Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[safe/jmp/linux-2.6] / drivers / edac / amd64_edac.c
index ed9b07a..7cd1cdc 100644 (file)
@@ -13,32 +13,56 @@ module_param(report_gart_errors, int, 0644);
 static int ecc_enable_override;
 module_param(ecc_enable_override, int, 0644);
 
+static struct msr __percpu *msrs;
+
 /* Lookup table for all possible MC control instances */
 struct amd64_pvt;
 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
 
 /*
- * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
- * for DDR2 DRAM mapping.
+ * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
+ * later.
  */
-u32 revf_quad_ddr2_shift[] = {
-       0,      /* 0000b NULL DIMM (128mb) */
-       28,     /* 0001b 256mb */
-       29,     /* 0010b 512mb */
-       29,     /* 0011b 512mb */
-       29,     /* 0100b 512mb */
-       30,     /* 0101b 1gb */
-       30,     /* 0110b 1gb */
-       31,     /* 0111b 2gb */
-       31,     /* 1000b 2gb */
-       32,     /* 1001b 4gb */
-       32,     /* 1010b 4gb */
-       33,     /* 1011b 8gb */
-       0,      /* 1100b future */
-       0,      /* 1101b future */
-       0,      /* 1110b future */
-       0       /* 1111b future */
+static int ddr2_dbam_revCG[] = {
+                          [0]          = 32,
+                          [1]          = 64,
+                          [2]          = 128,
+                          [3]          = 256,
+                          [4]          = 512,
+                          [5]          = 1024,
+                          [6]          = 2048,
+};
+
+static int ddr2_dbam_revD[] = {
+                          [0]          = 32,
+                          [1]          = 64,
+                          [2 ... 3]    = 128,
+                          [4]          = 256,
+                          [5]          = 512,
+                          [6]          = 256,
+                          [7]          = 512,
+                          [8 ... 9]    = 1024,
+                          [10]         = 2048,
+};
+
+static int ddr2_dbam[] = { [0]         = 128,
+                          [1]          = 256,
+                          [2 ... 4]    = 512,
+                          [5 ... 6]    = 1024,
+                          [7 ... 8]    = 2048,
+                          [9 ... 10]   = 4096,
+                          [11]         = 8192,
+};
+
+static int ddr3_dbam[] = { [0]         = -1,
+                          [1]          = 256,
+                          [2]          = 512,
+                          [3 ... 4]    = -1,
+                          [5 ... 6]    = 1024,
+                          [7 ... 8]    = 2048,
+                          [9 ... 10]   = 4096,
+                          [11] = 8192,
 };
 
 /*
@@ -173,7 +197,7 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
        edac_printk(KERN_DEBUG, EDAC_MC,
                    "pci-read, sdram scrub control value: %d \n", scrubval);
 
-       for (i = 0; ARRAY_SIZE(scrubrates); i++) {
+       for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
                if (scrubrates[i].scrubval == scrubval) {
                        *bw = scrubrates[i].bandwidth;
                        status = 0;
@@ -187,7 +211,7 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
 /* Map from a CSROW entry to the mask entry that operates on it */
 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
 {
-       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
                return csrow;
        else
                return csrow >> 1;
@@ -435,7 +459,7 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
        u64 base;
 
        /* only revE and later have the DRAM Hole Address Register */
-       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
                debugf1("  revision %d for node %d does not support DHAR\n",
                        pvt->ext_model, pvt->mc_node_id);
                return 1;
@@ -741,21 +765,6 @@ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
        *input_addr_max = base | mask | pvt->dcs_mask_notused;
 }
 
-/*
- * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
- * Address High (section 3.6.4.6) register values and return the result. Address
- * is located in the info structure (nbeah and nbeal), the encoding is device
- * specific.
- */
-static u64 extract_error_address(struct mem_ctl_info *mci,
-                                struct err_regs *info)
-{
-       struct amd64_pvt *pvt = mci->pvt_info;
-
-       return pvt->ops->get_error_address(mci, info);
-}
-
-
 /* Map the Error address to a PAGE and PAGE OFFSET. */
 static inline void error_address_to_page_and_offset(u64 error_address,
                                                    u32 *page, u32 *offset)
@@ -785,7 +794,7 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
        return csrow;
 }
 
