on_each_cpu(): kill unused 'retry' parameter
[safe/jmp/linux-2.6] / arch / powerpc / kernel / time.c
index 9f264c2..f1a38a6 100644 (file)
@@ -32,7 +32,6 @@
  *      2 of the License, or (at your option) any later version.
  */
 
-#include <linux/config.h>
 #include <linux/errno.h>
 #include <linux/module.h>
 #include <linux/sched.h>
@@ -50,6 +49,9 @@
 #include <linux/security.h>
 #include <linux/percpu.h>
 #include <linux/rtc.h>
+#include <linux/jiffies.h>
+#include <linux/posix-timers.h>
+#include <linux/irq.h>
 
 #include <asm/io.h>
 #include <asm/processor.h>
 #include <asm/prom.h>
 #include <asm/irq.h>
 #include <asm/div64.h>
-#ifdef CONFIG_PPC64
-#include <asm/systemcfg.h>
+#include <asm/smp.h>
+#include <asm/vdso_datapage.h>
 #include <asm/firmware.h>
-#endif
+#include <asm/cputime.h>
 #ifdef CONFIG_PPC_ISERIES
-#include <asm/iSeries/ItLpQueue.h>
-#include <asm/iSeries/HvCallXm.h>
+#include <asm/iseries/it_lp_queue.h>
+#include <asm/iseries/hv_call_xm.h>
 #endif
 
-u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
+/* powerpc clocksource/clockevent code */
+
+#include <linux/clockchips.h>
+#include <linux/clocksource.h>
+
+static cycle_t rtc_read(void);
+static struct clocksource clocksource_rtc = {
+       .name         = "rtc",
+       .rating       = 400,
+       .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
+       .mask         = CLOCKSOURCE_MASK(64),
+       .shift        = 22,
+       .mult         = 0,      /* To be filled in */
+       .read         = rtc_read,
+};
+
+static cycle_t timebase_read(void);
+static struct clocksource clocksource_timebase = {
+       .name         = "timebase",
+       .rating       = 400,
+       .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
+       .mask         = CLOCKSOURCE_MASK(64),
+       .shift        = 22,
+       .mult         = 0,      /* To be filled in */
+       .read         = timebase_read,
+};
 
-EXPORT_SYMBOL(jiffies_64);
+#define DECREMENTER_MAX        0x7fffffff
+
+static int decrementer_set_next_event(unsigned long evt,
+                                     struct clock_event_device *dev);
+static void decrementer_set_mode(enum clock_event_mode mode,
+                                struct clock_event_device *dev);
+
+static struct clock_event_device decrementer_clockevent = {
+       .name           = "decrementer",
+       .rating         = 200,
+       .shift          = 16,
+       .mult           = 0,    /* To be filled in */
+       .irq            = 0,
+       .set_next_event = decrementer_set_next_event,
+       .set_mode       = decrementer_set_mode,
+       .features       = CLOCK_EVT_FEAT_ONESHOT,
+};
+
+struct decrementer_clock {
+       struct clock_event_device event;
+       u64 next_tb;
+};
+
+static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
 
-/* keep track of when we need to update the rtc */
-time_t last_rtc_update;
-extern int piranha_simulator;
 #ifdef CONFIG_PPC_ISERIES
-unsigned long iSeries_recal_titan = 0;
-unsigned long iSeries_recal_tb = 0; 
-static unsigned long first_settimeofday = 1;
-#endif
+static unsigned long __initdata iSeries_recal_titan;
+static signed long __initdata iSeries_recal_tb;
 
-/* The decrementer counts down by 128 every 128ns on a 601. */
-#define DECREMENTER_COUNT_601  (1000000000 / HZ)
+/* Forward declaration is only needed for iSereis compiles */
+void __init clocksource_init(void);
+#endif
 
 #define XSEC_PER_SEC (1024*1024)
 
@@ -99,149 +145,276 @@ unsigned long tb_ticks_per_jiffy;
 unsigned long tb_ticks_per_usec = 100; /* sane default */
 EXPORT_SYMBOL(tb_ticks_per_usec);
 unsigned long tb_ticks_per_sec;
+EXPORT_SYMBOL(tb_ticks_per_sec);       /* for cputime_t conversions */
 u64 tb_to_xs;
 unsigned tb_to_us;
-unsigned long processor_freq;
+
+#define TICKLEN_SCALE  NTP_SCALE_SHIFT
+u64 last_tick_len;     /* units are ns / 2^TICKLEN_SCALE */
+u64 ticklen_to_xs;     /* 0.64 fraction */
+
+/* If last_tick_len corresponds to about 1/HZ seconds, then
+   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
+#define TICKLEN_SHIFT  (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
+
 DEFINE_SPINLOCK(rtc_lock);
 EXPORT_SYMBOL_GPL(rtc_lock);
 
-u64 tb_to_ns_scale;
-unsigned tb_to_ns_shift;
+static u64 tb_to_ns_scale __read_mostly;
+static unsigned tb_to_ns_shift __read_mostly;
+static unsigned long boot_tb __read_mostly;
 
 struct gettimeofday_struct do_gtod;
 
-extern unsigned long wall_jiffies;
-
 extern struct timezone sys_tz;
 static long timezone_offset;
 
-void ppc_adjtimex(void);
-
-static unsigned adjusting_time = 0;
-
 unsigned long ppc_proc_freq;
+EXPORT_SYMBOL(ppc_proc_freq);
 unsigned long ppc_tb_freq;
 
