# # File system configuration # menu "File systems" if BLOCK source "fs/ext2/Kconfig" source "fs/ext3/Kconfig" source "fs/ext4/Kconfig" config FS_XIP # execute in place bool depends on EXT2_FS_XIP default y source "fs/jbd/Kconfig" source "fs/jbd2/Kconfig" config FS_MBCACHE # Meta block cache for Extended Attributes (ext2/ext3/ext4) tristate default y if EXT2_FS=y && EXT2_FS_XATTR default y if EXT3_FS=y && EXT3_FS_XATTR default y if EXT4_FS=y && EXT4_FS_XATTR default m if EXT2_FS_XATTR || EXT3_FS_XATTR || EXT4_FS_XATTR source "fs/reiserfs/Kconfig" source "fs/jfs/Kconfig" config FS_POSIX_ACL # Posix ACL utility routines (for now, only ext2/ext3/jfs/reiserfs/nfs4) # # NOTE: you can implement Posix ACLs without these helpers (XFS does). # Never use this symbol for ifdefs. # bool default n config FILE_LOCKING bool "Enable POSIX file locking API" if EMBEDDED default y help This option enables standard file locking support, required for filesystems like NFS and for the flock() system call. Disabling this option saves about 11k. source "fs/xfs/Kconfig" source "fs/gfs2/Kconfig" source "fs/ocfs2/Kconfig" source "fs/btrfs/Kconfig" endif # BLOCK source "fs/notify/Kconfig" config QUOTA bool "Quota support" help If you say Y here, you will be able to set per user limits for disk usage (also called disk quotas). Currently, it works for the ext2, ext3, and reiserfs file system. ext3 also supports journalled quotas for which you don't need to run quotacheck(8) after an unclean shutdown. For further details, read the Quota mini-HOWTO, available from , or the documentation provided with the quota tools. Probably the quota support is only useful for multi user systems. If unsure, say N. config QUOTA_NETLINK_INTERFACE bool "Report quota messages through netlink interface" depends on QUOTA && NET help If you say Y here, quota warnings (about exceeding softlimit, reaching hardlimit, etc.) will be reported through netlink interface. If unsure, say Y. config PRINT_QUOTA_WARNING bool "Print quota warnings to console (OBSOLETE)" depends on QUOTA default y help If you say Y here, quota warnings (about exceeding softlimit, reaching hardlimit, etc.) will be printed to the process' controlling terminal. Note that this behavior is currently deprecated and may go away in future. Please use notification via netlink socket instead. # Generic support for tree structured quota files. Seleted when needed. config QUOTA_TREE tristate config QFMT_V1 tristate "Old quota format support" depends on QUOTA help This quota format was (is) used by kernels earlier than 2.4.22. If you have quota working and you don't want to convert to new quota format say Y here. config QFMT_V2 tristate "Quota format v2 support" depends on QUOTA select QUOTA_TREE help This quota format allows using quotas with 32-bit UIDs/GIDs. If you need this functionality say Y here. config QUOTACTL bool depends on XFS_QUOTA || QUOTA default y source "fs/autofs/Kconfig" source "fs/autofs4/Kconfig" source "fs/fuse/Kconfig" config GENERIC_ACL bool select FS_POSIX_ACL if BLOCK menu "CD-ROM/DVD Filesystems" source "fs/isofs/Kconfig" source "fs/udf/Kconfig" endmenu endif # BLOCK if BLOCK menu "DOS/FAT/NT Filesystems" source "fs/fat/Kconfig" source "fs/ntfs/Kconfig" endmenu endif # BLOCK menu "Pseudo filesystems" source "fs/proc/Kconfig" source "fs/sysfs/Kconfig" config TMPFS bool "Virtual memory file system support (former shm fs)" help Tmpfs is a file system which keeps all files in virtual memory. Everything in tmpfs is temporary in the sense that no files will be created on your hard drive. The files live in memory and swap space. If you unmount a tmpfs instance, everything stored therein is lost. See for details. config TMPFS_POSIX_ACL bool "Tmpfs POSIX Access Control Lists" depends on TMPFS select GENERIC_ACL help POSIX Access Control Lists (ACLs) support permissions for users and groups beyond the owner/group/world scheme. To learn more about Access Control Lists, visit the POSIX ACLs for Linux website . If you don't know what Access Control Lists are, say N. config HUGETLBFS bool "HugeTLB file system support" depends on X86 || IA64 || PPC64 || SPARC64 || (SUPERH && MMU) || \ (S390 && 64BIT) || BROKEN help hugetlbfs is a filesystem backing for HugeTLB pages, based on ramfs. For architectures that support it, say Y here and read for details. If unsure, say N. config HUGETLB_PAGE def_bool HUGETLBFS source "fs/configfs/Kconfig" endmenu menuconfig MISC_FILESYSTEMS bool "Miscellaneous filesystems" default y ---help--- Say Y here to get to see options for various miscellaneous filesystems, such as filesystems that came from other operating systems. This option alone does not add any kernel code. If you say N, all options in this submenu will be skipped and disabled; if unsure, say