-static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
 
 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
 {
@@ -795,7 +804,7 @@ static void amd64_cpu_display_info(struct amd64_pvt *pvt)
                edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
        else if (boot_cpu_data.x86 == 0xf)
                edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
-                       (pvt->ext_model >= OPTERON_CPU_REV_F) ?
+                       (pvt->ext_model >= K8_REV_F) ?
                        "Rev F or later" : "Rev E or earlier");
        else
                /* we'll hardly ever ever get here */
@@ -811,7 +820,7 @@ static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
        int bit;
        enum dev_type edac_cap = EDAC_FLAG_NONE;
 
-       bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
+       bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
                ? 19
                : 17;
 
@@ -936,7 +945,7 @@ static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
 {
 
-       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
+       if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
                pvt->dcsb_base          = REV_E_DCSB_BASE_BITS;
                pvt->dcsm_mask          = REV_E_DCSM_MASK_BITS;
                pvt->dcs_mask_notused   = REV_E_DCS_NOTUSED_BITS;
@@ -1009,18 +1018,16 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
 {
        enum mem_type type;
 
-       if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
-               /* Rev F and later */
-               type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+       if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
+               if (pvt->dchr0 & DDR3_MODE)
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+               else
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
        } else {
-               /* Rev E and earlier */
                type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
        }
 
-       debugf1("  Memory type is: %s\n",
-               (type == MEM_DDR2) ? "MEM_DDR2" :
-               (type == MEM_RDDR2) ? "MEM_RDDR2" :
-               (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
+       debugf1("  Memory type is: %s\n", edac_mem_types[type]);
 
        return type;
 }
@@ -1042,7 +1049,7 @@ static int k8_early_channel_count(struct amd64_pvt *pvt)
        if (err)
                return err;
 
-       if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+       if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
                /* RevF (NPT) and later */
                flag = pvt->dclr0 & F10_WIDTH_128;
        } else {
@@ -1095,7 +1102,7 @@ static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
 
 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
                                        struct err_regs *info,
-                                       u64 SystemAddress)
+                                       u64 sys_addr)
 {
        struct mem_ctl_info *src_mci;
        unsigned short syndrome;
@@ -1108,7 +1115,7 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
 
        /* CHIPKILL enabled */
        if (info->nbcfg & K8_NBCFG_CHIPKILL) {
-               channel = get_channel_from_ecc_syndrome(syndrome);
+               channel = get_channel_from_ecc_syndrome(mci, syndrome);
                if (channel < 0) {
                        /*
                         * Syndrome didn't map, so we don't know which of the
@@ -1130,64 +1137,46 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
                 * was obtained from email communication with someone at AMD.
                 * (Wish the email was placed in this comment - norsk)
                 */
-               channel = ((SystemAddress & BIT(3)) != 0);
+               channel = ((sys_addr & BIT(3)) != 0);
        }
 
        /*
         * Find out which node the error address belongs to. This may be
         * different from the node that detected the error.
         */
-       src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+       src_mci = find_mc_by_sys_addr(mci, sys_addr);
        if (!src_mci) {
                amd64_mc_printk(mci, KERN_ERR,
                             "failed to map error address 0x%lx to a node\n",
-                            (unsigned long)SystemAddress);
+                            (unsigned long)sys_addr);
                edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
                return;
        }
 
-       /* Now map the SystemAddress to a CSROW */
-       csrow = sys_addr_to_csrow(src_mci, SystemAddress);
+       /* Now map the sys_addr to a CSROW */
+       csrow = sys_addr_to_csrow(src_mci, sys_addr);
        if (csrow < 0) {
                edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
        } else {
-               error_address_to_page_and_offset(SystemAddress, &page, &offset);
+               error_address_to_page_and_offset(sys_addr, &page, &offset);
 
                edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
                                  channel, EDAC_MOD_STR);
        }
 }
 
-/*
- * determrine the number of PAGES in for this DIMM's size based on its DRAM
- * Address Mapping.
- *
- * First step is to calc the number of bits to shift a value of 1 left to
- * indicate show many pages. Start with the DBAM value as the starting bits,
- * then proceed to adjust those shift bits, based on CPU rev and the table.
- * See BKDG on the DBAM
- */
-static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
 {
-       int nr_pages;
+       int *dbam_map;
 
