mmc: s3c6410: enable ADMA feature in 6410 sdhci controller
[safe/jmp/linux-2.6] / kernel / futex.c
index 5efa2f9..e7a35f1 100644 (file)
@@ -8,6 +8,21 @@
  *  Removed page pinning, fix privately mapped COW pages and other cleanups
  *  (C) Copyright 2003, 2004 Jamie Lokier
  *
+ *  Robust futex support started by Ingo Molnar
+ *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
+ *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
+ *
+ *  PI-futex support started by Ingo Molnar and Thomas Gleixner
+ *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *
+ *  PRIVATE futexes by Eric Dumazet
+ *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
+ *
+ *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
+ *  Copyright (C) IBM Corporation, 2009
+ *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
+ *
  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  *  enough at me, Linus for the original (flawed) idea, Matthew
  *  Kirkwood for proof-of-concept implementation.
 #include <linux/pagemap.h>
 #include <linux/syscalls.h>
 #include <linux/signal.h>
+#include <linux/module.h>
+#include <linux/magic.h>
+#include <linux/pid.h>
+#include <linux/nsproxy.h>
+
 #include <asm/futex.h>
 
+#include "rtmutex_common.h"
+
+int __read_mostly futex_cmpxchg_enabled;
+
 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
 
 /*
- * Futexes are matched on equal values of this key.
- * The key type depends on whether it's a shared or private mapping.
- * Don't rearrange members without looking at hash_futex().
- *
- * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
- * We set bit 0 to indicate if it's an inode-based key.
- */
-union futex_key {
-       struct {
-               unsigned long pgoff;
-               struct inode *inode;
-               int offset;
-       } shared;
-       struct {
-               unsigned long uaddr;
-               struct mm_struct *mm;
-               int offset;
-       } private;
-       struct {
-               unsigned long word;
-               void *ptr;
-               int offset;
-       } both;
+ * Priority Inheritance state:
+ */
+struct futex_pi_state {
+       /*
+        * list of 'owned' pi_state instances - these have to be
+        * cleaned up in do_exit() if the task exits prematurely:
+        */
+       struct list_head list;
+
+       /*
+        * The PI object:
+        */
+       struct rt_mutex pi_mutex;
+
+       struct task_struct *owner;
+       atomic_t refcount;
+
+       union futex_key key;
 };
 
-/*
- * We use this hashed waitqueue instead of a normal wait_queue_t, so
+/**
+ * struct futex_q - The hashed futex queue entry, one per waiting task
+ * @task:              the task waiting on the futex
+ * @lock_ptr:          the hash bucket lock
+ * @key:               the key the futex is hashed on
+ * @pi_state:          optional priority inheritance state
+ * @rt_waiter:         rt_waiter storage for use with requeue_pi
+ * @requeue_pi_key:    the requeue_pi target futex key
+ * @bitset:            bitset for the optional bitmasked wakeup
+ *
+ * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  * we can wake only the relevant ones (hashed queues may be shared).
  *
  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
- * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
+ * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  * The order of wakup is always to make the first condition true, then
- * wake up q->waiters, then make the second condition true.
+ * the second.
+ *
+ * PI futexes are typically woken before they are removed from the hash list via
+ * the rt_mutex code. See unqueue_me_pi().
  */
 struct futex_q {
-       struct list_head list;
-       wait_queue_head_t waiters;
+       struct plist_node list;
 
-       /* Which hash list lock to use. */
+       struct task_struct *task;
        spinlock_t *lock_ptr;
-
-       /* Key which the futex is hashed on. */
        union futex_key key;
-
-       /* For fd, sigio sent using these. */
-       int fd;
-       struct file *filp;
+       struct futex_pi_state *pi_state;
+       struct rt_mutex_waiter *rt_waiter;
+       union futex_key *requeue_pi_key;
+       u32 bitset;
 };
 
 /*
- * Split the global futex_lock into every hash list lock.
+ * Hash buckets are shared by all the futex_keys that hash to the same
+ * location.  Each key may have multiple futex_q structures, one for each task
+ * waiting on a futex.
  */
 struct futex_hash_bucket {
-       spinlock_t              lock;
-       struct list_head       chain;
+       spinlock_t lock;
+       struct plist_head chain;
 };
 
 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 
-/* Futex-fs vfsmount entry: */
-static struct vfsmount *futex_mnt;
-
 /*
  * We hash on the keys returned from get_futex_key (see below).
  */
@@ -123,474 +150,1300 @@ static struct futex_hash_bucket *hash_futex(union futex_key *key)
  */
 static inline int match_futex(union futex_key *key1, union futex_key *key2)
 {
-       return (key1->both.word == key2->both.word
+       return (key1 && key2
+               && key1->both.word == key2->both.word
                && key1->both.ptr == key2->both.ptr
                && key1->both.offset == key2->both.offset);
 }
 
 /*
- * Get parameters which are the keys for a futex.
+ * Take a reference to the resource addressed by a key.
+ * Can be called while holding spinlocks.
  *
- * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
- * offset_within_page).  For private mappings, it's (uaddr, current->mm).
- * We can usually work out the index without swapping in the page.
+ */
+static void get_futex_key_refs(union futex_key *key)
+{
+       if (!key->both.ptr)
+               return;
+
+       switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+       case FUT_OFF_INODE:
+               atomic_inc(&key->shared.inode->i_count);
+               break;
+       case FUT_OFF_MMSHARED:
+               atomic_inc(&key->private.mm->mm_count);
+               break;
+       }
+}
+
+/*
+ * Drop a reference to the resource addressed by a key.
+ * The hash bucket spinlock must not be held.
+ */
+static void drop_futex_key_refs(union futex_key *key)
+{
+       if (!key->both.ptr) {
+               /* If we're here then we tried to put a key we failed to get */
+               WARN_ON_ONCE(1);
+               return;
+       }
+
+       switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+       case FUT_OFF_INODE:
+               iput(key->shared.inode);
+               break;
+       case FUT_OFF_MMSHARED:
+               mmdrop(key->private.mm);
+               break;
+       }
+}
+
+/**
+ * get_futex_key() - Get parameters which are the keys for a futex
+ * @uaddr:     virtual address of the futex
+ * @fshared:   0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
+ * @key:       address where result is stored.
  *
- * Returns: 0, or negative error code.
+ * Returns a negative error code or 0
  * The key words are stored in *key on success.
  *
- * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
+ * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
+ * offset_within_page).  For private mappings, it's (uaddr, current->mm).
+ * We can usually work out the index without swapping in the page.
+ *
+ * lock_page() might sleep, the caller should not hold a spinlock.
  */
-static int get_futex_key(unsigned long uaddr, union futex_key *key)
+static int
+get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
 {
+       unsigned long address = (unsigned long)uaddr;
        struct mm_struct *mm = current->mm;
-       struct vm_area_struct *vma;
        struct page *page;
        int err;
 
        /*
         * The futex address must be "naturally" aligned.
         */
-       key->both.offset = uaddr % PAGE_SIZE;
-       if (unlikely((key->both.offset % sizeof(u32)) != 0))
+       key->both.offset = address % PAGE_SIZE;
+       if (unlikely((address % sizeof(u32)) != 0))
                return -EINVAL;
-       uaddr -= key->both.offset;
+       address -= key->both.offset;
 
        /*
-        * The futex is hashed differently depending on whether
-        * it's in a shared or private mapping.  So check vma first.
+        * PROCESS_PRIVATE futexes are fast.
+        * As the mm cannot disappear under us and the 'key' only needs
+        * virtual address, we dont even have to find the underlying vma.
+        * Note : We do have to check 'uaddr' is a valid user address,
+        *        but access_ok() should be faster than find_vma()
         */
-       vma = find_extend_vma(mm, uaddr);
-       if (unlikely(!vma))
-               return -EFAULT;
+       if (!fshared) {
+               if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
+                       return -EFAULT;
+               key->private.mm = mm;
+               key->private.address = address;
+               get_futex_key_refs(key);
+               return 0;
+       }
 
-       /*
-        * Permissions.
-        */
-       if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
-               return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
+again:
+       err = get_user_pages_fast(address, 1, 1, &page);
+       if (err < 0)
+               return err;
+
+       page = compound_head(page);
+       lock_page(page);
+       if (!page->mapping) {
+               unlock_page(page);
+               put_page(page);
+               goto again;
+       }
 
        /*
         * Private mappings are handled in a simple way.
         *
         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
         * it's a read-only handle, it's expected that futexes attach to
-        * the object not the particular process.  Therefore we use
-        * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
-        * mappings of _writable_ handles.
+        * the object not the particular process.
         */
-       if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
+       if (PageAnon(page)) {
+               key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
                key->private.mm = mm;
-               key->private.uaddr = uaddr;
-               return 0;
+               key->private.address = address;
+       } else {
+               key->both.offset |= FUT_OFF_INODE; /* inode-based key */
+               key->shared.inode = page->mapping->host;
+               key->shared.pgoff = page->index;
        }
 
-       /*
-        * Linear file mappings are also simple.
-        */
-       key->shared.inode = vma->vm_file->f_dentry->d_inode;
-       key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
-       if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
-               key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
-                                    + vma->vm_pgoff);
-               return 0;
-       }
+       get_futex_key_refs(key);
 
-       /*
-        * We could walk the page table to read the non-linear
-        * pte, and get the page index without fetching the page
-        * from swap.  But that's a lot of code to duplicate here
-        * for a rare case, so we simply fetch the page.
-        */
-       err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
-       if (err >= 0) {
-               key->shared.pgoff =
-                       page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
-               put_page(page);
-               return 0;
-       }
-       return err;
+       unlock_page(page);
+       put_page(page);
+       return 0;
 }
 
-/*
- * Take a reference to the resource addressed by a key.
- * Can be called while holding spinlocks.
- *
- * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
- * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
- */
-static inline void get_key_refs(union futex_key *key)
+static inline
+void put_futex_key(int fshared, union futex_key *key)
 {
-       if (key->both.ptr != 0) {
-               if (key->both.offset & 1)
-                       atomic_inc(&key->shared.inode->i_count);
-               else
-                       atomic_inc(&key->private.mm->mm_count);
-       }
+       drop_futex_key_refs(key);
 }
 
-/*
- * Drop a reference to the resource addressed by a key.
- * The hash bucket spinlock must not be held.
+/**
+ * fault_in_user_writeable() - Fault in user address and verify RW access
+ * @uaddr:     pointer to faulting user space address
+ *
+ * Slow path to fixup the fault we just took in the atomic write
+ * access to @uaddr.
+ *
+ * We have no generic implementation of a non destructive write to the
+ * user address. We know that we faulted in the atomic pagefault
+ * disabled section so we can as well avoid the #PF overhead by
+ * calling get_user_pages() right away.
  */
-static void drop_key_refs(union futex_key *key)
-{
-       if (key->both.ptr != 0) {
-               if (key->both.offset & 1)
-                       iput(key->shared.inode);
-               else
-                       mmdrop(key->private.mm);
-       }
-}
-
-static inline int get_futex_value_locked(int *dest, int __user *from)
+static int fault_in_user_writeable(u32 __user *uaddr)
 {
+       struct mm_struct *mm = current->mm;
        int ret;
 
-       inc_preempt_count();
-       ret = __copy_from_user_inatomic(dest, from, sizeof(int));
-       dec_preempt_count();
+       down_read(&mm->mmap_sem);
+       ret = get_user_pages(current, mm, (unsigned long)uaddr,
+                            1, 1, 0, NULL, NULL);
+       up_read(&mm->mmap_sem);
 
