sched: Eliminate the ts->idle_lastupdate field
[safe/jmp/linux-2.6] / kernel / cpuset.c
index af5a83d..9a50c5f 100644 (file)
@@ -97,12 +97,6 @@ struct cpuset {
 
        struct cpuset *parent;          /* my parent */
 
-       /*
-        * Copy of global cpuset_mems_generation as of the most
-        * recent time this cpuset changed its mems_allowed.
-        */
-       int mems_generation;
-
        struct fmeter fmeter;           /* memory_pressure filter */
 
        /* partition number for rebuild_sched_domains() */
@@ -176,27 +170,6 @@ static inline int is_spread_slab(const struct cpuset *cs)
        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 }
 
-/*
- * Increment this integer everytime any cpuset changes its
- * mems_allowed value.  Users of cpusets can track this generation
- * number, and avoid having to lock and reload mems_allowed unless
- * the cpuset they're using changes generation.
- *
- * A single, global generation is needed because cpuset_attach_task() could
- * reattach a task to a different cpuset, which must not have its
- * generation numbers aliased with those of that tasks previous cpuset.
- *
- * Generations are needed for mems_allowed because one task cannot
- * modify another's memory placement.  So we must enable every task,
- * on every visit to __alloc_pages(), to efficiently check whether
- * its current->cpuset->mems_allowed has changed, requiring an update
- * of its current->mems_allowed.
- *
- * Since writes to cpuset_mems_generation are guarded by the cgroup lock
- * there is no need to mark it atomic.
- */
-static int cpuset_mems_generation;
-
 static struct cpuset top_cpuset = {
        .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
 };
@@ -228,8 +201,9 @@ static struct cpuset top_cpuset = {
  * If a task is only holding callback_mutex, then it has read-only
  * access to cpusets.
  *
- * The task_struct fields mems_allowed and mems_generation may only
- * be accessed in the context of that task, so require no locks.
+ * Now, the task_struct fields mems_allowed and mempolicy may be changed
+ * by other task, we use alloc_lock in the task_struct fields to protect
+ * them.
  *
  * The cpuset_common_file_read() handlers only hold callback_mutex across
  * small pieces of code, such as when reading out possibly multi-word
@@ -349,69 +323,6 @@ static void cpuset_update_task_spread_flag(struct cpuset *cs,
                tsk->flags &= ~PF_SPREAD_SLAB;
 }
 
