer_cancel(timer);
+       local_irq_save(flags);
+       __hrtimer_peek_ahead_timers();
+       local_irq_restore(flags);
+}
 
-       /* Return the remaining time: */
-       if (timer->state != HRTIMER_EXPIRED)
-               return ktime_sub(timer->expires, timer->base->get_time());
-       else
-               return (ktime_t) {.tv64 = 0 };
+static void run_hrtimer_softirq(struct softirq_action *h)
+{
+       hrtimer_peek_ahead_timers();
 }
 
-static inline ktime_t __sched
-schedule_hrtimer_interruptible(struct hrtimer *timer,
-                              const enum hrtimer_mode mode)
+#else /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void __hrtimer_peek_ahead_timers(void) { }
+
+#endif /* !CONFIG_HIGH_RES_TIMERS */
+
+/*
+ * Called from timer softirq every jiffy, expire hrtimers:
+ *
+ * For HRT its the fall back code to run the softirq in the timer
+ * softirq context in case the hrtimer initialization failed or has
+ * not been done yet.
+ */
+void hrtimer_run_pending(void)
 {
-       set_current_state(TASK_INTERRUPTIBLE);
+       if (hrtimer_hres_active())
+               return;
 
-       return schedule_hrtimer(timer, mode);
+       /*
+        * This _is_ ugly: We have to check in the softirq context,
+        * whether we can switch to highres and / or nohz mode. The
+        * clocksource switch happens in the timer interrupt with
+        * xtime_lock held. Notification from there only sets the
+        * check bit in the tick_oneshot code, otherwise we might
+        * deadlock vs. xtime_lock.
+        */
+       if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
+               hrtimer_switch_to_hres();
 }
 
-static long __sched
-nanosleep_restart(struct restart_block *restart, clockid_t clockid)
+/*
+ * Called from hardirq context every jiffy
+ */
+void hrtimer_run_queues(void)
 {
-       struct timespec __user *rmtp, tu;
-       void *rfn_save = restart->fn;
-       struct hrtimer timer;
-       ktime_t rem;
+       struct rb_node *node;
+       struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
+       struct hrtimer_clock_base *base;
+       int index, gettime = 1;
 
-       restart->fn = do_no_restart_syscall;
+       if (hrtimer_hres_active())
+               return;
 
-       hrtimer_init(&timer, clockid);
+       for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
+               base = &cpu_base->clock_base[index];
 
-       timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
+               if (!base->first)
+                       continue;
 
-       rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
+               if (gettime) {
+                       hrtimer_get_softirq_time(cpu_base);
+                       gettime = 0;
+               }
 
-       if (rem.tv64 <= 0)
-               return 0;
+               spin_lock(&cpu_base->lock);
 
-       rmtp = (struct timespec __user *) restart->arg2;
-       tu = ktime_to_timespec(rem);
-       if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
-               return -EFAULT;
+               while ((node = base->first)) {
+                       struct hrtimer *timer;
 
-       restart->fn = rfn_save;
+                       timer = rb_entry(node, struct hrtimer, node);
+                       if (base->softirq_time.tv64 <=
+                                       hrtimer_get_expires_tv64(timer))
+                               break;
 
-       /* The other values in restart are already filled in */
-       return -ERESTART_RESTARTBLOCK;
+                       __run_hrtimer(timer, &base->softirq_time);
+               }
+               spin_unlock(&cpu_base->lock);
+       }
 }
 
-static long __sched nanosleep_restart_mono(struct restart_block *restart)
+/*
+ * Sleep related functions:
+ */
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
 {
-       return nanosleep_restart(restart, CLOCK_MONOTONIC);
+       struct hrtimer_sleeper *t =
+               container_of(timer, struct hrtimer_sleeper, timer);
+       struct task_struct *task = t->task;
+
+       t->task = NULL;
+       if (task)
+               wake_up_process(task);
+
+       return HRTIMER_NORESTART;
 }
 
-static long __sched nanosleep_restart_real(struct restart_block *restart)
+void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 {
-       return nanosleep_restart(restart, CLOCK_REALTIME);
+       sl->timer.function = hrtimer_wakeup;
+       sl->task = task;
 }
+EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
 
-long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
-                      const enum hrtimer_mode mode, const clockid_t clockid)
+static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
 {
-       struct restart_block *restart;
-       struct hrtimer timer;
-       struct timespec tu;
-       ktime_t rem;
+       hrtimer_init_sleeper(t, current);
+
+       do {
+               set_current_state(TASK_INTERRUPTIBLE);
+               hrtimer_start_expires(&t->timer, mode);
+               if (!hrtimer_active(&t->timer))
+                       t->task = NULL;
 
-       hrtimer_init(&timer, clockid);
+               if (likely(t->task))
+                       schedule();
 
-       timer.expires = timespec_to_ktime(*rqtp);
+               hrtimer_cancel(&t->timer);
+               mode = HRTIMER_MODE_ABS;
 
