mm: bdi: allow setting a maximum for the bdi dirty limit
[safe/jmp/linux-2.6] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    akpm@zip.com.au
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES     1024
46
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61         return ratelimit_pages + ratelimit_pages / 2;
62 }
63
64 /* The following parameters are exported via /proc/sys/vm */
65
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 10;
81
82 /*
83  * The interval between `kupdate'-style writebacks, in jiffies
84  */
85 int dirty_writeback_interval = 5 * HZ;
86
87 /*
88  * The longest number of jiffies for which data is allowed to remain dirty
89  */
90 int dirty_expire_interval = 30 * HZ;
91
92 /*
93  * Flag that makes the machine dump writes/reads and block dirtyings.
94  */
95 int block_dump;
96
97 /*
98  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99  * a full sync is triggered after this time elapses without any disk activity.
100  */
101 int laptop_mode;
102
103 EXPORT_SYMBOL(laptop_mode);
104
105 /* End of sysctl-exported parameters */
106
107
108 static void background_writeout(unsigned long _min_pages);
109
110 /*
111  * Scale the writeback cache size proportional to the relative writeout speeds.
112  *
113  * We do this by keeping a floating proportion between BDIs, based on page
114  * writeback completions [end_page_writeback()]. Those devices that write out
115  * pages fastest will get the larger share, while the slower will get a smaller
116  * share.
117  *
118  * We use page writeout completions because we are interested in getting rid of
119  * dirty pages. Having them written out is the primary goal.
120  *
121  * We introduce a concept of time, a period over which we measure these events,
122  * because demand can/will vary over time. The length of this period itself is
123  * measured in page writeback completions.
124  *
125  */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128
129 static unsigned long determine_dirtyable_memory(void);
130
131 /*
132  * couple the period to the dirty_ratio:
133  *
134  *   period/2 ~ roundup_pow_of_two(dirty limit)
135  */
136 static int calc_period_shift(void)
137 {
138         unsigned long dirty_total;
139
140         dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141         return 2 + ilog2(dirty_total - 1);
142 }
143
144 /*
145  * update the period when the dirty ratio changes.
146  */
147 int dirty_ratio_handler(struct ctl_table *table, int write,
148                 struct file *filp, void __user *buffer, size_t *lenp,
149                 loff_t *ppos)
150 {
151         int old_ratio = vm_dirty_ratio;
152         int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154                 int shift = calc_period_shift();
155                 prop_change_shift(&vm_completions, shift);
156                 prop_change_shift(&vm_dirties, shift);
157         }
158         return ret;
159 }
160
161 /*
162  * Increment the BDI's writeout completion count and the global writeout
163  * completion count. Called from test_clear_page_writeback().
164  */
165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166 {
167         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
168                               bdi->max_prop_frac);
169 }
170
171 static inline void task_dirty_inc(struct task_struct *tsk)
172 {
173         prop_inc_single(&vm_dirties, &tsk->dirties);
174 }
175
176 /*
177  * Obtain an accurate fraction of the BDI's portion.
178  */
179 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
180                 long *numerator, long *denominator)
181 {
182         if (bdi_cap_writeback_dirty(bdi)) {
183                 prop_fraction_percpu(&vm_completions, &bdi->completions,
184                                 numerator, denominator);
185         } else {
186                 *numerator = 0;
187                 *denominator = 1;
188         }
189 }
190
191 /*
192  * Clip the earned share of dirty pages to that which is actually available.
193  * This avoids exceeding the total dirty_limit when the floating averages
194  * fluctuate too quickly.