-       return ret ? -EFAULT : 0;
+       return ret < 0 ? ret : 0;
 }
 
-/*
- * The hash bucket lock must be held when this is called.
- * Afterwards, the futex_q must not be accessed.
+/**
+ * futex_top_waiter() - Return the highest priority waiter on a futex
+ * @hb:                the hash bucket the futex_q's reside in
+ * @key:       the futex key (to distinguish it from other futex futex_q's)
+ *
+ * Must be called with the hb lock held.
  */
-static void wake_futex(struct futex_q *q)
+static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
+                                       union futex_key *key)
 {
-       list_del_init(&q->list);
-       if (q->filp)
-               send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
-       /*
-        * The lock in wake_up_all() is a crucial memory barrier after the
-        * list_del_init() and also before assigning to q->lock_ptr.
-        */
-       wake_up_all(&q->waiters);
-       /*
-        * The waiting task can free the futex_q as soon as this is written,
-        * without taking any locks.  This must come last.
-        *
-        * A memory barrier is required here to prevent the following store
-        * to lock_ptr from getting ahead of the wakeup. Clearing the lock
-        * at the end of wake_up_all() does not prevent this store from
-        * moving.
-        */
-       wmb();
-       q->lock_ptr = NULL;
+       struct futex_q *this;
+
+       plist_for_each_entry(this, &hb->chain, list) {
+               if (match_futex(&this->key, key))
+                       return this;
+       }
+       return NULL;
 }
 
-/*
- * Wake up all waiters hashed on the physical page that is mapped
- * to this virtual address:
- */
-static int futex_wake(unsigned long uaddr, int nr_wake)
+static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
 {
-       union futex_key key;
-       struct futex_hash_bucket *bh;
-       struct list_head *head;
-       struct futex_q *this, *next;
-       int ret;
+       u32 curval;
 
-       down_read(&current->mm->mmap_sem);
+       pagefault_disable();
+       curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
+       pagefault_enable();
 
-       ret = get_futex_key(uaddr, &key);
-       if (unlikely(ret != 0))
-               goto out;
+       return curval;
+}
 
-       bh = hash_futex(&key);
-       spin_lock(&bh->lock);
-       head = &bh->chain;
+static int get_futex_value_locked(u32 *dest, u32 __user *from)
+{
+       int ret;
 
-       list_for_each_entry_safe(this, next, head, list) {
-               if (match_futex (&this->key, &key)) {
-                       wake_futex(this);
-                       if (++ret >= nr_wake)
-                               break;
-               }
-       }
+       pagefault_disable();
+       ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
+       pagefault_enable();
 
-       spin_unlock(&bh->lock);
-out:
-       up_read(&current->mm->mmap_sem);
-       return ret;
+       return ret ? -EFAULT : 0;
 }
 
+
 /*
- * Wake up all waiters hashed on the physical page that is mapped
- * to this virtual address:
+ * PI code:
  */
-static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
+static int refill_pi_state_cache(void)
 {
-       union futex_key key1, key2;
-       struct futex_hash_bucket *bh1, *bh2;
-       struct list_head *head;
-       struct futex_q *this, *next;
-       int ret, op_ret, attempt = 0;
-
-retryfull:
-       down_read(&current->mm->mmap_sem);
+       struct futex_pi_state *pi_state;
 
-       ret = get_futex_key(uaddr1, &key1);
-       if (unlikely(ret != 0))
-               goto out;
-       ret = get_futex_key(uaddr2, &key2);
-       if (unlikely(ret != 0))
-               goto out;
+       if (likely(current->pi_state_cache))
+               return 0;
 
-       bh1 = hash_futex(&key1);
-       bh2 = hash_futex(&key2);
+       pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 
-retry:
-       if (bh1 < bh2)
-               spin_lock(&bh1->lock);
-       spin_lock(&bh2->lock);
-       if (bh1 > bh2)
-               spin_lock(&bh1->lock);
+       if (!pi_state)
+               return -ENOMEM;
 
-       op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
-       if (unlikely(op_ret < 0)) {
-               int dummy;
+       INIT_LIST_HEAD(&pi_state->list);
+       /* pi_mutex gets initialized later */
+       pi_state->owner = NULL;
+       atomic_set(&pi_state->refcount, 1);
+       pi_state->key = FUTEX_KEY_INIT;
 
-               spin_unlock(&bh1->lock);
-               if (bh1 != bh2)
-                       spin_unlock(&bh2->lock);
+       current->pi_state_cache = pi_state;
 
-#ifndef CONFIG_MMU
-               /* we don't get EFAULT from MMU faults if we don't have an MMU,
-                * but we might get them from range checking */
-               ret = op_ret;
-               goto out;
-#endif
+       return 0;
+}
 
-               if (unlikely(op_ret != -EFAULT)) {
-                       ret = op_ret;
-                       goto out;
-               }
+static struct futex_pi_state * alloc_pi_state(void)
+{
+       struct futex_pi_state *pi_state = current->pi_state_cache;
 
-               /* futex_atomic_op_inuser needs to both read and write
-                * *(int __user *)uaddr2, but we can't modify it
-                * non-atomically.  Therefore, if get_user below is not
-                * enough, we need to handle the fault ourselves, while
-                * still holding the mmap_sem.  */
-               if (attempt++) {
-                       struct vm_area_struct * vma;
-                       struct mm_struct *mm = current->mm;
+       WARN_ON(!pi_state);
+       current->pi_state_cache = NULL;
 
-                       ret = -EFAULT;
-                       if (attempt >= 2 ||
-                           !(vma = find_vma(mm, uaddr2)) ||
-                           vma->vm_start > uaddr2 ||
-                           !(vma->vm_flags & VM_WRITE))
-                               goto out;
-
-                       switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
-                       case VM_FAULT_MINOR:
-                               current->min_flt++;
-                               break;
-                       case VM_FAULT_MAJOR:
-                               current->maj_flt++;
-                               break;
-                       default:
-                               goto out;
-                       }
-                       goto retry;
-               }
+       return pi_state;
+}
 
-               /* If we would have faulted, release mmap_sem,
-                * fault it in and start all over again.  */
-               up_read(&current->mm->mmap_sem);
+static void free_pi_state(struct futex_pi_state *pi_state)
+{
+       if (!atomic_dec_and_test(&pi_state->refcount))
+               return;
 
-               ret = get_user(dummy, (int __user *)uaddr2);
-               if (ret)
-                       return ret;
+       /*
+        * If pi_state->owner is NULL, the owner is most probably dying
+        * and has cleaned up the pi_state already
+        */
+       if (pi_state->owner) {
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
+               list_del_init(&pi_state->list);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 
-               goto retryfull;
+               rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
        }
 
-       head = &bh1->chain;
-
-       list_for_each_entry_safe(this, next, head, list) {
-               if (match_futex (&this->key, &key1)) {
-                       wake_futex(this);
-                       if (++ret >= nr_wake)
-                               break;
-               }
+       if (current->pi_state_cache)
+               kfree(pi_state);
+       else {
+               /*
+                * pi_state->list is already empty.
+                * clear pi_state->owner.
+                * refcount is at 0 - put it back to 1.
+                */
+               pi_state->owner = NULL;
+               atomic_set(&pi_state->refcount, 1);
+               current->pi_state_cache = pi_state;
        }
+}
 
-       if (op_ret > 0) {
-               head = &bh2->chain;
-
-               op_ret = 0;
-               list_for_each_entry_safe(this, next, head, list) {
-                       if (match_futex (&this->key, &key2)) {
-                               wake_futex(this);
-                               if (++op_ret >= nr_wake2)
-                                       break;
-                       }
-               }
-               ret += op_ret;
+/*
+ * Look up the task based on what TID userspace gave us.
+ * We dont trust it.
+ */
+static struct task_struct * futex_find_get_task(pid_t pid)
+{
+       struct task_struct *p;
+       const struct cred *cred = current_cred(), *pcred;
+
+       rcu_read_lock();
+       p = find_task_by_vpid(pid);
+       if (!p) {
+               p = ERR_PTR(-ESRCH);
+       } else {
+               pcred = __task_cred(p);
+               if (cred->euid != pcred->euid &&
+                   cred->euid != pcred->uid)
+                       p = ERR_PTR(-ESRCH);
+               else
+                       get_task_struct(p);
        }
 
-       spin_unlock(&bh1->lock);
-       if (bh1 != bh2)
-               spin_unlock(&bh2->lock);
-out:
-       up_read(&current->mm->mmap_sem);
-       return ret;
+       rcu_read_unlock();
+
+       return p;
 }
 
 /*
- * Requeue all waiters hashed on one physical page to another
- * physical page.
+ * This task is holding PI mutexes at exit time => bad.
+ * Kernel cleans up PI-state, but userspace is likely hosed.
+ * (Robust-futex cleanup is separate and might save the day for userspace.)
  */
-static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
-                        int nr_wake, int nr_requeue, int *valp)
+void exit_pi_state_list(struct task_struct *curr)
 {
-       union futex_key key1, key2;
-       struct futex_hash_bucket *bh1, *bh2;
-       struct list_head *head1;
-       struct futex_q *this, *next;
-       int ret, drop_count = 0;
+       struct list_head *next, *head = &curr->pi_state_list;
+       struct futex_pi_state *pi_state;
+       struct futex_hash_bucket *hb;
+       union futex_key key = FUTEX_KEY_INIT;
 
- retry:
-       down_read(&current->mm->mmap_sem);
+       if (!futex_cmpxchg_enabled)
+               return;
+       /*
+        * We are a ZOMBIE and nobody can enqueue itself on
+        * pi_state_list anymore, but we have to be careful
+        * versus waiters unqueueing themselves:
+        */
+       raw_spin_lock_irq(&curr->pi_lock);
+       while (!list_empty(head)) {
 
-       ret = get_futex_key(uaddr1, &key1);
-       if (unlikely(ret != 0))
-               goto out;
-       ret = get_futex_key(uaddr2, &key2);
-       if (unlikely(ret != 0))
-               goto out;
+               next = head->next;
+               pi_state = list_entry(next, struct futex_pi_state, list);
+               key = pi_state->key;
+               hb = hash_futex(&key);
+               raw_spin_unlock_irq(&curr->pi_lock);
 
-       bh1 = hash_futex(&key1);
-       bh2 = hash_futex(&key2);
+               spin_lock(&hb->lock);
 
-       if (bh1 < bh2)
-               spin_lock(&bh1->lock);
-       spin_lock(&bh2->lock);
-       if (bh1 > bh2)
-               spin_lock(&bh1->lock);
+               raw_spin_lock_irq(&curr->pi_lock);
+               /*
+                * We dropped the pi-lock, so re-check whether this
+                * task still owns the PI-state:
+                */
+               if (head->next != next) {
+                       spin_unlock(&hb->lock);
+                       continue;
+               }
 
-       if (likely(valp != NULL)) {
-               int curval;
+               WARN_ON(pi_state->owner != curr);
+               WARN_ON(list_empty(&pi_state->list));
+               list_del_init(&pi_state->list);
+               pi_state->owner = NULL;
+               raw_spin_unlock_irq(&curr->pi_lock);
 
-               ret = get_futex_value_locked(&curval, (int __user *)uaddr1);
+               rt_mutex_unlock(&pi_state->pi_mutex);
 
-               if (unlikely(ret)) {
-                       spin_unlock(&bh1->lock);
-                       if (bh1 != bh2)
-                               spin_unlock(&bh2->lock);
+               spin_unlock(&hb->lock);
 
-                       /* If we would have faulted, release mmap_sem, fault
-                        * it in and start all over again.
-                        */
-                       up_read(&current->mm->mmap_sem);
+               raw_spin_lock_irq(&curr->pi_lock);
+       }
+       raw_spin_unlock_irq(&curr->pi_lock);
+}
 
-                       ret = get_user(curval, (int __user *)uaddr1);
+static int
+lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
+               union futex_key *key, struct futex_pi_state **ps)
+{
+       struct futex_pi_state *pi_state = NULL;
+       struct futex_q *this, *next;
+       struct plist_head *head;
+       struct task_struct *p;
+       pid_t pid = uval & FUTEX_TID_MASK;
 
-                       if (!ret)
-                               goto retry;
+       head = &hb->chain;
 
