/* This is part of the rtl8192 driver released under the GPL (See file COPYING for details). This files contains programming code for the rtl8256 radio frontend. *Many* thanks to Realtek Corp. for their great support! */ #include "r8192E.h" #include "r8192E_hw.h" #include "r819xE_phyreg.h" #include "r819xE_phy.h" #include "r8190_rtl8256.h" /*-------------------------------------------------------------------------- * Overview: set RF band width (20M or 40M) * Input: struct net_device* dev * WIRELESS_BANDWIDTH_E Bandwidth //20M or 40M * Output: NONE * Return: NONE * Note: 8226 support both 20M and 40 MHz *---------------------------------------------------------------------------*/ void PHY_SetRF8256Bandwidth(struct net_device* dev , HT_CHANNEL_WIDTH Bandwidth) //20M or 40M { u8 eRFPath; struct r8192_priv *priv = ieee80211_priv(dev); //for(eRFPath = RF90_PATH_A; eRFPath NumTotalRFPath; eRFPath++) for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) { if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath)) continue; switch(Bandwidth) { case HT_CHANNEL_WIDTH_20: if(priv->card_8192_version == VERSION_8190_BD || priv->card_8192_version == VERSION_8190_BE)// 8256 D-cut, E-cut, xiong: consider it later! { rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0b, bMask12Bits, 0x100); //phy para:1ba rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x2c, bMask12Bits, 0x3d7); rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0e, bMask12Bits, 0x021); //cosa add for sd3's request 01/23/2008 //rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x5ab); } else { RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown hardware version\n"); } break; case HT_CHANNEL_WIDTH_20_40: if(priv->card_8192_version == VERSION_8190_BD ||priv->card_8192_version == VERSION_8190_BE)// 8256 D-cut, E-cut, xiong: consider it later! { rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0b, bMask12Bits, 0x300); //phy para:3ba rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x2c, bMask12Bits, 0x3ff); rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x0e, bMask12Bits, 0x0e1); //cosa add for sd3's request 01/23/2008 #if 0 if(priv->chan == 3 || priv->chan == 9) //I need to set priv->chan whenever current channel changes rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x59b); else rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x14, bMask12Bits, 0x5ab); #endif } else { RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown hardware version\n"); } break; default: RT_TRACE(COMP_ERR, "PHY_SetRF8256Bandwidth(): unknown Bandwidth: %#X\n",Bandwidth ); break; } } return; } /*-------------------------------------------------------------------------- * Overview: Interface to config 8256 * Input: struct net_device* dev * Output: NONE * Return: NONE *---------------------------------------------------------------------------*/ RT_STATUS PHY_RF8256_Config(struct net_device* dev) { struct r8192_priv *priv = ieee80211_priv(dev); // Initialize general global value // RT_STATUS rtStatus = RT_STATUS_SUCCESS; // TODO: Extend RF_PATH_C and RF_PATH_D in the future priv->NumTotalRFPath = RTL819X_TOTAL_RF_PATH; // Config BB and RF rtStatus = phy_RF8256_Config_ParaFile(dev); return rtStatus; } /*-------------------------------------------------------------------------- * Overview: Interface to config 8256 * Input: struct net_device* dev * Output: NONE * Return: NONE *---------------------------------------------------------------------------*/ RT_STATUS phy_RF8256_Config_ParaFile(struct net_device* dev) { u32 u4RegValue = 0; u8 eRFPath; RT_STATUS rtStatus = RT_STATUS_SUCCESS; BB_REGISTER_DEFINITION_T *pPhyReg; struct r8192_priv *priv = ieee80211_priv(dev); u32 RegOffSetToBeCheck = 0x3; u32 RegValueToBeCheck = 0x7f1; u32 RF3_Final_Value = 0; u8 ConstRetryTimes = 5, RetryTimes = 5; u8 ret = 0; //3//----------------------------------------------------------------- //3// <2> Initialize RF //3//----------------------------------------------------------------- for(eRFPath = (RF90_RADIO_PATH_E)RF90_PATH_A; eRFPath NumTotalRFPath; eRFPath++) { if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath)) continue; pPhyReg = &priv->PHYRegDef[eRFPath]; // Joseph test for shorten RF config // pHalData->RfReg0Value[eRFPath] = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, rGlobalCtrl, bMaskDWord); /*----Store original RFENV control type----*/ switch(eRFPath) { case RF90_PATH_A: case RF90_PATH_C: u4RegValue = rtl8192_QueryBBReg(dev, pPhyReg->rfintfs, bRFSI_RFENV); break; case RF90_PATH_B : case RF90_PATH_D: u4RegValue = rtl8192_QueryBBReg(dev, pPhyReg->rfintfs, bRFSI_RFENV<<16); break; } /*----Set RF_ENV enable----*/ rtl8192_setBBreg(dev, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1); /*----Set RF_ENV output high----*/ rtl8192_setBBreg(dev, pPhyReg->rfintfo, bRFSI_RFENV, 0x1); /* Set bit number of Address and Data for RF register */ rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); // Set 0 to 4 bits for Z-serial and set 1 to 6 bits for 8258 rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0); // Set 0 to 12 bits for Z-serial and 8258, and set 1 to 14 bits for ??? rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E) eRFPath, 0x0, bMask12Bits, 0xbf); /*----Check RF block (for FPGA platform only)----*/ // TODO: this function should be removed on ASIC , Emily 2007.2.2 rtStatus = rtl8192_phy_checkBBAndRF(dev, HW90_BLOCK_RF, (RF90_RADIO_PATH_E)eRFPath); if(rtStatus!= RT_STATUS_SUCCESS) { RT_TRACE(COMP_ERR, "PHY_RF8256_Config():Check Radio[%d] Fail!!\n", eRFPath); goto phy_RF8256_Config_ParaFile_Fail; } RetryTimes = ConstRetryTimes; RF3_Final_Value = 0; /*----Initialize RF fom connfiguration file----*/ switch(eRFPath) { case RF90_PATH_A: while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0) { ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath); RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits); RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value); RetryTimes--; } break; case RF90_PATH_B: while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0) { ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath); RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits); RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value); RetryTimes--; } break; case RF90_PATH_C: while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0) { ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath); RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits); RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value); RetryTimes--; } break; case RF90_PATH_D: while(RF3_Final_Value!=RegValueToBeCheck && RetryTimes!=0) { ret = rtl8192_phy_ConfigRFWithHeaderFile(dev,(RF90_RADIO_PATH_E)eRFPath); RF3_Final_Value = rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, RegOffSetToBeCheck, bMask12Bits); RT_TRACE(COMP_RF, "RF %d %d register final value: %x\n", eRFPath, RegOffSetToBeCheck, RF3_Final_Value); RetryTimes--; } break; } /*----Restore RFENV control type----*/; switch(eRFPath) { case RF90_PATH_A: case RF90_PATH_C: rtl8192_setBBreg(dev, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue); break; case RF90_PATH_B : case RF90_PATH_D: rtl8192_setBBreg(dev, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue); break; } if(ret){ RT_TRACE(COMP_ERR, "phy_RF8256_Config_ParaFile():Radio[%d] Fail!!", eRFPath); goto phy_RF8256_Config_ParaFile_Fail; } } RT_TRACE(COMP_PHY, "PHY Initialization Success\n") ; return RT_STATUS_SUCCESS; phy_RF8256_Config_ParaFile_Fail: RT_TRACE(COMP_ERR, "PHY Initialization failed\n") ; return RT_STATUS_FAILURE; } void PHY_SetRF8256CCKTxPower(struct net_device* dev, u8 powerlevel) { u32 TxAGC=0; struct r8192_priv *priv = ieee80211_priv(dev); #ifdef RTL8190P u8 byte0, byte1; TxAGC |= ((powerlevel<<8)|powerlevel); TxAGC += priv->CCKTxPowerLevelOriginalOffset; if(priv->bDynamicTxLowPower == true //cosa 04282008 for cck long range /*pMgntInfo->bScanInProgress == TRUE*/ ) //cosa 05/22/2008 for scan { if(priv->CustomerID == RT_CID_819x_Netcore) TxAGC = 0x2222; else TxAGC += ((priv->CckPwEnl<<8)|priv->CckPwEnl); } byte0 = (u8)(TxAGC & 0xff); byte1 = (u8)((TxAGC & 0xff00)>>8); if(byte0 > 0x24) byte0 = 0x24; if(byte1 > 0x24) byte1 = 0x24; if(priv->rf_type == RF_2T4R) //Only 2T4R you have to care the Antenna Tx Power offset { // check antenna C over the max index 0x24 if(priv->RF_C_TxPwDiff > 0) { if( (byte0 + (u8)priv->RF_C_TxPwDiff) > 0x24) byte0 = 0x24 - priv->RF_C_TxPwDiff; if( (byte1 + (u8)priv->RF_C_TxPwDiff) > 0x24) byte1 = 0x24 - priv->RF_C_TxPwDiff; } } TxAGC = (byte1<<8) |byte0; write_nic_dword(dev, CCK_TXAGC, TxAGC); #else #ifdef RTL8192E TxAGC = powerlevel; if(priv->bDynamicTxLowPower == true)//cosa 04282008 for cck long range { if(priv->CustomerID == RT_CID_819x_Netcore) TxAGC = 0x22; else TxAGC += priv->CckPwEnl; } if(TxAGC > 0x24) TxAGC = 0x24; rtl8192_setBBreg(dev, rTxAGC_CCK_Mcs32, bTxAGCRateCCK, TxAGC); #endif #endif } void PHY_SetRF8256OFDMTxPower(struct net_device* dev, u8 powerlevel) { struct r8192_priv *priv = ieee80211_priv(dev); //Joseph TxPower for 8192 testing #ifdef RTL8190P u32 TxAGC1=0, TxAGC2=0, TxAGC2_tmp = 0; u8 i, byteVal1[4], byteVal2[4], byteVal3[4]; if(priv->bDynamicTxHighPower == true) //Add by Jacken 2008/03/06 { TxAGC1 |= ((powerlevel<<24)|(powerlevel<<16)|(powerlevel<<8)|powerlevel); //for tx power track TxAGC2_tmp = TxAGC1; TxAGC1 += priv->MCSTxPowerLevelOriginalOffset[0]; TxAGC2 =0x03030303; //for tx power track TxAGC2_tmp += priv->MCSTxPowerLevelOriginalOffset[1]; } else { TxAGC1 |= ((powerlevel<<24)|(powerlevel<<16)|(powerlevel<<8)|powerlevel); TxAGC2 = TxAGC1; TxAGC1 += priv->MCSTxPowerLevelOriginalOffset[0]; TxAGC2 += priv->MCSTxPowerLevelOriginalOffset[1]; TxAGC2_tmp = TxAGC2; } for(i=0; i<4; i++) { byteVal1[i] = (u8)( (TxAGC1 & (0xff<<(i*8))) >>(i*8) ); if(byteVal1[i] > 0x24) byteVal1[i] = 0x24; byteVal2[i] = (u8)( (TxAGC2 & (0xff<<(i*8))) >>(i*8) ); if(byteVal2[i] > 0x24) byteVal2[i] = 0x24; //for tx power track byteVal3[i] = (u8)( (TxAGC2_tmp & (0xff<<(i*8))) >>(i*8) ); if(byteVal3[i] > 0x24) byteVal3[i] = 0x24; } if(priv->rf_type == RF_2T4R) //Only 2T4R you have to care the Antenna Tx Power offset { // check antenna C over the max index 0x24 if(priv->RF_C_TxPwDiff > 0) { for(i=0; i<4; i++) { if( (byteVal1[i] + (u8)priv->RF_C_TxPwDiff) > 0x24) byteVal1[i] = 0x24 - priv->RF_C_TxPwDiff; if( (byteVal2[i] + (u8)priv->RF_C_TxPwDiff) > 0x24) byteVal2[i] = 0x24 - priv->RF_C_TxPwDiff; if( (byteVal3[i] + (u8)priv->RF_C_TxPwDiff) > 0x24) byteVal3[i] = 0x24 - priv->RF_C_TxPwDiff; } } } TxAGC1 = (byteVal1[3]<<24) | (byteVal1[2]<<16) |(byteVal1[1]<<8) |byteVal1[0]; TxAGC2 = (byteVal2[3]<<24) | (byteVal2[2]<<16) |(byteVal2[1]<<8) |byteVal2[0]; //for tx power track TxAGC2_tmp = (byteVal3[3]<<24) | (byteVal3[2]<<16) |(byteVal3[1]<<8) |byteVal3[0]; priv->Pwr_Track = TxAGC2_tmp; //DbgPrint("TxAGC2_tmp = 0x%x\n", TxAGC2_tmp); //DbgPrint("TxAGC1/TxAGC2 = 0x%x/0x%x\n", TxAGC1, TxAGC2); write_nic_dword(dev, MCS_TXAGC, TxAGC1); write_nic_dword(dev, MCS_TXAGC+4, TxAGC2); #else #ifdef RTL8192E u32 writeVal, powerBase0, powerBase1, writeVal_tmp; u8 index = 0; u16 RegOffset[6] = {0xe00, 0xe04, 0xe10, 0xe14, 0xe18, 0xe1c}; u8 byte0, byte1, byte2, byte3; powerBase0 = powerlevel + priv->LegacyHTTxPowerDiff; //OFDM