195  */
196 static void
197 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
198 {
199         long avail_dirty;
200
201         avail_dirty = dirty -
202                 (global_page_state(NR_FILE_DIRTY) +
203                  global_page_state(NR_WRITEBACK) +
204                  global_page_state(NR_UNSTABLE_NFS));
205
206         if (avail_dirty < 0)
207                 avail_dirty = 0;
208
209         avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
210                 bdi_stat(bdi, BDI_WRITEBACK);
211
212         *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
213 }
214
215 static inline void task_dirties_fraction(struct task_struct *tsk,
216                 long *numerator, long *denominator)
217 {
218         prop_fraction_single(&vm_dirties, &tsk->dirties,
219                                 numerator, denominator);
220 }
221
222 /*
223  * scale the dirty limit
224  *
225  * task specific dirty limit:
226  *
227  *   dirty -= (dirty/8) * p_{t}
228  */
229 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
230 {
231         long numerator, denominator;
232         long dirty = *pdirty;
233         u64 inv = dirty >> 3;
234
235         task_dirties_fraction(tsk, &numerator, &denominator);
236         inv *= numerator;
237         do_div(inv, denominator);
238
239         dirty -= inv;
240         if (dirty < *pdirty/2)
241                 dirty = *pdirty/2;
242
243         *pdirty = dirty;
244 }
245
246 /*
247  *
248  */
249 static DEFINE_SPINLOCK(bdi_lock);
250 static unsigned int bdi_min_ratio;
251
252 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
253 {
254         int ret = 0;
255         unsigned long flags;
256
257         spin_lock_irqsave(&bdi_lock, flags);
258         if (min_ratio > bdi->max_ratio) {
259                 ret = -EINVAL;
260         } else {
261                 min_ratio -= bdi->min_ratio;
262                 if (bdi_min_ratio + min_ratio < 100) {
263                         bdi_min_ratio += min_ratio;
264                         bdi->min_ratio += min_ratio;
265                 } else {
266                         ret = -EINVAL;
267                 }
268         }
269         spin_unlock_irqrestore(&bdi_lock, flags);
270
271         return ret;
272 }
273
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
275 {
276         unsigned long flags;
277         int ret = 0;
278
279         if (max_ratio > 100)
280                 return -EINVAL;
281
282         spin_lock_irqsave(&bdi_lock, flags);
283         if (bdi->min_ratio > max_ratio) {
284                 ret = -EINVAL;
285         } else {
286                 bdi->max_ratio = max_ratio;
287                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
288         }
289         spin_unlock_irqrestore(&bdi_lock, flags);
290
291         return ret;
292 }
293 EXPORT_SYMBOL(bdi_set_max_ratio);
294
295 /*
296  * Work out the current dirty-memory clamping and background writeout
297  * thresholds.
298  *
299  * The main aim here is to lower them aggressively if there is a lot of mapped
300  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
301  * pages.  It is better to clamp down on writers than to start swapping, and
302  * performing lots of scanning.
303  *
304  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
305  *
306  * We don't permit the clamping level to fall below 5% - that is getting rather
307  * excessive.
308  *
309  * We make sure that the background writeout level is below the adjusted
310  * clamping level.
311  */
312
313 static unsigned long highmem_dirtyable_memory(unsigned long total)
314 {
315 #ifdef CONFIG_HIGHMEM
316         int node;
317         unsigned long x = 0;
318
319         for_each_node_state(node, N_HIGH_MEMORY) {
320                 struct zone *z =
321                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
322
323                 x += zone_page_state(z, NR_FREE_PAGES)
324                         + zone_page_state(z, NR_INACTIVE)
325                         + zone_page_state(z, NR_ACTIVE);
326         }
327         /*
328          * Make sure that the number of highmem pages is never larger
329          * than the number of the total dirtyable memory. This can only
330          * occur in very strange VM situations but we want to make sure
331          * that this does not occur.
332          */
333         return min(x, total);
334 #else
335         return 0;
336 #endif
337 }
338
339 static unsigned long determine_dirtyable_memory(void)
340 {
341         unsigned long x;
342
343         x = global_page_state(NR_FREE_PAGES)
344                 + global_page_state(NR_INACTIVE)
345                 + global_page_state(NR_ACTIVE);
346
347         if (!vm_highmem_is_dirtyable)
348                 x -= highmem_dirtyable_memory(x);
349
350         return x + 1;   /* Ensure that we never return 0 */
351 }
352
353 void
354 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
355                  struct backing_dev_info *bdi)
356 {
357         int background_ratio;           /* Percentages */
358         int dirty_ratio;
359         long background;
360         long dirty;
361         unsigned long available_memory = determine_dirtyable_memory();
362         struct task_struct *tsk;
363
364         dirty_ratio = vm_dirty_ratio;
365         if (dirty_ratio < 5)
366                 dirty_ratio = 5;
367
368         background_ratio = dirty_background_ratio;
369         if (background_ratio >= dirty_ratio)
370                 background_ratio = dirty_ratio / 2;
371
372         background = (background_ratio * available_memory) / 100;
373         dirty = (dirty_ratio * available_memory) / 100;
374         tsk = current;
375         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
376                 background += background / 4;
377                 dirty += dirty / 4;
378         }
379         *pbackground = background;
380         *pdirty = dirty;
381
382         if (bdi) {
383                 u64 bdi_dirty;
384                 long numerator, denominator;
385
386                 /*
387                  * Calculate this BDI's share of the dirty ratio.
388                  */
389                 bdi_writeout_fraction(bdi, &numerator, &denominator);
390
391                 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
392                 bdi_dirty *= numerator;
393                 do_div(bdi_dirty, denominator);
394                 bdi_dirty += (dirty * bdi->min_ratio) / 100;
395                 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
396                         bdi_dirty = dirty * bdi->max_ratio / 100;
397
398                 *pbdi_dirty = bdi_dirty;
399                 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
400                 task_dirty_limit(current, pbdi_dirty);
401         }
402 }
403
404 /*
405  * balance_dirty_pages() must be called by processes which are generating dirty
406  * data.  It looks at the number of dirty pages in the machine and will force
407  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
408  * If we're over `background_thresh' then pdflush is woken to perform some
409  * writeout.