-       if (pvt->ext_model >= OPTERON_CPU_REV_F) {
-               nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
-       } else {
-               /*
-                * RevE and less section; this line is tricky. It collapses the
-                * table used by RevD and later to one that matches revisions CG
-                * and earlier.
-                */
-               dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
-                               (dram_map > 8 ? 4 : (dram_map > 5 ?
-                               3 : (dram_map > 2 ? 1 : 0))) : 0;
-
-               /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
-               nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
-       }
+       if (pvt->ext_model >= K8_REV_F)
+               dbam_map = ddr2_dbam;
+       else if (pvt->ext_model >= K8_REV_D)
+               dbam_map = ddr2_dbam_revD;
+       else
+               dbam_map = ddr2_dbam_revCG;
 
-       return nr_pages;
+       return dbam_map[cs_mode];
 }
 
 /*
@@ -1249,9 +1238,16 @@ err_reg:
 
 }
 
-static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
 {
-       return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+       int *dbam_map;
+
+       if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+               dbam_map = ddr3_dbam;
+       else
+               dbam_map = ddr2_dbam;
+
+       return dbam_map[cs_mode];
 }
 
 /* Enable extended configuration access via 0xCF8 feature */
@@ -1325,9 +1321,6 @@ static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
        /* Read from the ECS data register for the HIGH portion */
        amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
 
-       debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
-               high_base, low_base, high_limit, low_limit);
-
        pvt->dram_DstNode[dram] = (low_limit & 0x7);
        pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
 
@@ -1654,10 +1647,11 @@ static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
 }
 
 /*
- * This the F10h reference code from AMD to map a @sys_addr to NodeID,
- * CSROW, Channel.
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  *
- * The @sys_addr is usually an error address received from the hardware.
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
  */
 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
                                     struct err_regs *info,
@@ -1670,56 +1664,34 @@ static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
 
        csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
 
-       if (csrow >= 0) {
-               error_address_to_page_and_offset(sys_addr, &page, &offset);
-
-               syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
-               syndrome |= LOW_SYNDROME(info->nbsh);
-
-               /*
-                * Is CHIPKILL on? If so, then we can attempt to use the
-                * syndrome to isolate which channel the error was on.
-                */
-               if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
-                       chan = get_channel_from_ecc_syndrome(syndrome);
-
-               if (chan >= 0) {
-                       edac_mc_handle_ce(mci, page, offset, syndrome,
-                                       csrow, chan, EDAC_MOD_STR);
-               } else {
-                       /*
-                        * Channel unknown, report all channels on this
-                        * CSROW as failed.
-                        */
-                       for (chan = 0; chan < mci->csrows[csrow].nr_channels;
-                                                               chan++) {
-                                       edac_mc_handle_ce(mci, page, offset,
-                                                       syndrome,
-                                                       csrow, chan,
-                                                       EDAC_MOD_STR);
-                       }
-               }
-
-       } else {
+       if (csrow < 0) {
                edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
        }
-}
 
-/*
- * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
- * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
- * indicates an empty DIMM slot, as reported by Hardware on empty slots.
- *
- * Normalize to 128MB by subracting 27 bit shift.
- */
-static int map_dbam_to_csrow_size(int index)
-{
-       int mega_bytes = 0;
+       error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+       syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
+       syndrome |= LOW_SYNDROME(info->nbsh);
 
-       if (index > 0 && index <= DBAM_MAX_VALUE)
-               mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
+       /*
+        * We need the syndromes for channel detection only when we're
+        * ganged. Otherwise @chan should already contain the channel at
+        * this point.
+        */
+       if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
+               chan = get_channel_from_ecc_syndrome(mci, syndrome);
 
-       return mega_bytes;
+       if (chan >= 0)
+               edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
+                                 EDAC_MOD_STR);
+       else
+               /*
+                * Channel unknown, report all channels on this CSROW as failed.
+                */
+               for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
+                       edac_mc_handle_ce(mci, page, offset, syndrome,
+                                         csrow, chan, EDAC_MOD_STR);
 }
 
 /*
@@ -1728,13 +1700,16 @@ static int map_dbam_to_csrow_size(int index)
  */
 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
 {
-       int dimm, size0, size1;
+       int dimm, size0, size1, factor = 0;
        u32 dbam;
        u32 *dcsb;
 
        if (boot_cpu_data.x86 == 0xf) {
+               if (pvt->dclr0 & F10_WIDTH_128)
+                       factor = 1;
+
                /* K8 families < revF not supported yet */
-              if (pvt->ext_model < OPTERON_CPU_REV_F)
+              if (pvt->ext_model < K8_REV_F)
                        return;
               else
                       WARN_ON(ctrl != 0);
@@ -1753,54 +1728,19 @@ static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
 
                size0 = 0;
                if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
-                       size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+                       size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
 
                size1 = 0;
                if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
-                       size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+                       size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
 
                edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
-                           dimm * 2, size0, dimm * 2 + 1, size1);
+                           dimm * 2,     size0 << factor,
+                           dimm * 2 + 1, size1 << factor);
        }
 }
 