Y here. if MISC_FILESYSTEMS source "fs/adfs/Kconfig" source "fs/affs/Kconfig" source "fs/ecryptfs/Kconfig" source "fs/hfs/Kconfig" source "fs/hfsplus/Kconfig" source "fs/befs/Kconfig" source "fs/bfs/Kconfig" source "fs/efs/Kconfig" source "fs/jffs2/Kconfig" # UBIFS File system configuration source "fs/ubifs/Kconfig" source "fs/cramfs/Kconfig" source "fs/squashfs/Kconfig" source "fs/freevxfs/Kconfig" source "fs/minix/Kconfig" config OMFS_FS tristate "SonicBlue Optimized MPEG File System support" depends on BLOCK select CRC_ITU_T help This is the proprietary file system used by the Rio Karma music player and ReplayTV DVR. Despite the name, this filesystem is not more efficient than a standard FS for MPEG files, in fact likely the opposite is true. Say Y if you have either of these devices and wish to mount its disk. To compile this file system support as a module, choose M here: the module will be called omfs. If unsure, say N. config HPFS_FS tristate "OS/2 HPFS file system support" depends on BLOCK help OS/2 is IBM's operating system for PC's, the same as Warp, and HPFS is the file system used for organizing files on OS/2 hard disk partitions. Say Y if you want to be able to read files from and write files to an OS/2 HPFS partition on your hard drive. OS/2 floppies however are in regular MSDOS format, so you don't need this option in order to be able to read them. Read . To compile this file system support as a module, choose M here: the module will be called hpfs. If unsure, say N. config QNX4FS_FS tristate "QNX4 file system support (read only)" depends on BLOCK help This is the file system used by the real-time operating systems QNX 4 and QNX 6 (the latter is also called QNX RTP). Further information is available at . Say Y if you intend to mount QNX hard disks or floppies. Unless you say Y to "QNX4FS read-write support" below, you will only be able to read these file systems. To compile this file system support as a module, choose M here: the module will be called qnx4. If you don't know whether you need it, then you don't need it: answer N. config QNX4FS_RW bool "QNX4FS write support (DANGEROUS)" depends on QNX4FS_FS && EXPERIMENTAL && BROKEN help Say Y if you want to test write support for QNX4 file systems. It's currently broken, so for now: answer N. config ROMFS_FS tristate "ROM file system support" depends on BLOCK ---help--- This is a very small read-only file system mainly intended for initial ram disks of installation disks, but it could be used for other read-only media as well. Read for details. To compile this file system support as a module, choose M here: the module will be called romfs. Note that the file system of your root partition (the one containing the directory /) cannot be a module. If you don't know whether you need it, then you don't need it: answer N. config SYSV_FS tristate "System V/Xenix/V7/Coherent file system support" depends on BLOCK help SCO, Xenix and Coherent are commercial Unix systems for Intel machines, and Version 7 was used on the DEC PDP-11. Saying Y here would allow you to read from their floppies and hard disk partitions. If you have floppies or hard disk partitions like that, it is likely that they contain binaries from those other Unix systems; in order to run these binaries, you will want to install linux-abi which is a set of kernel modules that lets you run SCO, Xenix, Wyse, UnixWare, Dell Unix and System V programs under Linux. It is available via FTP (user: ftp) from ). NOTE: that will work only for binaries from Intel-based systems; PDP ones will have to wait until somebody ports Linux to -11 ;-) If you only intend to mount files from some other Unix over the network using NFS, you don't need the System V file system support (but you need NFS file system support obviously). Note that this option is generally not needed for floppies, since a good portable way to transport files and directories between unixes (and even other operating systems) is given by the tar program ("man tar" or preferably "info tar"). Note also that this option has nothing whatsoever to do with the option "System V IPC". Read about the System V file system in . Saying Y here will enlarge your kernel by about 27 KB. To compile this as a module, choose M here: the module will be called sysv. If you haven't heard about all of this before, it's safe to say N. config UFS_FS tristate "UFS file system support (read only)" depends on BLOCK help BSD and derivate versions of Unix (such as SunOS, FreeBSD, NetBSD, OpenBSD and NeXTstep) use a file system called UFS. Some System V Unixes can create and mount hard disk partitions and diskettes using this file system as well. Saying Y here will allow you to read from these partitions; if you also want to write to them, say Y to the