rates powerBase0 = (powerBase0<<24) | (powerBase0<<16) |(powerBase0<<8) |powerBase0; powerBase1 = powerlevel; //MCS rates powerBase1 = (powerBase1<<24) | (powerBase1<<16) |(powerBase1<<8) |powerBase1; for(index=0; index<6; index++) { writeVal = priv->MCSTxPowerLevelOriginalOffset[index] + ((index<2)?powerBase0:powerBase1); byte0 = (u8)(writeVal & 0x7f); byte1 = (u8)((writeVal & 0x7f00)>>8); byte2 = (u8)((writeVal & 0x7f0000)>>16); byte3 = (u8)((writeVal & 0x7f000000)>>24); if(byte0 > 0x24) // Max power index = 0x24 byte0 = 0x24; if(byte1 > 0x24) byte1 = 0x24; if(byte2 > 0x24) byte2 = 0x24; if(byte3 > 0x24) byte3 = 0x24; if(index == 3) { writeVal_tmp = (byte3<<24) | (byte2<<16) |(byte1<<8) |byte0; priv->Pwr_Track = writeVal_tmp; } if(priv->bDynamicTxHighPower == true) //Add by Jacken 2008/03/06 //when DM implement, add this { writeVal = 0x03030303; } else { writeVal = (byte3<<24) | (byte2<<16) |(byte1<<8) |byte0; } rtl8192_setBBreg(dev, RegOffset[index], 0x7f7f7f7f, writeVal); } #endif #endif return; } #define MAX_DOZE_WAITING_TIMES_9x 64 static bool SetRFPowerState8190( struct net_device* dev, RT_RF_POWER_STATE eRFPowerState ) { struct r8192_priv *priv = ieee80211_priv(dev); PRT_POWER_SAVE_CONTROL pPSC = (PRT_POWER_SAVE_CONTROL)(&(priv->ieee80211->PowerSaveControl)); bool bResult = true; //u8 eRFPath; u8 i = 0, QueueID = 0; ptx_ring head=NULL,tail=NULL; if(priv->SetRFPowerStateInProgress == true) return false; RT_TRACE(COMP_POWER, "===========> SetRFPowerState8190()!\n"); priv->SetRFPowerStateInProgress = true; switch(priv->rf_chip) { case RF_8256: switch( eRFPowerState ) { case eRfOn: RT_TRACE(COMP_POWER, "SetRFPowerState8190() eRfOn !\n"); //RXTX enable control: On //for(eRFPath = 0; eRFPath NumTotalRFPath; eRFPath++) // PHY_SetRFReg(Adapter, (RF90_RADIO_PATH_E)eRFPath, 0x4, 0xC00, 0x2); #ifdef RTL8190P if(priv->rf_type == RF_2T4R) { //enable RF-Chip A/B rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4] //enable RF-Chip C/D rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4] //analog to digital on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0xf);// 0x88c[11:8] //digital to analog on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e0, 0xf); // 0x880[8:5] //rx antenna on rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0xf);// 0xc04[3:0] //rx antenna on rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0xf);// 0xd04[3:0] //analog to digital part2 on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e00, 0xf); // 0x880[12:9] } else if(priv->rf_type == RF_1T2R) //RF-C, RF-D { //enable RF-Chip C/D rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4] //analog to digital on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xc00, 0x3);// 0x88c[11:10] //digital to analog on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x180, 0x3); // 0x880[8:7] //rx antenna on rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xc, 0x3);// 0xc04[3:2] //rx antenna on rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xc, 0x3);// 0xd04[3:2] //analog to digital part2 on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1800, 0x3); // 0x880[12:11] } #else write_nic_byte(dev, ANAPAR, 0x37);//160MHz write_nic_byte(dev, MacBlkCtrl, 0x17); // 0x403 mdelay(1); //enable clock 80/88 MHz priv->bHwRfOffAction = 0; //} // Baseband reset 2008.09.30 add write_nic_byte(dev, BB_RESET, (read_nic_byte(dev, BB_RESET)|BIT0)); //2 AFE // 2008.09.30 add rtl8192_setBBreg(dev, rFPGA0_AnalogParameter2, 0x20000000, 0x1); // 0x884 //analog to digital part2 on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); // 0x880[6:5] //digital to analog on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x98, 0x13); // 0x880[4:3] //analog to digital on rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf03, 0xf03);// 0x88c[9:8] //rx antenna on //PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, 0x3, 0x3);// 0xc04[1:0] //rx antenna on 2008.09.30 mark //PHY_SetBBReg(Adapter, rOFDM1_TRxPathEnable, 0x3, 0x3);// 0xd04[1:0] //2 RF //enable RF-Chip A/B rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4] rtl8192_setBBreg(dev, rFPGA0_XB_RFInterfaceOE, BIT4, 0x1); // 0x864[4] #endif break; // // In current solution, RFSleep=RFOff in order to save power under 802.11 power save. // By Bruce, 2008-01-16. // case eRfSleep: case eRfOff: RT_TRACE(COMP_POWER, "SetRFPowerState8190() eRfOff/Sleep !\n"); if (pPSC->bLeisurePs) { for(QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) { switch(QueueID) { case MGNT_QUEUE: tail=priv->txmapringtail; head=priv->txmapringhead; break; case BK_QUEUE: tail=priv->txbkpringtail; head=priv->txbkpringhead; break; case BE_QUEUE: tail=priv->txbepringtail; head=priv->txbepringhead; break; case VI_QUEUE: tail=priv->txvipringtail; head=priv->txvipringhead; break; case VO_QUEUE: tail=priv->txvopringtail; head=priv->txvopringhead; break; default: tail=head=NULL; break; } if(tail == head) { //DbgPrint("QueueID = %d", QueueID); QueueID++; continue; } else { RT_TRACE(COMP_POWER, "eRf Off/Sleep: %d times BusyQueue[%d] !=0 before doze!\n", (i+1), QueueID); udelay(10); i++; } if(i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! SetRFPowerState8190(): eRfOff: %d times BusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID); break; } } } #ifdef RTL8190P if(priv->rf_type == RF_2T4R) { //disable RF-Chip A/B rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0); // 0x860[4] } //disable RF-Chip C/D rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x0); // 0x868[4] //analog to digital off, for power save rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8] //digital to analog off, for power save rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e0, 0x0); // 0x880[8:5] //rx antenna off rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);// 0xc04[3:0] //rx antenna off rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);// 0xd04[3:0] //analog to digital part2 off, for power save rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e00, 0x0); // 0x880[12:9] #else //8192E //2 RF //disable RF-Chip A/B rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0); // 0x860[4] rtl8192_setBBreg(dev, rFPGA0_XB_RFInterfaceOE, BIT4, 0x0); // 0x864[4] //2 AFE //analog to digital off, for power save //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8] rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf03, 0x0); // 2008.09.30 Modify //digital to analog off, for power save //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter1, 0x18, 0x0); // 0x880[4:3] rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x98, 0x0); // 0x880 2008.09.30 Modify //rx antenna off 2008.09.30 mark //PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, 0xf, 0x0);// 0xc04[3:0] //rx antenna off 2008.09.30 mark //PHY_SetBBReg(Adapter, rOFDM1_TRxPathEnable, 0xf, 0x0);// 0xd04[3:0] //analog to digital part2 off, for power save rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0); // 0x880[6:5] // 2008.09.30 add rtl8192_setBBreg(dev, rFPGA0_AnalogParameter2, 0x20000000, 0x0); // 0x884 //disable clock 80/88 MHz 2008.09.30 mark //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter1, 0x4, 0x0); // 0x880[2] //2 BB // Baseband reset 2008.09.30 add write_nic_byte(dev, BB_RESET, (read_nic_byte(dev, BB_RESET)|BIT0)); // 0x101 //MAC: off write_nic_byte(dev, MacBlkCtrl, 0x0); // 0x403 //slow down cpu/lbus clock from 160MHz to Lower write_nic_byte(dev, ANAPAR, 0x07); // 0x 17 40MHz priv->bHwRfOffAction = 0; //} #endif break; default: bResult = false; RT_TRACE(COMP_ERR, "SetRFPowerState8190(): unknown state to set: 0x%X!!!