 /*
- * Very early hardware probe on pci_probe thread to determine if this module
- * supports the hardware.
- *
- * Return:
- *      0 for OK
- *      1 for error
- */
-static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
-{
-       int ret = 0;
-
-       /*
-        * If we are on a DDR3 machine, we don't know yet if
-        * we support that properly at this time
-        */
-       if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
-           (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
-
-               amd64_printk(KERN_WARNING,
-                       "%s() This machine is running with DDR3 memory. "
-                       "This is not currently supported. "
-                       "DCHR0=0x%x DCHR1=0x%x\n",
-                       __func__, pvt->dchr0, pvt->dchr1);
-
-               amd64_printk(KERN_WARNING,
-                       "   Contact '%s' module MAINTAINER to help add"
-                       " support.\n",
-                       EDAC_MOD_STR);
-
-               ret = 1;
-
-       }
-       return ret;
-}
-
-/*
  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  * (as per PCI DEVICE_IDs):
  *
@@ -1817,11 +1757,11 @@ static struct amd64_family_type amd64_family_types[] = {
                .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
                .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
                .ops = {
-                       .early_channel_count = k8_early_channel_count,
-                       .get_error_address = k8_get_error_address,
-                       .read_dram_base_limit = k8_read_dram_base_limit,
-                       .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
-                       .dbam_map_to_pages = k8_dbam_map_to_pages,
+                       .early_channel_count    = k8_early_channel_count,
+                       .get_error_address      = k8_get_error_address,
+                       .read_dram_base_limit   = k8_read_dram_base_limit,
+                       .map_sysaddr_to_csrow   = k8_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = k8_dbam_to_chip_select,
                }
        },
        [F10_CPUS] = {
@@ -1829,13 +1769,12 @@ static struct amd64_family_type amd64_family_types[] = {
                .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
                .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
                .ops = {
-                       .probe_valid_hardware = f10_probe_valid_hardware,
-                       .early_channel_count = f10_early_channel_count,
-                       .get_error_address = f10_get_error_address,
-                       .read_dram_base_limit = f10_read_dram_base_limit,
-                       .read_dram_ctl_register = f10_read_dram_ctl_register,
-                       .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
-                       .dbam_map_to_pages = f10_dbam_map_to_pages,
+                       .early_channel_count    = f10_early_channel_count,
+                       .get_error_address      = f10_get_error_address,
+                       .read_dram_base_limit   = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow   = f10_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f10_dbam_to_chip_select,
                }
        },
        [F11_CPUS] = {
@@ -1843,13 +1782,12 @@ static struct amd64_family_type amd64_family_types[] = {
                .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
                .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
                .ops = {
-                       .probe_valid_hardware = f10_probe_valid_hardware,
-                       .early_channel_count = f10_early_channel_count,
-                       .get_error_address = f10_get_error_address,
-                       .read_dram_base_limit = f10_read_dram_base_limit,
-                       .read_dram_ctl_register = f10_read_dram_ctl_register,
-                       .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
-                       .dbam_map_to_pages = f10_dbam_map_to_pages,
+                       .early_channel_count    = f10_early_channel_count,
+                       .get_error_address      = f10_get_error_address,
+                       .read_dram_base_limit   = f10_read_dram_base_limit,
+                       .read_dram_ctl_register = f10_read_dram_ctl_register,
+                       .map_sysaddr_to_csrow   = f10_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f10_dbam_to_chip_select,
                }
        },
 };
@@ -1872,142 +1810,170 @@ static struct pci_dev *pci_get_related_function(unsigned int vendor,
 }
 
