include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / arch / powerpc / mm / hugetlbpage.c
index f867bba..9bb249c 100644 (file)
  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  */
 
-#include <linux/init.h>
-#include <linux/fs.h>
 #include <linux/mm.h>
-#include <linux/hugetlb.h>
-#include <linux/pagemap.h>
-#include <linux/smp_lock.h>
+#include <linux/io.h>
 #include <linux/slab.h>
-#include <linux/err.h>
-#include <linux/sysctl.h>
-#include <asm/mman.h>
+#include <linux/hugetlb.h>
+#include <asm/pgtable.h>
 #include <asm/pgalloc.h>
 #include <asm/tlb.h>
-#include <asm/tlbflush.h>
-#include <asm/mmu_context.h>
-#include <asm/machdep.h>
-#include <asm/cputable.h>
-#include <asm/tlb.h>
 
-#include <linux/sysctl.h>
+#define PAGE_SHIFT_64K 16
+#define PAGE_SHIFT_16M 24
+#define PAGE_SHIFT_16G 34
 
-#define NUM_LOW_AREAS  (0x100000000UL >> SID_SHIFT)
-#define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
+#define MAX_NUMBER_GPAGES      1024
 
-/* Modelled after find_linux_pte() */
-pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
+/* Tracks the 16G pages after the device tree is scanned and before the
+ * huge_boot_pages list is ready.  */
+static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
+static unsigned nr_gpages;
+
+/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
+ * will choke on pointers to hugepte tables, which is handy for
+ * catching screwups early. */
+
+static inline int shift_to_mmu_psize(unsigned int shift)
 {
-       pgd_t *pg;
-       pud_t *pu;
-       pmd_t *pm;
-       pte_t *pt;
+       int psize;
 
-       BUG_ON(! in_hugepage_area(mm->context, addr));
+       for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
+               if (mmu_psize_defs[psize].shift == shift)
+                       return psize;
+       return -1;
+}
 
-       addr &= HPAGE_MASK;
+static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
+{
+       if (mmu_psize_defs[mmu_psize].shift)
+               return mmu_psize_defs[mmu_psize].shift;
+       BUG();
+}
 
-       pg = pgd_offset(mm, addr);
-       if (!pgd_none(*pg)) {
-               pu = pud_offset(pg, addr);
-               if (!pud_none(*pu)) {
-                       pm = pmd_offset(pu, addr);
-#ifdef CONFIG_PPC_64K_PAGES
-                       /* Currently, we use the normal PTE offset within full
-                        * size PTE pages, thus our huge PTEs are scattered in
-                        * the PTE page and we do waste some. We may change
-                        * that in the future, but the current mecanism keeps
-                        * things much simpler
-                        */
-                       if (!pmd_none(*pm)) {
-                               /* Note: pte_offset_* are all equivalent on
-                                * ppc64 as we don't have HIGHMEM
-                                */
-                               pt = pte_offset_kernel(pm, addr);
-                               return pt;
-                       }
-#else /* CONFIG_PPC_64K_PAGES */
-                       /* On 4k pages, we put huge PTEs in the PMD page */
-                       pt = (pte_t *)pm;
-                       return pt;
-#endif /* CONFIG_PPC_64K_PAGES */
-               }
-       }
+#define hugepd_none(hpd)       ((hpd).pd == 0)
 
-       return NULL;
+static inline pte_t *hugepd_page(hugepd_t hpd)
+{
+       BUG_ON(!hugepd_ok(hpd));
+       return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
 }
 
-pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
+static inline unsigned int hugepd_shift(hugepd_t hpd)
 {
-       pgd_t *pg;
-       pud_t *pu;
-       pmd_t *pm;
-       pte_t *pt;
+       return hpd.pd & HUGEPD_SHIFT_MASK;
+}
 
-       BUG_ON(! in_hugepage_area(mm->context, addr));
+static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
+{
+       unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
+       pte_t *dir = hugepd_page(*hpdp);
 
