/* * Copyright (C) 2006 Ben Skeggs. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /* * Authors: * Ben Skeggs */ #include "drmP.h" #include "drm.h" #include "nouveau_drv.h" #include "nouveau_drm.h" /* NVidia uses context objects to drive drawing operations. Context objects can be selected into 8 subchannels in the FIFO, and then used via DMA command buffers. A context object is referenced by a user defined handle (CARD32). The HW looks up graphics objects in a hash table in the instance RAM. An entry in the hash table consists of 2 CARD32. The first CARD32 contains the handle, the second one a bitfield, that contains the address of the object in instance RAM. The format of the second CARD32 seems to be: NV4 to NV30: 15: 0 instance_addr >> 4 17:16 engine (here uses 1 = graphics) 28:24 channel id (here uses 0) 31 valid (use 1) NV40: 15: 0 instance_addr >> 4 (maybe 19-0) 21:20 engine (here uses 1 = graphics) I'm unsure about the other bits, but using 0 seems to work. The key into the hash table depends on the object handle and channel id and is given as: */ static uint32_t nouveau_ramht_hash_handle(struct drm_device *dev, int channel, uint32_t handle) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t hash = 0; int i; NV_DEBUG(dev, "ch%d handle=0x%08x\n", channel, handle); for (i = 32; i > 0; i -= dev_priv->ramht_bits) { hash ^= (handle & ((1 << dev_priv->ramht_bits) - 1)); handle >>= dev_priv->ramht_bits; } if (dev_priv->card_type < NV_50) hash ^= channel << (dev_priv->ramht_bits - 4); hash <<= 3; NV_DEBUG(dev, "hash=0x%08x\n", hash); return hash; } static int nouveau_ramht_entry_valid(struct drm_device *dev, struct nouveau_gpuobj *ramht, uint32_t offset) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t ctx = nv_ro32(dev, ramht, (offset + 4)/4); if (dev_priv->card_type < NV_40) return ((ctx & NV_RAMHT_CONTEXT_VALID) != 0); return (ctx != 0); } static int nouveau_ramht_insert(struct drm_device *dev, struct nouveau_gpuobj_ref *ref) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; struct nouveau_channel *chan = ref->channel; struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL; uint32_t ctx, co, ho; if (!ramht) { NV_ERROR(dev, "No hash table!\n"); return -EINVAL; } if (dev_priv->card_type < NV_40) { ctx = NV_RAMHT_CONTEXT_VALID | (ref->instance >> 4) | (chan->id << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) | (ref->gpuobj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT); } else if (dev_priv->card_type < NV_50) { ctx = (ref->instance >> 4) | (chan->id << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) | (ref->gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT); } else { if (ref->gpuobj->engine == NVOBJ_ENGINE_DISPLAY) { ctx = (ref->instance << 10) | 2; } else { ctx = (ref->instance >> 4) | ((ref->gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT)); } } instmem->prepare_access(dev, true); co = ho = nouveau_ramht_hash_handle(dev, chan->id, ref->handle); do { if (!nouveau_ramht_entry_valid(dev, ramht, co)) { NV_DEBUG(dev, "insert ch%d 0x%08x: h=0x%08x, c=0x%08x\n", chan->id, co, ref->handle, ctx); nv_wo32(dev, ramht, (co + 0)/4, ref->handle); nv_wo32(dev, ramht, (co + 4)/4, ctx); list_add_tail(&ref->list, &chan->ramht_refs); instmem->finish_access(dev); return 0; } NV_DEBUG(dev, "collision ch%d 0x%08x: h=0x%08x\n", chan->id, co, nv_ro32(dev, ramht, co/4)); co += 8; if (co >= dev_priv->ramht_size) co = 0; } while (co != ho); instmem->finish_access(dev); NV_ERROR(dev, "RAMHT space exhausted. ch=%d\n", chan->id); return -ENOMEM; } static void nouveau_ramht_remove(struct drm_device *dev, struct nouveau_gpuobj_ref *ref) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; struct nouveau_channel *chan = ref->channel; struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL; uint32_t co, ho; if (!ramht) { NV_ERROR(dev, "No hash table!