-                       return ret;
-               }
-               if (curval != *valp) {
-                       ret = -EAGAIN;
-                       goto out_unlock;
-               }
-       }
+       plist_for_each_entry_safe(this, next, head, list) {
+               if (match_futex(&this->key, key)) {
+                       /*
+                        * Another waiter already exists - bump up
+                        * the refcount and return its pi_state:
+                        */
+                       pi_state = this->pi_state;
+                       /*
+                        * Userspace might have messed up non PI and PI futexes
+                        */
+                       if (unlikely(!pi_state))
+                               return -EINVAL;
+
+                       WARN_ON(!atomic_read(&pi_state->refcount));
+
+                       /*
+                        * When pi_state->owner is NULL then the owner died
+                        * and another waiter is on the fly. pi_state->owner
+                        * is fixed up by the task which acquires
+                        * pi_state->rt_mutex.
+                        *
+                        * We do not check for pid == 0 which can happen when
+                        * the owner died and robust_list_exit() cleared the
+                        * TID.
+                        */
+                       if (pid && pi_state->owner) {
+                               /*
+                                * Bail out if user space manipulated the
+                                * futex value.
+                                */
+                               if (pid != task_pid_vnr(pi_state->owner))
+                                       return -EINVAL;
+                       }
 
-       head1 = &bh1->chain;
-       list_for_each_entry_safe(this, next, head1, list) {
-               if (!match_futex (&this->key, &key1))
-                       continue;
-               if (++ret <= nr_wake) {
-                       wake_futex(this);
-               } else {
-                       list_move_tail(&this->list, &bh2->chain);
-                       this->lock_ptr = &bh2->lock;
-                       this->key = key2;
-                       get_key_refs(&key2);
-                       drop_count++;
+                       atomic_inc(&pi_state->refcount);
+                       *ps = pi_state;
 
-                       if (ret - nr_wake >= nr_requeue)
-                               break;
-                       /* Make sure to stop if key1 == key2 */
-                       if (head1 == &bh2->chain && head1 != &next->list)
-                               head1 = &this->list;
+                       return 0;
                }
        }
 
-out_unlock:
-       spin_unlock(&bh1->lock);
-       if (bh1 != bh2)
-               spin_unlock(&bh2->lock);
+       /*
+        * We are the first waiter - try to look up the real owner and attach
+        * the new pi_state to it, but bail out when TID = 0
+        */
+       if (!pid)
+               return -ESRCH;
+       p = futex_find_get_task(pid);
+       if (IS_ERR(p))
+               return PTR_ERR(p);
 
-       /* drop_key_refs() must be called outside the spinlocks. */
-       while (--drop_count >= 0)
-               drop_key_refs(&key1);
+       /*
+        * We need to look at the task state flags to figure out,
+        * whether the task is exiting. To protect against the do_exit
+        * change of the task flags, we do this protected by
+        * p->pi_lock:
+        */
+       raw_spin_lock_irq(&p->pi_lock);
+       if (unlikely(p->flags & PF_EXITING)) {
+               /*
+                * The task is on the way out. When PF_EXITPIDONE is
+                * set, we know that the task has finished the
+                * cleanup:
+                */
+               int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 
-out:
-       up_read(&current->mm->mmap_sem);
-       return ret;
-}
+               raw_spin_unlock_irq(&p->pi_lock);
+               put_task_struct(p);
+               return ret;
+       }
 
-/* The key must be already stored in q->key. */
-static inline struct futex_hash_bucket *
-queue_lock(struct futex_q *q, int fd, struct file *filp)
-{
-       struct futex_hash_bucket *bh;
+       pi_state = alloc_pi_state();
 
-       q->fd = fd;
-       q->filp = filp;
+       /*
+        * Initialize the pi_mutex in locked state and make 'p'
+        * the owner of it:
+        */
+       rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 
-       init_waitqueue_head(&q->waiters);
+       /* Store the key for possible exit cleanups: */
+       pi_state->key = *key;
 
-       get_key_refs(&q->key);
-       bh = hash_futex(&q->key);
-       q->lock_ptr = &bh->lock;
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &p->pi_state_list);
+       pi_state->owner = p;
+       raw_spin_unlock_irq(&p->pi_lock);
 
-       spin_lock(&bh->lock);
-       return bh;
-}
+       put_task_struct(p);
 
-static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
-{
-       list_add_tail(&q->list, &bh->chain);
-       spin_unlock(&bh->lock);
-}
+       *ps = pi_state;
 
-static inline void
-queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
-{
-       spin_unlock(&bh->lock);
-       drop_key_refs(&q->key);
+       return 0;
 }
 
-/*
- * queue_me and unqueue_me must be called as a pair, each
- * exactly once.  They are called with the hashed spinlock held.
+/**
+ * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
+ * @uaddr:             the pi futex user address
+ * @hb:                        the pi futex hash bucket
+ * @key:               the futex key associated with uaddr and hb
+ * @ps:                        the pi_state pointer where we store the result of the
+ *                     lookup
+ * @task:              the task to perform the atomic lock work for.  This will
+ *                     be "current" except in the case of requeue pi.
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Returns:
+ *  0 - ready to wait
+ *  1 - acquired the lock
+ * <0 - error
+ *
+ * The hb->lock and futex_key refs shall be held by the caller.
  */
-
-/* The key must be already stored in q->key. */
-static void queue_me(struct futex_q *q, int fd, struct file *filp)
+static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
+                               union futex_key *key,
+                               struct futex_pi_state **ps,
+                               struct task_struct *task, int set_waiters)
 {
-       struct futex_hash_bucket *bh;
-       bh = queue_lock(q, fd, filp);
-       __queue_me(q, bh);
-}
+       int lock_taken, ret, ownerdied = 0;
+       u32 uval, newval, curval;
 
-/* Return 1 if we were still queued (ie. 0 means we were woken) */
-static int unqueue_me(struct futex_q *q)
-{
-       int ret = 0;
-       spinlock_t *lock_ptr;
+retry:
+       ret = lock_taken = 0;
 