experimental "UFS file system write support", below. Please read the file for more information. The recently released UFS2 variant (used in FreeBSD 5.x) is READ-ONLY supported. Note that this option is generally not needed for floppies, since a good portable way to transport files and directories between unixes (and even other operating systems) is given by the tar program ("man tar" or preferably "info tar"). When accessing NeXTstep files, you may need to convert them from the NeXT character set to the Latin1 character set; use the program recode ("info recode") for this purpose. To compile the UFS file system support as a module, choose M here: the module will be called ufs. If you haven't heard about all of this before, it's safe to say N. config UFS_FS_WRITE bool "UFS file system write support (DANGEROUS)" depends on UFS_FS && EXPERIMENTAL help Say Y here if you want to try writing to UFS partitions. This is experimental, so you should back up your UFS partitions beforehand. config UFS_DEBUG bool "UFS debugging" depends on UFS_FS help If you are experiencing any problems with the UFS filesystem, say Y here. This will result in _many_ additional debugging messages to be written to the system log. endif # MISC_FILESYSTEMS menuconfig NETWORK_FILESYSTEMS bool "Network File Systems" default y depends on NET ---help--- Say Y here to get to see options for network filesystems and filesystem-related networking code, such as NFS daemon and RPCSEC security modules. This option alone does not add any kernel code. If you say N, all options in this submenu will be skipped and disabled; if unsure, say Y here. if NETWORK_FILESYSTEMS config NFS_FS tristate "NFS client support" depends on INET select LOCKD select SUNRPC select NFS_ACL_SUPPORT if NFS_V3_ACL help Choose Y here if you want to access files residing on other computers using Sun's Network File System protocol. To compile this file system support as a module, choose M here: the module will be called nfs. To mount file systems exported by NFS servers, you also need to install the user space mount.nfs command which can be found in the Linux nfs-utils package, available from http://linux-nfs.org/. Information about using the mount command is available in the mount(8) man page. More detail about the Linux NFS client implementation is available via the nfs(5) man page. Below you can choose which versions of the NFS protocol are available in the kernel to mount NFS servers. Support for NFS version 2 (RFC 1094) is always available when NFS_FS is selected. To configure a system which mounts its root file system via NFS at boot time, say Y here, select "Kernel level IP autoconfiguration" in the NETWORK menu, and select "Root file system on NFS" below. You cannot compile this file system as a module in this case. If unsure, say N. config NFS_V3 bool "NFS client support for NFS version 3" depends on NFS_FS help This option enables support for version 3 of the NFS protocol (RFC 1813) in the kernel's NFS client. If unsure, say Y. config NFS_V3_ACL bool "NFS client support for the NFSv3 ACL protocol extension" depends on NFS_V3 help Some NFS servers support an auxiliary NFSv3 ACL protocol that Sun added to Solaris but never became an official part of the NFS version 3 protocol. This protocol extension allows applications on NFS clients to manipulate POSIX Access Control Lists on files residing on NFS servers. NFS servers enforce ACLs on local files whether this protocol is available or not. Choose Y here if your NFS server supports the Solaris NFSv3 ACL protocol extension and you want your NFS client to allow applications to access and modify ACLs on files on the server. Most NFS servers don't support the Solaris NFSv3 ACL protocol extension. You can choose N here or specify the "noacl" mount option to prevent your NFS client from trying to use the NFSv3 ACL protocol. If unsure, say N. config NFS_V4 bool "NFS client support for NFS version 4 (EXPERIMENTAL)" depends on NFS_FS && EXPERIMENTAL select RPCSEC_GSS_KRB5 help This option enables support for version 4 of the NFS protocol (RFC 3530) in the kernel's NFS client. To mount NFS servers using NFSv4, you also need to install user space programs which can be found in the Linux nfs-utils package, available from http://linux-nfs.org/. If unsure, say N. config ROOT_NFS bool "Root file system on NFS" depends on NFS_FS=y && IP_PNP help If you want your system to mount its root file system via NFS, choose Y here. This is common practice for managing systems without local permanent storage. For details, read . Most people say N here. config NFSD tristate "NFS server support" depends on INET select LOCKD select SUNRPC select EXPORTFS select NFS_ACL_SUPPORT if NFSD_V2_ACL help Choose Y here if you want to allow other