410  */
411 static void balance_dirty_pages(struct address_space *mapping)
412 {
413         long nr_reclaimable, bdi_nr_reclaimable;
414         long nr_writeback, bdi_nr_writeback;
415         long background_thresh;
416         long dirty_thresh;
417         long bdi_thresh;
418         unsigned long pages_written = 0;
419         unsigned long write_chunk = sync_writeback_pages();
420
421         struct backing_dev_info *bdi = mapping->backing_dev_info;
422
423         for (;;) {
424                 struct writeback_control wbc = {
425                         .bdi            = bdi,
426                         .sync_mode      = WB_SYNC_NONE,
427                         .older_than_this = NULL,
428                         .nr_to_write    = write_chunk,
429                         .range_cyclic   = 1,
430                 };
431
432                 get_dirty_limits(&background_thresh, &dirty_thresh,
433                                 &bdi_thresh, bdi);
434
435                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
436                                         global_page_state(NR_UNSTABLE_NFS);
437                 nr_writeback = global_page_state(NR_WRITEBACK);
438
439                 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
440                 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
441
442                 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
443                         break;
444
445                 /*
446                  * Throttle it only when the background writeback cannot
447                  * catch-up. This avoids (excessively) small writeouts
448                  * when the bdi limits are ramping up.
449                  */
450                 if (nr_reclaimable + nr_writeback <
451                                 (background_thresh + dirty_thresh) / 2)
452                         break;
453
454                 if (!bdi->dirty_exceeded)
455                         bdi->dirty_exceeded = 1;
456
457                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
458                  * Unstable writes are a feature of certain networked
459                  * filesystems (i.e. NFS) in which data may have been
460                  * written to the server's write cache, but has not yet
461                  * been flushed to permanent storage.
462                  */
463                 if (bdi_nr_reclaimable) {
464                         writeback_inodes(&wbc);
465                         pages_written += write_chunk - wbc.nr_to_write;
466                         get_dirty_limits(&background_thresh, &dirty_thresh,
467                                        &bdi_thresh, bdi);
468                 }
469
470                 /*
471                  * In order to avoid the stacked BDI deadlock we need
472                  * to ensure we accurately count the 'dirty' pages when
473                  * the threshold is low.
474                  *
475                  * Otherwise it would be possible to get thresh+n pages
476                  * reported dirty, even though there are thresh-m pages
477                  * actually dirty; with m+n sitting in the percpu
478                  * deltas.
479                  */
480                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
481                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
482                         bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
483                 } else if (bdi_nr_reclaimable) {
484                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
485                         bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
486                 }
487
488                 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
489                         break;
490                 if (pages_written >= write_chunk)
491                         break;          /* We've done our duty */
492
493                 congestion_wait(WRITE, HZ/10);
494         }
495
496         if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
497                         bdi->dirty_exceeded)
498                 bdi->dirty_exceeded = 0;
499
500         if (writeback_in_progress(bdi))
501                 return;         /* pdflush is already working this queue */
502
503         /*
504          * In laptop mode, we wait until hitting the higher threshold before
505          * starting background writeout, and then write out all the way down
506          * to the lower threshold.  So slow writers cause minimal disk activity.
507          *
508          * In normal mode, we start background writeout at the lower
509          * background_thresh, to keep the amount of dirty memory low.
510          */
511         if ((laptop_mode && pages_written) ||
512                         (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
513                                           + global_page_state(NR_UNSTABLE_NFS)
514                                           > background_thresh)))
515                 pdflush_operation(background_writeout, 0);
516 }
517
518 void set_page_dirty_balance(struct page *page, int page_mkwrite)
519 {
520         if (set_page_dirty(page) || page_mkwrite) {
521                 struct address_space *mapping = page_mapping(page);
522
523                 if (mapping)
524                         balance_dirty_pages_ratelimited(mapping);
525         }
526 }
527
528 /**
529  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
530  * @mapping: address_space which was dirtied
531  * @nr_pages_dirtied: number of pages which the caller has just dirtied
532  *
533  * Processes which are dirtying memory should call in here once for each page
534  * which was newly dirtied.  The function will periodically check the system's
535  * dirty state and will initiate writeback if needed.
536  *
537  * On really big machines, get_writeback_state is expensive, so try to avoid
538  * calling it too often (ratelimiting).  But once we're over the dirty memory
539  * limit we decrease the ratelimiting by a lot, to prevent individual processes
540  * from overshooting the limit by (ratelimit_pages) each.