 /*
- * syndrome mapping table for ECC ChipKill devices
- *
- * The comment in each row is the token (nibble) number that is in error.
- * The least significant nibble of the syndrome is the mask for the bits
- * that are in error (need to be toggled) for the particular nibble.
- *
- * Each row contains 16 entries.
- * The first entry (0th) is the channel number for that row of syndromes.
- * The remaining 15 entries are the syndromes for the respective Error
- * bit mask index.
- *
- * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
- * bit in error.
- * The 2nd index entry is 0x0010 that the second bit is damaged.
- * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
- * are damaged.
- * Thus so on until index 15, 0x1111, whose entry has the syndrome
- * indicating that all 4 bits are damaged.
- *
- * A search is performed on this table looking for a given syndrome.
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
  *
- * See the AMD documentation for ECC syndromes. This ECC table is valid
- * across all the versions of the AMD64 processors.
- *
- * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
- * COLUMN index, then search all ROWS of that column, looking for a match
- * with the input syndrome. The ROW value will be the token number.
- *
- * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
- * error.
+ * Algorithm courtesy of Ross LaFetra from AMD.
  */
-#define NUMBER_ECC_ROWS  36
-static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
-       /* Channel 0 syndromes */
-       {/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
-          0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
-       {/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
-          0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
-       {/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
-          0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
-       {/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
-          0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
-       {/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
-          0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
-       {/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
-          0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
-       {/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
-          0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
-       {/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
-          0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
-       {/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
-          0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
-       {/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
-          0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
-       {/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
-          0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
-       {/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
-          0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
-       {/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
-          0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
-       {/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
-          0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
-       {/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
-          0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
-       {/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
-          0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
-
-       /* Channel 1 syndromes */
-       {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
-          0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
-       {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
-          0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
-       {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
-          0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
-       {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
-          0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
-       {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
-          0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
-       {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
-          0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
-       {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
-          0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
-       {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
-          0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
-       {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
-          0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
-       {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
-          0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
-       {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
-          0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
-       {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
-          0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
-       {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
-          0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
-       {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
-          0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
-       {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
-          0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
-       {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
-          0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
-
-       /* ECC bits are also in the set of tokens and they too can go bad
-        * first 2 cover channel 0, while the second 2 cover channel 1
-        */
-       {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
-          0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
-       {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
-          0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
-       {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
-          0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
-       {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
-          0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+static u16 x4_vectors[] = {
+       0x2f57, 0x1afe, 0x66cc, 0xdd88,
+       0x11eb, 0x3396, 0x7f4c, 0xeac8,
+       0x0001, 0x0002, 0x0004, 0x0008,
+       0x1013, 0x3032, 0x4044, 0x8088,
+       0x106b, 0x30d6, 0x70fc, 0xe0a8,
+       0x4857, 0xc4fe, 0x13cc, 0x3288,
+       0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+       0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+       0x15c1, 0x2a42, 0x89ac, 0x4758,
+       0x2b03, 0x1602, 0x4f0c, 0xca08,
+       0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+       0x8ba7, 0x465e, 0x244c, 0x1cc8,
+       0x2b87, 0x164e, 0x642c, 0xdc18,
+       0x40b9, 0x80de, 0x1094, 0x20e8,
+       0x27db, 0x1eb6, 0x9dac, 0x7b58,
+       0x11c1, 0x2242, 0x84ac, 0x4c58,
+       0x1be5, 0x2d7a, 0x5e34, 0xa718,
+       0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+       0x4c97, 0xc87e, 0x11fc, 0x33a8,
+       0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+       0x16b3, 0x3d62, 0x4f34, 0x8518,
+       0x1e2f, 0x391a, 0x5cac, 0xf858,
+       0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+       0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+       0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+       0x4397, 0xc27e, 0x17fc, 0x3ea8,
+       0x1617, 0x3d3e, 0x6464, 0xb8b8,
+       0x23ff, 0x12aa, 0xab6c, 0x56d8,
+       0x2dfb, 0x1ba6, 0x913c, 0x7328,
+       0x185d, 0x2ca6, 0x7914, 0x9e28,
+       0x171b, 0x3e36, 0x7d7c, 0xebe8,
+       0x4199, 0x82ee, 0x19f4, 0x2e58,
+       0x4807, 0xc40e, 0x130c, 0x3208,
+       0x1905, 0x2e0a, 0x5804, 0xac08,
+       0x213f, 0x132a, 0xadfc, 0x5ba8,
+       0x19a9, 0x2efe, 0xb5cc, 0x6f88,
 };
 