-/**
- * cpuset_update_task_memory_state - update task memory placement
- *
- * If the current tasks cpusets mems_allowed changed behind our
- * backs, update current->mems_allowed, mems_generation and task NUMA
- * mempolicy to the new value.
- *
- * Task mempolicy is updated by rebinding it relative to the
- * current->cpuset if a task has its memory placement changed.
- * Do not call this routine if in_interrupt().
- *
- * Call without callback_mutex or task_lock() held.  May be
- * called with or without cgroup_mutex held.  Thanks in part to
- * 'the_top_cpuset_hack', the task's cpuset pointer will never
- * be NULL.  This routine also might acquire callback_mutex during
- * call.
- *
- * Reading current->cpuset->mems_generation doesn't need task_lock
- * to guard the current->cpuset derefence, because it is guarded
- * from concurrent freeing of current->cpuset using RCU.
- *
- * The rcu_dereference() is technically probably not needed,
- * as I don't actually mind if I see a new cpuset pointer but
- * an old value of mems_generation.  However this really only
- * matters on alpha systems using cpusets heavily.  If I dropped
- * that rcu_dereference(), it would save them a memory barrier.
- * For all other arch's, rcu_dereference is a no-op anyway, and for
- * alpha systems not using cpusets, another planned optimization,
- * avoiding the rcu critical section for tasks in the root cpuset
- * which is statically allocated, so can't vanish, will make this
- * irrelevant.  Better to use RCU as intended, than to engage in
- * some cute trick to save a memory barrier that is impossible to
- * test, for alpha systems using cpusets heavily, which might not
- * even exist.
- *
- * This routine is needed to update the per-task mems_allowed data,
- * within the tasks context, when it is trying to allocate memory
- * (in various mm/mempolicy.c routines) and notices that some other
- * task has been modifying its cpuset.
- */
-
-void cpuset_update_task_memory_state(void)
-{
-       int my_cpusets_mem_gen;
-       struct task_struct *tsk = current;
-       struct cpuset *cs;
-
-       rcu_read_lock();
-       my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
-       rcu_read_unlock();
-
-       if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
-               mutex_lock(&callback_mutex);
-               task_lock(tsk);
-               cs = task_cs(tsk); /* Maybe changed when task not locked */
-               guarantee_online_mems(cs, &tsk->mems_allowed);
-               tsk->cpuset_mems_generation = cs->mems_generation;
-               task_unlock(tsk);
-               mutex_unlock(&callback_mutex);
-               mpol_rebind_task(tsk, &tsk->mems_allowed);
-       }
-}
-
 /*
  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  *
@@ -626,8 +537,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  *     element of the partition (one sched domain) to be passed to
  *     partition_sched_domains().
  */
-/* FIXME: see the FIXME in partition_sched_domains() */
-static int generate_sched_domains(struct cpumask **domains,
+static int generate_sched_domains(cpumask_var_t **domains,
                        struct sched_domain_attr **attributes)
 {
        LIST_HEAD(q);           /* queue of cpusets to be scanned */
@@ -635,7 +545,7 @@ static int generate_sched_domains(struct cpumask **domains,
        struct cpuset **csa;    /* array of all cpuset ptrs */
        int csn;                /* how many cpuset ptrs in csa so far */
        int i, j, k;            /* indices for partition finding loops */
-       struct cpumask *doms;   /* resulting partition; i.e. sched domains */
+       cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
        struct sched_domain_attr *dattr;  /* attributes for custom domains */
        int ndoms = 0;          /* number of sched domains in result */
        int nslot;              /* next empty doms[] struct cpumask slot */
@@ -646,7 +556,8 @@ static int generate_sched_domains(struct cpumask **domains,
 
        /* Special case for the 99% of systems with one, full, sched domain */
        if (is_sched_load_balance(&top_cpuset)) {
-               doms = kmalloc(cpumask_size(), GFP_KERNEL);
+               ndoms = 1;
+               doms = alloc_sched_domains(ndoms);
                if (!doms)
                        goto done;
 
@@ -655,9 +566,8 @@ static int generate_sched_domains(struct cpumask **domains,
                        *dattr = SD_ATTR_INIT;
                        update_domain_attr_tree(dattr, &top_cpuset);
                }
-               cpumask_copy(doms, top_cpuset.cpus_allowed);
+               cpumask_copy(doms[0], top_cpuset.cpus_allowed);
 
-               ndoms = 1;
                goto done;
        }
 
@@ -725,7 +635,7 @@ restart:
         * Now we know how many domains to create.
         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
         */
-       doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
+       doms = alloc_sched_domains(ndoms);
        if (!doms)
                goto done;
 
@@ -745,7 +655,7 @@ restart:
                        continue;
                }
 
-               dp = doms + nslot;
+               dp = doms[nslot];
 
                if (nslot == ndoms) {
                        static int warnings = 10;
@@ -807,7 +717,7 @@ done:
 static void do_rebuild_sched_domains(struct work_struct *unused)
 {
        struct sched_domain_attr *attr;
-       struct cpumask *doms;
+       cpumask_var_t *doms;
        int ndoms;
 
        get_online_cpus();
@@ -827,7 +737,7 @@ static void do_rebuild_sched_domains(struct work_struct *unused)
 {
 }
 
-static int generate_sched_domains(struct cpumask **domains,
+static int generate_sched_domains(cpumask_var_t **domains,
                        struct sched_domain_attr **attributes)
 {
        *domains = NULL;
@@ -962,7 +872,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
                if (retval < 0)
                        return retval;
 