-       addr &= HPAGE_MASK;
+       return dir + idx;
+}
 
-       pg = pgd_offset(mm, addr);
-       pu = pud_alloc(mm, pg, addr);
-
-       if (pu) {
-               pm = pmd_alloc(mm, pu, addr);
-               if (pm) {
-#ifdef CONFIG_PPC_64K_PAGES
-                       /* See comment in huge_pte_offset. Note that if we ever
-                        * want to put the page size in the PMD, we would have
-                        * to open code our own pte_alloc* function in order
-                        * to populate and set the size atomically
-                        */
-                       pt = pte_alloc_map(mm, pm, addr);
-#else /* CONFIG_PPC_64K_PAGES */
-                       pt = (pte_t *)pm;
-#endif /* CONFIG_PPC_64K_PAGES */
-                       return pt;
+pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
+{
+       pgd_t *pg;
+       pud_t *pu;
+       pmd_t *pm;
+       hugepd_t *hpdp = NULL;
+       unsigned pdshift = PGDIR_SHIFT;
+
+       if (shift)
+               *shift = 0;
+
+       pg = pgdir + pgd_index(ea);
+       if (is_hugepd(pg)) {
+               hpdp = (hugepd_t *)pg;
+       } else if (!pgd_none(*pg)) {
+               pdshift = PUD_SHIFT;
+               pu = pud_offset(pg, ea);
+               if (is_hugepd(pu))
+                       hpdp = (hugepd_t *)pu;
+               else if (!pud_none(*pu)) {
+                       pdshift = PMD_SHIFT;
+                       pm = pmd_offset(pu, ea);
+                       if (is_hugepd(pm))
+                               hpdp = (hugepd_t *)pm;
+                       else if (!pmd_none(*pm)) {
+                               return pte_offset_map(pm, ea);
+                       }
                }
        }
 
-       return NULL;
+       if (!hpdp)
+               return NULL;
+
+       if (shift)
+               *shift = hugepd_shift(*hpdp);
+       return hugepte_offset(hpdp, ea, pdshift);
 }
 
-void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
-                    pte_t *ptep, pte_t pte)
+pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 {
-       if (pte_present(*ptep)) {
-               /* We open-code pte_clear because we need to pass the right
-                * argument to hpte_update (huge / !huge)
-                */
-               unsigned long old = pte_update(ptep, ~0UL);
-               if (old & _PAGE_HASHPTE)
-                       hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
-               flush_tlb_pending();
-       }
-       *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
+       return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
 }
 
-pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
-                             pte_t *ptep)
+static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
+                          unsigned long address, unsigned pdshift, unsigned pshift)
 {
-       unsigned long old = pte_update(ptep, ~0UL);
+       pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
+                                      GFP_KERNEL|__GFP_REPEAT);
 
-       if (old & _PAGE_HASHPTE)
-               hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
-       *ptep = __pte(0);
+       BUG_ON(pshift > HUGEPD_SHIFT_MASK);
+       BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 
-       return __pte(old);
-}
+       if (! new)
+               return -ENOMEM;
 
-/*
- * This function checks for proper alignment of input addr and len parameters.
- */
-int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
-{
-       if (len & ~HPAGE_MASK)
-               return -EINVAL;
-       if (addr & ~HPAGE_MASK)
-               return -EINVAL;
-       if (! (within_hugepage_low_range(addr, len)
-              || within_hugepage_high_range(addr, len)) )
-               return -EINVAL;
+       spin_lock(&mm->page_table_lock);
+       if (!hugepd_none(*hpdp))
+               kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
+       else
+               hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
+       spin_unlock(&mm->page_table_lock);
        return 0;
 }
 
-static void flush_low_segments(void *parm)
+pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 {
-       u16 areas = (unsigned long) parm;
-       unsigned long i;
-
-       asm volatile("isync" : : : "memory");
+       pgd_t *pg;
+       pud_t *pu;
+       pmd_t *pm;
+       hugepd_t *hpdp = NULL;
+       unsigned pshift = __ffs(sz);
+       unsigned pdshift = PGDIR_SHIFT;
 
-       BUILD_BUG_ON((sizeof(areas)*8) != NUM_LOW_AREAS);
+       addr &= ~(sz-1);
 
-       for (i = 0; i < NUM_LOW_AREAS; i++) {
-               if (! (areas & (1U << i)))
-                       continue;
-               asm volatile("slbie %0"
-                            : : "r" ((i << SID_SHIFT) | SLBIE_C));
+       pg = pgd_offset(mm, addr);
+       if (pshift >= PUD_SHIFT) {
+               hpdp = (hugepd_t *)pg;
+       } else {
+               pdshift = PUD_SHIFT;
+               pu = pud_alloc(mm, pg, addr);
+               if (pshift >= PMD_SHIFT) {
+                       hpdp = (hugepd_t *)pu;
+               } else {
+                       pdshift = PMD_SHIFT;
+                       pm = pmd_alloc(mm, pu, addr);
+                       hpdp = (hugepd_t *)pm;
+               }
        }
 
-       asm volatile("isync" : : : "memory");
-}
+       if (!hpdp)
+               return NULL;
 
-static void flush_high_segments(void *parm)
-{
-       u16 areas = (unsigned long) parm;
-       unsigned long i, j;
+       BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 
-       asm volatile("isync" : : : "memory");
+       if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
+               return NULL;
 
-       BUILD_BUG_ON((sizeof(areas)*8) != NUM_HIGH_AREAS);
+       return hugepte_offset(hpdp, addr, pdshift);
+}
 