-       rem = schedule_hrtimer_interruptible(&timer, mode);
+       } while (t->task && !signal_pending(current));
+
+       __set_current_state(TASK_RUNNING);
+
+       return t->task == NULL;
+}
+
+static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
+{
+       struct timespec rmt;
+       ktime_t rem;
+
+       rem = hrtimer_expires_remaining(timer);
        if (rem.tv64 <= 0)
                return 0;
+       rmt = ktime_to_timespec(rem);
 
-       /* Absolute timers do not update the rmtp value: */
-       if (mode == HRTIMER_ABS)
-               return -ERESTARTNOHAND;
+       if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
+               return -EFAULT;
 
-       tu = ktime_to_timespec(rem);
+       return 1;
+}
 
-       if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
-               return -EFAULT;
+long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
+{
+       struct hrtimer_sleeper t;
+       struct timespec __user  *rmtp;
+       int ret = 0;
+
+       hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
+                               HRTIMER_MODE_ABS);
+       hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
+
+       if (do_nanosleep(&t, HRTIMER_MODE_ABS))
+               goto out;
+
+       rmtp = restart->nanosleep.rmtp;
+       if (rmtp) {
+               ret = update_rmtp(&t.timer, rmtp);
+               if (ret <= 0)
+                       goto out;
+       }
 
-       restart = &current_thread_info()->restart_block;
-       restart->fn = (clockid == CLOCK_MONOTONIC) ?
-               nanosleep_restart_mono : nanosleep_restart_real;
-       restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
-       restart->arg1 = timer.expires.tv64 >> 32;
-       restart->arg2 = (unsigned long) rmtp;
+       /* The other values in restart are already filled in */
+       ret = -ERESTART_RESTARTBLOCK;
+out:
+       destroy_hrtimer_on_stack(&t.timer);
+       return ret;
+}
 
-       return -ERESTART_RESTARTBLOCK;
+long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+                      const enum hrtimer_mode mode, const clockid_t clockid)
+{
+       struct restart_block *restart;
+       struct hrtimer_sleeper t;
+       int ret = 0;
+       unsigned long slack;
+
+       slack = current->timer_slack_ns;
+       if (rt_task(current))
+               slack = 0;
+
+       hrtimer_init_on_stack(&t.timer, clockid, mode);
+       hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
+       if (do_nanosleep(&t, mode))
+               goto out;
+
+       /* Absolute timers do not update the rmtp value and restart: */
+       if (mode == HRTIMER_MODE_ABS) {
+               ret = -ERESTARTNOHAND;
+               goto out;
+       }
+
+       if (rmtp) {
+               ret = update_rmtp(&t.timer, rmtp);
+               if (ret <= 0)
+                       goto out;
+       }
+
+       restart = &current_thread_info()->restart_block;
+       restart->fn = hrtimer_nanosleep_restart;
+       restart->nanosleep.index = t.timer.base->index;
+       restart->nanosleep.rmtp = rmtp;
+       restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
+
+       ret = -ERESTART_RESTARTBLOCK;
+out:
+       destroy_hrtimer_on_stack(&t.timer);
+       return ret;
 }
 
-asmlinkage long
-sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
+SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
+               struct timespec __user *, rmtp)
 {
        struct timespec tu;
 
@@ -724,85 +1614,117 @@ sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
        if (!timespec_valid(&tu))
                return -EINVAL;
 
-       return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
+       return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 }
 
 /*
  * Functions related to boot-time initialization:
  */
-static void __devinit init_hrtimers_cpu(int cpu)
+static void __cpuinit init_hrtimers_cpu(int cpu)
 {
-       struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
+       struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
        int i;
 
-       for (i = 0; i < MAX_HRTIMER_BASES; i++) {
-               spin_lock_init(&base->lock);
-               base++;
-       }
+       spin_lock_init(&cpu_base->lock);
+
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
+               cpu_base->clock_base[i].cpu_base = cpu_base;
+
+       hrtimer_init_hres(cpu_base);
 }
 
 #ifdef CONFIG_HOTPLUG_CPU
 
-static void migrate_hrtimer_list(struct hrtimer_base *old_base,
-                               struct hrtimer_base *new_base)
+static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
+                               struct hrtimer_clock_base *new_base)
 {
        struct hrtimer *timer;
        struct rb_node *node;
 
        while ((node = rb_first(&old_base->active))) {
                timer = rb_entry(node, struct hrtimer, node);
-               __remove_hrtimer(timer, old_base);
+               BUG_ON(hrtimer_callback_running(timer));
+               debug_deactivate(timer);
+
+               /*
+                * Mark it as STATE_MIGRATE not INACTIVE otherwise the
+                * timer could be seen as !active and just vanish away
+                * under us on another CPU
+                */
+               __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
                timer->base = new_base;
+               /*
+                * Enqueue the timers on the new cpu. This does not
+                * reprogram the event device in case the timer
+                * expires before the earliest on this CPU, but we run
+                * hrtimer_interrupt after we migrated everything to
+                * sort out already expired timers and reprogram the
+                * event device.
+                */
                enqueue_hrtimer(timer, new_base);
+
+               /* Clear the migration state bit */
+               timer->state &= ~HRTIMER_STATE_MIGRATE;
        }
 }
 