computers to access files residing on this system using Sun's Network File System protocol. To compile the NFS server support as a module, choose M here: the module will be called nfsd. You may choose to use a user-space NFS server instead, in which case you can choose N here. To export local file systems using NFS, you also need to install user space programs which can be found in the Linux nfs-utils package, available from http://linux-nfs.org/. More detail about the Linux NFS server implementation is available via the exports(5) man page. Below you can choose which versions of the NFS protocol are available to clients mounting the NFS server on this system. Support for NFS version 2 (RFC 1094) is always available when CONFIG_NFSD is selected. If unsure, say N. config NFSD_V2_ACL bool depends on NFSD config NFSD_V3 bool "NFS server support for NFS version 3" depends on NFSD help This option enables support in your system's NFS server for version 3 of the NFS protocol (RFC 1813). If unsure, say Y. config NFSD_V3_ACL bool "NFS server support for the NFSv3 ACL protocol extension" depends on NFSD_V3 select NFSD_V2_ACL help Solaris NFS servers support an auxiliary NFSv3 ACL protocol that never became an official part of the NFS version 3 protocol. This protocol extension allows applications on NFS clients to manipulate POSIX Access Control Lists on files residing on NFS servers. NFS servers enforce POSIX ACLs on local files whether this protocol is available or not. This option enables support in your system's NFS server for the NFSv3 ACL protocol extension allowing NFS clients to manipulate POSIX ACLs on files exported by your system's NFS server. NFS clients which support the Solaris NFSv3 ACL protocol can then access and modify ACLs on your NFS server. To store ACLs on your NFS server, you also need to enable ACL- related CONFIG options for your local file systems of choice. If unsure, say N. config NFSD_V4 bool "NFS server support for NFS version 4 (EXPERIMENTAL)" depends on NFSD && PROC_FS && EXPERIMENTAL select NFSD_V3 select FS_POSIX_ACL select RPCSEC_GSS_KRB5 help This option enables support in your system's NFS server for version 4 of the NFS protocol (RFC 3530). To export files using NFSv4, you need to install additional user space programs which can be found in the Linux nfs-utils package, available from http://linux-nfs.org/. If unsure, say N. config LOCKD tristate config LOCKD_V4 bool depends on NFSD_V3 || NFS_V3 default y config EXPORTFS tristate config NFS_ACL_SUPPORT tristate select FS_POSIX_ACL config NFS_COMMON bool depends on NFSD || NFS_FS default y config SUNRPC tristate config SUNRPC_GSS tristate config SUNRPC_XPRT_RDMA tristate depends on SUNRPC && INFINIBAND && EXPERIMENTAL default SUNRPC && INFINIBAND help This option enables an RPC client transport capability that allows the NFS client to mount servers via an RDMA-enabled transport. To compile RPC client RDMA transport support as a module, choose M here: the module will be called xprtrdma. If unsure, say N. config SUNRPC_REGISTER_V4 bool "Register local RPC services via rpcbind v4 (EXPERIMENTAL)" depends on SUNRPC && EXPERIMENTAL default n help Sun added support for registering RPC services at an IPv6 address by creating two new versions of the rpcbind protocol (RFC 1833). This option enables support in the kernel RPC server for registering kernel RPC services via version 4 of the rpcbind protocol. If you enable this option, you must run a portmapper daemon that supports rpcbind protocol version 4. Serving NFS over IPv6 from knfsd (the kernel's NFS server) requires that you enable this option and use a portmapper that supports rpcbind version 4. If unsure, say N to get traditional behavior (register kernel RPC services using only rpcbind version 2). Distributions using the legacy Linux portmapper daemon must say N here. config RPCSEC_GSS_KRB5 tristate "Secure RPC: Kerberos V mechanism (EXPERIMENTAL)" depends on SUNRPC && EXPERIMENTAL select SUNRPC_GSS select CRYPTO select CRYPTO_MD5 select CRYPTO_DES select CRYPTO_CBC help Choose Y here to enable Secure RPC using the Kerberos version 5 GSS-API mechanism (RFC 1964). Secure RPC calls with Kerberos require an auxiliary user-space daemon which may be found in the Linux nfs-utils package available from http://linux-nfs.org/. In addition, user-space Kerberos support should be installed. If unsure, say N. config RPCSEC_GSS_SPKM3 tristate "Secure RPC: SPKM3 mechanism (EXPERIMENTAL)" depends on SUNRPC && EXPERIMENTAL select SUNRPC_GSS select CRYPTO select CRYPTO_MD5 select CRYPTO_DES select CRYPTO_CAST5 select CRYPTO_CBC help Choose Y here to enable Secure RPC using the SPKM3 public key GSS-API mechansim (RFC 2025). Secure RPC calls with SPKM3 require an auxiliary userspace daemon