-       for (i = 0; i < NUM_HIGH_AREAS; i++) {
-               if (! (areas & (1U << i)))
-                       continue;
-               for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
-                       asm volatile("slbie %0"
-                                    :: "r" (((i << HTLB_AREA_SHIFT)
-                                            + (j << SID_SHIFT)) | SLBIE_C));
+/* Build list of addresses of gigantic pages.  This function is used in early
+ * boot before the buddy or bootmem allocator is setup.
+ */
+void add_gpage(unsigned long addr, unsigned long page_size,
+       unsigned long number_of_pages)
+{
+       if (!addr)
+               return;
+       while (number_of_pages > 0) {
+               gpage_freearray[nr_gpages] = addr;
+               nr_gpages++;
+               number_of_pages--;
+               addr += page_size;
        }
-
-       asm volatile("isync" : : : "memory");
 }
 
-static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
+/* Moves the gigantic page addresses from the temporary list to the
+ * huge_boot_pages list.
+ */
+int alloc_bootmem_huge_page(struct hstate *hstate)
 {
-       unsigned long start = area << SID_SHIFT;
-       unsigned long end = (area+1) << SID_SHIFT;
-       struct vm_area_struct *vma;
-
-       BUG_ON(area >= NUM_LOW_AREAS);
-
-       /* Check no VMAs are in the region */
-       vma = find_vma(mm, start);
-       if (vma && (vma->vm_start < end))
-               return -EBUSY;
-
-       return 0;
+       struct huge_bootmem_page *m;
+       if (nr_gpages == 0)
+               return 0;
+       m = phys_to_virt(gpage_freearray[--nr_gpages]);
+       gpage_freearray[nr_gpages] = 0;
+       list_add(&m->list, &huge_boot_pages);
+       m->hstate = hstate;
+       return 1;
 }
 
-static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
+int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 {
-       unsigned long start = area << HTLB_AREA_SHIFT;
-       unsigned long end = (area+1) << HTLB_AREA_SHIFT;
-       struct vm_area_struct *vma;
-
-       BUG_ON(area >= NUM_HIGH_AREAS);
-
-       /* Hack, so that each addresses is controlled by exactly one
-        * of the high or low area bitmaps, the first high area starts
-        * at 4GB, not 0 */
-       if (start == 0)
-               start = 0x100000000UL;
-
-       /* Check no VMAs are in the region */
-       vma = find_vma(mm, start);
-       if (vma && (vma->vm_start < end))
-               return -EBUSY;
-
        return 0;
 }
 
-static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
+static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
+                             unsigned long start, unsigned long end,
+                             unsigned long floor, unsigned long ceiling)
 {
-       unsigned long i;
-
-       BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
-       BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
-
-       newareas &= ~(mm->context.low_htlb_areas);
-       if (! newareas)
-               return 0; /* The segments we want are already open */
-
-       for (i = 0; i < NUM_LOW_AREAS; i++)
-               if ((1 << i) & newareas)
-                       if (prepare_low_area_for_htlb(mm, i) != 0)
-                               return -EBUSY;
-
-       mm->context.low_htlb_areas |= newareas;
-
-       /* update the paca copy of the context struct */
-       get_paca()->context = mm->context;
-
-       /* the context change must make it to memory before the flush,
-        * so that further SLB misses do the right thing. */
-       mb();
-       on_each_cpu(flush_low_segments, (void *)(unsigned long)newareas, 0, 1);
+       pte_t *hugepte = hugepd_page(*hpdp);
+       unsigned shift = hugepd_shift(*hpdp);
+       unsigned long pdmask = ~((1UL << pdshift) - 1);
+
+       start &= pdmask;
+       if (start < floor)
+               return;
+       if (ceiling) {
+               ceiling &= pdmask;
+               if (! ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               return;
 
-       return 0;
+       hpdp->pd = 0;
+       tlb->need_flush = 1;
+       pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 }
 
-static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
+static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
+                                  unsigned long addr, unsigned long end,
+                                  unsigned long floor, unsigned long ceiling)
 {
-       unsigned long i;
+       pmd_t *pmd;
+       unsigned long next;
+       unsigned long start;
 
-       BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
-       BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
-                    != NUM_HIGH_AREAS);
-
-       newareas &= ~(mm->context.high_htlb_areas);
-       if (! newareas)
-               return 0; /* The areas we want are already open */
-
-       for (i = 0; i < NUM_HIGH_AREAS; i++)
-               if ((1 << i) & newareas)
-                       if (prepare_high_area_for_htlb(mm, i) != 0)
-                               return -EBUSY;
+       start = addr;
+       pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               if (pmd_none(*pmd))
+                       continue;
+               free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
+                                 addr, next, floor, ceiling);
+       } while (pmd++, addr = next, addr != end);
+
+       start &= PUD_MASK;
+       if (start < floor)
+               return;
+       if (ceiling) {
+               ceiling &= PUD_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               return;
 