\n", eRFPowerState); break; } break; default: RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n"); break; } if(bResult) { // Update current RF state variable. priv->ieee80211->eRFPowerState = eRFPowerState; switch(priv->rf_chip ) { case RF_8256: switch(priv->ieee80211->eRFPowerState) { case eRfOff: // //If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015 // if(priv->ieee80211->RfOffReason==RF_CHANGE_BY_IPS ) { #ifdef TO_DO Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK); #endif } else { // Turn off LED if RF is not ON. #ifdef TO_DO Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF); #endif } break; case eRfOn: // Turn on RF we are still linked, which might happen when // we quickly turn off and on HW RF. 2006.05.12, by rcnjko. if( priv->ieee80211->state == IEEE80211_LINKED) { #ifdef TO_DO Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK); #endif } else { // Turn off LED if RF is not ON. #ifdef TO_DO Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK); #endif } break; default: // do nothing. break; }// Switch RF state break; default: RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n"); break; }// Switch RFChipID } priv->SetRFPowerStateInProgress = false; RT_TRACE(COMP_POWER, "<=========== SetRFPowerState8190() bResult = %d!\n", bResult); return bResult; } // // Description: // Change RF power state. // // Assumption: // This function must be executed in re-schdulable context, // ie. PASSIVE_LEVEL. // // 050823, by rcnjko. // static bool SetRFPowerState( struct net_device* dev, RT_RF_POWER_STATE eRFPowerState ) { struct r8192_priv *priv = ieee80211_priv(dev); bool bResult = false; RT_TRACE(COMP_RF,"---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState); #ifdef RTL8192E if(eRFPowerState == priv->ieee80211->eRFPowerState && priv->bHwRfOffAction == 0) #else if(eRFPowerState == priv->ieee80211->eRFPowerState) #endif { RT_TRACE(COMP_POWER, "<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState); return bResult; } bResult = SetRFPowerState8190(dev, eRFPowerState); RT_TRACE(COMP_POWER, "<--------- SetRFPowerState(): bResult(%d)\n", bResult); return bResult; } static void MgntDisconnectIBSS( struct net_device* dev ) { struct r8192_priv *priv = ieee80211_priv(dev); //RT_OP_MODE OpMode; u8 i; bool bFilterOutNonAssociatedBSSID = false; //IEEE80211_DEBUG(IEEE80211_DL_TRACE, "XXXXXXXXXX MgntDisconnect IBSS\n"); priv->ieee80211->state = IEEE80211_NOLINK; // PlatformZeroMemory( pMgntInfo->Bssid, 6 ); for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i]= 0x55; priv->OpMode = RT_OP_MODE_NO_LINK; write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); { RT_OP_MODE OpMode = priv->OpMode; //LED_CTL_MODE LedAction = LED_CTL_NO_LINK; u8 btMsr = read_nic_byte(dev, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; //LedAction = LED_CTL_LINK; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set seperate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; //LedAction = LED_CTL_LINK; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(dev, MSR, btMsr); // LED control //Adapter->HalFunc.LedControlHandler(Adapter, LedAction); } ieee80211_stop_send_beacons(priv->ieee80211); // If disconnect, clear RCR CBSSID bit bFilterOutNonAssociatedBSSID = false; { u32 RegRCR, Type; Type = bFilterOutNonAssociatedBSSID; RegRCR = read_nic_dword(dev,RCR); priv->ReceiveConfig = RegRCR; if (Type == true) RegRCR |= (RCR_CBSSID); else if (Type == false) RegRCR &= (~RCR_CBSSID); { write_nic_dword(dev, RCR,RegRCR); priv->ReceiveConfig = RegRCR; } } //MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE ); notify_wx_assoc_event(priv->ieee80211); } static void MlmeDisassociateRequest( struct