-/*
- * Given the syndrome argument, scan each of the channel tables for a syndrome
- * match. Depending on which table it is found, return the channel number.
- */
-static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+static u16 x8_vectors[] = {
+       0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+       0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+       0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+       0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+       0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+       0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+       0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+       0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+       0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+       0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+       0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+       0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+       0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+       0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+       0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+       0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+       0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+       0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+       0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
+                                int v_dim)
 {
-       int row;
-       int column;
+       unsigned int i, err_sym;
+
+       for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+               u16 s = syndrome;
+               int v_idx =  err_sym * v_dim;
+               int v_end = (err_sym + 1) * v_dim;
+
+               /* walk over all 16 bits of the syndrome */
+               for (i = 1; i < (1U << 16); i <<= 1) {
 
-       /* Determine column to scan */
-       column = syndrome & 0xF;
+                       /* if bit is set in that eigenvector... */
+                       if (v_idx < v_end && vectors[v_idx] & i) {
+                               u16 ev_comp = vectors[v_idx++];
 
-       /* Scan all rows, looking for syndrome, or end of table */
-       for (row = 0; row < NUMBER_ECC_ROWS; row++) {
-               if (ecc_chipkill_syndromes[row][column] == syndrome)
-                       return ecc_chipkill_syndromes[row][0];
+                               /* ... and bit set in the modified syndrome, */
+                               if (s & i) {
+                                       /* remove it. */
+                                       s ^= ev_comp;
+
+                                       if (!s)
+                                               return err_sym;
+                               }
+
+                       } else if (s & i)
+                               /* can't get to zero, move to next symbol */
+                               break;
+               }
        }
 
        debugf0("syndrome(%x) not found\n", syndrome);
        return -1;
 }
 
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+       if (sym_size == 4)
+               switch (err_sym) {
+               case 0x20:
+               case 0x21:
+                       return 0;
+                       break;
+               case 0x22:
+               case 0x23:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 4;
+                       break;
+               }
+       /* x8 symbols */
+       else
+               switch (err_sym) {
+               /* imaginary bits not in a DIMM */
+               case 0x10:
+                       WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+                                         err_sym);
+                       return -1;
+                       break;
+
+               case 0x11:
+                       return 0;
+                       break;
+               case 0x12:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 3;
+                       break;
+               }
+       return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 value = 0;
+       int err_sym = 0;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
+
+       /* F3x180[EccSymbolSize]=1, x8 symbols */
+       if (boot_cpu_data.x86 == 0x10 &&
+           boot_cpu_data.x86_model > 7 &&
+           value & BIT(25)) {
+               err_sym = decode_syndrome(syndrome, x8_vectors,
+                                         ARRAY_SIZE(x8_vectors), 8);
+               return map_err_sym_to_channel(err_sym, 8);
+       } else {
+               err_sym = decode_syndrome(syndrome, x4_vectors,
+                                         ARRAY_SIZE(x4_vectors), 4);
+               return map_err_sym_to_channel(err_sym, 4);
+       }
+}
+
 /*
  * Check for valid error in the NB Status High register. If so, proceed to read
  * NB Status Low, NB Address Low and NB Address High registers and store data
@@ -2117,7 +2083,7 @@ static void amd64_handle_ce(struct mem_ctl_info *mci,
                            struct err_regs *info)
 {
        struct amd64_pvt *pvt = mci->pvt_info;
-       u64 SystemAddress;
+       u64 sys_addr;
 
        /* Ensure that the Error Address is VALID */
        if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
@@ -2127,22 +2093,23 @@ static void amd64_handle_ce(struct mem_ctl_info *mci,
                return;
        }
 
-       SystemAddress = extract_error_address(mci, info);
+       sys_addr = pvt->ops->get_error_address(mci, info);
 
        amd64_mc_printk(mci, KERN_ERR,
-               "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
+               "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
 
-       pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
+       pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
 }
 
 /* Handle any Un-correctable Errors (UEs) */
 static void amd64_handle_ue(struct mem_ctl_info *mci,
                            struct err_regs *info)
 {
+       struct amd64_pvt *pvt = mci->pvt_info;
+       struct mem_ctl_info *log_mci, *src_mci = NULL;
        int csrow;
-       u64 SystemAddress;
+       u64 sys_addr;
        u32 page, offset;
-       struct mem_ctl_info *log_mci, *src_mci = NULL;
 
        log_mci = mci;
 
@@ -2153,31 +2120,31 @@ static void amd64_handle_ue(struct mem_ctl_info *mci,
                return;
        }
 
-       SystemAddress = extract_error_address(mci, info);
+       sys_addr = pvt->ops->get_error_address(mci, info);
 