-       mm->context.high_htlb_areas |= newareas;
+       pmd = pmd_offset(pud, start);
+       pud_clear(pud);
+       pmd_free_tlb(tlb, pmd, start);
+}
 
-       /* update the paca copy of the context struct */
-       get_paca()->context = mm->context;
+static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
+                                  unsigned long addr, unsigned long end,
+                                  unsigned long floor, unsigned long ceiling)
+{
+       pud_t *pud;
+       unsigned long next;
+       unsigned long start;
 
-       /* the context change must make it to memory before the flush,
-        * so that further SLB misses do the right thing. */
-       mb();
-       on_each_cpu(flush_high_segments, (void *)(unsigned long)newareas, 0, 1);
+       start = addr;
+       pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               if (!is_hugepd(pud)) {
+                       if (pud_none_or_clear_bad(pud))
+                               continue;
+                       hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
+                                              ceiling);
+               } else {
+                       free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
+                                         addr, next, floor, ceiling);
+               }
+       } while (pud++, addr = next, addr != end);
+
+       start &= PGDIR_MASK;
+       if (start < floor)
+               return;
+       if (ceiling) {
+               ceiling &= PGDIR_MASK;
+               if (!ceiling)
+                       return;
+       }
+       if (end - 1 > ceiling - 1)
+               return;
 
-       return 0;
+       pud = pud_offset(pgd, start);
+       pgd_clear(pgd);
+       pud_free_tlb(tlb, pud, start);
 }
 
-int prepare_hugepage_range(unsigned long addr, unsigned long len)
+/*
+ * This function frees user-level page tables of a process.
+ *
+ * Must be called with pagetable lock held.
+ */
+void hugetlb_free_pgd_range(struct mmu_gather *tlb,
+                           unsigned long addr, unsigned long end,
+                           unsigned long floor, unsigned long ceiling)
 {
-       int err = 0;
+       pgd_t *pgd;
+       unsigned long next;
 
-       if ( (addr+len) < addr )
-               return -EINVAL;
-
-       if (addr < 0x100000000UL)
-               err = open_low_hpage_areas(current->mm,
-                                         LOW_ESID_MASK(addr, len));
-       if ((addr + len) >= 0x100000000UL)
-               err = open_high_hpage_areas(current->mm,
-                                           HTLB_AREA_MASK(addr, len));
-       if (err) {
-               printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
-                      " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
-                      addr, len,
-                      LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
-               return err;
-       }
+       /*
+        * Because there are a number of different possible pagetable
+        * layouts for hugepage ranges, we limit knowledge of how
+        * things should be laid out to the allocation path
+        * (huge_pte_alloc(), above).  Everything else works out the
+        * structure as it goes from information in the hugepd
+        * pointers.  That means that we can't here use the
+        * optimization used in the normal page free_pgd_range(), of
+        * checking whether we're actually covering a large enough
+        * range to have to do anything at the top level of the walk
+        * instead of at the bottom.
+        *
+        * To make sense of this, you should probably go read the big
+        * block comment at the top of the normal free_pgd_range(),
+        * too.
+        */
 
-       return 0;
+       pgd = pgd_offset(tlb->mm, addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (!is_hugepd(pgd)) {
+                       if (pgd_none_or_clear_bad(pgd))
+                               continue;
+                       hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
+               } else {
+                       free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
+                                         addr, next, floor, ceiling);
+               }
+       } while (pgd++, addr = next, addr != end);
 }
 
 struct page *
@@ -314,14 +350,19 @@ follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 {
        pte_t *ptep;
        struct page *page;
+       unsigned shift;
+       unsigned long mask;
+
+       ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 
-       if (! in_hugepage_area(mm->context, address))
+       /* Verify it is a huge page else bail. */
+       if (!ptep || !shift)
                return ERR_PTR(-EINVAL);
 
-       ptep = huge_pte_offset(mm, address);
+       mask = (1UL << shift) - 1;
        page = pte_page(*ptep);
        if (page)
-               page += (address % HPAGE_SIZE) / PAGE_SIZE;
+               page += (address & mask) / PAGE_SIZE;
 
        return page;
 }
@@ -331,6 +372,11 @@ int pmd_huge(pmd_t pmd)
        return 0;
 }
 
+int pud_huge(pud_t pud)
+{
+       return 0;
+}
+
 struct page *
 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
                pmd_t *pmd, int write)
@@ -339,427 +385,197 @@ follow_huge_pmd(struct mm_struct *mm, unsigned long address,
        return NULL;
 }
 