-       /* In the common case we don't take the spinlock, which is nice. */
- retry:
-       lock_ptr = q->lock_ptr;
-       if (lock_ptr != 0) {
-               spin_lock(lock_ptr);
+       /*
+        * To avoid races, we attempt to take the lock here again
+        * (by doing a 0 -> TID atomic cmpxchg), while holding all
+        * the locks. It will most likely not succeed.
+        */
+       newval = task_pid_vnr(task);
+       if (set_waiters)
+               newval |= FUTEX_WAITERS;
+
+       curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
+
+       if (unlikely(curval == -EFAULT))
+               return -EFAULT;
+
+       /*
+        * Detect deadlocks.
+        */
+       if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
+               return -EDEADLK;
+
+       /*
+        * Surprise - we got the lock. Just return to userspace:
+        */
+       if (unlikely(!curval))
+               return 1;
+
+       uval = curval;
+
+       /*
+        * Set the FUTEX_WAITERS flag, so the owner will know it has someone
+        * to wake at the next unlock.
+        */
+       newval = curval | FUTEX_WAITERS;
+
+       /*
+        * There are two cases, where a futex might have no owner (the
+        * owner TID is 0): OWNER_DIED. We take over the futex in this
+        * case. We also do an unconditional take over, when the owner
+        * of the futex died.
+        *
+        * This is safe as we are protected by the hash bucket lock !
+        */
+       if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
+               /* Keep the OWNER_DIED bit */
+               newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
+               ownerdied = 0;
+               lock_taken = 1;
+       }
+
+       curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
+
+       if (unlikely(curval == -EFAULT))
+               return -EFAULT;
+       if (unlikely(curval != uval))
+               goto retry;
+
+       /*
+        * We took the lock due to owner died take over.
+        */
+       if (unlikely(lock_taken))
+               return 1;
+
+       /*
+        * We dont have the lock. Look up the PI state (or create it if
+        * we are the first waiter):
+        */
+       ret = lookup_pi_state(uval, hb, key, ps);
+
+       if (unlikely(ret)) {
+               switch (ret) {
+               case -ESRCH:
+                       /*
+                        * No owner found for this futex. Check if the
+                        * OWNER_DIED bit is set to figure out whether
+                        * this is a robust futex or not.
+                        */
+                       if (get_futex_value_locked(&curval, uaddr))
+                               return -EFAULT;
+
+                       /*
+                        * We simply start over in case of a robust
+                        * futex. The code above will take the futex
+                        * and return happy.
+                        */
+                       if (curval & FUTEX_OWNER_DIED) {
+                               ownerdied = 1;
+                               goto retry;
+                       }
+               default:
+                       break;
+               }
+       }
+
+       return ret;
+}
+
+/*
+ * The hash bucket lock must be held when this is called.
+ * Afterwards, the futex_q must not be accessed.
+ */
+static void wake_futex(struct futex_q *q)
+{
+       struct task_struct *p = q->task;
+
+       /*
+        * We set q->lock_ptr = NULL _before_ we wake up the task. If
+        * a non futex wake up happens on another CPU then the task
+        * might exit and p would dereference a non existing task
+        * struct. Prevent this by holding a reference on p across the
+        * wake up.
+        */
+       get_task_struct(p);
+
+       plist_del(&q->list, &q->list.plist);
+       /*
+        * The waiting task can free the futex_q as soon as
+        * q->lock_ptr = NULL is written, without taking any locks. A
+        * memory barrier is required here to prevent the following
+        * store to lock_ptr from getting ahead of the plist_del.
+        */
+       smp_wmb();
+       q->lock_ptr = NULL;
+
+       wake_up_state(p, TASK_NORMAL);
+       put_task_struct(p);
+}
+
+static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
+{
+       struct task_struct *new_owner;
+       struct futex_pi_state *pi_state = this->pi_state;
+       u32 curval, newval;
+
+       if (!pi_state)
+               return -EINVAL;
+
+       /*
+        * If current does not own the pi_state then the futex is
+        * inconsistent and user space fiddled with the futex value.
+        */
+       if (pi_state->owner != current)
+               return -EINVAL;
+
+       raw_spin_lock(&pi_state->pi_mutex.wait_lock);
+       new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
+
+       /*
+        * This happens when we have stolen the lock and the original
+        * pending owner did not enqueue itself back on the rt_mutex.
+        * Thats not a tragedy. We know that way, that a lock waiter
+        * is on the fly. We make the futex_q waiter the pending owner.
+        */
+       if (!new_owner)
+               new_owner = this->task;
+
+       /*
+        * We pass it to the next owner. (The WAITERS bit is always
+        * kept enabled while there is PI state around. We must also
+        * preserve the owner died bit.)
+        */
+       if (!(uval & FUTEX_OWNER_DIED)) {
+               int ret = 0;
+
+               newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
+
+               curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
+
+               if (curval == -EFAULT)
+                       ret = -EFAULT;
+               else if (curval != uval)
+                       ret = -EINVAL;
+               if (ret) {
+                       raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+                       return ret;
+               }
+       }
+
+       raw_spin_lock_irq(&pi_state->owner->pi_lock);
+       WARN_ON(list_empty(&pi_state->list));
+       list_del_init(&pi_state->list);
+       raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+
+       raw_spin_lock_irq(&new_owner->pi_lock);
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &new_owner->pi_state_list);
+       pi_state->owner = new_owner;
+       raw_spin_unlock_irq(&new_owner->pi_lock);
+
+       raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+       rt_mutex_unlock(&pi_state->pi_mutex);
+
+       return 0;
+}
+
+static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
+{
+       u32 oldval;
+
+       /*
+        * There is no waiter, so we unlock the futex. The owner died
+        * bit has not to be preserved here. We are the owner:
+        */
+       oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
+
+       if (oldval == -EFAULT)
+               return oldval;
+       if (oldval != uval)
+               return -EAGAIN;
+
+       return 0;
+}
+
+/*
+ * Express the locking dependencies for lockdep:
+ */
+static inline void
+double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+       if (hb1 <= hb2) {
+               spin_lock(&hb1->lock);
+               if (hb1 < hb2)
+                       spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
+       } else { /* hb1 > hb2 */
+               spin_lock(&hb2->lock);
+               spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
+       }
+}
+
+static inline void
+double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+       spin_unlock(&hb1->lock);
+       if (hb1 != hb2)
+               spin_unlock(&hb2->lock);
+}
+
+/*
+ * Wake up waiters matching bitset queued on this futex (uaddr).
+ */
+static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
+{
+       struct futex_hash_bucket *hb;
+       struct futex_q *this, *next;
+       struct plist_head *head;
+       union futex_key key = FUTEX_KEY_INIT;
+       int ret;
+
+       if (!bitset)
+               return -EINVAL;
+
+       ret = get_futex_key(uaddr, fshared, &key);
+       if (unlikely(ret != 0))
+               goto out;
+
+       hb = hash_futex(&key);
+       spin_lock(&hb->lock);
+       head = &hb->chain;
+
+       plist_for_each_entry_safe(this, next, head, list) {
+               if (match_futex (&this->key, &key)) {
+                       if (this->pi_state || this->rt_waiter) {
+                               ret = -EINVAL;
+                               break;
+                       }
+
+                       /* Check if one of the bits is set in both bitsets */
+                       if (!(this->bitset & bitset))
+                               continue;
+
+                       wake_futex(this);
+                       if (++ret >= nr_wake)
+                               break;
+               }
+       }
+
+       spin_unlock(&hb->lock);
+       put_futex_key(fshared, &key);
+out:
+       return ret;
+}
+
+/*
+ * Wake up all waiters hashed on the physical page that is mapped
+ * to this virtual address:
+ */
+static int
+futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
+             int nr_wake, int nr_wake2, int op)
+{
+       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+       struct futex_hash_bucket *hb1, *hb2;
+       struct plist_head *head;
+       struct futex_q *this, *next;
+       int ret, op_ret;
+
+retry:
+       ret = get_futex_key(uaddr1, fshared, &key1);
+       if (unlikely(ret != 0))
+               goto out;
+       ret = get_futex_key(uaddr2, fshared, &key2);
+       if (unlikely(ret != 0))
+               goto out_put_key1;
+
+       hb1 = hash_futex(&key1);
+       hb2 = hash_futex(&key2);
+
+retry_private:
+       double_lock_hb(hb1, hb2);
+       op_ret = futex_atomic_op_inuser(op, uaddr2);
+       if (unlikely(op_ret < 0)) {
+
+               double_unlock_hb(hb1, hb2);
+
+#ifndef CONFIG_MMU
+               /*
+                * we don't get EFAULT from MMU faults if we don't have an MMU,
+                * but we might get them from range checking
+                */
+               ret = op_ret;
+               goto out_put_keys;
+#endif
+
+               if (unlikely(op_ret != -EFAULT)) {
+                       ret = op_ret;
+                       goto out_put_keys;
+               }
+
+               ret = fault_in_user_writeable(uaddr2);
+               if (ret)
+                       goto out_put_keys;
+
+               if (!fshared)
+                       goto retry_private;
+
+               put_futex_key(fshared, &key2);
+               put_futex_key(fshared, &key1);
+               goto retry;
+       }
+
+       head = &hb1->chain;
+
+       plist_for_each_entry_safe(this, next, head, list) {
+               if (match_futex (&this->key, &key1)) {
+                       wake_futex(this);
+                       if (++ret >= nr_wake)
+                               break;
+               }
+       }
+
+       if (op_ret > 0) {
+               head = &hb2->chain;
+
+               op_ret = 0;
+               plist_for_each_entry_safe(this, next, head, list) {
+                       if (match_futex (&this->key, &key2)) {
+                               wake_futex(this);
+                               if (++op_ret >= nr_wake2)
+                                       break;
+                       }
+               }
+               ret += op_ret;
+       }
+
+       double_unlock_hb(hb1, hb2);
+out_put_keys:
+       put_futex_key(fshared, &key2);
+out_put_key1:
+       put_futex_key(fshared, &key1);
+out:
+       return ret;
+}
+
+/**
+ * requeue_futex() - Requeue a futex_q from one hb to another
+ * @q:         the futex_q to requeue
+ * @hb1:       the source hash_bucket
+ * @hb2:       the target hash_bucket
+ * @key2:      the new key for the requeued futex_q
+ */
+static inline
+void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
+                  struct futex_hash_bucket *hb2, union futex_key *key2)
+{
+
+       /*
+        * If key1 and key2 hash to the same bucket, no need to
+        * requeue.
+        */
+       if (likely(&hb1->chain != &hb2->chain)) {
+               plist_del(&q->list, &hb1->chain);
+               plist_add(&q->list, &hb2->chain);
+               q->lock_ptr = &hb2->lock;
+#ifdef CONFIG_DEBUG_PI_LIST
+               q->list.plist.spinlock = &hb2->lock;
+#endif
+       }
+       get_futex_key_refs(key2);
+       q->key = *key2;
+}
+
+/**
+ * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
+ * @q:         the futex_q
+ * @key:       the key of the requeue target futex
+ * @hb:                the hash_bucket of the requeue target futex
+ *
+ * During futex_requeue, with requeue_pi=1, it is possible to acquire the
+ * target futex if it is uncontended or via a lock steal.  Set the futex_q key
+ * to the requeue target futex so the waiter can detect the wakeup on the right
+ * futex, but remove it from the hb and NULL the rt_waiter so it can detect
+ * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
+ * to protect access to the pi_state to fixup the owner later.  Must be called
+ * with both q->lock_ptr and hb->lock held.
+ */
+static inline
+void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
+                          struct futex_hash_bucket *hb)
+{
+       get_futex_key_refs(key);
+       q->key = *key;
+
+       WARN_ON(plist_node_empty(&q->list));
+       plist_del(&q->list, &q->list.plist);
+
+       WARN_ON(!q->rt_waiter);
+       q->rt_waiter = NULL;
+
+       q->lock_ptr = &hb->lock;
+#ifdef CONFIG_DEBUG_PI_LIST
+       q->list.plist.spinlock = &hb->lock;
+#endif
+
+       wake_up_state(q->task, TASK_NORMAL);
+}
+
+/**
+ * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
+ * @pifutex:           the user address of the to futex
+ * @hb1:               the from futex hash bucket, must be locked by the caller
+ * @hb2:               the to futex hash bucket, must be locked by the caller
+ * @key1:              the from futex key
+ * @key2:              the to futex key
+ * @ps:                        address to store the pi_state pointer
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Try and get the lock on behalf of the top waiter if we can do it atomically.
+ * Wake the top waiter if we succeed.  If the caller specified set_waiters,
+ * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
+ * hb1 and hb2 must be held by the caller.
+ *
+ * Returns:
+ *  0 - failed to acquire the lock atomicly
+ *  1 - acquired the lock
+ * <0 - error
+ */
+static int futex_proxy_trylock_atomic(u32 __user *pifutex,
+                                struct futex_hash_bucket *hb1,
+                                struct futex_hash_bucket *hb2,
+                                union futex_key *key1, union futex_key *key2,
+                                struct futex_pi_state **ps, int set_waiters)
+{
+       struct futex_q *top_waiter = NULL;
+       u32 curval;
+       int ret;
+
+       if (get_futex_value_locked(&curval, pifutex))
+               return -EFAULT;
+
+       /*
+        * Find the top_waiter and determine if there are additional waiters.
+        * If the caller intends to requeue more than 1 waiter to pifutex,
+        * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
+        * as we have means to handle the possible fault.  If not, don't set
+        * the bit unecessarily as it will force the subsequent unlock to enter
+        * the kernel.
+        */
+       top_waiter = futex_top_waiter(hb1, key1);
+
+       /* There are no waiters, nothing for us to do. */
+       if (!top_waiter)
+               return 0;
+
+       /* Ensure we requeue to the expected futex. */
+       if (!match_futex(top_waiter->requeue_pi_key, key2))
+               return -EINVAL;
+
+       /*
+        * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
+        * the contended case or if set_waiters is 1.  The pi_state is returned
+        * in ps in contended cases.
+        */
+       ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
+                                  set_waiters);
+       if (ret == 1)
+               requeue_pi_wake_futex(top_waiter, key2, hb2);
+
+       return ret;
+}
+
+/**
+ * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
+ * uaddr1:     source futex user address
+ * uaddr2:     target futex user address
+ * nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
+ * nr_requeue: number of waiters to requeue (0-INT_MAX)
+ * requeue_pi: if we are attempting to requeue from a non-pi futex to a
+ *             pi futex (pi to pi requeue is not supported)
+ *
+ * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
+ * uaddr2 atomically on behalf of the top waiter.
+ *
+ * Returns:
+ * >=0 - on success, the number of tasks requeued or woken
+ *  <0 - on error
+ */
+static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
+                        int nr_wake, int nr_requeue, u32 *cmpval,
+                        int requeue_pi)
+{
+       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+       int drop_count = 0, task_count = 0, ret;
+       struct futex_pi_state *pi_state = NULL;
+       struct futex_hash_bucket *hb1, *hb2;
+       struct plist_head *head1;
+       struct futex_q *this, *next;
+       u32 curval2;
+
+       if (requeue_pi) {
+               /*
+                * requeue_pi requires a pi_state, try to allocate it now
+                * without any locks in case it fails.
+                */
+               if (refill_pi_state_cache())
+                       return -ENOMEM;
+               /*
+                * requeue_pi must wake as many tasks as it can, up to nr_wake
+                * + nr_requeue, since it acquires the rt_mutex prior to
+                * returning to userspace, so as to not leave the rt_mutex with
+                * waiters and no owner.  However, second and third wake-ups
+                * cannot be predicted as they involve race conditions with the
+                * first wake and a fault while looking up the pi_state.  Both
+                * pthread_cond_signal() and pthread_cond_broadcast() should
+                * use nr_wake=1.
+                */
+               if (nr_wake != 1)
+                       return -EINVAL;
+       }
+
+retry:
+       if (pi_state != NULL) {
+               /*
+                * We will have to lookup the pi_state again, so free this one
+                * to keep the accounting correct.
+                */
+               free_pi_state(pi_state);
+               pi_state = NULL;
+       }
+
+       ret = get_futex_key(uaddr1, fshared, &key1);
+       if (unlikely(ret != 0))
+               goto out;
+       ret = get_futex_key(uaddr2, fshared, &key2);
+       if (unlikely(ret != 0))
+               goto out_put_key1;
+
+       hb1 = hash_futex(&key1);
+       hb2 = hash_futex(&key2);
+
+retry_private:
+       double_lock_hb(hb1, hb2);
+
+       if (likely(cmpval != NULL)) {
+               u32 curval;
+
+               ret = get_futex_value_locked(&curval, uaddr1);
+
+               if (unlikely(ret)) {
+                       double_unlock_hb(hb1, hb2);
+
+                       ret = get_user(curval, uaddr1);
+                       if (ret)
+                               goto out_put_keys;
+
+                       if (!fshared)
+                               goto retry_private;
+
+                       put_futex_key(fshared, &key2);
+                       put_futex_key(fshared, &key1);
+                       goto retry;
+               }
+               if (curval != *cmpval) {
+                       ret = -EAGAIN;
+                       goto out_unlock;
+               }
+       }
+
+       if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+               /*
+                * Attempt to acquire uaddr2 and wake the top waiter. If we
+                * intend to requeue waiters, force setting the FUTEX_WAITERS
+                * bit.  We force this here where we are able to easily handle
+                * faults rather in the requeue loop below.
+                */
+               ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
+                                                &key2, &pi_state, nr_requeue);
+
+               /*
+                * At this point the top_waiter has either taken uaddr2 or is
+                * waiting on it.  If the former, then the pi_state will not
+                * exist yet, look it up one more time to ensure we have a
+                * reference to it.
+                */
+               if (ret == 1) {
+                       WARN_ON(pi_state);
+                       drop_count++;
+                       task_count++;
+                       ret = get_futex_value_locked(&curval2, uaddr2);
+                       if (!ret)
+                               ret = lookup_pi_state(curval2, hb2, &key2,
+                                                     &pi_state);
+               }
+
+               switch (ret) {
+               case 0:
+                       break;
+               case -EFAULT:
+                       double_unlock_hb(hb1, hb2);
+                       put_futex_key(fshared, &key2);
+                       put_futex_key(fshared, &key1);
+                       ret = fault_in_user_writeable(uaddr2);
+                       if (!ret)
+                               goto retry;
+                       goto out;
+               case -EAGAIN:
+                       /* The owner was exiting, try again. */
+                       double_unlock_hb(hb1, hb2);
+                       put_futex_key(fshared, &key2);
+                       put_futex_key(fshared, &key1);
+                       cond_resched();
+                       goto retry;
+               default:
+                       goto out_unlock;
+               }
+       }
+
+       head1 = &hb1->chain;
+       plist_for_each_entry_safe(this, next, head1, list) {
+               if (task_count - nr_wake >= nr_requeue)
+                       break;
+
+               if (!match_futex(&this->key, &key1))
+                       continue;
+
+               /*
+                * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
+                * be paired with each other and no other futex ops.
+                */
+               if ((requeue_pi && !this->rt_waiter) ||
+                   (!requeue_pi && this->rt_waiter)) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Wake nr_wake waiters.  For requeue_pi, if we acquired the
+                * lock, we already woke the top_waiter.  If not, it will be
+                * woken by futex_unlock_pi().
+                */
+               if (++task_count <= nr_wake && !requeue_pi) {
+                       wake_futex(this);
+                       continue;
+               }
+
+               /* Ensure we requeue to the expected futex for requeue_pi. */
+               if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Requeue nr_requeue waiters and possibly one more in the case
+                * of requeue_pi if we couldn't acquire the lock atomically.
+                */
+               if (requeue_pi) {
+                       /* Prepare the waiter to take the rt_mutex. */
+                       atomic_inc(&pi_state->refcount);
+                       this->pi_state = pi_state;
+                       ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+                                                       this->rt_waiter,
+                                                       this->task, 1);
+                       if (ret == 1) {
+                               /* We got the lock. */
+                               requeue_pi_wake_futex(this, &key2, hb2);
+                               drop_count++;
+                               continue;
+                       } else if (ret) {
+                               /* -EDEADLK */
+                               this->pi_state = NULL;
+                               free_pi_state(pi_state);
+                               goto out_unlock;
+                       }
+               }
+               requeue_futex(this, hb1, hb2, &key2);
+               drop_count++;
+       }
+
+out_unlock:
+       double_unlock_hb(hb1, hb2);
+
+       /*
+        * drop_futex_key_refs() must be called outside the spinlocks. During
+        * the requeue we moved futex_q's from the hash bucket at key1 to the
+        * one at key2 and updated their key pointer.  We no longer need to
+        * hold the references to key1.
+        */
+       while (--drop_count >= 0)
+               drop_futex_key_refs(&key1);
+
+out_put_keys:
+       put_futex_key(fshared, &key2);
+out_put_key1:
+       put_futex_key(fshared, &key1);
+out:
+       if (pi_state != NULL)
+               free_pi_state(pi_state);
+       return ret ? ret : task_count;
+}
+
+/* The key must be already stored in q->key. */
+static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
+{
+       struct futex_hash_bucket *hb;
+
+       get_futex_key_refs(&q->key);
+       hb = hash_futex(&q->key);
+       q->lock_ptr = &hb->lock;
+
+       spin_lock(&hb->lock);
+       return hb;
+}
+
+static inline void
+queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
+{
+       spin_unlock(&hb->lock);
+       drop_futex_key_refs(&q->key);
+}
+
+/**
+ * queue_me() - Enqueue the futex_q on the futex_hash_bucket
+ * @q: The futex_q to enqueue
+ * @hb:        The destination hash bucket
+ *
+ * The hb->lock must be held by the caller, and is released here. A call to
+ * queue_me() is typically paired with exactly one call to unqueue_me().  The
+ * exceptions involve the PI related operations, which may use unqueue_me_pi()
+ * or nothing if the unqueue is done as part of the wake process and the unqueue
+ * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
+ * an example).
+ */
+static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
+{
+       int prio;
+
+       /*
+        * The priority used to register this element is
+        * - either the real thread-priority for the real-time threads
+        * (i.e. threads with a priority lower than MAX_RT_PRIO)
+        * - or MAX_RT_PRIO for non-RT threads.
+        * Thus, all RT-threads are woken first in priority order, and
+        * the others are woken last, in FIFO order.
+        */
+       prio = min(current->normal_prio, MAX_RT_PRIO);
+
+       plist_node_init(&q->list, prio);
+#ifdef CONFIG_DEBUG_PI_LIST
+       q->list.plist.spinlock = &hb->lock;
+#endif
+       plist_add(&q->list, &hb->chain);
+       q->task = current;
+       spin_unlock(&hb->lock);
+}
+
+/**
+ * unqueue_me() - Remove the futex_q from its futex_hash_bucket
+ * @q: The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
+ * be paired with exactly one earlier call to queue_me().
+ *
+ * Returns:
+ *   1 - if the futex_q was still queued (and we removed unqueued it)
+ *   0 - if the futex_q was already removed by the waking thread
+ */
+static int unqueue_me(struct futex_q *q)
+{
+       spinlock_t *lock_ptr;
+       int ret = 0;
+
+       /* In the common case we don't take the spinlock, which is nice. */
+retry:
+       lock_ptr = q->lock_ptr;
+       barrier();
+       if (lock_ptr != NULL) {
+               spin_lock(lock_ptr);
                /*
                 * q->lock_ptr can change between reading it and
                 * spin_lock(), causing us to take the wrong lock.  This
@@ -608,251 +1461,1148 @@ static int unqueue_me(struct futex_q *q)
                        spin_unlock(lock_ptr);
                        goto retry;
                }
-               WARN_ON(list_empty(&q->list));
-               list_del(&q->list);
+               WARN_ON(plist_node_empty(&q->list));
+               plist_del(&q->list, &q->list.plist);
+
+               BUG_ON(q->pi_state);
+
                spin_unlock(lock_ptr);
                ret = 1;
        }
 