-#ifdef CONFIG_PPC32    /* XXX for now */
-#define boot_cpuid     0
-#endif
-
-u64 tb_last_jiffy __cacheline_aligned_in_smp;
-unsigned long tb_last_stamp;
+static u64 tb_last_jiffy __cacheline_aligned_in_smp;
+static DEFINE_PER_CPU(u64, last_jiffy);
 
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 /*
- * Note that on ppc32 this only stores the bottom 32 bits of
- * the timebase value, but that's enough to tell when a jiffy
- * has passed.
+ * Factors for converting from cputime_t (timebase ticks) to
+ * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
+ * These are all stored as 0.64 fixed-point binary fractions.
  */
-DEFINE_PER_CPU(unsigned long, last_jiffy);
-
-static __inline__ void timer_check_rtc(void)
-{
-        /*
-         * update the rtc when needed, this should be performed on the
-         * right fraction of a second. Half or full second ?
-         * Full second works on mk48t59 clocks, others need testing.
-         * Note that this update is basically only used through 
-         * the adjtimex system calls. Setting the HW clock in
-         * any other way is a /dev/rtc and userland business.
-         * This is still wrong by -0.5/+1.5 jiffies because of the
-         * timer interrupt resolution and possible delay, but here we 
-         * hit a quantization limit which can only be solved by higher
-         * resolution timers and decoupling time management from timer
-         * interrupts. This is also wrong on the clocks
-         * which require being written at the half second boundary.
-         * We should have an rtc call that only sets the minutes and
-         * seconds like on Intel to avoid problems with non UTC clocks.
-         */
-        if (ppc_md.set_rtc_time && ntp_synced() &&
-           xtime.tv_sec - last_rtc_update >= 659 &&
-           abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
-           jiffies - wall_jiffies == 1) {
-               struct rtc_time tm;
-               to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
-               tm.tm_year -= 1900;
-               tm.tm_mon -= 1;
-               if (ppc_md.set_rtc_time(&tm) == 0)
-                       last_rtc_update = xtime.tv_sec + 1;
-               else
-                       /* Try again one minute later */
-                       last_rtc_update += 60;
-        }
+u64 __cputime_jiffies_factor;
+EXPORT_SYMBOL(__cputime_jiffies_factor);
+u64 __cputime_msec_factor;
+EXPORT_SYMBOL(__cputime_msec_factor);
+u64 __cputime_sec_factor;
+EXPORT_SYMBOL(__cputime_sec_factor);
+u64 __cputime_clockt_factor;
+EXPORT_SYMBOL(__cputime_clockt_factor);
+DEFINE_PER_CPU(unsigned long, cputime_last_delta);
+DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
+
+static void calc_cputime_factors(void)
+{
+       struct div_result res;
+
+       div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
+       __cputime_jiffies_factor = res.result_low;
+       div128_by_32(1000, 0, tb_ticks_per_sec, &res);
+       __cputime_msec_factor = res.result_low;
+       div128_by_32(1, 0, tb_ticks_per_sec, &res);
+       __cputime_sec_factor = res.result_low;
+       div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
+       __cputime_clockt_factor = res.result_low;
 }
 
 /*
- * This version of gettimeofday has microsecond resolution.
+ * Read the PURR on systems that have it, otherwise the timebase.
  */
-static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
+static u64 read_purr(void)
 {
-       unsigned long sec, usec;
-       u64 tb_ticks, xsec;
-       struct gettimeofday_vars *temp_varp;
-       u64 temp_tb_to_xs, temp_stamp_xsec;
+       if (cpu_has_feature(CPU_FTR_PURR))
+               return mfspr(SPRN_PURR);
+       return mftb();
+}
 
+/*
+ * Read the SPURR on systems that have it, otherwise the purr
+ */
+static u64 read_spurr(u64 purr)
+{
        /*
-        * These calculations are faster (gets rid of divides)
-        * if done in units of 1/2^20 rather than microseconds.
-        * The conversion to microseconds at the end is done
-        * without a divide (and in fact, without a multiply)
+        * cpus without PURR won't have a SPURR
+        * We already know the former when we use this, so tell gcc
         */
-       temp_varp = do_gtod.varp;
-       tb_ticks = tb_val - temp_varp->tb_orig_stamp;
-       temp_tb_to_xs = temp_varp->tb_to_xs;
-       temp_stamp_xsec = temp_varp->stamp_xsec;
-       xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
-       sec = xsec / XSEC_PER_SEC;
-       usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
-       usec = SCALE_XSEC(usec, 1000000);
+       if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
+               return mfspr(SPRN_SPURR);
+       return purr;
+}
+
+/*
+ * Account time for a transition between system, hard irq
+ * or soft irq state.
+ */
+void account_system_vtime(struct task_struct *tsk)
+{
+       u64 now, nowscaled, delta, deltascaled, sys_time;
+       unsigned long flags;
 
-       tv->tv_sec = sec;
-       tv->tv_usec = usec;
+       local_irq_save(flags);
+       now = read_purr();
+       nowscaled = read_spurr(now);
+       delta = now - get_paca()->startpurr;
+       deltascaled = nowscaled - get_paca()->startspurr;
+       get_paca()->startpurr = now;
+       get_paca()->startspurr = nowscaled;
+       if (!in_interrupt()) {
+               /* deltascaled includes both user and system time.
+                * Hence scale it based on the purr ratio to estimate
+                * the system time */
+               sys_time = get_paca()->system_time;
+               if (get_paca()->user_time)
+                       deltascaled = deltascaled * sys_time /
+                            (sys_time + get_paca()->user_time);
+               delta += sys_time;
+               get_paca()->system_time = 0;
+       }
+       account_system_time(tsk, 0, delta);
+       account_system_time_scaled(tsk, deltascaled);
+       per_cpu(cputime_last_delta, smp_processor_id()) = delta;
+       per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
+       local_irq_restore(flags);
 }
 