-static void migrate_hrtimers(int cpu)
+static void migrate_hrtimers(int scpu)
 {
-       struct hrtimer_base *old_base, *new_base;
+       struct hrtimer_cpu_base *old_base, *new_base;
        int i;
 
-       BUG_ON(cpu_online(cpu));
-       old_base = per_cpu(hrtimer_bases, cpu);
-       new_base = get_cpu_var(hrtimer_bases);
+       BUG_ON(cpu_online(scpu));
+       tick_cancel_sched_timer(scpu);
 
        local_irq_disable();
+       old_base = &per_cpu(hrtimer_bases, scpu);
+       new_base = &__get_cpu_var(hrtimer_bases);
+       /*
+        * The caller is globally serialized and nobody else
+        * takes two locks at once, deadlock is not possible.
+        */
+       spin_lock(&new_base->lock);
+       spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
 
-       for (i = 0; i < MAX_HRTIMER_BASES; i++) {
-
-               spin_lock(&new_base->lock);
-               spin_lock(&old_base->lock);
-
-               BUG_ON(old_base->curr_timer);
-
-               migrate_hrtimer_list(old_base, new_base);
-
-               spin_unlock(&old_base->lock);
-               spin_unlock(&new_base->lock);
-               old_base++;
-               new_base++;
+       for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+               migrate_hrtimer_list(&old_base->clock_base[i],
+                                    &new_base->clock_base[i]);
        }
 
+       spin_unlock(&old_base->lock);
+       spin_unlock(&new_base->lock);
+
+       /* Check, if we got expired work to do */
+       __hrtimer_peek_ahead_timers();
        local_irq_enable();
-       put_cpu_var(hrtimer_bases);
 }
+
 #endif /* CONFIG_HOTPLUG_CPU */
 
-static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
+static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
                                        unsigned long action, void *hcpu)
 {
-       long cpu = (long)hcpu;
+       int scpu = (long)hcpu;
 
        switch (action) {
 
        case CPU_UP_PREPARE:
-               init_hrtimers_cpu(cpu);
+       case CPU_UP_PREPARE_FROZEN:
+               init_hrtimers_cpu(scpu);
                break;
 
 #ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DYING:
+       case CPU_DYING_FROZEN:
+               clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
+               break;
        case CPU_DEAD:
-               migrate_hrtimers(cpu);
+       case CPU_DEAD_FROZEN:
+       {
+               clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
+               migrate_hrtimers(scpu);
                break;
+       }
 #endif
 
        default:
@@ -812,7 +1734,7 @@ static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
        return NOTIFY_OK;
 }
 
-static struct notifier_block __devinitdata hrtimers_nb = {
+static struct notifier_block __cpuinitdata hrtimers_nb = {
        .notifier_call = hrtimer_cpu_notify,
 };
 
@@ -821,5 +1743,108 @@ void __init hrtimers_init(void)
        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
                          (void *)(long)smp_processor_id());
        register_cpu_notifier(&hrtimers_nb);
+#ifdef CONFIG_HIGH_RES_TIMERS
+       open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
+#endif
+}
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires:   timeout value (ktime_t)
+ * @delta:     slack in expires timeout (ktime_t)
+ * @mode:      timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
+                              const enum hrtimer_mode mode)
+{
+       struct hrtimer_sleeper t;
+
+       /*
+        * Optimize when a zero timeout value is given. It does not
+        * matter whether this is an absolute or a relative time.
+        */
+       if (expires && !expires->tv64) {
+               __set_current_state(TASK_RUNNING);
+               return 0;
+       }
+
+       /*
+        * A NULL parameter means "inifinte"
+        */
+       if (!expires) {
+               schedule();
+               __set_current_state(TASK_RUNNING);
+               return -EINTR;
+       }
+
+       hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
+       hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+
+       hrtimer_init_sleeper(&t, current);
+
+       hrtimer_start_expires(&t.timer, mode);
+       if (!hrtimer_active(&t.timer))
+               t.task = NULL;
+
+       if (likely(t.task))
+               schedule();
+
+       hrtimer_cancel(&t.timer);
+       destroy_hrtimer_on_stack(&t.timer);
+
+       __set_current_state(TASK_RUNNING);
+
+       return !t.task ? 0 : -EINTR;
 }
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
 
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires:   timeout value (ktime_t)
+ * @mode:      timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout(ktime_t *expires,
+                              const enum hrtimer_mode mode)
+{
+       return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);