-/* Because we have an exclusive hugepage region which lies within the
- * normal user address space, we have to take special measures to make
- * non-huge mmap()s evade the hugepage reserved regions. */
-unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
-                                    unsigned long len, unsigned long pgoff,
-                                    unsigned long flags)
+static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
+                      unsigned long end, int write, struct page **pages, int *nr)
 {
-       struct mm_struct *mm = current->mm;
-       struct vm_area_struct *vma;
-       unsigned long start_addr;
+       unsigned long mask;
+       unsigned long pte_end;
+       struct page *head, *page;
+       pte_t pte;
+       int refs;
 
-       if (len > TASK_SIZE)
-               return -ENOMEM;
+       pte_end = (addr + sz) & ~(sz-1);
+       if (pte_end < end)
+               end = pte_end;
 
-       if (addr) {
-               addr = PAGE_ALIGN(addr);
-               vma = find_vma(mm, addr);
-               if (((TASK_SIZE - len) >= addr)
-                   && (!vma || (addr+len) <= vma->vm_start)
-                   && !is_hugepage_only_range(mm, addr,len))
-                       return addr;
-       }
-       if (len > mm->cached_hole_size) {
-               start_addr = addr = mm->free_area_cache;
-       } else {
-               start_addr = addr = TASK_UNMAPPED_BASE;
-               mm->cached_hole_size = 0;
-       }
+       pte = *ptep;
+       mask = _PAGE_PRESENT | _PAGE_USER;
+       if (write)
+               mask |= _PAGE_RW;
 
-full_search:
-       vma = find_vma(mm, addr);
-       while (TASK_SIZE - len >= addr) {
-               BUG_ON(vma && (addr >= vma->vm_end));
+       if ((pte_val(pte) & mask) != mask)
+               return 0;
 
-               if (touches_hugepage_low_range(mm, addr, len)) {
-                       addr = ALIGN(addr+1, 1<<SID_SHIFT);
-                       vma = find_vma(mm, addr);
-                       continue;
-               }
-               if (touches_hugepage_high_range(mm, addr, len)) {
-                       addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
-                       vma = find_vma(mm, addr);
-                       continue;
-               }
-               if (!vma || addr + len <= vma->vm_start) {
-                       /*
-                        * Remember the place where we stopped the search:
-                        */
-                       mm->free_area_cache = addr + len;
-                       return addr;
-               }
-               if (addr + mm->cached_hole_size < vma->vm_start)
-                       mm->cached_hole_size = vma->vm_start - addr;
-               addr = vma->vm_end;
-               vma = vma->vm_next;
+       /* hugepages are never "special" */
+       VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
+
+       refs = 0;
+       head = pte_page(pte);
+
+       page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
+       do {
+               VM_BUG_ON(compound_head(page) != head);
+               pages[*nr] = page;
+               (*nr)++;
+               page++;
+               refs++;
+       } while (addr += PAGE_SIZE, addr != end);
+
+       if (!page_cache_add_speculative(head, refs)) {
+               *nr -= refs;
+               return 0;
        }
 
-       /* Make sure we didn't miss any holes */
-       if (start_addr != TASK_UNMAPPED_BASE) {
-               start_addr = addr = TASK_UNMAPPED_BASE;
-               mm->cached_hole_size = 0;
-               goto full_search;
+       if (unlikely(pte_val(pte) != pte_val(*ptep))) {
+               /* Could be optimized better */
+               while (*nr) {
+                       put_page(page);
+                       (*nr)--;
+               }
        }
-       return -ENOMEM;
+
+       return 1;
 }
 
-/*
- * This mmap-allocator allocates new areas top-down from below the
- * stack's low limit (the base):
- *
- * Because we have an exclusive hugepage region which lies within the
- * normal user address space, we have to take special measures to make
- * non-huge mmap()s evade the hugepage reserved regions.
- */
-unsigned long
-arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
-                         const unsigned long len, const unsigned long pgoff,
-                         const unsigned long flags)
+static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
+                                     unsigned long sz)
 {
-       struct vm_area_struct *vma, *prev_vma;
-       struct mm_struct *mm = current->mm;
-       unsigned long base = mm->mmap_base, addr = addr0;
-       unsigned long largest_hole = mm->cached_hole_size;
-       int first_time = 1;
-
-       /* requested length too big for entire address space */
-       if (len > TASK_SIZE)
-               return -ENOMEM;
-
-       /* dont allow allocations above current base */
-       if (mm->free_area_cache > base)
-               mm->free_area_cache = base;
-
-       /* requesting a specific address */
-       if (addr) {
-               addr = PAGE_ALIGN(addr);
-               vma = find_vma(mm, addr);
-               if (TASK_SIZE - len >= addr &&
-                               (!vma || addr + len <= vma->vm_start)
-                               && !is_hugepage_only_range(mm, addr,len))
-                       return addr;
-       }
+       unsigned long __boundary = (addr + sz) & ~(sz-1);
+       return (__boundary - 1 < end - 1) ? __boundary : end;
+}
 