-void do_gettimeofday(struct timeval *tv)
+/*
+ * Transfer the user and system times accumulated in the paca
+ * by the exception entry and exit code to the generic process
+ * user and system time records.
+ * Must be called with interrupts disabled.
+ */
+void account_process_tick(struct task_struct *tsk, int user_tick)
 {
-       if (__USE_RTC()) {
-               /* do this the old way */
-               unsigned long flags, seq;
-               unsigned int sec, nsec, usec, lost;
+       cputime_t utime, utimescaled;
 
-               do {
-                       seq = read_seqbegin_irqsave(&xtime_lock, flags);
-                       sec = xtime.tv_sec;
-                       nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
-                       lost = jiffies - wall_jiffies;
-               } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
-               usec = nsec / 1000 + lost * (1000000 / HZ);
-               while (usec >= 1000000) {
-                       usec -= 1000000;
-                       ++sec;
-               }
-               tv->tv_sec = sec;
-               tv->tv_usec = usec;
+       utime = get_paca()->user_time;
+       get_paca()->user_time = 0;
+       account_user_time(tsk, utime);
+
+       utimescaled = cputime_to_scaled(utime);
+       account_user_time_scaled(tsk, utimescaled);
+}
+
+/*
+ * Stuff for accounting stolen time.
+ */
+struct cpu_purr_data {
+       int     initialized;                    /* thread is running */
+       u64     tb;                     /* last TB value read */
+       u64     purr;                   /* last PURR value read */
+       u64     spurr;                  /* last SPURR value read */
+};
+
+/*
+ * Each entry in the cpu_purr_data array is manipulated only by its
+ * "owner" cpu -- usually in the timer interrupt but also occasionally
+ * in process context for cpu online.  As long as cpus do not touch
+ * each others' cpu_purr_data, disabling local interrupts is
+ * sufficient to serialize accesses.
+ */
+static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
+
+static void snapshot_tb_and_purr(void *data)
+{
+       unsigned long flags;
+       struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
+
+       local_irq_save(flags);
+       p->tb = get_tb_or_rtc();
+       p->purr = mfspr(SPRN_PURR);
+       wmb();
+       p->initialized = 1;
+       local_irq_restore(flags);
+}
+
+/*
+ * Called during boot when all cpus have come up.
+ */
+void snapshot_timebases(void)
+{
+       if (!cpu_has_feature(CPU_FTR_PURR))
                return;
-       }
-       __do_gettimeofday(tv, get_tb());
+       on_each_cpu(snapshot_tb_and_purr, NULL, 1);
+}
+
+/*
+ * Must be called with interrupts disabled.
+ */
+void calculate_steal_time(void)
+{
+       u64 tb, purr;
+       s64 stolen;
+       struct cpu_purr_data *pme;
+
+       pme = &__get_cpu_var(cpu_purr_data);
+       if (!pme->initialized)
+               return;         /* !CPU_FTR_PURR or early in early boot */
+       tb = mftb();
+       purr = mfspr(SPRN_PURR);
+       stolen = (tb - pme->tb) - (purr - pme->purr);
+       if (stolen > 0)
+               account_steal_time(current, stolen);
+       pme->tb = tb;
+       pme->purr = purr;
 }
 
-EXPORT_SYMBOL(do_gettimeofday);
+#ifdef CONFIG_PPC_SPLPAR
+/*
+ * Must be called before the cpu is added to the online map when
+ * a cpu is being brought up at runtime.
+ */
+static void snapshot_purr(void)
+{
+       struct cpu_purr_data *pme;
+       unsigned long flags;
 
-/* Synchronize xtime with do_gettimeofday */ 
+       if (!cpu_has_feature(CPU_FTR_PURR))
+               return;
+       local_irq_save(flags);
+       pme = &__get_cpu_var(cpu_purr_data);
+       pme->tb = mftb();
+       pme->purr = mfspr(SPRN_PURR);
+       pme->initialized = 1;
+       local_irq_restore(flags);
+}
 
-static inline void timer_sync_xtime(unsigned long cur_tb)
+#endif /* CONFIG_PPC_SPLPAR */
+
+#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
+#define calc_cputime_factors()
+#define calculate_steal_time()         do { } while (0)
+#endif
+
+#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
+#define snapshot_purr()                        do { } while (0)
+#endif
+
+/*
+ * Called when a cpu comes up after the system has finished booting,
+ * i.e. as a result of a hotplug cpu action.
+ */
+void snapshot_timebase(void)
 {
-#ifdef CONFIG_PPC64
-       /* why do we do this? */
-       struct timeval my_tv;
+       __get_cpu_var(last_jiffy) = get_tb_or_rtc();
+       snapshot_purr();
+}
 
-       __do_gettimeofday(&my_tv, cur_tb);
+void __delay(unsigned long loops)
+{
+       unsigned long start;
+       int diff;
 
-       if (xtime.tv_sec <= my_tv.tv_sec) {
-               xtime.tv_sec = my_tv.tv_sec;
-               xtime.tv_nsec = my_tv.tv_usec * 1000;
+       if (__USE_RTC()) {
+               start = get_rtcl();
+               do {
+                       /* the RTCL register wraps at 1000000000 */
+                       diff = get_rtcl() - start;
+                       if (diff < 0)
+                               diff += 1000000000;
+               } while (diff < loops);
+       } else {
+               start = get_tbl();
+               while (get_tbl() - start < loops)
+                       HMT_low();
+               HMT_medium();
        }
-#endif
 }
+EXPORT_SYMBOL(__delay);
+
+void udelay(unsigned long usecs)
+{
+       __delay(tb_ticks_per_usec * usecs);
+}
+EXPORT_SYMBOL(udelay);
+
 