-       drop_key_refs(&q->key);
+       drop_futex_key_refs(&q->key);
+       return ret;
+}
+
+/*
+ * PI futexes can not be requeued and must remove themself from the
+ * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
+ * and dropped here.
+ */
+static void unqueue_me_pi(struct futex_q *q)
+{
+       WARN_ON(plist_node_empty(&q->list));
+       plist_del(&q->list, &q->list.plist);
+
+       BUG_ON(!q->pi_state);
+       free_pi_state(q->pi_state);
+       q->pi_state = NULL;
+
+       spin_unlock(q->lock_ptr);
+
+       drop_futex_key_refs(&q->key);
+}
+
+/*
+ * Fixup the pi_state owner with the new owner.
+ *
+ * Must be called with hash bucket lock held and mm->sem held for non
+ * private futexes.
+ */
+static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
+                               struct task_struct *newowner, int fshared)
+{
+       u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
+       struct futex_pi_state *pi_state = q->pi_state;
+       struct task_struct *oldowner = pi_state->owner;
+       u32 uval, curval, newval;
+       int ret;
+
+       /* Owner died? */
+       if (!pi_state->owner)
+               newtid |= FUTEX_OWNER_DIED;
+
+       /*
+        * We are here either because we stole the rtmutex from the
+        * pending owner or we are the pending owner which failed to
+        * get the rtmutex. We have to replace the pending owner TID
+        * in the user space variable. This must be atomic as we have
+        * to preserve the owner died bit here.
+        *
+        * Note: We write the user space value _before_ changing the pi_state
+        * because we can fault here. Imagine swapped out pages or a fork
+        * that marked all the anonymous memory readonly for cow.
+        *
+        * Modifying pi_state _before_ the user space value would
+        * leave the pi_state in an inconsistent state when we fault
+        * here, because we need to drop the hash bucket lock to
+        * handle the fault. This might be observed in the PID check
+        * in lookup_pi_state.
+        */
+retry:
+       if (get_futex_value_locked(&uval, uaddr))
+               goto handle_fault;
+
+       while (1) {
+               newval = (uval & FUTEX_OWNER_DIED) | newtid;
+
+               curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
+
+               if (curval == -EFAULT)
+                       goto handle_fault;
+               if (curval == uval)
+                       break;
+               uval = curval;
+       }
+
+       /*
+        * We fixed up user space. Now we need to fix the pi_state
+        * itself.
+        */
+       if (pi_state->owner != NULL) {
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
+               WARN_ON(list_empty(&pi_state->list));
+               list_del_init(&pi_state->list);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+       }
+
+       pi_state->owner = newowner;
+
+       raw_spin_lock_irq(&newowner->pi_lock);
+       WARN_ON(!list_empty(&pi_state->list));
+       list_add(&pi_state->list, &newowner->pi_state_list);
+       raw_spin_unlock_irq(&newowner->pi_lock);
+       return 0;
+
+       /*
+        * To handle the page fault we need to drop the hash bucket
+        * lock here. That gives the other task (either the pending
+        * owner itself or the task which stole the rtmutex) the
+        * chance to try the fixup of the pi_state. So once we are
+        * back from handling the fault we need to check the pi_state
+        * after reacquiring the hash bucket lock and before trying to
+        * do another fixup. When the fixup has been done already we
+        * simply return.
+        */
+handle_fault:
+       spin_unlock(q->lock_ptr);
+
+       ret = fault_in_user_writeable(uaddr);
+
+       spin_lock(q->lock_ptr);
+
+       /*
+        * Check if someone else fixed it for us:
+        */
+       if (pi_state->owner != oldowner)
+               return 0;
+
+       if (ret)
+               return ret;
+
+       goto retry;
+}
+
+/*
+ * In case we must use restart_block to restart a futex_wait,
+ * we encode in the 'flags' shared capability
+ */
+#define FLAGS_SHARED           0x01
+#define FLAGS_CLOCKRT          0x02
+#define FLAGS_HAS_TIMEOUT      0x04
+
+static long futex_wait_restart(struct restart_block *restart);
+
+/**
+ * fixup_owner() - Post lock pi_state and corner case management
+ * @uaddr:     user address of the futex
+ * @fshared:   whether the futex is shared (1) or not (0)
+ * @q:         futex_q (contains pi_state and access to the rt_mutex)
+ * @locked:    if the attempt to take the rt_mutex succeeded (1) or not (0)
+ *
+ * After attempting to lock an rt_mutex, this function is called to cleanup
+ * the pi_state owner as well as handle race conditions that may allow us to
+ * acquire the lock. Must be called with the hb lock held.
+ *
+ * Returns:
+ *  1 - success, lock taken
+ *  0 - success, lock not taken
+ * <0 - on error (-EFAULT)
+ */
+static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
+                      int locked)
+{
+       struct task_struct *owner;
+       int ret = 0;
+
+       if (locked) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case:
+                */
+               if (q->pi_state->owner != current)
+                       ret = fixup_pi_state_owner(uaddr, q, current, fshared);
+               goto out;
+       }
+
+       /*
+        * Catch the rare case, where the lock was released when we were on the
+        * way back before we locked the hash bucket.
+        */
+       if (q->pi_state->owner == current) {
+               /*
+                * Try to get the rt_mutex now. This might fail as some other
+                * task acquired the rt_mutex after we removed ourself from the
+                * rt_mutex waiters list.
+                */
+               if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
+                       locked = 1;
+                       goto out;
+               }
+
+               /*
+                * pi_state is incorrect, some other task did a lock steal and
+                * we returned due to timeout or signal without taking the
+                * rt_mutex. Too late. We can access the rt_mutex_owner without
+                * locking, as the other task is now blocked on the hash bucket
+                * lock. Fix the state up.
+                */
+               owner = rt_mutex_owner(&q->pi_state->pi_mutex);
+               ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
+               goto out;
+       }
+
+       /*
+        * Paranoia check. If we did not take the lock, then we should not be
+        * the owner, nor the pending owner, of the rt_mutex.
+        */
+       if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
+               printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
+                               "pi-state %p\n", ret,
+                               q->pi_state->pi_mutex.owner,
+                               q->pi_state->owner);
+
+out:
+       return ret ? ret : locked;
+}
+
+/**
+ * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
+ * @hb:                the futex hash bucket, must be locked by the caller
+ * @q:         the futex_q to queue up on
+ * @timeout:   the prepared hrtimer_sleeper, or null for no timeout
+ */
+static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
+                               struct hrtimer_sleeper *timeout)
+{
+       /*
+        * The task state is guaranteed to be set before another task can
+        * wake it. set_current_state() is implemented using set_mb() and
+        * queue_me() calls spin_unlock() upon completion, both serializing
+        * access to the hash list and forcing another memory barrier.
+        */
+       set_current_state(TASK_INTERRUPTIBLE);
+       queue_me(q, hb);
+
+       /* Arm the timer */
+       if (timeout) {
+               hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
+               if (!hrtimer_active(&timeout->timer))
+                       timeout->task = NULL;
+       }
+
+       /*
+        * If we have been removed from the hash list, then another task
+        * has tried to wake us, and we can skip the call to schedule().
+        */
+       if (likely(!plist_node_empty(&q->list))) {
+               /*
+                * If the timer has already expired, current will already be
+                * flagged for rescheduling. Only call schedule if there
+                * is no timeout, or if it has yet to expire.
+                */
+               if (!timeout || timeout->task)
+                       schedule();
+       }
+       __set_current_state(TASK_RUNNING);
+}
+
+/**
+ * futex_wait_setup() - Prepare to wait on a futex
+ * @uaddr:     the futex userspace address
+ * @val:       the expected value
+ * @fshared:   whether the futex is shared (1) or not (0)
+ * @q:         the associated futex_q
+ * @hb:                storage for hash_bucket pointer to be returned to caller
+ *
+ * Setup the futex_q and locate the hash_bucket.  Get the futex value and
+ * compare it with the expected value.  Handle atomic faults internally.
+ * Return with the hb lock held and a q.key reference on success, and unlocked
+ * with no q.key reference on failure.
+ *
+ * Returns:
+ *  0 - uaddr contains val and hb has been locked
+ * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
+ */
+static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
+                          struct futex_q *q, struct futex_hash_bucket **hb)
+{
+       u32 uval;
+       int ret;
+
+       /*
+        * Access the page AFTER the hash-bucket is locked.
+        * Order is important:
+        *
+        *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
+        *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
+        *
+        * The basic logical guarantee of a futex is that it blocks ONLY
+        * if cond(var) is known to be true at the time of blocking, for
+        * any cond.  If we queued after testing *uaddr, that would open
+        * a race condition where we could block indefinitely with
+        * cond(var) false, which would violate the guarantee.
+        *
+        * A consequence is that futex_wait() can return zero and absorb
+        * a wakeup when *uaddr != val on entry to the syscall.  This is
+        * rare, but normal.
+        */
+retry:
+       q->key = FUTEX_KEY_INIT;
+       ret = get_futex_key(uaddr, fshared, &q->key);
+       if (unlikely(ret != 0))
+               return ret;
+
+retry_private:
+       *hb = queue_lock(q);
+
+       ret = get_futex_value_locked(&uval, uaddr);
+
+       if (ret) {
+               queue_unlock(q, *hb);
+
+               ret = get_user(uval, uaddr);
+               if (ret)
+                       goto out;
+
+               if (!fshared)
+                       goto retry_private;
+
+               put_futex_key(fshared, &q->key);
+               goto retry;
+       }
+
+       if (uval != val) {
+               queue_unlock(q, *hb);
+               ret = -EWOULDBLOCK;
+       }
+
+out:
+       if (ret)
+               put_futex_key(fshared, &q->key);
+       return ret;
+}
+
+static int futex_wait(u32 __user *uaddr, int fshared,
+                     u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct restart_block *restart;
+       struct futex_hash_bucket *hb;
+       struct futex_q q;
+       int ret;
+
+       if (!bitset)
+               return -EINVAL;
+
+       q.pi_state = NULL;
+       q.bitset = bitset;
+       q.rt_waiter = NULL;
+       q.requeue_pi_key = NULL;
+
+       if (abs_time) {
+               to = &timeout;
+
+               hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
+                                     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
+       }
+
+retry:
+       /* Prepare to wait on uaddr. */
+       ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
+       if (ret)
+               goto out;
+
+       /* queue_me and wait for wakeup, timeout, or a signal. */
+       futex_wait_queue_me(hb, &q, to);
+
+       /* If we were woken (and unqueued), we succeeded, whatever. */
+       ret = 0;
+       if (!unqueue_me(&q))
+               goto out_put_key;
+       ret = -ETIMEDOUT;
+       if (to && !to->task)
+               goto out_put_key;
+
+       /*
+        * We expect signal_pending(current), but we might be the
+        * victim of a spurious wakeup as well.
+        */
+       if (!signal_pending(current)) {
+               put_futex_key(fshared, &q.key);
+               goto retry;
+       }
+
+       ret = -ERESTARTSYS;
+       if (!abs_time)
+               goto out_put_key;
+
+       restart = &current_thread_info()->restart_block;
+       restart->fn = futex_wait_restart;
+       restart->futex.uaddr = (u32 *)uaddr;
+       restart->futex.val = val;
+       restart->futex.time = abs_time->tv64;
+       restart->futex.bitset = bitset;
+       restart->futex.flags = FLAGS_HAS_TIMEOUT;
+
+       if (fshared)
+               restart->futex.flags |= FLAGS_SHARED;
+       if (clockrt)
+               restart->futex.flags |= FLAGS_CLOCKRT;
+
+       ret = -ERESTART_RESTARTBLOCK;
+
+out_put_key:
+       put_futex_key(fshared, &q.key);
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
+       }
        return ret;
 }
 
