/* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_i2c.h" #include "nouveau_encoder.h" static int auxch_rd(struct drm_encoder *encoder, int address, uint8_t *buf, int size) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_i2c_chan *auxch; int ret; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return -ENODEV; ret = nouveau_dp_auxch(auxch, 9, address, buf, size); if (ret) return ret; return 0; } static int auxch_wr(struct drm_encoder *encoder, int address, uint8_t *buf, int size) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_i2c_chan *auxch; int ret; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return -ENODEV; ret = nouveau_dp_auxch(auxch, 8, address, buf, size); return ret; } static int nouveau_dp_lane_count_set(struct drm_encoder *encoder, uint8_t cmd) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); uint32_t tmp; int or = nv_encoder->or, link = !(nv_encoder->dcb->sorconf.link & 1); tmp = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link)); tmp &= ~(NV50_SOR_DP_CTRL_ENHANCED_FRAME_ENABLED | NV50_SOR_DP_CTRL_LANE_MASK); tmp |= ((1 << (cmd & DP_LANE_COUNT_MASK)) - 1) << 16; if (cmd & DP_LANE_COUNT_ENHANCED_FRAME_EN) tmp |= NV50_SOR_DP_CTRL_ENHANCED_FRAME_ENABLED; nv_wr32(dev, NV50_SOR_DP_CTRL(or, link), tmp); return auxch_wr(encoder, DP_LANE_COUNT_SET, &cmd, 1); } static int nouveau_dp_link_bw_set(struct drm_encoder *encoder, uint8_t cmd) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); uint32_t tmp; int reg = 0x614300 + (nv_encoder->or * 0x800); tmp = nv_rd32(dev, reg); tmp &= 0xfff3ffff; if (cmd == DP_LINK_BW_2_7) tmp |= 0x00040000; nv_wr32(dev, reg, tmp); return auxch_wr(encoder, DP_LINK_BW_SET, &cmd, 1); } static int nouveau_dp_link_train_set(struct drm_encoder *encoder, int pattern) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); uint32_t tmp; uint8_t cmd; int or = nv_encoder->or, link = !(nv_encoder->dcb->sorconf.link & 1); int ret; tmp = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link)); tmp &= ~NV50_SOR_DP_CTRL_TRAINING_PATTERN; tmp |= (pattern << 24); nv_wr32(dev, NV50_SOR_DP_CTRL(or, link), tmp); ret = auxch_rd(encoder, DP_TRAINING_PATTERN_SET, &cmd, 1); if (ret) return ret; cmd &= ~DP_TRAINING_PATTERN_MASK; cmd |= (pattern & DP_TRAINING_PATTERN_MASK); return auxch_wr(encoder, DP_TRAINING_PATTERN_SET, &cmd, 1); } static int nouveau_dp_max_voltage_swing(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct bit_displayport_encoder_table_entry *dpse; struct bit_displayport_encoder_table *dpe; int i, dpe_headerlen, max_vs = 0; dpe = nouveau_bios_dp_table(dev, nv_encoder->dcb, &dpe_headerlen); if (!dpe) return false; dpse = (void *)((char *)dpe + dpe_headerlen); for (i = 0; i < dpe_headerlen; i++, dpse++) { if (dpse->vs_level > max_vs) max_vs = dpse->vs_level; } return max_vs; } static int nouveau_dp_max_pre_emphasis(struct drm_encoder *encoder, int vs) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct bit_displayport_encoder_table_entry *dpse; struct bit_displayport_encoder_table *dpe; int i, dpe_headerlen, max_pre = 0; dpe = nouveau_bios_dp_table(dev, nv_encoder->dcb, &dpe_headerlen); if (!dpe) return false; dpse = (void *)((char *)dpe + dpe_headerlen); for (i = 0; i < dpe_headerlen; i++, dpse++) { if (dpse->vs_level != vs) continue; if (dpse->pre_level > max_pre) max_pre = dpse->pre_level; } return max_pre; } static bool nouveau_dp_link_train_adjust(struct drm_encoder *encoder, uint8_t *config) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct bit_displayport_encoder_table_entry *dpse; struct bit_displayport_encoder_table *dpe; int ret, i, dpe_headerlen, vs = 0, pre = 0; uint8_t request[2]; dpe = nouveau_bios_dp_table(dev, nv_encoder->dcb, &dpe_headerlen); if (!dpe) return false; dpse = (void *)((char *)dpe + dpe_headerlen); ret = auxch_rd(encoder, DP_ADJUST_REQUEST_LANE0_1, request, 2); if (ret) return false; NV_DEBUG_KMS(dev, "\t\tadjust 0x%02x 0x%02x\n", request[0], request[1]); /* Keep all lanes at the same level.. */ for (i = 0; i < nv_encoder->dp.link_nr; i++) { int lane_req = (request[i >> 1] >> ((i & 1) << 2)) & 0xf; int lane_vs = lane_req & 3; int lane_pre = (lane_req >> 2) & 3; if (lane_vs > vs) vs = lane_vs; if (lane_pre > pre) pre = lane_pre; } if (vs >= nouveau_dp_max_voltage_swing(encoder)) { vs = nouveau_dp_max_voltage_swing(encoder); vs |= 4; } if (pre >= nouveau_dp_max_pre_emphasis(encoder, vs & 3)) { pre = nouveau_dp_max_pre_emphasis(encoder, vs & 3); pre |= 4; } /* Update the configuration for all lanes.. */ for (i = 0; i < nv_encoder->dp.link_nr; i++) config[i] = (pre << 3) | vs; return true; } static bool nouveau_dp_link_train_commit(struct drm_encoder *encoder, uint8_t *config) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct bit_displayport_encoder_table_entry *dpse; struct bit_displayport_encoder_table *dpe; int or = nv_encoder->or, link = !(nv_encoder->dcb->sorconf.link & 1); int dpe_headerlen, ret, i; NV_DEBUG_KMS(dev, "\t\tconfig 0x%02x 0x%02x 0x%02x 0x%02x\n", config[0], config[1], config[2], config[3]); dpe = nouveau_bios_dp_table(dev, nv_encoder->dcb, &dpe_headerlen); if (!dpe) return false; dpse = (void *)((char *)dpe + dpe_headerlen); for (i = 0; i < dpe->record_nr; i++, dpse++) { if (dpse->vs_level == (config[0] & 3) && dpse->pre_level == ((config[0] >> 3) & 3)) break; } BUG_ON(i == dpe->record_nr); for (i = 0; i < nv_encoder->dp.link_nr; i++) { const int shift[4] = { 16, 8, 0, 24 }; uint32_t mask = 0xff << shift[i]; uint32_t reg0, reg1, reg2; reg0 = nv_rd32(dev, NV50_SOR_DP_UNK118(or, link)) & ~mask; reg0 |= (dpse->reg0 << shift[i]); reg1 = nv_rd32(dev, NV50_SOR_DP_UNK120(or, link)) & ~mask; reg1 |= (dpse->reg1 << shift[i]); reg2 = nv_rd32(dev, NV50_SOR_DP_UNK130(or, link)) & 0xffff00ff; reg2 |= (dpse->reg2 << 8); nv_wr32(dev, NV50_SOR_DP_UNK118(or, link), reg0); nv_wr32(dev, NV50_SOR_DP_UNK120(or, link), reg1); nv_wr32(dev, NV50_SOR_DP_UNK130(or, link), reg2); } ret = auxch_wr(encoder, DP_TRAINING_LANE0_SET, config, 4); if (ret) return false; return true; } bool nouveau_dp_link_train(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); uint8_t config[4]; uint8_t status[3]; bool cr_done, cr_max_vs, eq_done; int ret = 0, i, tries, voltage; NV_DEBUG_KMS(dev, "link training!!