 /*
  * There are two copies of tb_to_xs and stamp_xsec so that no
@@ -267,7 +440,6 @@ static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
        do_gtod.varp = temp_varp;
        do_gtod.var_idx = temp_idx;
 
-#ifdef CONFIG_PPC64
        /*
         * tb_update_count is used to allow the userspace gettimeofday code
         * to assure itself that it sees a consistent view of the tb_to_xs and
@@ -276,40 +448,16 @@ static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
         * the two values of tb_update_count match and are even then the
         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
         * loops back and reads them again until this criteria is met.
+        * We expect the caller to have done the first increment of
+        * vdso_data->tb_update_count already.
         */
-       ++(systemcfg->tb_update_count);
+       vdso_data->tb_orig_stamp = new_tb_stamp;
+       vdso_data->stamp_xsec = new_stamp_xsec;
+       vdso_data->tb_to_xs = new_tb_to_xs;
+       vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
+       vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
        smp_wmb();
-       systemcfg->tb_orig_stamp = new_tb_stamp;
-       systemcfg->stamp_xsec = new_stamp_xsec;
-       systemcfg->tb_to_xs = new_tb_to_xs;
-       smp_wmb();
-       ++(systemcfg->tb_update_count);
-#endif
-}
-
-/*
- * When the timebase - tb_orig_stamp gets too big, we do a manipulation
- * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
- * difference tb - tb_orig_stamp small enough to always fit inside a
- * 32 bits number. This is a requirement of our fast 32 bits userland
- * implementation in the vdso. If we "miss" a call to this function
- * (interrupt latency, CPU locked in a spinlock, ...) and we end up
- * with a too big difference, then the vdso will fallback to calling
- * the syscall
- */
-static __inline__ void timer_recalc_offset(u64 cur_tb)
-{
-       unsigned long offset;
-       u64 new_stamp_xsec;
-
-       if (__USE_RTC())
-               return;
-       offset = cur_tb - do_gtod.varp->tb_orig_stamp;
-       if ((offset & 0x80000000u) == 0)
-               return;
-       new_stamp_xsec = do_gtod.varp->stamp_xsec
-               + mulhdu(offset, do_gtod.varp->tb_to_xs);
-       update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
+       ++(vdso_data->tb_update_count);
 }
 
 #ifdef CONFIG_SMP
@@ -333,10 +481,15 @@ EXPORT_SYMBOL(profile_pc);
  * returned by the service processor for the timebase frequency.  
  */
 
-static void iSeries_tb_recal(void)
+static int __init iSeries_tb_recal(void)
 {
        struct div_result divres;
        unsigned long titan, tb;
+
+       /* Make sure we only run on iSeries */
+       if (!firmware_has_feature(FW_FEATURE_ISERIES))
+               return -ENODEV;
+
        tb = get_tb();
        titan = HvCallXm_loadTod();
        if ( iSeries_recal_titan ) {
@@ -359,12 +512,13 @@ static void iSeries_tb_recal(void)
                                                new_tb_ticks_per_jiffy, sign, tick_diff );
                                tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
                                tb_ticks_per_sec   = new_tb_ticks_per_sec;
+                               calc_cputime_factors();
                                div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
                                do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
                                tb_to_xs = divres.result_low;
                                do_gtod.varp->tb_to_xs = tb_to_xs;
-                               systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
-                               systemcfg->tb_to_xs = tb_to_xs;
+                               vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
+                               vdso_data->tb_to_xs = tb_to_xs;
                        }
                        else {
                                printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
@@ -376,8 +530,20 @@ static void iSeries_tb_recal(void)
        }
        iSeries_recal_titan = titan;
        iSeries_recal_tb = tb;
+
+       /* Called here as now we know accurate values for the timebase */
+       clocksource_init();
+       return 0;
 }
-#endif
+late_initcall(iSeries_tb_recal);
+
+/* Called from platform early init */
+void __init iSeries_time_init_early(void)
+{
+       iSeries_recal_tb = get_tb();
+       iSeries_recal_titan = HvCallXm_loadTod();
+}
+#endif /* CONFIG_PPC_ISERIES */
 
 /*
  * For iSeries shared processors, we have to let the hypervisor
@@ -395,66 +561,44 @@ static void iSeries_tb_recal(void)
  */
 void timer_interrupt(struct pt_regs * regs)
 {
-       int next_dec;
-       int cpu = smp_processor_id();
-       unsigned long ticks;
+       struct pt_regs *old_regs;
+       struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
+       struct clock_event_device *evt = &decrementer->event;
+       u64 now;
+
+       /* Ensure a positive value is written to the decrementer, or else
+        * some CPUs will continuue to take decrementer exceptions */
+       set_dec(DECREMENTER_MAX);
 
 #ifdef CONFIG_PPC32
        if (atomic_read(&ppc_n_lost_interrupts) != 0)
                do_IRQ(regs);
 #endif
 
+       now = get_tb_or_rtc();
+       if (now < decrementer->next_tb) {
+               /* not time for this event yet */
+               now = decrementer->next_tb - now;
+               if (now <= DECREMENTER_MAX)
+                       set_dec((int)now);
+               return;
+       }
+       old_regs = set_irq_regs(regs);
        irq_enter();
 