\n"); return; } instmem->prepare_access(dev, true); co = ho = nouveau_ramht_hash_handle(dev, chan->id, ref->handle); do { if (nouveau_ramht_entry_valid(dev, ramht, co) && (ref->handle == nv_ro32(dev, ramht, (co/4)))) { NV_DEBUG(dev, "remove ch%d 0x%08x: h=0x%08x, c=0x%08x\n", chan->id, co, ref->handle, nv_ro32(dev, ramht, (co + 4))); nv_wo32(dev, ramht, (co + 0)/4, 0x00000000); nv_wo32(dev, ramht, (co + 4)/4, 0x00000000); list_del(&ref->list); instmem->finish_access(dev); return; } co += 8; if (co >= dev_priv->ramht_size) co = 0; } while (co != ho); list_del(&ref->list); instmem->finish_access(dev); NV_ERROR(dev, "RAMHT entry not found. ch=%d, handle=0x%08x\n", chan->id, ref->handle); } int nouveau_gpuobj_new(struct drm_device *dev, struct nouveau_channel *chan, uint32_t size, int align, uint32_t flags, struct nouveau_gpuobj **gpuobj_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_engine *engine = &dev_priv->engine; struct nouveau_gpuobj *gpuobj; struct mem_block *pramin = NULL; int ret; NV_DEBUG(dev, "ch%d size=%u align=%d flags=0x%08x\n", chan ? chan->id : -1, size, align, flags); if (!dev_priv || !gpuobj_ret || *gpuobj_ret != NULL) return -EINVAL; gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; NV_DEBUG(dev, "gpuobj %p\n", gpuobj); gpuobj->flags = flags; gpuobj->im_channel = chan; list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); /* Choose between global instmem heap, and per-channel private * instmem heap. On ramin_heap) { NV_DEBUG(dev, "private heap\n"); pramin = chan->ramin_heap; } else if (dev_priv->card_type < NV_50) { NV_DEBUG(dev, "global heap fallback\n"); pramin = dev_priv->ramin_heap; } } else { NV_DEBUG(dev, "global heap\n"); pramin = dev_priv->ramin_heap; } if (!pramin) { NV_ERROR(dev, "No PRAMIN heap!\n"); return -EINVAL; } if (!chan) { ret = engine->instmem.populate(dev, gpuobj, &size); if (ret) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } } /* Allocate a chunk of the PRAMIN aperture */ gpuobj->im_pramin = nouveau_mem_alloc_block(pramin, size, drm_order(align), (struct drm_file *)-2, 0); if (!gpuobj->im_pramin) { nouveau_gpuobj_del(dev, &gpuobj); return -ENOMEM; } if (!chan) { ret = engine->instmem.bind(dev, gpuobj); if (ret) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } } if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { int i; engine->instmem.prepare_access(dev, true); for (i = 0; i < gpuobj->im_pramin->size; i += 4) nv_wo32(dev, gpuobj, i/4, 0); engine->instmem.finish_access(dev); } *gpuobj_ret = gpuobj; return 0; } int nouveau_gpuobj_early_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; NV_DEBUG(dev, "\n"); INIT_LIST_HEAD(&dev_priv->gpuobj_list); return 0; } int nouveau_gpuobj_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; NV_DEBUG(dev, "\n"); if (dev_priv->card_type < NV_50) { ret = nouveau_gpuobj_new_fake(dev, dev_priv->ramht_offset, ~0, dev_priv->ramht_size, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ALLOW_NO_REFS, &dev_priv->ramht, NULL); if (ret) return ret; } return 0; } void nouveau_gpuobj_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; NV_DEBUG(dev, "\n"); nouveau_gpuobj_del(dev, &dev_priv->ramht); } void nouveau_gpuobj_late_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj = NULL; struct list_head *entry, *tmp; NV_DEBUG(dev, "\n"); list_for_each_safe(entry, tmp, &dev_priv->gpuobj_list) { gpuobj = list_entry(entry, struct nouveau_gpuobj, list); NV_ERROR(dev, "gpuobj %p still exists at takedown, refs=%d\n", gpuobj, gpuobj->refcount); gpuobj->refcount = 0; nouveau_gpuobj_del(dev, &gpuobj); } } int nouveau_gpuobj_del(struct drm_device *dev, struct nouveau_gpuobj **pgpuobj) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_engine *engine = &dev_priv->engine; struct nouveau_gpuobj *gpuobj; int i; NV_DEBUG(dev, "gpuobj %p\n", pgpuobj ? *pgpuobj : NULL); if (!dev_priv || !pgpuobj || !(*pgpuobj)) return -EINVAL; gpuobj = *pgpuobj; if (gpuobj->refcount != 0) { NV_ERROR(dev, "gpuobj refcount is %d\n", gpuobj->refcount); return -EINVAL; } if (gpuobj->im_pramin && (gpuobj->flags & NVOBJ_FLAG_ZERO_FREE)) { engine->instmem.prepare_access(dev, true); for (i = 0; i < gpuobj->im_pramin->size; i += 4) nv_wo32(dev, gpuobj, i/4, 0); engine->instmem.finish_access(dev); } if (gpuobj->dtor) gpuobj->dtor(dev, gpuobj); if (gpuobj->im_backing && !(gpuobj->flags & NVOBJ_FLAG_FAKE)) engine->instmem.clear(dev, gpuobj); if (gpuobj->im_pramin) { if (gpuobj->flags & NVOBJ_FLAG_FAKE) kfree(gpuobj->im_pramin); else nouveau_mem_free_block(gpuobj->im_pramin); } list_del(&gpuobj->list); *pgpuobj = NULL; kfree(gpuobj); return 0; } static int nouveau_gpuobj_instance_get(struct drm_device *dev, struct nouveau_channel *chan, struct nouveau_gpuobj *gpuobj, uint32_t *inst) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *cpramin; /* card_type < NV_50) { *inst = gpuobj->im_pramin->start; return 0; } if (chan && gpuobj->im_channel != chan) { NV_ERROR(dev, "Channel mismatch: obj %d, ref %d\n", gpuobj->im_channel->id, chan->id); return -EINVAL; } /* NV50 channel-local instance */ if (chan) { cpramin = chan->ramin->gpuobj; *inst = gpuobj->im_pramin->start - cpramin->im_pramin->start; return 0; } /* NV50 global (VRAM) instance */ if (!gpuobj->im_channel) { /* ...from global heap */ if (!gpuobj->im_backing) { NV_ERROR(dev, "AII, no VRAM backing gpuobj\n"); return -EINVAL; } *inst = gpuobj->im_backing_start; return 0; } else { /* ...from local heap */ cpramin = gpuobj->im_channel->ramin->gpuobj; *inst = cpramin->im_backing_start + (gpuobj->im_pramin->start - cpramin->im_pramin->start); return 0; } return -EINVAL; } int nouveau_gpuobj_ref_add(struct drm_device *dev, struct nouveau_channel *chan, uint32_t handle, struct nouveau_gpuobj *gpuobj, struct nouveau_gpuobj_ref **ref_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj_ref *ref; uint32_t instance; int ret; NV_DEBUG(dev, "ch%d h=0x%08x gpuobj=%p\n", chan ? chan->id : -1, handle, gpuobj); if (!dev_priv || !gpuobj || (ref_ret && *ref_ret != NULL)) return -EINVAL; if (!chan && !ref_ret) return -EINVAL; if (gpuobj->engine == NVOBJ_ENGINE_SW && !gpuobj->im_pramin) { /* sw object */ instance = 0x40; } else { ret = nouveau_gpuobj_instance_get(dev, chan, gpuobj, &instance); if (ret) return ret; } ref = kzalloc(sizeof(*ref), GFP_KERNEL); if (!ref) return -ENOMEM; INIT_LIST_HEAD(&ref->list); ref->gpuobj = gpuobj; ref->channel = chan; ref->instance = instance; if (!ref_ret) { ref->handle = handle; ret = nouveau_ramht_insert(dev, ref); if (ret) { kfree(ref); return ret; } } else { ref->handle = ~0; *ref_ret = ref; } ref->gpuobj->refcount++; return 0; } int nouveau_gpuobj_ref_del(struct drm_device *dev, struct nouveau_gpuobj_ref **pref) { struct nouveau_gpuobj_ref *ref; NV_DEBUG(dev, "ref %p\n", pref ? *pref : NULL); if (!dev || !pref || *pref == NULL) return -EINVAL; ref = *pref; if (ref->handle != ~0) nouveau_ramht_remove(dev, ref); if (ref->gpuobj) { ref->gpuobj->refcount--; if (ref->gpuobj->refcount == 0) { if (!