-               if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
+               if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
                        return -EINVAL;
        }
        retval = validate_change(cs, trialcs);
@@ -1010,21 +920,10 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  *    call to guarantee_online_mems(), as we know no one is changing
  *    our task's cpuset.
  *
- *    Hold callback_mutex around the two modifications of our tasks
- *    mems_allowed to synchronize with cpuset_mems_allowed().
- *
  *    While the mm_struct we are migrating is typically from some
  *    other task, the task_struct mems_allowed that we are hacking
  *    is for our current task, which must allocate new pages for that
  *    migrating memory region.
- *
- *    We call cpuset_update_task_memory_state() before hacking
- *    our tasks mems_allowed, so that we are assured of being in
- *    sync with our tasks cpuset, and in particular, callbacks to
- *    cpuset_update_task_memory_state() from nested page allocations
- *    won't see any mismatch of our cpuset and task mems_generation
- *    values, so won't overwrite our hacked tasks mems_allowed
- *    nodemask.
  */
 
 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
@@ -1032,22 +931,37 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 {
        struct task_struct *tsk = current;
 
-       cpuset_update_task_memory_state();
-
-       mutex_lock(&callback_mutex);
        tsk->mems_allowed = *to;
-       mutex_unlock(&callback_mutex);
 
        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 
-       mutex_lock(&callback_mutex);
        guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
-       mutex_unlock(&callback_mutex);
 }
 
 /*
- * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
- * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
+ * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
+ * @tsk: the task to change
+ * @newmems: new nodes that the task will be set
+ *
+ * In order to avoid seeing no nodes if the old and new nodes are disjoint,
+ * we structure updates as setting all new allowed nodes, then clearing newly
+ * disallowed ones.
+ *
+ * Called with task's alloc_lock held
+ */
+static void cpuset_change_task_nodemask(struct task_struct *tsk,
+                                       nodemask_t *newmems)
+{
+       nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
+       mpol_rebind_task(tsk, &tsk->mems_allowed);
+       mpol_rebind_task(tsk, newmems);
+       tsk->mems_allowed = *newmems;
+}
+
+/*
+ * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
+ * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
+ * memory_migrate flag is set. Called with cgroup_mutex held.
  */
 static void cpuset_change_nodemask(struct task_struct *p,
                                   struct cgroup_scanner *scan)
@@ -1056,12 +970,24 @@ static void cpuset_change_nodemask(struct task_struct *p,
        struct cpuset *cs;
        int migrate;
        const nodemask_t *oldmem = scan->data;
+       NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);
+
+       if (!newmems)
+               return;
+
+       cs = cgroup_cs(scan->cg);
+       guarantee_online_mems(cs, newmems);
+
+       task_lock(p);
+       cpuset_change_task_nodemask(p, newmems);
+       task_unlock(p);
+
+       NODEMASK_FREE(newmems);
 
        mm = get_task_mm(p);
        if (!mm)
                return;
 
-       cs = cgroup_cs(scan->cg);
        migrate = is_memory_migrate(cs);
 
        mpol_rebind_mm(mm, &cs->mems_allowed);
@@ -1114,10 +1040,10 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
 /*
  * Handle user request to change the 'mems' memory placement
  * of a cpuset.  Needs to validate the request, update the
- * cpusets mems_allowed and mems_generation, and for each
- * task in the cpuset, rebind any vma mempolicies and if
- * the cpuset is marked 'memory_migrate', migrate the tasks
- * pages to the new memory.
+ * cpusets mems_allowed, and for each task in the cpuset,
+ * update mems_allowed and rebind task's mempolicy and any vma
+ * mempolicies and if the cpuset is marked 'memory_migrate',
+ * migrate the tasks pages to the new memory.
  *
  * Call with cgroup_mutex held.  May take callback_mutex during call.
  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
@@ -1127,16 +1053,21 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
                           const char *buf)
 {
-       nodemask_t oldmem;
+       NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
        int retval;
        struct ptr_heap heap;
 