-       profile_tick(CPU_PROFILING, regs);
+       calculate_steal_time();
 
 #ifdef CONFIG_PPC_ISERIES
-       get_paca()->lppaca.int_dword.fields.decr_int = 0;
+       if (firmware_has_feature(FW_FEATURE_ISERIES))
+               get_lppaca()->int_dword.fields.decr_int = 0;
 #endif
 
-       while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
-              >= tb_ticks_per_jiffy) {
-               /* Update last_jiffy */
-               per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
-               /* Handle RTCL overflow on 601 */
-               if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
-                       per_cpu(last_jiffy, cpu) -= 1000000000;
-
-               /*
-                * We cannot disable the decrementer, so in the period
-                * between this cpu's being marked offline in cpu_online_map
-                * and calling stop-self, it is taking timer interrupts.
-                * Avoid calling into the scheduler rebalancing code if this
-                * is the case.
-                */
-               if (!cpu_is_offline(cpu))
-                       update_process_times(user_mode(regs));
-
-               /*
-                * No need to check whether cpu is offline here; boot_cpuid
-                * should have been fixed up by now.
-                */
-               if (cpu != boot_cpuid)
-                       continue;
-
-               write_seqlock(&xtime_lock);
-               tb_last_jiffy += tb_ticks_per_jiffy;
-               tb_last_stamp = per_cpu(last_jiffy, cpu);
-               timer_recalc_offset(tb_last_jiffy);
-               do_timer(regs);
-               timer_sync_xtime(tb_last_jiffy);
-               timer_check_rtc();
-               write_sequnlock(&xtime_lock);
-               if (adjusting_time && (time_adjust == 0))
-                       ppc_adjtimex();
-       }
-       
-       next_dec = tb_ticks_per_jiffy - ticks;
-       set_dec(next_dec);
+       if (evt->event_handler)
+               evt->event_handler(evt);
 
 #ifdef CONFIG_PPC_ISERIES
-       if (hvlpevent_is_pending())
-               process_hvlpevents(regs);
+       if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
+               process_hvlpevents();
 #endif
 
 #ifdef CONFIG_PPC64
@@ -466,34 +610,77 @@ void timer_interrupt(struct pt_regs * regs)
 #endif
 
        irq_exit();
+       set_irq_regs(old_regs);
 }
 
 void wakeup_decrementer(void)
 {
-       int i;
+       unsigned long ticks;
 
-       set_dec(tb_ticks_per_jiffy);
        /*
-        * We don't expect this to be called on a machine with a 601,
-        * so using get_tbl is fine.
+        * The timebase gets saved on sleep and restored on wakeup,
+        * so all we need to do is to reset the decrementer.
         */
-       tb_last_stamp = tb_last_jiffy = get_tb();
-       for_each_cpu(i)
-               per_cpu(last_jiffy, i) = tb_last_stamp;
+       ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
+       if (ticks < tb_ticks_per_jiffy)
+               ticks = tb_ticks_per_jiffy - ticks;
+       else
+               ticks = 1;
+       set_dec(ticks);
+}
+
+#ifdef CONFIG_SUSPEND
+void generic_suspend_disable_irqs(void)
+{
+       preempt_disable();
+
+       /* Disable the decrementer, so that it doesn't interfere
+        * with suspending.
+        */
+
+       set_dec(0x7fffffff);
+       local_irq_disable();
+       set_dec(0x7fffffff);
+}
+
+void generic_suspend_enable_irqs(void)
+{
+       wakeup_decrementer();
+
+       local_irq_enable();
+       preempt_enable();
 }
 
+/* Overrides the weak version in kernel/power/main.c */
+void arch_suspend_disable_irqs(void)
+{
+       if (ppc_md.suspend_disable_irqs)
+               ppc_md.suspend_disable_irqs();
+       generic_suspend_disable_irqs();
+}
+
+/* Overrides the weak version in kernel/power/main.c */
+void arch_suspend_enable_irqs(void)
+{
+       generic_suspend_enable_irqs();
+       if (ppc_md.suspend_enable_irqs)
+               ppc_md.suspend_enable_irqs();
+}
+#endif
+
 #ifdef CONFIG_SMP
 void __init smp_space_timers(unsigned int max_cpus)
 {
        int i;
-       unsigned long offset = tb_ticks_per_jiffy / max_cpus;
-       unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
+       u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
 
-       for_each_cpu(i) {
-               if (i != boot_cpuid) {
-                       previous_tb += offset;
-                       per_cpu(last_jiffy, i) = previous_tb;
-               }
+       /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
+       previous_tb -= tb_ticks_per_jiffy;
+
+       for_each_possible_cpu(i) {
+               if (i == boot_cpuid)
+                       continue;
+               per_cpu(last_jiffy, i) = previous_tb;
        }
 }
 #endif
@@ -509,108 +696,52 @@ unsigned long long sched_clock(void)
 {
        if (__USE_RTC())
                return get_rtc();
-       return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
+       return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 }
 
-int do_settimeofday(struct timespec *tv)
+static int __init get_freq(char *name, int cells, unsigned long *val)
 {
-       time_t wtm_sec, new_sec = tv->tv_sec;
-       long wtm_nsec, new_nsec = tv->tv_nsec;
-       unsigned long flags;
-       long int tb_delta;
-       u64 new_xsec;
+       struct device_node *cpu;
+       const unsigned int *fp;
+       int found = 0;
 
-       if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
-               return -EINVAL;
+       /* The cpu node should have timebase and clock frequency properties */
+       cpu = of_find_node_by_type(NULL, "cpu");
 