-       if (len <= largest_hole) {
-               largest_hole = 0;
-               mm->free_area_cache = base;
-       }
-try_again:
-       /* make sure it can fit in the remaining address space */
-       if (mm->free_area_cache < len)
-               goto fail;
+int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
+              unsigned long addr, unsigned long end,
+              int write, struct page **pages, int *nr)
+{
+       pte_t *ptep;
+       unsigned long sz = 1UL << hugepd_shift(*hugepd);
+       unsigned long next;
 
-       /* either no address requested or cant fit in requested address hole */
-       addr = (mm->free_area_cache - len) & PAGE_MASK;
+       ptep = hugepte_offset(hugepd, addr, pdshift);
        do {
-hugepage_recheck:
-               if (touches_hugepage_low_range(mm, addr, len)) {
-                       addr = (addr & ((~0) << SID_SHIFT)) - len;
-                       goto hugepage_recheck;
-               } else if (touches_hugepage_high_range(mm, addr, len)) {
-                       addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
-                       goto hugepage_recheck;
-               }
-
-               /*
-                * Lookup failure means no vma is above this address,
-                * i.e. return with success:
-                */
-               if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
-                       return addr;
-
-               /*
-                * new region fits between prev_vma->vm_end and
-                * vma->vm_start, use it:
-                */
-               if (addr+len <= vma->vm_start &&
-                         (!prev_vma || (addr >= prev_vma->vm_end))) {
-                       /* remember the address as a hint for next time */
-                       mm->cached_hole_size = largest_hole;
-                       return (mm->free_area_cache = addr);
-               } else {
-                       /* pull free_area_cache down to the first hole */
-                       if (mm->free_area_cache == vma->vm_end) {
-                               mm->free_area_cache = vma->vm_start;
-                               mm->cached_hole_size = largest_hole;
-                       }
-               }
-
-               /* remember the largest hole we saw so far */
-               if (addr + largest_hole < vma->vm_start)
-                       largest_hole = vma->vm_start - addr;
+               next = hugepte_addr_end(addr, end, sz);
+               if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
+                       return 0;
+       } while (ptep++, addr = next, addr != end);
 
-               /* try just below the current vma->vm_start */
-               addr = vma->vm_start-len;
-       } while (len <= vma->vm_start);
+       return 1;
+}
 
-fail:
-       /*
-        * if hint left us with no space for the requested
-        * mapping then try again:
-        */
-       if (first_time) {
-               mm->free_area_cache = base;
-               largest_hole = 0;
-               first_time = 0;
-               goto try_again;
-       }
-       /*
-        * A failed mmap() very likely causes application failure,
-        * so fall back to the bottom-up function here. This scenario
-        * can happen with large stack limits and large mmap()
-        * allocations.
-        */
-       mm->free_area_cache = TASK_UNMAPPED_BASE;
-       mm->cached_hole_size = ~0UL;
-       addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
-       /*
-        * Restore the topdown base:
-        */
-       mm->free_area_cache = base;
-       mm->cached_hole_size = ~0UL;
+unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+                                       unsigned long len, unsigned long pgoff,
+                                       unsigned long flags)
+{
+       struct hstate *hstate = hstate_file(file);
+       int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 
-       return addr;
+       return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
 }
 
-static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
+unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 {
-       unsigned long addr = 0;
-       struct vm_area_struct *vma;
+       unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 
-       vma = find_vma(current->mm, addr);
-       while (addr + len <= 0x100000000UL) {
-               BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
+       return 1UL << mmu_psize_to_shift(psize);
+}
 
-               if (! __within_hugepage_low_range(addr, len, segmask)) {
-                       addr = ALIGN(addr+1, 1<<SID_SHIFT);
-                       vma = find_vma(current->mm, addr);
-                       continue;
-               }
+static int __init add_huge_page_size(unsigned long long size)
+{
+       int shift = __ffs(size);
+       int mmu_psize;
 
-               if (!vma || (addr + len) <= vma->vm_start)
-                       return addr;
-               addr = ALIGN(vma->vm_end, HPAGE_SIZE);
-               /* Depending on segmask this might not be a confirmed
-                * hugepage region, so the ALIGN could have skipped
-                * some VMAs */
-               vma = find_vma(current->mm, addr);
-       }
+       /* Check that it is a page size supported by the hardware and
+        * that it fits within pagetable and slice limits. */
+       if (!is_power_of_2(size)
+           || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
+               return -EINVAL;
 