(ref->gpuobj->flags & NVOBJ_FLAG_ALLOW_NO_REFS)) nouveau_gpuobj_del(dev, &ref->gpuobj); } } *pref = NULL; kfree(ref); return 0; } int nouveau_gpuobj_new_ref(struct drm_device *dev, struct nouveau_channel *oc, struct nouveau_channel *rc, uint32_t handle, uint32_t size, int align, uint32_t flags, struct nouveau_gpuobj_ref **ref) { struct nouveau_gpuobj *gpuobj = NULL; int ret; ret = nouveau_gpuobj_new(dev, oc, size, align, flags, &gpuobj); if (ret) return ret; ret = nouveau_gpuobj_ref_add(dev, rc, handle, gpuobj, ref); if (ret) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } return 0; } int nouveau_gpuobj_ref_find(struct nouveau_channel *chan, uint32_t handle, struct nouveau_gpuobj_ref **ref_ret) { struct nouveau_gpuobj_ref *ref; struct list_head *entry, *tmp; list_for_each_safe(entry, tmp, &chan->ramht_refs) { ref = list_entry(entry, struct nouveau_gpuobj_ref, list); if (ref->handle == handle) { if (ref_ret) *ref_ret = ref; return 0; } } return -EINVAL; } int nouveau_gpuobj_new_fake(struct drm_device *dev, uint32_t p_offset, uint32_t b_offset, uint32_t size, uint32_t flags, struct nouveau_gpuobj **pgpuobj, struct nouveau_gpuobj_ref **pref) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj = NULL; int i; NV_DEBUG(dev, "p_offset=0x%08x b_offset=0x%08x size=0x%08x flags=0x%08x\n", p_offset, b_offset, size, flags); gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; NV_DEBUG(dev, "gpuobj %p\n", gpuobj); gpuobj->im_channel = NULL; gpuobj->flags = flags | NVOBJ_FLAG_FAKE; list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); if (p_offset != ~0) { gpuobj->im_pramin = kzalloc(sizeof(struct mem_block), GFP_KERNEL); if (!gpuobj->im_pramin) { nouveau_gpuobj_del(dev, &gpuobj); return -ENOMEM; } gpuobj->im_pramin->start = p_offset; gpuobj->im_pramin->size = size; } if (b_offset != ~0) { gpuobj->im_backing = (struct nouveau_bo *)-1; gpuobj->im_backing_start = b_offset; } if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { dev_priv->engine.instmem.prepare_access(dev, true); for (i = 0; i < gpuobj->im_pramin->size; i += 4) nv_wo32(dev, gpuobj, i/4, 0); dev_priv->engine.instmem.finish_access(dev); } if (pref) { i = nouveau_gpuobj_ref_add(dev, NULL, 0, gpuobj, pref); if (i) { nouveau_gpuobj_del(dev, &gpuobj); return i; } } if (pgpuobj) *pgpuobj = gpuobj; return 0; } static uint32_t nouveau_gpuobj_class_instmem_size(struct drm_device *dev, int class) { struct drm_nouveau_private *dev_priv = dev->dev_private; /*XXX: dodgy hack for now */ if (dev_priv->card_type >= NV_50) return 24; if (dev_priv->card_type >= NV_40) return 32; return 16; } /* DMA objects are used to reference a piece of memory in the framebuffer, PCI or AGP address space. Each object is 16 bytes big and looks as follows: entry[0] 11:0 class (seems like I can always use 0 here) 12 page table present? 13 page entry linear? 