        /*
         * Find out which node the error address belongs to. This may be
         * different from the node that detected the error.
         */
-       src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+       src_mci = find_mc_by_sys_addr(mci, sys_addr);
        if (!src_mci) {
                amd64_mc_printk(mci, KERN_CRIT,
                        "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
-                       (unsigned long)SystemAddress);
+                       (unsigned long)sys_addr);
                edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
                return;
        }
 
        log_mci = src_mci;
 
-       csrow = sys_addr_to_csrow(log_mci, SystemAddress);
+       csrow = sys_addr_to_csrow(log_mci, sys_addr);
        if (csrow < 0) {
                amd64_mc_printk(mci, KERN_CRIT,
                        "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
-                       (unsigned long)SystemAddress);
+                       (unsigned long)sys_addr);
                edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
        } else {
-               error_address_to_page_and_offset(SystemAddress, &page, &offset);
+               error_address_to_page_and_offset(sys_addr, &page, &offset);
                edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
        }
 }
@@ -2382,7 +2349,7 @@ static void amd64_read_mc_registers(struct amd64_pvt *pvt)
        amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
        amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
 
-       if (!dct_ganging_enabled(pvt)) {
+       if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
                amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
                amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
        }
@@ -2425,7 +2392,7 @@ static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  */
 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
 {
-       u32 dram_map, nr_pages;
+       u32 cs_mode, nr_pages;
 
        /*
         * The math on this doesn't look right on the surface because x/2*4 can
@@ -2434,9 +2401,9 @@ static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
         * number of bits to shift the DBAM register to extract the proper CSROW
         * field.
         */
-       dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+       cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
 
-       nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
+       nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
 
        /*
         * If dual channel then double the memory size of single channel.
@@ -2444,7 +2411,7 @@ static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
         */
        nr_pages <<= (pvt->channel_count - 1);
 
-       debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
+       debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
        debugf0("    nr_pages= %u  channel-count = %d\n",
                nr_pages, pvt->channel_count);
 
@@ -2534,8 +2501,7 @@ static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
 {
        cpumask_var_t mask;
-       struct msr *msrs;
-       int cpu, nbe, idx = 0;
+       int cpu, nbe;
        bool ret = false;
 
        if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
@@ -2546,32 +2512,22 @@ static bool amd64_nb_mce_bank_enabled_on_node(int nid)
 
        get_cpus_on_this_dct_cpumask(mask, nid);
 
-       msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
-       if (!msrs) {
-               amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
-                             __func__);
-               free_cpumask_var(mask);
-                return false;
-       }
-
        rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
 
        for_each_cpu(cpu, mask) {
-               nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+               nbe = reg->l & K8_MSR_MCGCTL_NBE;
 
                debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
-                       cpu, msrs[idx].q,
+                       cpu, reg->q,
                        (nbe ? "enabled" : "disabled"));
 
                if (!nbe)
                        goto out;
-
-               idx++;
        }
        ret = true;
 
 out:
-       kfree(msrs);
        free_cpumask_var(mask);
        return ret;
 }
@@ -2579,8 +2535,7 @@ out:
 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
 {
        cpumask_var_t cmask;
-       struct msr *msrs = NULL;
-       int cpu, idx = 0;
+       int cpu;
 
        if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
                amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
@@ -2590,34 +2545,27 @@ static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
 
        get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
 
-       msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
-       if (!msrs) {
-               amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
-                            __func__);
-               return -ENOMEM;
-       }
-
        rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 
        for_each_cpu(cpu, cmask) {
 
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+
                if (on) {
-                       if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
+                       if (reg->l & K8_MSR_MCGCTL_NBE)
                                pvt->flags.ecc_report = 1;
 
-                       msrs[idx].l |= K8_MSR_MCGCTL_NBE;
+                       reg->l |= K8_MSR_MCGCTL_NBE;
                } else {
                        /*
                         * Turn off ECC reporting only when it was off before
                         */
                        if (!pvt->flags.ecc_report)
-                               msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
+                               reg->l &= ~K8_MSR_MCGCTL_NBE;
                }
-               idx++;
        }
        wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 
-       kfree(msrs);
        free_cpumask_var(cmask);
 
        return 0;
@@ -2710,10 +2658,11 @@ static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  * the memory system completely. A command line option allows to force-enable
  * hardware ECC later in amd64_enable_ecc_error_reporting().
  */
-static const char *ecc_warning =
-       "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
-       " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
-       " Also, use of the override can cause unknown side effects.\n";
+static const char *ecc_msg =
+       "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
+       " Either enable ECC checking or force module loading by setting "
+       "'ecc_enable_override'.\n"
+       " (Note that use of the override may cause unknown side effects.)\n";
 