+       if (!oldmem)
+               return -ENOMEM;
+
        /*
         * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
         * it's read-only
         */
-       if (cs == &top_cpuset)
-               return -EACCES;
+       if (cs == &top_cpuset) {
+               retval = -EACCES;
+               goto done;
+       }
 
        /*
         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
@@ -1152,11 +1083,13 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
                        goto done;
 
                if (!nodes_subset(trialcs->mems_allowed,
-                               node_states[N_HIGH_MEMORY]))
-                       return -EINVAL;
+                               node_states[N_HIGH_MEMORY])) {
+                       retval =  -EINVAL;
+                       goto done;
+               }
        }
-       oldmem = cs->mems_allowed;
-       if (nodes_equal(oldmem, trialcs->mems_allowed)) {
+       *oldmem = cs->mems_allowed;
+       if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
                retval = 0;             /* Too easy - nothing to do */
                goto done;
        }
@@ -1170,13 +1103,13 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
 
        mutex_lock(&callback_mutex);
        cs->mems_allowed = trialcs->mems_allowed;
-       cs->mems_generation = cpuset_mems_generation++;
        mutex_unlock(&callback_mutex);
 
-       update_tasks_nodemask(cs, &oldmem, &heap);
+       update_tasks_nodemask(cs, oldmem, &heap);
 
        heap_free(&heap);
 done:
+       NODEMASK_FREE(oldmem);
        return retval;
 }
 
@@ -1400,9 +1333,10 @@ static int fmeter_getrate(struct fmeter *fmp)
 static cpumask_var_t cpus_attach;
 
 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
-static int cpuset_can_attach(struct cgroup_subsys *ss,
-                            struct cgroup *cont, struct task_struct *tsk)
+static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
+                            struct task_struct *tsk, bool threadgroup)
 {
+       int ret;
        struct cpuset *cs = cgroup_cs(cont);
 
        if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
@@ -1419,41 +1353,88 @@ static int cpuset_can_attach(struct cgroup_subsys *ss,
        if (tsk->flags & PF_THREAD_BOUND)
                return -EINVAL;
 
-       return security_task_setscheduler(tsk, 0, NULL);
+       ret = security_task_setscheduler(tsk, 0, NULL);
+       if (ret)
+               return ret;
+       if (threadgroup) {
+               struct task_struct *c;
+
+               rcu_read_lock();
+               list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
+                       ret = security_task_setscheduler(c, 0, NULL);
+                       if (ret) {
+                               rcu_read_unlock();
+                               return ret;
+                       }
+               }
+               rcu_read_unlock();
+       }
+       return 0;
+}
+
+static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
+                              struct cpuset *cs)
+{
+       int err;
+       /*
+        * can_attach beforehand should guarantee that this doesn't fail.
+        * TODO: have a better way to handle failure here
+        */
+       err = set_cpus_allowed_ptr(tsk, cpus_attach);
+       WARN_ON_ONCE(err);
+
+       task_lock(tsk);
+       cpuset_change_task_nodemask(tsk, to);
+       task_unlock(tsk);
+       cpuset_update_task_spread_flag(cs, tsk);
+
 }
 
-static void cpuset_attach(struct cgroup_subsys *ss,
-                         struct cgroup *cont, struct cgroup *oldcont,
-                         struct task_struct *tsk)
+static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
+                         struct cgroup *oldcont, struct task_struct *tsk,
+                         bool threadgroup)
 {
-       nodemask_t from, to;
        struct mm_struct *mm;
        struct cpuset *cs = cgroup_cs(cont);
        struct cpuset *oldcs = cgroup_cs(oldcont);
-       int err;
+       NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
+       NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);
+
+       if (from == NULL || to == NULL)
+               goto alloc_fail;
 