net_device* dev, u8* asSta, u8 asRsn ) { struct r8192_priv *priv = ieee80211_priv(dev); u8 i; RemovePeerTS(priv->ieee80211, asSta); SendDisassociation( priv->ieee80211, asSta, asRsn ); if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL) { //ShuChen TODO: change media status. //ShuChen TODO: What to do when disassociate. priv->ieee80211->state = IEEE80211_NOLINK; //pMgntInfo->AsocTimestamp = 0; for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22; // pMgntInfo->mBrates.Length = 0; // Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) ); priv->OpMode = RT_OP_MODE_NO_LINK; { RT_OP_MODE OpMode = priv->OpMode; //LED_CTL_MODE LedAction = LED_CTL_NO_LINK; u8 btMsr = read_nic_byte(dev, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; //LedAction = LED_CTL_LINK; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set seperate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; //LedAction = LED_CTL_LINK; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(dev, MSR, btMsr); // LED control //Adapter->HalFunc.LedControlHandler(Adapter, LedAction); } ieee80211_disassociate(priv->ieee80211); write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); } } static void MgntDisconnectAP( struct net_device* dev, u8 asRsn ) { struct r8192_priv *priv = ieee80211_priv(dev); bool bFilterOutNonAssociatedBSSID = false; // // Commented out by rcnjko, 2005.01.27: // I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE(). // // //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success // SecClearAllKeys(Adapter); // In WPA WPA2 need to Clear all key ... because new key will set after new handshaking. #ifdef TO_DO if( pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch || (pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) ) // In CCKM mode will Clear key { SecClearAllKeys(Adapter); RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key...")) } #endif // If disconnect, clear RCR CBSSID bit bFilterOutNonAssociatedBSSID = false; { u32 RegRCR, Type; Type = bFilterOutNonAssociatedBSSID; //Adapter->HalFunc.GetHwRegHandler(Adapter, HW_VAR_RCR, (pu1Byte)(&RegRCR)); RegRCR = read_nic_dword(dev,RCR); priv->ReceiveConfig = RegRCR; if (Type == true) RegRCR |= (RCR_CBSSID); else if (Type == false) RegRCR &= (~RCR_CBSSID); write_nic_dword(dev, RCR,RegRCR); priv->ReceiveConfig = RegRCR; } // 2004.10.11, by rcnjko. //MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss ); MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn ); priv->ieee80211->state = IEEE80211_NOLINK; //pMgntInfo->AsocTimestamp = 0; } static bool MgntDisconnect( struct net_device* dev, u8 asRsn ) { struct r8192_priv *priv = ieee80211_priv(dev); // // Schedule an workitem to wake up for ps mode, 070109, by rcnjko. // #ifdef TO_DO if(pMgntInfo->mPss != eAwake) { // // Using AwkaeTimer to prevent mismatch ps state. // In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31. // // PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) ); PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 ); } #endif // Follow 8180 AP mode, 2005.05.30, by rcnjko. #ifdef TO_DO if(pMgntInfo->mActingAsAp) { RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> AP_DisassociateAllStation\n")); AP_DisassociateAllStation(Adapter, unspec_reason); return TRUE; } #endif // Indication of disassociation event. //DrvIFIndicateDisassociation(Adapter, asRsn); // In adhoc mode, update beacon frame. if( priv->ieee80211->state == IEEE80211_LINKED ) { if( priv->ieee80211->iw_mode == IW_MODE_ADHOC ) { //RT_TRACE(COMP_MLME, "MgntDisconnect() ===> MgntDisconnectIBSS\n"); MgntDisconnectIBSS(dev); } if( priv->ieee80211->iw_mode == IW_MODE_INFRA ) { // We clear key here instead of MgntDisconnectAP() because that // MgntActSet_802_11_DISASSOCIATE() is