-static int futex_wait(unsigned long uaddr, int val, unsigned long time)
+
+static long futex_wait_restart(struct restart_block *restart)
+{
+       u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
+       int fshared = 0;
+       ktime_t t, *tp = NULL;
+
+       if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
+               t.tv64 = restart->futex.time;
+               tp = &t;
+       }
+       restart->fn = do_no_restart_syscall;
+       if (restart->futex.flags & FLAGS_SHARED)
+               fshared = 1;
+       return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
+                               restart->futex.bitset,
+                               restart->futex.flags & FLAGS_CLOCKRT);
+}
+
+
+/*
+ * Userspace tried a 0 -> TID atomic transition of the futex value
+ * and failed. The kernel side here does the whole locking operation:
+ * if there are waiters then it will block, it does PI, etc. (Due to
+ * races the kernel might see a 0 value of the futex too.)
+ */
+static int futex_lock_pi(u32 __user *uaddr, int fshared,
+                        int detect, ktime_t *time, int trylock)
 {
-       DECLARE_WAITQUEUE(wait, current);
-       int ret, curval;
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct futex_hash_bucket *hb;
        struct futex_q q;
-       struct futex_hash_bucket *bh;
+       int res, ret;
+
+       if (refill_pi_state_cache())
+               return -ENOMEM;
 
- retry:
-       down_read(&current->mm->mmap_sem);
+       if (time) {
+               to = &timeout;
+               hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires(&to->timer, *time);
+       }
 
-       ret = get_futex_key(uaddr, &q.key);
+       q.pi_state = NULL;
+       q.rt_waiter = NULL;
+       q.requeue_pi_key = NULL;
+retry:
+       q.key = FUTEX_KEY_INIT;
+       ret = get_futex_key(uaddr, fshared, &q.key);
        if (unlikely(ret != 0))
-               goto out_release_sem;
+               goto out;
+
+retry_private:
+       hb = queue_lock(&q);
 
-       bh = queue_lock(&q, -1, NULL);
+       ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
+       if (unlikely(ret)) {
+               switch (ret) {
+               case 1:
+                       /* We got the lock. */
+                       ret = 0;
+                       goto out_unlock_put_key;
+               case -EFAULT:
+                       goto uaddr_faulted;
+               case -EAGAIN:
+                       /*
+                        * Task is exiting and we just wait for the
+                        * exit to complete.
+                        */
+                       queue_unlock(&q, hb);
+                       put_futex_key(fshared, &q.key);
+                       cond_resched();
+                       goto retry;
+               default:
+                       goto out_unlock_put_key;
+               }
+       }
 
        /*
-        * Access the page AFTER the futex is queued.
-        * Order is important:
-        *
-        *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
-        *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
-        *
-        * The basic logical guarantee of a futex is that it blocks ONLY
-        * if cond(var) is known to be true at the time of blocking, for
-        * any cond.  If we queued after testing *uaddr, that would open
-        * a race condition where we could block indefinitely with
-        * cond(var) false, which would violate the guarantee.
-        *
-        * A consequence is that futex_wait() can return zero and absorb
-        * a wakeup when *uaddr != val on entry to the syscall.  This is
-        * rare, but normal.
-        *
-        * We hold the mmap semaphore, so the mapping cannot have changed
-        * since we looked it up in get_futex_key.
+        * Only actually queue now that the atomic ops are done:
         */
+       queue_me(&q, hb);
 
-       ret = get_futex_value_locked(&curval, (int __user *)uaddr);
+       WARN_ON(!q.pi_state);
+       /*
+        * Block on the PI mutex:
+        */
+       if (!trylock)
+               ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
+       else {
+               ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
+               /* Fixup the trylock return value: */
+               ret = ret ? 0 : -EWOULDBLOCK;
+       }
 
-       if (unlikely(ret)) {
-               queue_unlock(&q, bh);
+       spin_lock(q.lock_ptr);
+       /*
+        * Fixup the pi_state owner and possibly acquire the lock if we
+        * haven't already.
+        */
+       res = fixup_owner(uaddr, fshared, &q, !ret);
+       /*
+        * If fixup_owner() returned an error, proprogate that.  If it acquired
+        * the lock, clear our -ETIMEDOUT or -EINTR.
+        */
+       if (res)
+               ret = (res < 0) ? res : 0;
 
-               /* If we would have faulted, release mmap_sem, fault it in and
-                * start all over again.
-                */
-               up_read(&current->mm->mmap_sem);
+       /*
+        * If fixup_owner() faulted and was unable to handle the fault, unlock
+        * it and return the fault to userspace.
+        */
+       if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
+               rt_mutex_unlock(&q.pi_state->pi_mutex);
 
-               ret = get_user(curval, (int __user *)uaddr);
+       /* Unqueue and drop the lock */
+       unqueue_me_pi(&q);
 
-               if (!ret)
-                       goto retry;
-               return ret;
-       }
-       if (curval != val) {
-               ret = -EWOULDBLOCK;
-               queue_unlock(&q, bh);
-               goto out_release_sem;
-       }
+       goto out_put_key;
+
+out_unlock_put_key:
+       queue_unlock(&q, hb);
+
+out_put_key:
+       put_futex_key(fshared, &q.key);
+out:
+       if (to)
+               destroy_hrtimer_on_stack(&to->timer);
+       return ret != -EINTR ? ret : -ERESTARTNOINTR;
+
+uaddr_faulted:
+       queue_unlock(&q, hb);
+
+       ret = fault_in_user_writeable(uaddr);
+       if (ret)
+               goto out_put_key;
+
+       if (!fshared)
+               goto retry_private;
+
+       put_futex_key(fshared, &q.key);
+       goto retry;
+}
 
-       /* Only actually queue if *uaddr contained val.  */
-       __queue_me(&q, bh);
+/*
+ * Userspace attempted a TID -> 0 atomic transition, and failed.
+ * This is the in-kernel slowpath: we look up the PI state (if any),
+ * and do the rt-mutex unlock.
+ */
+static int futex_unlock_pi(u32 __user *uaddr, int fshared)
+{
+       struct futex_hash_bucket *hb;
+       struct futex_q *this, *next;
+       u32 uval;
+       struct plist_head *head;
+       union futex_key key = FUTEX_KEY_INIT;
+       int ret;
 