        if (cs == &top_cpuset) {
                cpumask_copy(cpus_attach, cpu_possible_mask);
        } else {
-               mutex_lock(&callback_mutex);
                guarantee_online_cpus(cs, cpus_attach);
-               mutex_unlock(&callback_mutex);
        }
-       err = set_cpus_allowed_ptr(tsk, cpus_attach);
-       if (err)
-               return;
-
-       cpuset_update_task_spread_flag(cs, tsk);
+       guarantee_online_mems(cs, to);
+
+       /* do per-task migration stuff possibly for each in the threadgroup */
+       cpuset_attach_task(tsk, to, cs);
+       if (threadgroup) {
+               struct task_struct *c;
+               rcu_read_lock();
+               list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
+                       cpuset_attach_task(c, to, cs);
+               }
+               rcu_read_unlock();
+       }
 
-       from = oldcs->mems_allowed;
-       to = cs->mems_allowed;
+       /* change mm; only needs to be done once even if threadgroup */
+       *from = oldcs->mems_allowed;
+       *to = cs->mems_allowed;
        mm = get_task_mm(tsk);
        if (mm) {
-               mpol_rebind_mm(mm, &to);
+               mpol_rebind_mm(mm, to);
                if (is_memory_migrate(cs))
-                       cpuset_migrate_mm(mm, &from, &to);
+                       cpuset_migrate_mm(mm, from, to);
                mmput(mm);
        }
+
+alloc_fail:
+       NODEMASK_FREE(from);
+       NODEMASK_FREE(to);
 }
 
 /* The various types of files and directories in a cpuset file system */
@@ -1598,13 +1579,21 @@ static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
 
 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
 {
-       nodemask_t mask;
+       NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
+       int retval;
+
+       if (mask == NULL)
+               return -ENOMEM;
 
        mutex_lock(&callback_mutex);
-       mask = cs->mems_allowed;
+       *mask = cs->mems_allowed;
        mutex_unlock(&callback_mutex);
 
-       return nodelist_scnprintf(page, PAGE_SIZE, mask);
+       retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);
+
+       NODEMASK_FREE(mask);
+
+       return retval;
 }
 
 static ssize_t cpuset_common_file_read(struct cgroup *cont,
@@ -1848,8 +1837,6 @@ static struct cgroup_subsys_state *cpuset_create(
        struct cpuset *parent;
 
        if (!cont->parent) {
-               /* This is early initialization for the top cgroup */
-               top_cpuset.mems_generation = cpuset_mems_generation++;
                return &top_cpuset.css;
        }
        parent = cgroup_cs(cont->parent);
@@ -1861,7 +1848,6 @@ static struct cgroup_subsys_state *cpuset_create(
                return ERR_PTR(-ENOMEM);
        }
 
-       cpuset_update_task_memory_state();
        cs->flags = 0;
        if (is_spread_page(parent))
                set_bit(CS_SPREAD_PAGE, &cs->flags);
@@ -1870,7 +1856,6 @@ static struct cgroup_subsys_state *cpuset_create(
        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
        cpumask_clear(cs->cpus_allowed);
        nodes_clear(cs->mems_allowed);
-       cs->mems_generation = cpuset_mems_generation++;
        fmeter_init(&cs->fmeter);
        cs->relax_domain_level = -1;
 
@@ -1889,8 +1874,6 @@ static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
 {
        struct cpuset *cs = cgroup_cs(cont);
 
-       cpuset_update_task_memory_state();
-
        if (is_sched_load_balance(cs))
                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
 
@@ -1911,21 +1894,6 @@ struct cgroup_subsys cpuset_subsys = {
        .early_init = 1,
 };
 
-/*
- * cpuset_init_early - just enough so that the calls to
- * cpuset_update_task_memory_state() in early init code
- * are harmless.
- */
-
-int __init cpuset_init_early(void)
-{
-       alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_NOWAIT);
-
-       top_cpuset.mems_generation = cpuset_mems_generation++;
-       return 0;
-}
-
-
 /**
  * cpuset_init - initialize cpusets at system boot
  *
@@ -1936,11 +1904,13 @@ int __init cpuset_init(void)
 {
        int err = 0;
 