15:14 access: 0 rw, 1 ro, 2 wo 17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP 31:20 dma adjust (bits 0-11 of the address) entry[1] dma limit (size of transfer) entry[X] 1 0 readonly, 1 readwrite 31:12 dma frame address of the page (bits 12-31 of the address) entry[N] page table terminator, same value as the first pte, as does nvidia rivatv uses 0xffffffff Non linear page tables need a list of frame addresses afterwards, the rivatv project has some info on this. The method below creates a DMA object in instance RAM and returns a handle to it that can be used to set up context objects. */ int nouveau_gpuobj_dma_new(struct nouveau_channel *chan, int class, uint64_t offset, uint64_t size, int access, int target, struct nouveau_gpuobj **gpuobj) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; int ret; NV_DEBUG(dev, "ch%d class=0x%04x offset=0x%llx size=0x%llx\n", chan->id, class, offset, size); NV_DEBUG(dev, "access=%d target=%d\n", access, target); switch (target) { case NV_DMA_TARGET_AGP: offset += dev_priv->gart_info.aper_base; break; default: break; } ret = nouveau_gpuobj_new(dev, chan, nouveau_gpuobj_class_instmem_size(dev, class), 16, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE, gpuobj); if (ret) { NV_ERROR(dev, "Error creating gpuobj: %d\n", ret); return ret; } instmem->prepare_access(dev, true); if (dev_priv->card_type < NV_50) { uint32_t frame, adjust, pte_flags = 0; if (access != NV_DMA_ACCESS_RO) pte_flags |= (1<<1); adjust = offset & 0x00000fff; frame = offset & ~0x00000fff; nv_wo32(dev, *gpuobj, 0, ((1<<12) | (1<<13) | (adjust << 20) | (access << 14) | (target << 16) | class)); nv_wo32(dev, *gpuobj, 1, size - 1); nv_wo32(dev, *gpuobj, 2, frame | pte_flags); nv_wo32(dev, *gpuobj, 3, frame | pte_flags); } else { uint64_t limit = offset + size - 1; uint32_t flags0, flags5; if (target == NV_DMA_TARGET_VIDMEM) { flags0 = 0x00190000; flags5 = 0x00010000; } else { flags0 = 0x7fc00000; flags5 = 0x00080000; } nv_wo32(dev, *gpuobj, 0, flags0 | class); nv_wo32(dev, *gpuobj, 1, lower_32_bits(limit)); nv_wo32(dev, *gpuobj, 2, lower_32_bits(offset)); nv_wo32(dev, *gpuobj, 3, ((upper_32_bits(limit) & 0xff) << 24) | (upper_32_bits(offset) & 0xff)); nv_wo32(dev, *gpuobj, 5, flags5); } instmem->finish_access(dev); (*gpuobj)->engine = NVOBJ_ENGINE_SW; (*gpuobj)->class = class; return 0; } int nouveau_gpuobj_gart_dma_new(struct nouveau_channel *chan, uint64_t offset, uint64_t size, int access, struct nouveau_gpuobj **gpuobj, uint32_t *o_ret) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; if (dev_priv->gart_info.type == NOUVEAU_GART_AGP || (dev_priv->card_type >= NV_50 && dev_priv->gart_info.type == NOUVEAU_GART_SGDMA)) { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, offset + dev_priv->vm_gart_base, size, access, NV_DMA_TARGET_AGP, gpuobj); if (o_ret) *o_ret = 0; } else if (dev_priv->gart_info.type == NOUVEAU_GART_SGDMA) { *gpuobj = dev_priv->gart_info.sg_ctxdma; if (offset & ~0xffffffffULL) { NV_ERROR(dev, "obj offset exceeds 32-bits\n"); return -EINVAL; } if (o_ret) *o_ret = (uint32_t)offset; ret = (*gpuobj != NULL) ? 0 : -EINVAL; } else { NV_ERROR(dev, "Invalid GART type %d\n", dev_priv->gart_info.type); return -EINVAL; } return ret; } /* Context objects in the instance RAM have the following structure. * On NV40 they are 32 byte long, on NV30 and smaller 16 bytes. NV4 - NV30: entry[0] 11:0 class 12 chroma key enable 13 user clip enable 14 swizzle enable 17:15 patch config: scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre 18 synchronize enable 19 endian: 1 big, 0 little 21:20 dither mode 23 single step enable 24 patch status: 0 invalid, 1 valid 25 context_surface 0: 1 valid 26 context surface 1: 1 valid 27 context pattern: 1 valid 28 context rop: 1 valid 29,30 context beta, beta4 entry[1] 7:0 mono format 15:8 color format 31:16 notify instance address entry[2] 15:0 dma 0 instance address 31:16 dma 1 instance address entry[3] dma method traps NV40: No idea what the exact format is. Here's