an interface called by OS, // e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is // used to handle disassociation related things to AP, e.g. send Disassoc // frame to AP. 2005.01.27, by rcnjko. //IEEE80211_DEBUG(IEEE80211_DL_TRACE,"MgntDisconnect() ===> MgntDisconnectAP\n"); MgntDisconnectAP(dev, asRsn); } // Inidicate Disconnect, 2005.02.23, by rcnjko. //MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE); } return true; } // // Description: // Chang RF Power State. // Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE. // // Assumption: // PASSIVE LEVEL. // bool MgntActSet_RF_State( struct net_device* dev, RT_RF_POWER_STATE StateToSet, RT_RF_CHANGE_SOURCE ChangeSource ) { struct r8192_priv *priv = ieee80211_priv(dev); bool bActionAllowed = false; bool bConnectBySSID = false; RT_RF_POWER_STATE rtState; u16 RFWaitCounter = 0; unsigned long flag; RT_TRACE(COMP_POWER, "===>MgntActSet_RF_State(): StateToSet(%d)\n",StateToSet); //1// //1//<1>Prevent the race condition of RF state change. //1// // Only one thread can change the RF state at one time, and others should wait to be executed. By Bruce, 2007-11-28. while(true) { spin_lock_irqsave(&priv->rf_ps_lock,flag); if(priv->RFChangeInProgress) { spin_unlock_irqrestore(&priv->rf_ps_lock,flag); RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet); // Set RF after the previous action is done. while(priv->RFChangeInProgress) { RFWaitCounter ++; RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter); udelay(1000); // 1 ms // Wait too long, return FALSE to avoid to be stuck here. if(RFWaitCounter > 100) { RT_TRACE(COMP_ERR, "MgntActSet_RF_State(): Wait too logn to set RF\n"); // TODO: Reset RF state? return false; } } } else { priv->RFChangeInProgress = true; spin_unlock_irqrestore(&priv->rf_ps_lock,flag); break; } } rtState = priv->ieee80211->eRFPowerState; switch(StateToSet) { case eRfOn: // // Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or // the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02. // priv->ieee80211->RfOffReason &= (~ChangeSource); if(! priv->ieee80211->RfOffReason) { priv->ieee80211->RfOffReason = 0; bActionAllowed = true; if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW ) { bConnectBySSID = true; } } else RT_TRACE(COMP_POWER, "MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", priv->ieee80211->RfOffReason, ChangeSource); break; case eRfOff: if (priv->ieee80211->RfOffReason > RF_CHANGE_BY_IPS) { // // 060808, Annie: // Disconnect to current BSS when radio off. Asked by QuanTa. // // Set all link status falg, by Bruce, 2007-06-26. //MgntActSet_802_11_DISASSOCIATE( Adapter, disas_lv_ss ); MgntDisconnect(dev, disas_lv_ss); // Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI. // 2007.05.28, by shien chang. } priv->ieee80211->RfOffReason |= ChangeSource; bActionAllowed = true; break; case eRfSleep: priv->ieee80211->RfOffReason |= ChangeSource; bActionAllowed = true; break; default: break; } if(bActionAllowed) { RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->ieee80211->RfOffReason); // Config HW to the specified mode. SetRFPowerState(dev, StateToSet); // Turn on RF. if(StateToSet == eRfOn) { //Adapter->HalFunc.HalEnableRxHandler(Adapter); if(bConnectBySSID) { //MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE ); } } // Turn off RF. else if(StateToSet == eRfOff) { //Adapter->HalFunc.HalDisableRxHandler(Adapter); } } else { RT_TRACE(COMP_POWER, "MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->ieee80211->RfOffReason); } // Release RF spinlock spin_lock_irqsave(&priv->rf_ps_lock,flag); priv->RFChangeInProgress = false; spin_unlock_irqrestore(&priv->rf_ps_lock,flag); RT_TRACE(COMP_POWER, "<===MgntActSet_RF_State()\n"); return bActionAllowed; }