which may be found in the Linux nfs-utils package available from http://linux-nfs.org/. If unsure, say N. config SMB_FS tristate "SMB file system support (OBSOLETE, please use CIFS)" depends on INET select NLS help SMB (Server Message Block) is the protocol Windows for Workgroups (WfW), Windows 95/98, Windows NT and OS/2 Lan Manager use to share files and printers over local networks. Saying Y here allows you to mount their file systems (often called "shares" in this context) and access them just like any other Unix directory. Currently, this works only if the Windows machines use TCP/IP as the underlying transport protocol, and not NetBEUI. For details, read and the SMB-HOWTO, available from . Note: if you just want your box to act as an SMB *server* and make files and printing services available to Windows clients (which need to have a TCP/IP stack), you don't need to say Y here; you can use the program SAMBA (available from ) for that. General information about how to connect Linux, Windows machines and Macs is on the WWW at . To compile the SMB support as a module, choose M here: the module will be called smbfs. Most people say N, however. config SMB_NLS_DEFAULT bool "Use a default NLS" depends on SMB_FS help Enabling this will make smbfs use nls translations by default. You need to specify the local charset (CONFIG_NLS_DEFAULT) in the nls settings and you need to give the default nls for the SMB server as CONFIG_SMB_NLS_REMOTE. The nls settings can be changed at mount time, if your smbmount supports that, using the codepage and iocharset parameters. smbmount from samba 2.2.0 or later supports this. config SMB_NLS_REMOTE string "Default Remote NLS Option" depends on SMB_NLS_DEFAULT default "cp437" help This setting allows you to specify a default value for which codepage the server uses. If this field is left blank no translations will be done by default. The local codepage/charset default to CONFIG_NLS_DEFAULT. The nls settings can be changed at mount time, if your smbmount supports that, using the codepage and iocharset parameters. smbmount from samba 2.2.0 or later supports this. source "fs/cifs/Kconfig" config NCP_FS tristate "NCP file system support (to mount NetWare volumes)" depends on IPX!=n || INET help NCP (NetWare Core Protocol) is a protocol that runs over IPX and is used by Novell NetWare clients to talk to file servers. It is to IPX what NFS is to TCP/IP, if that helps. Saying Y here allows you to mount NetWare file server volumes and to access them just like any other Unix directory. For details, please read the file in the kernel source and the IPX-HOWTO from . You do not have to say Y here if you want your Linux box to act as a file *server* for Novell NetWare clients. General information about how to connect Linux, Windows machines and Macs is on the WWW at . To compile this as a module, choose M here: the module will be called ncpfs. Say N unless you are connected to a Novell network. source "fs/ncpfs/Kconfig" config CODA_FS tristate "Coda file system support (advanced network fs)" depends on INET help Coda is an advanced network file system, similar to NFS in that it enables you to mount file systems of a remote server and access them with regular Unix commands as if they were sitting on your hard disk. Coda has several advantages over NFS: support for disconnected operation (e.g. for laptops), read/write server replication, security model for authentication and encryption, persistent client caches and write back caching. If you say Y here, your Linux box will be able to act as a Coda *client*. You will need user level code as well, both for the client and server. Servers are currently user level, i.e. they need no kernel support. Please read and check out the Coda home page . To compile the coda client support as a module, choose M here: the module will be called coda. config AFS_FS tristate "Andrew File System support (AFS) (EXPERIMENTAL)" depends on INET && EXPERIMENTAL select AF_RXRPC help If you say Y here, you will get an experimental Andrew File System driver. It currently only supports unsecured read-only AFS access. See for more information. If unsure, say N. config AFS_DEBUG bool "AFS dynamic debugging" depends on AFS_FS help Say Y here to make runtime controllable debugging messages appear. See for more information. If unsure, say N. config 9P_FS tristate "Plan 9 Resource Sharing Support (9P2000) (Experimental)" depends on INET && NET_9P && EXPERIMENTAL help If you say Y here, you will get experimental support for Plan 9 resource sharing via the 9P2000 protocol. See for more information. If unsure, say N. endif # NETWORK_FILESYSTEMS if BLOCK menu "Partition Types" source "fs/partitions/Kconfig" endmenu endif source "fs/nls/Kconfig" source "fs/dlm/Kconfig" endmenu