+retry:
+       if (get_user(uval, uaddr))
+               return -EFAULT;
        /*
-        * Now the futex is queued and we have checked the data, we
-        * don't want to hold mmap_sem while we sleep.
-        */     
-       up_read(&current->mm->mmap_sem);
+        * We release only a lock we actually own:
+        */
+       if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
+               return -EPERM;
+
+       ret = get_futex_key(uaddr, fshared, &key);
+       if (unlikely(ret != 0))
+               goto out;
+
+       hb = hash_futex(&key);
+       spin_lock(&hb->lock);
 
        /*
-        * There might have been scheduling since the queue_me(), as we
-        * cannot hold a spinlock across the get_user() in case it
-        * faults, and we cannot just set TASK_INTERRUPTIBLE state when
-        * queueing ourselves into the futex hash.  This code thus has to
-        * rely on the futex_wake() code removing us from hash when it
-        * wakes us up.
+        * To avoid races, try to do the TID -> 0 atomic transition
+        * again. If it succeeds then we can return without waking
+        * anyone else up:
         */
+       if (!(uval & FUTEX_OWNER_DIED))
+               uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
 
-       /* add_wait_queue is the barrier after __set_current_state. */
-       __set_current_state(TASK_INTERRUPTIBLE);
-       add_wait_queue(&q.waiters, &wait);
+
+       if (unlikely(uval == -EFAULT))
+               goto pi_faulted;
        /*
-        * !list_empty() is safe here without any lock.
-        * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
+        * Rare case: we managed to release the lock atomically,
+        * no need to wake anyone else up:
         */
-       if (likely(!list_empty(&q.list)))
-               time = schedule_timeout(time);
-       __set_current_state(TASK_RUNNING);
+       if (unlikely(uval == task_pid_vnr(current)))
+               goto out_unlock;
 
        /*
-        * NOTE: we don't remove ourselves from the waitqueue because
-        * we are the only user of it.
+        * Ok, other tasks may need to be woken up - check waiters
+        * and do the wakeup if necessary:
         */
+       head = &hb->chain;
 
-       /* If we were woken (and unqueued), we succeeded, whatever. */
-       if (!unqueue_me(&q))
-               return 0;
-       if (time == 0)
-               return -ETIMEDOUT;
-       /* We expect signal_pending(current), but another thread may
-        * have handled it for us already. */
-       return -EINTR;
-
- out_release_sem:
-       up_read(&current->mm->mmap_sem);
+       plist_for_each_entry_safe(this, next, head, list) {
+               if (!match_futex (&this->key, &key))
+                       continue;
+               ret = wake_futex_pi(uaddr, uval, this);
+               /*
+                * The atomic access to the futex value
+                * generated a pagefault, so retry the
+                * user-access and the wakeup:
+                */
+               if (ret == -EFAULT)
+                       goto pi_faulted;
+               goto out_unlock;
+       }
+       /*
+        * No waiters - kernel unlocks the futex:
+        */
+       if (!(uval & FUTEX_OWNER_DIED)) {
+               ret = unlock_futex_pi(uaddr, uval);
+               if (ret == -EFAULT)
+                       goto pi_faulted;
+       }
+
+out_unlock:
+       spin_unlock(&hb->lock);
+       put_futex_key(fshared, &key);
+
+out:
        return ret;
-}
 
-static int futex_close(struct inode *inode, struct file *filp)
-{
-       struct futex_q *q = filp->private_data;
+pi_faulted:
+       spin_unlock(&hb->lock);
+       put_futex_key(fshared, &key);
 
-       unqueue_me(q);
-       kfree(q);
-       return 0;
+       ret = fault_in_user_writeable(uaddr);
+       if (!ret)
+               goto retry;
+
+       return ret;
 }
 
-/* This is one-shot: once it's gone off you need a new fd */
-static unsigned int futex_poll(struct file *filp,
-                              struct poll_table_struct *wait)
+/**
+ * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * @hb:                the hash_bucket futex_q was original enqueued on
+ * @q:         the futex_q woken while waiting to be requeued
+ * @key2:      the futex_key of the requeue target futex
+ * @timeout:   the timeout associated with the wait (NULL if none)
+ *
+ * Detect if the task was woken on the initial futex as opposed to the requeue
+ * target futex.  If so, determine if it was a timeout or a signal that caused
+ * the wakeup and return the appropriate error code to the caller.  Must be
+ * called with the hb lock held.
+ *
+ * Returns
+ *  0 - no early wakeup detected
+ * <0 - -ETIMEDOUT or -ERESTARTNOINTR
+ */
+static inline
+int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
+                                  struct futex_q *q, union futex_key *key2,
+                                  struct hrtimer_sleeper *timeout)
 {
-       struct futex_q *q = filp->private_data;
        int ret = 0;
 
-       poll_wait(filp, &q->waiters, wait);
-
        /*
-        * list_empty() is safe here without any lock.
-        * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
+        * With the hb lock held, we avoid races while we process the wakeup.
+        * We only need to hold hb (and not hb2) to ensure atomicity as the
+        * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
+        * It can't be requeued from uaddr2 to something else since we don't
+        * support a PI aware source futex for requeue.
         */
-       if (list_empty(&q->list))
-               ret = POLLIN | POLLRDNORM;
+       if (!match_futex(&q->key, key2)) {
+               WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
+               /*
+                * We were woken prior to requeue by a timeout or a signal.
+                * Unqueue the futex_q and determine which it was.
+                */
+               plist_del(&q->list, &q->list.plist);
 
+               /* Handle spurious wakeups gracefully */
+               ret = -EWOULDBLOCK;
+               if (timeout && !timeout->task)
+                       ret = -ETIMEDOUT;
+               else if (signal_pending(current))
+                       ret = -ERESTARTNOINTR;
+       }
        return ret;
 }
 
-static struct file_operations futex_fops = {
-       .release        = futex_close,
-       .poll           = futex_poll,
-};
-
-/*
- * Signal allows caller to avoid the race which would occur if they
- * set the sigio stuff up afterwards.
+/**
+ * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
+ * @uaddr:     the futex we initially wait on (non-pi)
+ * @fshared:   whether the futexes are shared (1) or not (0).  They must be
+ *             the same type, no requeueing from private to shared, etc.
+ * @val:       the expected value of uaddr
+ * @abs_time:  absolute timeout
+ * @bitset:    32 bit wakeup bitset set by userspace, defaults to all
+ * @clockrt:   whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
+ * @uaddr2:    the pi futex we will take prior to returning to user-space
+ *
+ * The caller will wait on uaddr and will be requeued by futex_requeue() to
+ * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
+ * complete the acquisition of the rt_mutex prior to returning to userspace.
+ * This ensures the rt_mutex maintains an owner when it has waiters; without
+ * one, the pi logic wouldn't know which task to boost/deboost, if there was a
+ * need to.
+ *
+ * We call schedule in futex_wait_queue_me() when we enqueue and return there
+ * via the following:
+ * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
+ * 2) wakeup on uaddr2 after a requeue
+ * 3) signal
+ * 4) timeout
+ *
+ * If 3, cleanup and return -ERESTARTNOINTR.
+ *
+ * If 2, we may then block on trying to take the rt_mutex and return via:
+ * 5) successful lock
+ * 6) signal
+ * 7) timeout
+ * 8) other lock acquisition failure
+ *
+ * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
+ *
+ * If 4 or 7, we cleanup and return with -ETIMEDOUT.
+ *
+ * Returns:
+ *  0 - On success
+ * <0 - On error
  */
-static int futex_fd(unsigned long uaddr, int signal)
+static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
+                                u32 val, ktime_t *abs_time, u32 bitset,
+                                int clockrt, u32 __user *uaddr2)
 {
-       struct futex_q *q;
-       struct file *filp;
-       int ret, err;
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct rt_mutex_waiter rt_waiter;
+       struct rt_mutex *pi_mutex = NULL;
+       struct futex_hash_bucket *hb;
+       union futex_key key2;
+       struct futex_q q;
+       int res, ret;
 
-       ret = -EINVAL;
-       if (!valid_signal(signal))
-               goto out;
+       if (!bitset)
+               return -EINVAL;
 
-       ret = get_unused_fd();
-       if (ret < 0)
-               goto out;
-       filp = get_empty_filp();
-       if (!filp) {
-               put_unused_fd(ret);
-               ret = -ENFILE;
-               goto out;
+       if (abs_time) {
+               to = &timeout;
+               hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
+                                     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
        }
-       filp->f_op = &futex_fops;
-       filp->f_vfsmnt = mntget(futex_mnt);
-       filp->f_dentry = dget(futex_mnt->mnt_root);
-       filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
 
-       if (signal) {
-               err = f_setown(filp, current->pid, 1);
-               if (err < 0) {
-                       goto error;
+       /*
+        * The waiter is allocated on our stack, manipulated by the requeue
+        * code while we sleep on uaddr.
+        */
+       debug_rt_mutex_init_waiter(&rt_waiter);
+       rt_waiter.task = NULL;
+
+       key2 = FUTEX_KEY_INIT;
+       ret = get_futex_key(uaddr2, fshared, &key2);
+       if (unlikely(ret != 0))
+               goto out;
+
+       q.pi_state = NULL;
+       q.bitset = bitset;
+       q.rt_waiter = &rt_waiter;
+       q.requeue_pi_key = &key2;
+
+       /* Prepare to wait on uaddr. */
+       ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
+       if (ret)
+               goto out_key2;
+
+       /* Queue the futex_q, drop the hb lock, wait for wakeup. */
+       futex_wait_queue_me(hb, &q, to);
+
+       spin_lock(&hb->lock);
+       ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
+       spin_unlock(&hb->lock);
+       if (ret)
+               goto out_put_keys;
+
+       /*
+        * In order for us to be here, we know our q.key == key2, and since
+        * we took the hb->lock above, we also know that futex_requeue() has
+        * completed and we no longer have to concern ourselves with a wakeup
+        * race with the atomic proxy lock acquition by the requeue code.
+        */
+
+       /* Check if the requeue code acquired the second futex for us. */
+       if (!q.rt_waiter) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case.
+                */
+               if (q.pi_state && (q.pi_state->owner != current)) {
+                       spin_lock(q.lock_ptr);
+                       ret = fixup_pi_state_owner(uaddr2, &q, current,
+                                                  fshared);
+                       spin_unlock(q.lock_ptr);
                }
-               filp->f_owner.signum = signal;
+       } else {
+               /*
+                * We have been woken up by futex_unlock_pi(), a timeout, or a
+                * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
+                * the pi_state.
+                */
+               WARN_ON(!&q.pi_state);
+               pi_mutex = &q.pi_state->pi_mutex;
+               ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
+               debug_rt_mutex_free_waiter(&rt_waiter);
+
+               spin_lock(q.lock_ptr);
+               /*
+                * Fixup the pi_state owner and possibly acquire the lock if we
+                * haven't already.
+                */
+               res = fixup_owner(uaddr2, fshared, &q, !ret);
+               /*
+                * If fixup_owner() returned an error, proprogate that.  If it
+                * acquired the lock, clear -ETIMEDOUT or -EINTR.
+                */
+               if (res)
+                       ret = (res < 0) ? res : 0;
+
+               /* Unqueue and drop the lock. */
+               unqueue_me_pi(&q);
        }
 
-       q = kmalloc(sizeof(*q), GFP_KERNEL);
-       if (!q) {
-               err = -ENOMEM;
-               goto error;
+       /*
+        * If fixup_pi_state_owner() faulted and was unable to handle the
+        * fault, unlock the rt_mutex and return the fault to userspace.
+        */
+       if (ret == -EFAULT) {
+               if (rt_mutex_owner(pi_mutex) == current)
+                       rt_mutex_unlock(pi_mutex);
+       } else if (ret == -EINTR) {
+               /*
+                * We've already been requeued, but cannot restart by calling
+                * futex_lock_pi() directly. We could restart this syscall, but
+                * it would detect that the user space "val" changed and return
+                * -EWOULDBLOCK.  Save the overhead of the restart and return
+                * -EWOULDBLOCK directly.
+                */
+               ret = -EWOULDBLOCK;
        }
 