\n"); train: cr_done = eq_done = false; /* set link configuration */ NV_DEBUG_KMS(dev, "\tbegin train: bw %d, lanes %d\n", nv_encoder->dp.link_bw, nv_encoder->dp.link_nr); ret = nouveau_dp_link_bw_set(encoder, nv_encoder->dp.link_bw); if (ret) return false; config[0] = nv_encoder->dp.link_nr; if (nv_encoder->dp.dpcd_version >= 0x11) config[0] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; ret = nouveau_dp_lane_count_set(encoder, config[0]); if (ret) return false; /* clock recovery */ NV_DEBUG_KMS(dev, "\tbegin cr\n"); ret = nouveau_dp_link_train_set(encoder, DP_TRAINING_PATTERN_1); if (ret) goto stop; tries = 0; voltage = -1; memset(config, 0x00, sizeof(config)); for (;;) { if (!nouveau_dp_link_train_commit(encoder, config)) break; udelay(100); ret = auxch_rd(encoder, DP_LANE0_1_STATUS, status, 2); if (ret) break; NV_DEBUG_KMS(dev, "\t\tstatus: 0x%02x 0x%02x\n", status[0], status[1]); cr_done = true; cr_max_vs = false; for (i = 0; i < nv_encoder->dp.link_nr; i++) { int lane = (status[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) { cr_done = false; if (config[i] & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED) cr_max_vs = true; break; } } if ((config[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) { voltage = config[0] & DP_TRAIN_VOLTAGE_SWING_MASK; tries = 0; } if (cr_done || cr_max_vs || (++tries == 5)) break; if (!nouveau_dp_link_train_adjust(encoder, config)) break; } if (!cr_done) goto stop; /* channel equalisation */ NV_DEBUG_KMS(dev, "\tbegin eq\n"); ret = nouveau_dp_link_train_set(encoder, DP_TRAINING_PATTERN_2); if (ret) goto stop; for (tries = 0; tries <= 5; tries++) { udelay(400); ret = auxch_rd(encoder, DP_LANE0_1_STATUS, status, 3); if (ret) break; NV_DEBUG_KMS(dev, "\t\tstatus: 0x%02x 0x%02x\n", status[0], status[1]); eq_done = true; if (!(status[2] & DP_INTERLANE_ALIGN_DONE)) eq_done = false; for (i = 0; eq_done && i < nv_encoder->dp.link_nr; i++) { int lane = (status[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) { cr_done = false; break; } if (!(lane & DP_LANE_CHANNEL_EQ_DONE) || !(lane & DP_LANE_SYMBOL_LOCKED)) { eq_done = false; break; } } if (eq_done || !cr_done) break; if (!nouveau_dp_link_train_adjust(encoder, config) || !nouveau_dp_link_train_commit(encoder, config)) break; } stop: /* end link training */ ret = nouveau_dp_link_train_set(encoder, DP_TRAINING_PATTERN_DISABLE); if (ret) return false; /* retry at a lower setting, if possible */ if (!ret && !(eq_done && cr_done)) { NV_DEBUG_KMS(dev, "\twe failed\n"); if (nv_encoder->dp.link_bw != DP_LINK_BW_1_62) { NV_DEBUG_KMS(dev, "retry link training at low rate\n"); nv_encoder->dp.link_bw = DP_LINK_BW_1_62; goto train; } } return eq_done; } bool nouveau_dp_detect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; uint8_t dpcd[4]; int ret; ret = auxch_rd(encoder, 0x0000, dpcd, 4); if (ret) return false; NV_DEBUG_KMS(dev, "encoder: link_bw %d, link_nr %d\n" "display: link_bw %d, link_nr %d version 0x%02x\n", nv_encoder->dcb->dpconf.link_bw, nv_encoder->dcb->dpconf.link_nr, dpcd[1], dpcd[2] & 0x0f, dpcd[0]); nv_encoder->dp.dpcd_version = dpcd[0]; nv_encoder->dp.link_bw = dpcd[1]; if (nv_encoder->dp.link_bw != DP_LINK_BW_1_62 && !nv_encoder->dcb->dpconf.link_bw) nv_encoder->dp.link_bw = DP_LINK_BW_1_62; nv_encoder->dp.link_nr = dpcd[2] & 0xf; if (nv_encoder->dp.link_nr > nv_encoder->dcb->dpconf.link_nr) nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr; return