-       write_seqlock_irqsave(&xtime_lock, flags);
+       if (cpu) {
+               fp = of_get_property(cpu, name, NULL);
+               if (fp) {
+                       found = 1;
+                       *val = of_read_ulong(fp, cells);
+               }
 
-       /*
-        * Updating the RTC is not the job of this code. If the time is
-        * stepped under NTP, the RTC will be updated after STA_UNSYNC
-        * is cleared.  Tools like clock/hwclock either copy the RTC
-        * to the system time, in which case there is no point in writing
-        * to the RTC again, or write to the RTC but then they don't call
-        * settimeofday to perform this operation.
-        */
-#ifdef CONFIG_PPC_ISERIES
-       if (first_settimeofday) {
-               iSeries_tb_recal();
-               first_settimeofday = 0;
+               of_node_put(cpu);
        }
-#endif
-       tb_delta = tb_ticks_since(tb_last_stamp);
-       tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
-
-       new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
-
-       wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
-       wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
-
-       set_normalized_timespec(&xtime, new_sec, new_nsec);
-       set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
 
-       /* In case of a large backwards jump in time with NTP, we want the 
-        * clock to be updated as soon as the PLL is again in lock.
-        */
-       last_rtc_update = new_sec - 658;
-
-       ntp_clear();
-
-       new_xsec = (u64)new_nsec * XSEC_PER_SEC;
-       do_div(new_xsec, NSEC_PER_SEC);
-       new_xsec += (u64)new_sec * XSEC_PER_SEC;
-       update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
-
-#ifdef CONFIG_PPC64
-       systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
-       systemcfg->tz_dsttime = sys_tz.tz_dsttime;
-#endif
-
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       clock_was_set();
-       return 0;
+       return found;
 }
 
-EXPORT_SYMBOL(do_settimeofday);
-
 void __init generic_calibrate_decr(void)
 {
-       struct device_node *cpu;
-       unsigned int *fp;
-       int node_found;
+       ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 
-       /*
-        * The cpu node should have a timebase-frequency property
-        * to tell us the rate at which the decrementer counts.
-        */
-       cpu = of_find_node_by_type(NULL, "cpu");
+       if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
+           !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 
-       ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
-       node_found = 0;
-       if (cpu != 0) {
-               fp = (unsigned int *)get_property(cpu, "timebase-frequency",
-                                                 NULL);
-               if (fp != 0) {
-                       node_found = 1;
-                       ppc_tb_freq = *fp;
-               }
-       }
-       if (!node_found)
                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
                                "(not found)\n");
+       }
 
-       ppc_proc_freq = DEFAULT_PROC_FREQ;
-       node_found = 0;
-       if (cpu != 0) {
-               fp = (unsigned int *)get_property(cpu, "clock-frequency",
-                                                 NULL);
-               if (fp != 0) {
-                       node_found = 1;
-                       ppc_proc_freq = *fp;
-               }
+       ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
+
+       if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
+           !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
+
+               printk(KERN_ERR "WARNING: Estimating processor frequency "
+                               "(not found)\n");
        }
-#ifdef CONFIG_BOOKE
+
+#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
        /* Set the time base to zero */
        mtspr(SPRN_TBWL, 0);
        mtspr(SPRN_TBWU, 0);
@@ -621,19 +752,37 @@ void __init generic_calibrate_decr(void)
        /* Enable decrementer interrupt */
        mtspr(SPRN_TCR, TCR_DIE);
 #endif
-       if (!node_found)
-               printk(KERN_ERR "WARNING: Estimating processor frequency "
-                               "(not found)\n");
+}
+
+int update_persistent_clock(struct timespec now)
+{
+       struct rtc_time tm;
+
+       if (!ppc_md.set_rtc_time)
+               return 0;
+
+       to_tm(now.tv_sec + 1 + timezone_offset, &tm);
+       tm.tm_year -= 1900;
+       tm.tm_mon -= 1;
 
-       of_node_put(cpu);
+       return ppc_md.set_rtc_time(&tm);
 }
 
-unsigned long get_boot_time(void)
+unsigned long read_persistent_clock(void)
 {
        struct rtc_time tm;
+       static int first = 1;
+
+       /* XXX this is a litle fragile but will work okay in the short term */
+       if (first) {
+               first = 0;
+               if (ppc_md.time_init)
+                       timezone_offset = ppc_md.time_init();
 
-       if (ppc_md.get_boot_time)
-               return ppc_md.get_boot_time();
+               /* get_boot_time() isn't guaranteed to be safe to call late */
+               if (ppc_md.get_boot_time)
+                       return ppc_md.get_boot_time() -timezone_offset;
+       }
        if (!ppc_md.get_rtc_time)
                return 0;
        ppc_md.get_rtc_time(&tm);
@@ -641,43 +790,178 @@ unsigned long get_boot_time(void)
                      tm.tm_hour, tm.tm_min, tm.tm_sec);
 }
 