+       if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
+               BUG();
+
        cpumask_setall(top_cpuset.cpus_allowed);
        nodes_setall(top_cpuset.mems_allowed);
 
        fmeter_init(&top_cpuset.fmeter);
-       top_cpuset.mems_generation = cpuset_mems_generation++;
        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
        top_cpuset.relax_domain_level = -1;
 
@@ -2052,7 +2022,10 @@ static void scan_for_empty_cpusets(struct cpuset *root)
        struct cpuset *cp;      /* scans cpusets being updated */
        struct cpuset *child;   /* scans child cpusets of cp */
        struct cgroup *cont;
-       nodemask_t oldmems;
+       NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
+
+       if (oldmems == NULL)
+               return;
 
        list_add_tail((struct list_head *)&root->stack_list, &queue);
 
@@ -2065,16 +2038,16 @@ static void scan_for_empty_cpusets(struct cpuset *root)
                }
 
                /* Continue past cpusets with all cpus, mems online */
-               if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
+               if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
                    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
                        continue;
 
-               oldmems = cp->mems_allowed;
+               *oldmems = cp->mems_allowed;
 
                /* Remove offline cpus and mems from this cpuset. */
                mutex_lock(&callback_mutex);
                cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
-                           cpu_online_mask);
+                           cpu_active_mask);
                nodes_and(cp->mems_allowed, cp->mems_allowed,
                                                node_states[N_HIGH_MEMORY]);
                mutex_unlock(&callback_mutex);
@@ -2085,9 +2058,10 @@ static void scan_for_empty_cpusets(struct cpuset *root)
                        remove_tasks_in_empty_cpuset(cp);
                else {
                        update_tasks_cpumask(cp, NULL);
-                       update_tasks_nodemask(cp, &oldmems, NULL);
+                       update_tasks_nodemask(cp, oldmems, NULL);
                }
        }
+       NODEMASK_FREE(oldmems);
 }
 
 /*
@@ -2106,14 +2080,16 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
                                unsigned long phase, void *unused_cpu)
 {
        struct sched_domain_attr *attr;
-       struct cpumask *doms;
+       cpumask_var_t *doms;
        int ndoms;
 
        switch (phase) {
        case CPU_ONLINE:
        case CPU_ONLINE_FROZEN:
-       case CPU_DEAD:
-       case CPU_DEAD_FROZEN:
+       case CPU_DOWN_PREPARE:
+       case CPU_DOWN_PREPARE_FROZEN:
+       case CPU_DOWN_FAILED:
+       case CPU_DOWN_FAILED_FROZEN:
                break;
 
        default:
@@ -2122,7 +2098,7 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
 
        cgroup_lock();
        mutex_lock(&callback_mutex);
-       cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
+       cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
        mutex_unlock(&callback_mutex);
        scan_for_empty_cpusets(&top_cpuset);
        ndoms = generate_sched_domains(&doms, &attr);
@@ -2143,20 +2119,33 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
 static int cpuset_track_online_nodes(struct notifier_block *self,
                                unsigned long action, void *arg)
 {
+       NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
+
+       if (oldmems == NULL)
+               return NOTIFY_DONE;
+
        cgroup_lock();
        switch (action) {
        case MEM_ONLINE:
-       case MEM_OFFLINE:
+               *oldmems = top_cpuset.mems_allowed;
                mutex_lock(&callback_mutex);
                top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
                mutex_unlock(&callback_mutex);
-               if (action == MEM_OFFLINE)
-                       scan_for_empty_cpusets(&top_cpuset);
+               update_tasks_nodemask(&top_cpuset, oldmems, NULL);
+               break;
+       case MEM_OFFLINE:
+               /*
+                * needn't update top_cpuset.mems_allowed explicitly because
+                * scan_for_empty_cpusets() will update it.
+                */
+               scan_for_empty_cpusets(&top_cpuset);
                break;
        default:
                break;
        }
        cgroup_unlock();
+
+       NODEMASK_FREE(oldmems);
        return NOTIFY_OK;
 }
 #endif
@@ -2169,7 +2158,7 @@ static int cpuset_track_online_nodes(struct notifier_block *self,
 