true; } int nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr, uint8_t *data, int data_nr) { struct drm_device *dev = auxch->dev; uint32_t tmp, ctrl, stat = 0, data32[4] = {}; int ret = 0, i, index = auxch->rd; NV_DEBUG_KMS(dev, "ch %d cmd %d addr 0x%x len %d\n", index, cmd, addr, data_nr); tmp = nv_rd32(dev, NV50_AUXCH_CTRL(auxch->rd)); nv_wr32(dev, NV50_AUXCH_CTRL(auxch->rd), tmp | 0x00100000); tmp = nv_rd32(dev, NV50_AUXCH_CTRL(auxch->rd)); if (!(tmp & 0x01000000)) { NV_ERROR(dev, "expected bit 24 == 1, got 0x%08x\n", tmp); ret = -EIO; goto out; } for (i = 0; i < 3; i++) { tmp = nv_rd32(dev, NV50_AUXCH_STAT(auxch->rd)); if (tmp & NV50_AUXCH_STAT_STATE_READY) break; udelay(100); } if (i == 3) { ret = -EBUSY; goto out; } if (!(cmd & 1)) { memcpy(data32, data, data_nr); for (i = 0; i < 4; i++) { NV_DEBUG_KMS(dev, "wr %d: 0x%08x\n", i, data32[i]); nv_wr32(dev, NV50_AUXCH_DATA_OUT(index, i), data32[i]); } } nv_wr32(dev, NV50_AUXCH_ADDR(index), addr); ctrl = nv_rd32(dev, NV50_AUXCH_CTRL(index)); ctrl &= ~(NV50_AUXCH_CTRL_CMD | NV50_AUXCH_CTRL_LEN); ctrl |= (cmd << NV50_AUXCH_CTRL_CMD_SHIFT); ctrl |= ((data_nr - 1) << NV50_AUXCH_CTRL_LEN_SHIFT); for (i = 0; i < 16; i++) { nv_wr32(dev, NV50_AUXCH_CTRL(index), ctrl | 0x80000000); nv_wr32(dev, NV50_AUXCH_CTRL(index), ctrl); nv_wr32(dev, NV50_AUXCH_CTRL(index), ctrl | 0x00010000); if (!nv_wait(NV50_AUXCH_CTRL(index), 0x00010000, 0x00000000)) { NV_ERROR(dev, "expected bit 16 == 0, got 0x%08x\n", nv_rd32(dev, NV50_AUXCH_CTRL(index))); ret = -EBUSY; goto out; } udelay(400); stat = nv_rd32(dev, NV50_AUXCH_STAT(index)); if ((stat & NV50_AUXCH_STAT_REPLY_AUX) != NV50_AUXCH_STAT_REPLY_AUX_DEFER) break; } if (i == 16) { NV_ERROR(dev, "auxch DEFER too many times, bailing\n"); ret = -EREMOTEIO; goto out; } if (cmd & 1) { if ((stat & NV50_AUXCH_STAT_COUNT) != data_nr) { ret = -EREMOTEIO; goto out; } for (i = 0; i < 4; i++) { data32[i] = nv_rd32(dev, NV50_AUXCH_DATA_IN(index, i)); NV_DEBUG_KMS(dev, "rd %d: 0x%08x\n", i, data32[i]); } memcpy(data, data32, data_nr); } out: tmp = nv_rd32(dev, NV50_AUXCH_CTRL(auxch->rd)); nv_wr32(dev, NV50_AUXCH_CTRL(auxch->rd), tmp & ~0x00100000); tmp = nv_rd32(dev, NV50_AUXCH_CTRL(auxch->rd)); if (tmp & 0x01000000) { NV_ERROR(dev, "expected bit 24 == 0, got 0x%08x\n", tmp); ret = -EIO; } udelay(400); return ret ? ret : (stat & NV50_AUXCH_STAT_REPLY); } int nouveau_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adapter; struct drm_device *dev = auxch->dev; int ret = 0, cmd, addr = algo_data->address; uint8_t *buf; if (mode == MODE_I2C_READ) { cmd = AUX_I2C_READ; buf = read_byte; } else { cmd = (mode & MODE_I2C_READ) ? AUX_I2C_READ : AUX_I2C_WRITE; buf = &write_byte; } if (!(mode & MODE_I2C_STOP)) cmd |= AUX_I2C_MOT; if (mode & MODE_I2C_START) return 1; for (;;) { ret = nouveau_dp_auxch(auxch, cmd, addr, buf, 1); if (ret < 0) return ret; switch (ret & NV50_AUXCH_STAT_REPLY_I2C) { case NV50_AUXCH_STAT_REPLY_I2C_ACK: return 1; case NV50_AUXCH_STAT_REPLY_I2C_NACK: return -EREMOTEIO; case NV50_AUXCH_STAT_REPLY_I2C_DEFER: udelay(100); break; default: NV_ERROR(dev, "invalid auxch status: 0x%08x\n", ret); return -EREMOTEIO; } } }