+/* clocksource code */
+static cycle_t rtc_read(void)
+{
+       return (cycle_t)get_rtc();
+}
+
+static cycle_t timebase_read(void)
+{
+       return (cycle_t)get_tb();
+}
+
+void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
+{
+       u64 t2x, stamp_xsec;
+
+       if (clock != &clocksource_timebase)
+               return;
+
+       /* Make userspace gettimeofday spin until we're done. */
+       ++vdso_data->tb_update_count;
+       smp_mb();
+
+       /* XXX this assumes clock->shift == 22 */
+       /* 4611686018 ~= 2^(20+64-22) / 1e9 */
+       t2x = (u64) clock->mult * 4611686018ULL;
+       stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
+       do_div(stamp_xsec, 1000000000);
+       stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
+       update_gtod(clock->cycle_last, stamp_xsec, t2x);
+}
+
+void update_vsyscall_tz(void)
+{
+       /* Make userspace gettimeofday spin until we're done. */
+       ++vdso_data->tb_update_count;
+       smp_mb();
+       vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
+       vdso_data->tz_dsttime = sys_tz.tz_dsttime;
+       smp_mb();
+       ++vdso_data->tb_update_count;
+}
+
+void __init clocksource_init(void)
+{
+       struct clocksource *clock;
+
+       if (__USE_RTC())
+               clock = &clocksource_rtc;
+       else
+               clock = &clocksource_timebase;
+
+       clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
+
+       if (clocksource_register(clock)) {
+               printk(KERN_ERR "clocksource: %s is already registered\n",
+                      clock->name);
+               return;
+       }
+
+       printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
+              clock->name, clock->mult, clock->shift);
+}
+
+static int decrementer_set_next_event(unsigned long evt,
+                                     struct clock_event_device *dev)
+{
+       __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
+       set_dec(evt);
+       return 0;
+}
+
+static void decrementer_set_mode(enum clock_event_mode mode,
+                                struct clock_event_device *dev)
+{
+       if (mode != CLOCK_EVT_MODE_ONESHOT)
+               decrementer_set_next_event(DECREMENTER_MAX, dev);
+}
+
+static void register_decrementer_clockevent(int cpu)
+{
+       struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
+
+       *dec = decrementer_clockevent;
+       dec->cpumask = cpumask_of_cpu(cpu);
+
+       printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
+              dec->name, dec->mult, dec->shift, cpu);
+
+       clockevents_register_device(dec);
+}
+
+static void __init init_decrementer_clockevent(void)
+{
+       int cpu = smp_processor_id();
+
+       decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
+                                            decrementer_clockevent.shift);
+       decrementer_clockevent.max_delta_ns =
+               clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
+       decrementer_clockevent.min_delta_ns =
+               clockevent_delta2ns(2, &decrementer_clockevent);
+
+       register_decrementer_clockevent(cpu);
+}
+
+void secondary_cpu_time_init(void)
+{
+       /* FIME: Should make unrelatred change to move snapshot_timebase
+        * call here ! */
+       register_decrementer_clockevent(smp_processor_id());
+}
+
 /* This function is only called on the boot processor */
 void __init time_init(void)
 {
        unsigned long flags;
-       unsigned long tm = 0;
        struct div_result res;
-       u64 scale;
+       u64 scale, x;
        unsigned shift;
 
-        if (ppc_md.time_init != NULL)
-                timezone_offset = ppc_md.time_init();
-
        if (__USE_RTC()) {
                /* 601 processor: dec counts down by 128 every 128ns */
                ppc_tb_freq = 1000000000;
-               tb_last_stamp = get_rtcl();
-               tb_last_jiffy = tb_last_stamp;
+               tb_last_jiffy = get_rtcl();
        } else {
                /* Normal PowerPC with timebase register */
                ppc_md.calibrate_decr();
-               printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
+               printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
-               printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
+               printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
-               tb_last_stamp = tb_last_jiffy = get_tb();
+               tb_last_jiffy = get_tb();
        }
 
        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
-       tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
+       tb_ticks_per_sec = ppc_tb_freq;
        tb_ticks_per_usec = ppc_tb_freq / 1000000;
        tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
-       div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
-       tb_to_xs = res.result_low;
+       calc_cputime_factors();
 
-#ifdef CONFIG_PPC64
-       get_paca()->default_decr = tb_ticks_per_jiffy;
-#endif
+       /*
+        * Calculate the length of each tick in ns.  It will not be
+        * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
+        * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
+        * rounded up.
+        */
+       x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
+       do_div(x, ppc_tb_freq);
+       tick_nsec = x;
+       last_tick_len = x << TICKLEN_SCALE;
+
+       /*
+        * Compute ticklen_to_xs, which is a factor which gets multiplied
+        * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
+        * It is computed as:
+        * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
+        * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
+        * which turns out to be N = 51 - SHIFT_HZ.
+        * This gives the result as a 0.64 fixed-point fraction.
+        * That value is reduced by an offset amounting to 1 xsec per
+        * 2^31 timebase ticks to avoid problems with time going backwards
+        * by 1 xsec when we do timer_recalc_offset due to losing the
+        * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
+        * since there are 2^20 xsec in a second.
+        */
+       div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
+                    tb_ticks_per_jiffy << SHIFT_HZ, &res);
+       div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
+       ticklen_to_xs = res.result_low;
+
+       /* Compute tb_to_xs from tick_nsec */
+       tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
 
        /*
         * Compute scale factor for sched_clock.
@@ -697,167 +981,39 @@ void __init time_init(void)
        }
        tb_to_ns_scale = scale;
        tb_to_ns_shift = shift;
-
-#ifdef CONFIG_PPC_ISERIES
-       if (!piranha_simulator)
-#endif
-               tm = get_boot_time();
+       /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
+       boot_tb = get_tb_or_rtc();
 
        write_seqlock_irqsave(&xtime_lock, flags);
-       xtime.tv_sec = tm;
-       xtime.tv_nsec = 0;
+
+       /* If platform provided a timezone (pmac), we correct the time */
+        if (timezone_offset) {
+               sys_tz.tz_minuteswest = -timezone_offset / 60;
+               sys_tz.tz_dsttime = 0;
+        }
+
        do_gtod.varp = &do_gtod.vars[0];
        do_gtod.var_idx = 0;
        do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
-       __get_cpu_var(last_jiffy) = tb_last_stamp;
+       __get_cpu_var(last_jiffy) = tb_last_jiffy;
        do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
        do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
        do_gtod.varp->tb_to_xs = tb_to_xs;
        do_gtod.tb_to_us = tb_to_us;
-#ifdef CONFIG_PPC64
-       systemcfg->tb_orig_stamp = tb_last_jiffy;
-       systemcfg->tb_update_count = 0;
-       systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
-       systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
-       systemcfg->tb_to_xs = tb_to_xs;
-#endif
 