-       return -ENOMEM;
-}
+       if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
+               return -EINVAL;
 
-static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
-{
-       unsigned long addr = 0x100000000UL;
-       struct vm_area_struct *vma;
+#ifdef CONFIG_SPU_FS_64K_LS
+       /* Disable support for 64K huge pages when 64K SPU local store
+        * support is enabled as the current implementation conflicts.
+        */
+       if (shift == PAGE_SHIFT_64K)
+               return -EINVAL;
+#endif /* CONFIG_SPU_FS_64K_LS */
 
-       vma = find_vma(current->mm, addr);
-       while (addr + len <= TASK_SIZE_USER64) {
-               BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
+       BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 
-               if (! __within_hugepage_high_range(addr, len, areamask)) {
-                       addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
-                       vma = find_vma(current->mm, addr);
-                       continue;
-               }
+       /* Return if huge page size has already been setup */
+       if (size_to_hstate(size))
+               return 0;
 
-               if (!vma || (addr + len) <= vma->vm_start)
-                       return addr;
-               addr = ALIGN(vma->vm_end, HPAGE_SIZE);
-               /* Depending on segmask this might not be a confirmed
-                * hugepage region, so the ALIGN could have skipped
-                * some VMAs */
-               vma = find_vma(current->mm, addr);
-       }
+       hugetlb_add_hstate(shift - PAGE_SHIFT);
 
-       return -ENOMEM;
+       return 0;
 }
 
-unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
-                                       unsigned long len, unsigned long pgoff,
-                                       unsigned long flags)
+static int __init hugepage_setup_sz(char *str)
 {
-       int lastshift;
-       u16 areamask, curareas;
+       unsigned long long size;
 
-       if (HPAGE_SHIFT == 0)
-               return -EINVAL;
-       if (len & ~HPAGE_MASK)
-               return -EINVAL;
+       size = memparse(str, &str);
 
-       if (!cpu_has_feature(CPU_FTR_16M_PAGE))
-               return -EINVAL;
+       if (add_huge_page_size(size) != 0)
+               printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 
-       if (test_thread_flag(TIF_32BIT)) {
-               curareas = current->mm->context.low_htlb_areas;
-
-               /* First see if we can do the mapping in the existing
-                * low areas */
-               addr = htlb_get_low_area(len, curareas);
-               if (addr != -ENOMEM)
-                       return addr;
-
-               lastshift = 0;
-               for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
-                    ! lastshift; areamask >>=1) {
-                       if (areamask & 1)
-                               lastshift = 1;
-
-                       addr = htlb_get_low_area(len, curareas | areamask);
-                       if ((addr != -ENOMEM)
-                           && open_low_hpage_areas(current->mm, areamask) == 0)
-                               return addr;
-               }
-       } else {
-               curareas = current->mm->context.high_htlb_areas;
-
-               /* First see if we can do the mapping in the existing
-                * high areas */
-               addr = htlb_get_high_area(len, curareas);
-               if (addr != -ENOMEM)
-                       return addr;
-
-               lastshift = 0;
-               for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
-                    ! lastshift; areamask >>=1) {
-                       if (areamask & 1)
-                               lastshift = 1;
-
-                       addr = htlb_get_high_area(len, curareas | areamask);
-                       if ((addr != -ENOMEM)
-                           && open_high_hpage_areas(current->mm, areamask) == 0)
-                               return addr;
-               }
-       }
-       printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
-              " enough areas\n");
-       return -ENOMEM;
+       return 1;
 }
+__setup("hugepagesz=", hugepage_setup_sz);
 
-int hash_huge_page(struct mm_struct *mm, unsigned long access,
-                  unsigned long ea, unsigned long vsid, int local)
+static int __init hugetlbpage_init(void)
 {
-       pte_t *ptep;
-       unsigned long old_pte, new_pte;
-       unsigned long va, rflags, pa;
-       long slot;
-       int err = 1;
+       int psize;
 
-       ptep = huge_pte_offset(mm, ea);
+       if (!cpu_has_feature(CPU_FTR_16M_PAGE))
+               return -ENODEV;
 
-       /* Search the Linux page table for a match with va */
-       va = (vsid << 28) | (ea & 0x0fffffff);
+       for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
+               unsigned shift;
+               unsigned pdshift;
 
-       /*
-        * If no pte found or not present, send the problem up to
-        * do_page_fault
-        */
-       if (unlikely(!ptep || pte_none(*ptep)))
-               goto out;
+               if (!mmu_psize_defs[psize].shift)
+                       continue;
 