 void __init cpuset_init_smp(void)
 {
-       cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
+       cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
        top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
 
        hotcpu_notifier(cpuset_track_online_cpus, 0);
@@ -2193,19 +2182,52 @@ void __init cpuset_init_smp(void)
 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
 {
        mutex_lock(&callback_mutex);
-       cpuset_cpus_allowed_locked(tsk, pmask);
+       task_lock(tsk);
+       guarantee_online_cpus(task_cs(tsk), pmask);
+       task_unlock(tsk);
        mutex_unlock(&callback_mutex);
 }
 
-/**
- * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
- * Must be called with callback_mutex held.
- **/
-void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
+int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
 {
-       task_lock(tsk);
-       guarantee_online_cpus(task_cs(tsk), pmask);
-       task_unlock(tsk);
+       const struct cpuset *cs;
+       int cpu;
+
+       rcu_read_lock();
+       cs = task_cs(tsk);
+       if (cs)
+               cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
+       rcu_read_unlock();
+
+       /*
+        * We own tsk->cpus_allowed, nobody can change it under us.
+        *
+        * But we used cs && cs->cpus_allowed lockless and thus can
+        * race with cgroup_attach_task() or update_cpumask() and get
+        * the wrong tsk->cpus_allowed. However, both cases imply the
+        * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
+        * which takes task_rq_lock().
+        *
+        * If we are called after it dropped the lock we must see all
+        * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
+        * set any mask even if it is not right from task_cs() pov,
+        * the pending set_cpus_allowed_ptr() will fix things.
+        */
+
+       cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
+       if (cpu >= nr_cpu_ids) {
+               /*
+                * Either tsk->cpus_allowed is wrong (see above) or it
+                * is actually empty. The latter case is only possible
+                * if we are racing with remove_tasks_in_empty_cpuset().
+                * Like above we can temporary set any mask and rely on
+                * set_cpus_allowed_ptr() as synchronization point.
+                */
+               cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
+               cpu = cpumask_any(cpu_active_mask);
+       }
+
+       return cpu;
 }
 
 void cpuset_init_current_mems_allowed(void)
@@ -2394,22 +2416,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
 }
 
 /**
- * cpuset_lock - lock out any changes to cpuset structures
- *
- * The out of memory (oom) code needs to mutex_lock cpusets
- * from being changed while it scans the tasklist looking for a
- * task in an overlapping cpuset.  Expose callback_mutex via this
- * cpuset_lock() routine, so the oom code can lock it, before
- * locking the task list.  The tasklist_lock is a spinlock, so
- * must be taken inside callback_mutex.
- */
-
-void cpuset_lock(void)
-{
-       mutex_lock(&callback_mutex);
-}
-
-/**
  * cpuset_unlock - release lock on cpuset changes
  *
  * Undo the lock taken in a previous cpuset_lock() call.
@@ -2591,15 +2597,9 @@ const struct file_operations proc_cpuset_operations = {
 };
 #endif /* CONFIG_PROC_PID_CPUSET */
 
-/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
+/* Display task mems_allowed in /proc/<pid>/status file. */
 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
 {
-       seq_printf(m, "Cpus_allowed:\t");
-       seq_cpumask(m, &task->cpus_allowed);
-       seq_printf(m, "\n");
-       seq_printf(m, "Cpus_allowed_list:\t");
-       seq_cpumask_list(m, &task->cpus_allowed);
-       seq_printf(m, "\n");
        seq_printf(m, "Mems_allowed:\t");
        seq_nodemask(m, &task->mems_allowed);
        seq_printf(m, "\n");