what can be deducted: entry[0]: 11:0 class (maybe uses more bits here?) 17 user clip enable 21:19 patch config 25 patch status valid ? entry[1]: 15:0 DMA notifier (maybe 20:0) entry[2]: 15:0 DMA 0 instance (maybe 20:0) 24 big endian entry[3]: 15:0 DMA 1 instance (maybe 20:0) entry[4]: entry[5]: set to 0? */ int nouveau_gpuobj_gr_new(struct nouveau_channel *chan, int class, struct nouveau_gpuobj **gpuobj) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; NV_DEBUG(dev, "ch%d class=0x%04x\n", chan->id, class); ret = nouveau_gpuobj_new(dev, chan, nouveau_gpuobj_class_instmem_size(dev, class), 16, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE, gpuobj); if (ret) { NV_ERROR(dev, "Error creating gpuobj: %d\n", ret); return ret; } dev_priv->engine.instmem.prepare_access(dev, true); if (dev_priv->card_type >= NV_50) { nv_wo32(dev, *gpuobj, 0, class); nv_wo32(dev, *gpuobj, 5, 0x00010000); } else { switch (class) { case NV_CLASS_NULL: nv_wo32(dev, *gpuobj, 0, 0x00001030); nv_wo32(dev, *gpuobj, 1, 0xFFFFFFFF); break; default: if (dev_priv->card_type >= NV_40) { nv_wo32(dev, *gpuobj, 0, class); #ifdef __BIG_ENDIAN nv_wo32(dev, *gpuobj, 2, 0x01000000); #endif } else { #ifdef __BIG_ENDIAN nv_wo32(dev, *gpuobj, 0, class | 0x00080000); #else nv_wo32(dev, *gpuobj, 0, class); #endif } } } dev_priv->engine.instmem.finish_access(dev); (*gpuobj)->engine = NVOBJ_ENGINE_GR; (*gpuobj)->class = class; return 0; } int nouveau_gpuobj_sw_new(struct nouveau_channel *chan, int class, struct nouveau_gpuobj **gpuobj_ret) { struct drm_nouveau_private *dev_priv; struct nouveau_gpuobj *gpuobj; if (!chan || !gpuobj_ret || *gpuobj_ret != NULL) return -EINVAL; dev_priv = chan->dev->dev_private; gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; gpuobj->engine = NVOBJ_ENGINE_SW; gpuobj->class = class; list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); *gpuobj_ret = gpuobj; return 0; } static int nouveau_gpuobj_channel_init_pramin(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *pramin = NULL; uint32_t size; uint32_t base; int ret; NV_DEBUG(dev, "ch%d\n", chan->id); /* Base amount for object storage (4KiB enough?) */ size = 0x1000; base = 0; /* PGRAPH context */ if (dev_priv->card_type == NV_50) { /* Various fixed table thingos */ size += 0x1400; /* mostly unknown stuff */ size += 0x4000; /* vm pd */ base = 0x6000; /* RAMHT, not sure about setting size yet, 32KiB to be safe */ size += 0x8000; /* RAMFC */ size += 0x1000; /* PGRAPH context */ size += 0x70000; } NV_DEBUG(dev, "ch%d PRAMIN size: 0x%08x bytes, base alloc=0x%08x\n", chan->id, size, base); ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0, size, 0x1000, 0, &chan->ramin); if (ret) { NV_ERROR(dev, "Error allocating channel PRAMIN: %d\n", ret); return ret; } pramin = chan->ramin->gpuobj; ret = nouveau_mem_init_heap(&chan->ramin_heap, pramin->im_pramin->start + base, size); if (ret) { NV_ERROR(dev, "Error creating PRAMIN heap: %d\n", ret); nouveau_gpuobj_ref_del(dev, &chan->ramin); return ret; } return 0; } int nouveau_gpuobj_channel_init(struct nouveau_channel *chan, uint32_t vram_h, uint32_t tt_h) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; struct nouveau_gpuobj *vram = NULL, *tt = NULL; int ret, i; INIT_LIST_HEAD(&chan->ramht_refs); NV_DEBUG(dev, "ch%d vram=0x%08x tt=0x%08x\n", chan->id, vram_h, tt_h); /* Reserve a block of PRAMIN for the channel *XXX: maybe on card_type == NV_50) { ret = nouveau_gpuobj_channel_init_pramin(chan); if (ret) { NV_ERROR(dev, "init pramin\n"); return ret; } } /* NV50 VM * - Allocate per-channel page-directory * - Map GART and VRAM into the channel's address space at the * locations determined during init. */ if (dev_priv->card_type >= NV_50) { uint32_t vm_offset, pde; instmem->prepare_access(dev, true); vm_offset = (dev_priv->chipset & 0xf0) == 0x50 ? 