 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
 {
@@ -2725,7 +2674,7 @@ static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
 
        ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
        if (!ecc_enabled)
-               amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
+               amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
                             "is currently disabled, set F3x%x[22] (%s).\n",
                             K8_NBCFG, pci_name(pvt->misc_f3_ctl));
        else
@@ -2733,18 +2682,17 @@ static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
 
        nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
        if (!nb_mce_en)
-               amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
+               amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
                             "0x%08x[4] on node %d to enable.\n",
                             MSR_IA32_MCG_CTL, pvt->mc_node_id);
 
        if (!ecc_enabled || !nb_mce_en) {
                if (!ecc_enable_override) {
-                       amd64_printk(KERN_WARNING, "%s", ecc_warning);
+                       amd64_printk(KERN_NOTICE, "%s", ecc_msg);
                        return -ENODEV;
                }
-       } else
-               /* CLEAR the override, since BIOS controlled it */
                ecc_enable_override = 0;
+       }
 
        return 0;
 }
@@ -2876,17 +2824,10 @@ static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
 {
        int node_id = pvt->mc_node_id;
        struct mem_ctl_info *mci;
-       int ret, err = 0;
+       int ret = -ENODEV;
 
        amd64_read_mc_registers(pvt);
 
-       ret = -ENODEV;
-       if (pvt->ops->probe_valid_hardware) {
-               err = pvt->ops->probe_valid_hardware(pvt);
-               if (err)
-                       goto err_exit;
-       }
-
        /*
         * We need to determine how many memory channels there are. Then use
         * that information for calculating the size of the dynamic instance
@@ -2988,16 +2929,15 @@ static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
 
        amd64_free_mc_sibling_devices(pvt);
 
-       kfree(pvt);
-       mci->pvt_info = NULL;
-
-       mci_lookup[pvt->mc_node_id] = NULL;
-
        /* unregister from EDAC MCE */
        amd_report_gart_errors(false);
        amd_unregister_ecc_decoder(amd64_decode_bus_error);
 
        /* Free the EDAC CORE resources */
+       mci->pvt_info = NULL;
+       mci_lookup[pvt->mc_node_id] = NULL;
+
+       kfree(pvt);
        edac_mc_free(mci);
 }
 
@@ -3074,23 +3014,29 @@ static void amd64_setup_pci_device(void)
 static int __init amd64_edac_init(void)
 {
        int nb, err = -ENODEV;
+       bool load_ok = false;
 
        edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
 
        opstate_init();
 
        if (cache_k8_northbridges() < 0)
-               return err;
+               goto err_ret;
+
+       msrs = msrs_alloc();
+       if (!msrs)
+               goto err_ret;
 
        err = pci_register_driver(&amd64_pci_driver);
        if (err)
-               return err;
+               goto err_pci;
 
        /*
         * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
         * amd64_pvt structs. These will be used in the 2nd stage init function
         * to finish initialization of the MC instances.
         */
+       err = -ENODEV;
        for (nb = 0; nb < num_k8_northbridges; nb++) {
                if (!pvt_lookup[nb])
                        continue;
@@ -3098,16 +3044,21 @@ static int __init amd64_edac_init(void)
                err = amd64_init_2nd_stage(pvt_lookup[nb]);
                if (err)
                        goto err_2nd_stage;
-       }
 
-       amd64_setup_pci_device();
+               load_ok = true;
+       }
 
-       return 0;
+       if (load_ok) {
+               amd64_setup_pci_device();
+               return 0;
+       }
 
 err_2nd_stage:
-       debugf0("2nd stage failed\n");
        pci_unregister_driver(&amd64_pci_driver);
-
+err_pci:
+       msrs_free(msrs);
+       msrs = NULL;
+err_ret:
        return err;
 }
 
@@ -3117,6 +3068,9 @@ static void __exit amd64_edac_exit(void)
                edac_pci_release_generic_ctl(amd64_ctl_pci);
 
        pci_unregister_driver(&amd64_pci_driver);
+
+       msrs_free(msrs);
+       msrs = NULL;
 }
 
 module_init(amd64_edac_init);