-       /* 
-        * Check the user's access rights to the page.  If access should be
-        * prevented then send the problem up to do_page_fault.
-        */
-       if (unlikely(access & ~pte_val(*ptep)))
-               goto out;
-       /*
-        * At this point, we have a pte (old_pte) which can be used to build
-        * or update an HPTE. There are 2 cases:
-        *
-        * 1. There is a valid (present) pte with no associated HPTE (this is 
-        *      the most common case)
-        * 2. There is a valid (present) pte with an associated HPTE. The
-        *      current values of the pp bits in the HPTE prevent access
-        *      because we are doing software DIRTY bit management and the
-        *      page is currently not DIRTY. 
-        */
+               shift = mmu_psize_to_shift(psize);
 
+               if (add_huge_page_size(1ULL << shift) < 0)
+                       continue;
 
-       do {
-               old_pte = pte_val(*ptep);
-               if (old_pte & _PAGE_BUSY)
-                       goto out;
-               new_pte = old_pte | _PAGE_BUSY |
-                       _PAGE_ACCESSED | _PAGE_HASHPTE;
-       } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
-                                        old_pte, new_pte));
-
-       rflags = 0x2 | (!(new_pte & _PAGE_RW));
-       /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
-       rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
-
-       /* Check if pte already has an hpte (case 2) */
-       if (unlikely(old_pte & _PAGE_HASHPTE)) {
-               /* There MIGHT be an HPTE for this pte */
-               unsigned long hash, slot;
-
-               hash = hpt_hash(va, HPAGE_SHIFT);
-               if (old_pte & _PAGE_F_SECOND)
-                       hash = ~hash;
-               slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
-               slot += (old_pte & _PAGE_F_GIX) >> 12;
-
-               if (ppc_md.hpte_updatepp(slot, rflags, va, 1, local) == -1)
-                       old_pte &= ~_PAGE_HPTEFLAGS;
+               if (shift < PMD_SHIFT)
+                       pdshift = PMD_SHIFT;
+               else if (shift < PUD_SHIFT)
+                       pdshift = PUD_SHIFT;
+               else
+                       pdshift = PGDIR_SHIFT;
+
+               pgtable_cache_add(pdshift - shift, NULL);
+               if (!PGT_CACHE(pdshift - shift))
+                       panic("hugetlbpage_init(): could not create "
+                             "pgtable cache for %d bit pagesize\n", shift);
        }
 
-       if (likely(!(old_pte & _PAGE_HASHPTE))) {
-               unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
-               unsigned long hpte_group;
-
-               pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
-
-repeat:
-               hpte_group = ((hash & htab_hash_mask) *
-                             HPTES_PER_GROUP) & ~0x7UL;
-
-               /* clear HPTE slot informations in new PTE */
-               new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
-
-               /* Add in WIMG bits */
-               /* XXX We should store these in the pte */
-               /* --BenH: I think they are ... */
-               rflags |= _PAGE_COHERENT;
-
-               /* Insert into the hash table, primary slot */
-               slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
-                                         mmu_huge_psize);
-
-               /* Primary is full, try the secondary */
-               if (unlikely(slot == -1)) {
-                       new_pte |= _PAGE_F_SECOND;
-                       hpte_group = ((~hash & htab_hash_mask) *
-                                     HPTES_PER_GROUP) & ~0x7UL; 
-                       slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
-                                                 HPTE_V_SECONDARY,
-                                                 mmu_huge_psize);
-                       if (slot == -1) {
-                               if (mftb() & 0x1)
-                                       hpte_group = ((hash & htab_hash_mask) *
-                                                     HPTES_PER_GROUP)&~0x7UL;
-
-                               ppc_md.hpte_remove(hpte_group);
-                               goto repeat;
-                        }
-               }
+       /* Set default large page size. Currently, we pick 16M or 1M
+        * depending on what is available
+        */
+       if (mmu_psize_defs[MMU_PAGE_16M].shift)
+               HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
+       else if (mmu_psize_defs[MMU_PAGE_1M].shift)
+               HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 
-               if (unlikely(slot == -2))
-                       panic("hash_huge_page: pte_insert failed\n");
+       return 0;
+}
 
-               new_pte |= (slot << 12) & _PAGE_F_GIX;
-       }
+module_init(hugetlbpage_init);
 
-       /*
-        * No need to use ldarx/stdcx here
-        */
-       *ptep = __pte(new_pte & ~_PAGE_BUSY);
+void flush_dcache_icache_hugepage(struct page *page)
+{
+       int i;
 
-       err = 0;
+       BUG_ON(!PageCompound(page));
 
- out:
-       return err;
+       for (i = 0; i < (1UL << compound_order(page)); i++)
+               __flush_dcache_icache(page_address(page+i));
 }