0x1400 : 0x200; vm_offset += chan->ramin->gpuobj->im_pramin->start; ret = nouveau_gpuobj_new_fake(dev, vm_offset, ~0, 0x4000, 0, &chan->vm_pd, NULL); if (ret) { instmem->finish_access(dev); return ret; } for (i = 0; i < 0x4000; i += 8) { nv_wo32(dev, chan->vm_pd, (i+0)/4, 0x00000000); nv_wo32(dev, chan->vm_pd, (i+4)/4, 0xdeadcafe); } pde = (dev_priv->vm_gart_base / (512*1024*1024)) * 2; ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->gart_info.sg_ctxdma, &chan->vm_gart_pt); if (ret) { instmem->finish_access(dev); return ret; } nv_wo32(dev, chan->vm_pd, pde++, chan->vm_gart_pt->instance | 0x03); nv_wo32(dev, chan->vm_pd, pde++, 0x00000000); pde = (dev_priv->vm_vram_base / (512*1024*1024)) * 2; for (i = 0; i < dev_priv->vm_vram_pt_nr; i++) { ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->vm_vram_pt[i], &chan->vm_vram_pt[i]); if (ret) { instmem->finish_access(dev); return ret; } nv_wo32(dev, chan->vm_pd, pde++, chan->vm_vram_pt[i]->instance | 0x61); nv_wo32(dev, chan->vm_pd, pde++, 0x00000000); } instmem->finish_access(dev); } /* RAMHT */ if (dev_priv->card_type < NV_50) { ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->ramht, &chan->ramht); if (ret) return ret; } else { ret = nouveau_gpuobj_new_ref(dev, chan, chan, 0, 0x8000, 16, NVOBJ_FLAG_ZERO_ALLOC, &chan->ramht); if (ret) return ret; } /* VRAM ctxdma */ if (dev_priv->card_type >= NV_50) { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->vm_end, NV_DMA_ACCESS_RW, NV_DMA_TARGET_AGP, &vram); if (ret) { NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret); return ret; } } else { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->fb_available_size, NV_DMA_ACCESS_RW, NV_DMA_TARGET_VIDMEM, &vram); if (ret) { NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret); return ret; } } ret = nouveau_gpuobj_ref_add(dev, chan, vram_h, vram, NULL); if (ret) { NV_ERROR(dev, "Error referencing VRAM ctxdma: %d\n", ret); return ret; } /* TT memory ctxdma */ if (dev_priv->card_type >= NV_50) { tt = vram; } else if (dev_priv->gart_info.type != NOUVEAU_GART_NONE) { ret = nouveau_gpuobj_gart_dma_new(chan, 0, dev_priv->gart_info.aper_size, NV_DMA_ACCESS_RW, &tt, NULL); } else { NV_ERROR(dev, "Invalid GART type %d\n", dev_priv->gart_info.type); ret = -EINVAL; } if (ret) { NV_ERROR(dev, "Error creating TT ctxdma: %d\n", ret); return ret; } ret = nouveau_gpuobj_ref_add(dev, chan, tt_h, tt, NULL); if (ret) { NV_ERROR(dev, "Error referencing TT ctxdma: %d\n", ret); return ret; } return 0; } void nouveau_gpuobj_channel_takedown(struct nouveau_channel *chan) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct drm_device *dev = chan->dev; struct list_head *entry, *tmp; struct nouveau_gpuobj_ref *ref; int i; NV_DEBUG(dev, "ch%d\n", chan->id); if (!chan->ramht_refs.next) return; list_for_each_safe(entry, tmp, &chan->ramht_refs) { ref = list_entry(entry, struct nouveau_gpuobj_ref, list); nouveau_gpuobj_ref_del(dev, &ref); } nouveau_gpuobj_ref_del(dev, &chan->ramht); nouveau_gpuobj_del(dev, &chan->vm_pd); nouveau_gpuobj_ref_del(dev, &chan->vm_gart_pt); for (i = 0; i < dev_priv->vm_vram_pt_nr; i++) nouveau_gpuobj_ref_del(dev, &chan->vm_vram_pt[i]); if (chan->ramin_heap) nouveau_mem_takedown(&chan->ramin_heap); if (chan->ramin) nouveau_gpuobj_ref_del(dev, &chan->ramin); } int nouveau_gpuobj_suspend(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj; int i; if (dev_priv->card_type < NV_50) { dev_priv->susres.ramin_copy = vmalloc(dev_priv->ramin_rsvd_vram); if (!dev_priv->susres.ramin_copy) return -ENOMEM; for (i = 0; i < dev_priv->ramin_rsvd_vram; i += 4) dev_priv->susres.ramin_copy[i/4] = nv_ri32(dev, i); return 0; } list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) { if (!gpuobj->im_backing || (gpuobj->flags & NVOBJ_FLAG_FAKE)) continue; gpuobj->im_backing_suspend = vmalloc(gpuobj->im_pramin->size); if (!gpuobj->im_backing_suspend) { nouveau_gpuobj_resume(dev); return -ENOMEM; } dev_priv->engine.instmem.prepare_access(dev, false); for (i = 0; i < gpuobj->im_pramin->size / 4; i++) gpuobj->im_backing_suspend[i] = nv_ro32(dev, gpuobj, i); dev_priv->engine.instmem.finish_access(dev); } return 0; } void nouveau_gpuobj_suspend_cleanup(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj; if (dev_priv->card_type < NV_50) { vfree(dev_priv->susres.ramin_copy); dev_priv->susres.ramin_copy = NULL; return; } list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) { if (!gpuobj->im_backing_suspend) continue; vfree(gpuobj->im_backing_suspend); gpuobj->im_backing_suspend = NULL; } } void nouveau_gpuobj_resume(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj; int i; if (dev_priv->card_type < NV_50) { for (i = 0; i < dev_priv->ramin_rsvd_vram; i += 4) nv_wi32(dev, i, dev_priv->susres.ramin_copy[i/4]); nouveau_gpuobj_suspend_cleanup(dev); return; } list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) { if (!gpuobj->im_backing_suspend) continue; dev_priv->engine.instmem.prepare_access(dev, true); for (i = 0; i < gpuobj->im_pramin->size / 4; i++) nv_wo32(dev, gpuobj, i, gpuobj->im_backing_suspend[i]); dev_priv->engine.instmem.finish_access(dev); } nouveau_gpuobj_suspend_cleanup(dev); } int nouveau_ioctl_grobj_alloc(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_nouveau_grobj_alloc *init = data; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; struct nouveau_pgraph_object_class *grc; struct nouveau_gpuobj *gr = NULL; struct nouveau_channel *chan; int ret; NOUVEAU_CHECK_INITIALISED_WITH_RETURN; NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(init->channel, file_priv, chan); if (init->handle == ~0) return -EINVAL; grc = pgraph->grclass; while (grc->id) { if (grc->id == init->class) break; grc++; } if (!grc->id) { NV_ERROR(dev, "Illegal object class: 0x%x\n", init->class); return -EPERM; } if (nouveau_gpuobj_ref_find(chan, init->handle, NULL) == 0) return -EEXIST; if (!grc->software) ret = nouveau_gpuobj_gr_new(chan, grc->id, &gr); else ret = nouveau_gpuobj_sw_new(chan, grc->id, &gr); if (ret) { NV_ERROR(dev, "Error creating object: %d (%d/0x%08x)\n", ret, init->channel, init->handle); return ret; } ret = nouveau_gpuobj_ref_add(dev, chan, init->handle, gr, NULL); if (ret) { NV_ERROR(dev, "Error referencing object: %d (%d/0x%08x)\n", ret, init->channel, init->handle); nouveau_gpuobj_del(dev, &gr); return ret; } return 0; } int nouveau_ioctl_gpuobj_free(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_nouveau_gpuobj_free *objfree = data; struct nouveau_gpuobj_ref *ref; struct nouveau_channel *chan; int ret; NOUVEAU_CHECK_INITIALISED_WITH_RETURN; NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(objfree->channel, file_priv, chan); ret = nouveau_gpuobj_ref_find(chan, objfree->handle, &ref); if (ret) return ret; nouveau_gpuobj_ref_del(dev, &ref); return 0; }