-       down_read(&current->mm->mmap_sem);
-       err = get_futex_key(uaddr, &q->key);
+out_put_keys:
+       put_futex_key(fshared, &q.key);
+out_key2:
+       put_futex_key(fshared, &key2);
 
-       if (unlikely(err != 0)) {
-               up_read(&current->mm->mmap_sem);
-               kfree(q);
-               goto error;
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
        }
+       return ret;
+}
+
+/*
+ * Support for robust futexes: the kernel cleans up held futexes at
+ * thread exit time.
+ *
+ * Implementation: user-space maintains a per-thread list of locks it
+ * is holding. Upon do_exit(), the kernel carefully walks this list,
+ * and marks all locks that are owned by this thread with the
+ * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
+ * always manipulated with the lock held, so the list is private and
+ * per-thread. Userspace also maintains a per-thread 'list_op_pending'
+ * field, to allow the kernel to clean up if the thread dies after
+ * acquiring the lock, but just before it could have added itself to
+ * the list. There can only be one such pending lock.
+ */
 
+/**
+ * sys_set_robust_list() - Set the robust-futex list head of a task
+ * @head:      pointer to the list-head
+ * @len:       length of the list-head, as userspace expects
+ */
+SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
+               size_t, len)
+{
+       if (!futex_cmpxchg_enabled)
+               return -ENOSYS;
        /*
-        * queue_me() must be called before releasing mmap_sem, because
-        * key->shared.inode needs to be referenced while holding it.
+        * The kernel knows only one size for now:
         */
-       filp->private_data = q;
+       if (unlikely(len != sizeof(*head)))
+               return -EINVAL;
 
-       queue_me(q, ret, filp);
-       up_read(&current->mm->mmap_sem);
+       current->robust_list = head;
+
+       return 0;
+}
+
+/**
+ * sys_get_robust_list() - Get the robust-futex list head of a task
+ * @pid:       pid of the process [zero for current task]
+ * @head_ptr:  pointer to a list-head pointer, the kernel fills it in
+ * @len_ptr:   pointer to a length field, the kernel fills in the header size
+ */
+SYSCALL_DEFINE3(get_robust_list, int, pid,
+               struct robust_list_head __user * __user *, head_ptr,
+               size_t __user *, len_ptr)
+{
+       struct robust_list_head __user *head;
+       unsigned long ret;
+       const struct cred *cred = current_cred(), *pcred;
+
+       if (!futex_cmpxchg_enabled)
+               return -ENOSYS;
+
+       if (!pid)
+               head = current->robust_list;
+       else {
+               struct task_struct *p;
+
+               ret = -ESRCH;
+               rcu_read_lock();
+               p = find_task_by_vpid(pid);
+               if (!p)
+                       goto err_unlock;
+               ret = -EPERM;
+               pcred = __task_cred(p);
+               if (cred->euid != pcred->euid &&
+                   cred->euid != pcred->uid &&
+                   !capable(CAP_SYS_PTRACE))
+                       goto err_unlock;
+               head = p->robust_list;
+               rcu_read_unlock();
+       }
+
+       if (put_user(sizeof(*head), len_ptr))
+               return -EFAULT;
+       return put_user(head, head_ptr);
+
+err_unlock:
+       rcu_read_unlock();
 
-       /* Now we map fd to filp, so userspace can access it */
-       fd_install(ret, filp);
-out:
        return ret;
-error:
-       put_unused_fd(ret);
-       put_filp(filp);
-       ret = err;
-       goto out;
 }
 
-long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
-               unsigned long uaddr2, int val2, int val3)
+/*
+ * Process a futex-list entry, check whether it's owned by the
+ * dying task, and do notification if so:
+ */
+int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
 {
-       int ret;
+       u32 uval, nval, mval;
+
+retry:
+       if (get_user(uval, uaddr))
+               return -1;
+
+       if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
+               /*
+                * Ok, this dying thread is truly holding a futex
+                * of interest. Set the OWNER_DIED bit atomically
+                * via cmpxchg, and if the value had FUTEX_WAITERS
+                * set, wake up a waiter (if any). (We have to do a
+                * futex_wake() even if OWNER_DIED is already set -
+                * to handle the rare but possible case of recursive
+                * thread-death.) The rest of the cleanup is done in
+                * userspace.
+                */
+               mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
+               nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
+
+               if (nval == -EFAULT)
+                       return -1;
+
+               if (nval != uval)
+                       goto retry;
+
+               /*
+                * Wake robust non-PI futexes here. The wakeup of
+                * PI futexes happens in exit_pi_state():
+                */
+               if (!pi && (uval & FUTEX_WAITERS))
+                       futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
+       }
+       return 0;
+}
+
+/*
+ * Fetch a robust-list pointer. Bit 0 signals PI futexes:
+ */
+static inline int fetch_robust_entry(struct robust_list __user **entry,
+                                    struct robust_list __user * __user *head,
+                                    int *pi)
+{
+       unsigned long uentry;
+
+       if (get_user(uentry, (unsigned long __user *)head))
+               return -EFAULT;
+
+       *entry = (void __user *)(uentry & ~1UL);
+       *pi = uentry & 1;
+
+       return 0;
+}
+
+/*
+ * Walk curr->robust_list (very carefully, it's a userspace list!)
+ * and mark any locks found there dead, and notify any waiters.
+ *
+ * We silently return on any sign of list-walking problem.
+ */
+void exit_robust_list(struct task_struct *curr)
+{
+       struct robust_list_head __user *head = curr->robust_list;
+       struct robust_list __user *entry, *next_entry, *pending;
+       unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
+       unsigned long futex_offset;
+       int rc;
+
+       if (!futex_cmpxchg_enabled)
+               return;
+
+       /*
+        * Fetch the list head (which was registered earlier, via
+        * sys_set_robust_list()):
+        */
+       if (fetch_robust_entry(&entry, &head->list.next, &pi))
+               return;
+       /*
+        * Fetch the relative futex offset:
+        */
+       if (get_user(futex_offset, &head->futex_offset))
+               return;
+       /*
+        * Fetch any possibly pending lock-add first, and handle it
+        * if it exists:
+        */
+       if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
+               return;
+
+       next_entry = NULL;      /* avoid warning with gcc */
+       while (entry != &head->list) {
+               /*
+                * Fetch the next entry in the list before calling
+                * handle_futex_death:
+                */
+               rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
+               /*
+                * A pending lock might already be on the list, so
+                * don't process it twice:
+                */
+               if (entry != pending)
+                       if (handle_futex_death((void __user *)entry + futex_offset,
+                                               curr, pi))
+                               return;
+               if (rc)
+                       return;
+               entry = next_entry;
+               pi = next_pi;
+               /*
+                * Avoid excessively long or circular lists:
+                */
+               if (!--limit)
+                       break;
+
+               cond_resched();
+       }
+
+       if (pending)
+               handle_futex_death((void __user *)pending + futex_offset,
+                                  curr, pip);
+}
+
+long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
+               u32 __user *uaddr2, u32 val2, u32 val3)
+{
+       int clockrt, ret = -ENOSYS;
+       int cmd = op & FUTEX_CMD_MASK;
+       int fshared = 0;
+
+       if (!(op & FUTEX_PRIVATE_FLAG))
+               fshared = 1;
+
+       clockrt = op & FUTEX_CLOCK_REALTIME;
+       if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
+               return -ENOSYS;
 
-       switch (op) {
+       switch (cmd) {
        case FUTEX_WAIT:
-               ret = futex_wait(uaddr, val, timeout);
+               val3 = FUTEX_BITSET_MATCH_ANY;
+       case FUTEX_WAIT_BITSET:
+               ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
                break;
        case FUTEX_WAKE:
-               ret = futex_wake(uaddr, val);
-               break;
-       case FUTEX_FD:
-               /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
-               ret = futex_fd(uaddr, val);
+               val3 = FUTEX_BITSET_MATCH_ANY;
+       case FUTEX_WAKE_BITSET:
+               ret = futex_wake(uaddr, fshared, val, val3);
                break;
        case FUTEX_REQUEUE:
-               ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
+               ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
                break;
        case FUTEX_CMP_REQUEUE:
-               ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
+               ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
+                                   0);
                break;
        case FUTEX_WAKE_OP:
-               ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
+               ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
+               break;
+       case FUTEX_LOCK_PI:
+               if (futex_cmpxchg_enabled)
+                       ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
+               break;
+       case FUTEX_UNLOCK_PI:
+               if (futex_cmpxchg_enabled)
+                       ret = futex_unlock_pi(uaddr, fshared);
+               break;
+       case FUTEX_TRYLOCK_PI:
+               if (futex_cmpxchg_enabled)
+                       ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
+               break;
+       case FUTEX_WAIT_REQUEUE_PI:
+               val3 = FUTEX_BITSET_MATCH_ANY;
+               ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
+                                           clockrt, uaddr2);
+               break;
+       case FUTEX_CMP_REQUEUE_PI:
+               ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
+                                   1);
                break;
        default:
                ret = -ENOSYS;
@@ -861,53 +2611,63 @@ long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
 }
 
 
-asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
-                         struct timespec __user *utime, u32 __user *uaddr2,
-                         int val3)
+SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
+               struct timespec __user *, utime, u32 __user *, uaddr2,
+               u32, val3)
 {
-       struct timespec t;
-       unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
-       int val2 = 0;
-
-       if ((op == FUTEX_WAIT) && utime) {
-               if (copy_from_user(&t, utime, sizeof(t)) != 0)
+       struct timespec ts;
+       ktime_t t, *tp = NULL;
+       u32 val2 = 0;
+       int cmd = op & FUTEX_CMD_MASK;
+
+       if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
+                     cmd == FUTEX_WAIT_BITSET ||
+                     cmd == FUTEX_WAIT_REQUEUE_PI)) {
+               if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
                        return -EFAULT;
-               timeout = timespec_to_jiffies(&t) + 1;
+               if (!timespec_valid(&ts))
+                       return -EINVAL;
+
+               t = timespec_to_ktime(ts);
+               if (cmd == FUTEX_WAIT)
+                       t = ktime_add_safe(ktime_get(), t);
+               tp = &t;
        }
        /*
-        * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
+        * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
+        * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
         */
-       if (op >= FUTEX_REQUEUE)
-               val2 = (int) (unsigned long) utime;
+       if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
+           cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
+               val2 = (u32) (unsigned long) utime;
 
-       return do_futex((unsigned long)uaddr, op, val, timeout,
-                       (unsigned long)uaddr2, val2, val3);
+       return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
 }
 
-static struct super_block *
-futexfs_get_sb(struct file_system_type *fs_type,
-              int flags, const char *dev_name, void *data)
+static int __init futex_init(void)
 {
-       return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
-}
-
-static struct file_system_type futex_fs_type = {
-       .name           = "futexfs",
-       .get_sb         = futexfs_get_sb,
-       .kill_sb        = kill_anon_super,
-};
-
-static int __init init(void)
-{
-       unsigned int i;
+       u32 curval;
+       int i;
 
-       register_filesystem(&futex_fs_type);
-       futex_mnt = kern_mount(&futex_fs_type);
+       /*
+        * This will fail and we want it. Some arch implementations do
+        * runtime detection of the futex_atomic_cmpxchg_inatomic()
+        * functionality. We want to know that before we call in any
+        * of the complex code paths. Also we want to prevent
+        * registration of robust lists in that case. NULL is
+        * guaranteed to fault and we get -EFAULT on functional
+        * implementation, the non functional ones will return
+        * -ENOSYS.
+        */
+       curval = cmpxchg_futex_value_locked(NULL, 0, 0);
+       if (curval == -EFAULT)
+               futex_cmpxchg_enabled = 1;
 
        for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
-               INIT_LIST_HEAD(&futex_queues[i].chain);
+               plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
                spin_lock_init(&futex_queues[i].lock);
        }
+
        return 0;
 }
-__initcall(init);
+__initcall(futex_init);