-       time_freq = 0;
+       vdso_data->tb_orig_stamp = tb_last_jiffy;
+       vdso_data->tb_update_count = 0;
+       vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
+       vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
+       vdso_data->tb_to_xs = tb_to_xs;
 
-       /* If platform provided a timezone (pmac), we correct the time */
-        if (timezone_offset) {
-               sys_tz.tz_minuteswest = -timezone_offset / 60;
-               sys_tz.tz_dsttime = 0;
-               xtime.tv_sec -= timezone_offset;
-        }
-
-       last_rtc_update = xtime.tv_sec;
-       set_normalized_timespec(&wall_to_monotonic,
-                               -xtime.tv_sec, -xtime.tv_nsec);
        write_sequnlock_irqrestore(&xtime_lock, flags);
 
-       /* Not exact, but the timer interrupt takes care of this */
-       set_dec(tb_ticks_per_jiffy);
-}
-
-/* 
- * After adjtimex is called, adjust the conversion of tb ticks
- * to microseconds to keep do_gettimeofday synchronized 
- * with ntpd.
- *
- * Use the time_adjust, time_freq and time_offset computed by adjtimex to 
- * adjust the frequency.
- */
-
-/* #define DEBUG_PPC_ADJTIMEX 1 */
-
-void ppc_adjtimex(void)
-{
-#ifdef CONFIG_PPC64
-       unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
-               new_tb_to_xs, new_xsec, new_stamp_xsec;
-       unsigned long tb_ticks_per_sec_delta;
-       long delta_freq, ltemp;
-       struct div_result divres; 
-       unsigned long flags;
-       long singleshot_ppm = 0;
-
-       /*
-        * Compute parts per million frequency adjustment to
-        * accomplish the time adjustment implied by time_offset to be
-        * applied over the elapsed time indicated by time_constant.
-        * Use SHIFT_USEC to get it into the same units as
-        * time_freq.
-        */
-       if ( time_offset < 0 ) {
-               ltemp = -time_offset;
-               ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
-               ltemp >>= SHIFT_KG + time_constant;
-               ltemp = -ltemp;
-       } else {
-               ltemp = time_offset;
-               ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
-               ltemp >>= SHIFT_KG + time_constant;
-       }
-       
-       /* If there is a single shot time adjustment in progress */
-       if ( time_adjust ) {
-#ifdef DEBUG_PPC_ADJTIMEX
-               printk("ppc_adjtimex: ");
-               if ( adjusting_time == 0 )
-                       printk("starting ");
-               printk("single shot time_adjust = %ld\n", time_adjust);
-#endif 
-       
-               adjusting_time = 1;
-               
-               /*
-                * Compute parts per million frequency adjustment
-                * to match time_adjust
-                */
-               singleshot_ppm = tickadj * HZ;  
-               /*
-                * The adjustment should be tickadj*HZ to match the code in
-                * linux/kernel/timer.c, but experiments show that this is too
-                * large. 3/4 of tickadj*HZ seems about right
-                */
-               singleshot_ppm -= singleshot_ppm / 4;
-               /* Use SHIFT_USEC to get it into the same units as time_freq */
-               singleshot_ppm <<= SHIFT_USEC;
-               if ( time_adjust < 0 )
-                       singleshot_ppm = -singleshot_ppm;
-       }
-       else {
-#ifdef DEBUG_PPC_ADJTIMEX
-               if ( adjusting_time )
-                       printk("ppc_adjtimex: ending single shot time_adjust\n");
-#endif
-               adjusting_time = 0;
-       }
-       
-       /* Add up all of the frequency adjustments */
-       delta_freq = time_freq + ltemp + singleshot_ppm;
-       
-       /*
-        * Compute a new value for tb_ticks_per_sec based on
-        * the frequency adjustment
-        */
-       den = 1000000 * (1 << (SHIFT_USEC - 8));
-       if ( delta_freq < 0 ) {
-               tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
-               new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
-       }
-       else {
-               tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
-               new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
-       }
-       
-#ifdef DEBUG_PPC_ADJTIMEX
-       printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
-       printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
-#endif
-
-       /*
-        * Compute a new value of tb_to_xs (used to convert tb to
-        * microseconds) and a new value of stamp_xsec which is the
-        * time (in 1/2^20 second units) corresponding to
-        * tb_orig_stamp.  This new value of stamp_xsec compensates
-        * for the change in frequency (implied by the new tb_to_xs)
-        * which guarantees that the current time remains the same.
-        */
-       write_seqlock_irqsave( &xtime_lock, flags );
-       tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
-       div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
-       new_tb_to_xs = divres.result_low;
-       new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
-
-       old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
-       new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
-
-       update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
+       /* Register the clocksource, if we're not running on iSeries */
+       if (!firmware_has_feature(FW_FEATURE_ISERIES))
+               clocksource_init();
 
-       write_sequnlock_irqrestore( &xtime_lock, flags );
-#endif /* CONFIG_PPC64 */
+       init_decrementer_clockevent();
 }