541  */
542 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
543                                         unsigned long nr_pages_dirtied)
544 {
545         static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
546         unsigned long ratelimit;
547         unsigned long *p;
548
549         ratelimit = ratelimit_pages;
550         if (mapping->backing_dev_info->dirty_exceeded)
551                 ratelimit = 8;
552
553         /*
554          * Check the rate limiting. Also, we do not want to throttle real-time
555          * tasks in balance_dirty_pages(). Period.
556          */
557         preempt_disable();
558         p =  &__get_cpu_var(ratelimits);
559         *p += nr_pages_dirtied;
560         if (unlikely(*p >= ratelimit)) {
561                 *p = 0;
562                 preempt_enable();
563                 balance_dirty_pages(mapping);
564                 return;
565         }
566         preempt_enable();
567 }
568 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
569
570 void throttle_vm_writeout(gfp_t gfp_mask)
571 {
572         long background_thresh;
573         long dirty_thresh;
574
575         for ( ; ; ) {
576                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
577
578                 /*
579                  * Boost the allowable dirty threshold a bit for page
580                  * allocators so they don't get DoS'ed by heavy writers
581                  */
582                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
583
584                 if (global_page_state(NR_UNSTABLE_NFS) +
585                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
586                                 break;
587                 congestion_wait(WRITE, HZ/10);
588
589                 /*
590                  * The caller might hold locks which can prevent IO completion
591                  * or progress in the filesystem.  So we cannot just sit here
592                  * waiting for IO to complete.
593                  */
594                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
595                         break;
596         }
597 }
598
599 /*
600  * writeback at least _min_pages, and keep writing until the amount of dirty
601  * memory is less than the background threshold, or until we're all clean.
602  */
603 static void background_writeout(unsigned long _min_pages)
604 {
605         long min_pages = _min_pages;
606         struct writeback_control wbc = {
607                 .bdi            = NULL,
608                 .sync_mode      = WB_SYNC_NONE,
609                 .older_than_this = NULL,
610                 .nr_to_write    = 0,
611                 .nonblocking    = 1,
612                 .range_cyclic   = 1,
613         };
614
615         for ( ; ; ) {
616                 long background_thresh;
617                 long dirty_thresh;
618
619                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
620                 if (global_page_state(NR_FILE_DIRTY) +
621                         global_page_state(NR_UNSTABLE_NFS) < background_thresh
622                                 && min_pages <= 0)
623                         break;
624                 wbc.more_io = 0;
625                 wbc.encountered_congestion = 0;
626                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
627                 wbc.pages_skipped = 0;
628                 writeback_inodes(&wbc);
629                 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
630                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
631                         /* Wrote less than expected */
632                         if (wbc.encountered_congestion || wbc.more_io)
633                                 congestion_wait(WRITE, HZ/10);
634                         else
635                                 break;
636                 }
637         }
638 }
639
640 /*
641  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
642  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
643  * -1 if all pdflush threads were busy.
644  */
645 int wakeup_pdflush(long nr_pages)
646 {
647         if (nr_pages == 0)
648                 nr_pages = global_page_state(NR_FILE_DIRTY) +
649                                 global_page_state(NR_UNSTABLE_NFS);
650         return pdflush_operation(background_writeout, nr_pages);
651 }
652
653 static void wb_timer_fn(unsigned long unused);
654 static void laptop_timer_fn(unsigned long unused);
655
656 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
657 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
658
659 /*
660  * Periodic writeback of "old" data.
661  *
662  * Define "old": the first time one of an inode's pages is dirtied, we mark the
663  * dirtying-time in the inode's address_space.  So this periodic writeback code
664  * just walks the superblock inode list, writing back any inodes which are
665  * older than a specific point in time.
666  *
667  * Try to run once per dirty_writeback_interval.  But if a writeback event
668  * takes longer than a dirty_writeback_interval interval, then leave a
669  * one-second gap.
670  *
671  * older_than_this takes precedence over nr_to_write.  So we'll only write back
672  * all dirty pages if they are all attached to "old" mappings.
673  */
674 static void wb_kupdate(unsigned long arg)
675 {
676         unsigned long oldest_jif;
677         unsigned long start_jif;
678         unsigned long next_jif;
679         long nr_to_write;
680         struct writeback_control wbc = {
681                 .bdi            = NULL,
682                 .sync_mode      = WB_SYNC_NONE,
683                 .older_than_this = &oldest_jif,
684                 .nr_to_write    = 0,
685                 .nonblocking    = 1,
686                 .for_kupdate    = 1,
687                 .range_cyclic   = 1,
688         };
689
690         sync_supers();
691
692         oldest_jif = jiffies - dirty_expire_interval;
693         start_jif = jiffies;
694         next_jif = start_jif + dirty_writeback_interval;
695         nr_to_write = global_page_state(NR_FILE_DIRTY) +
696                         global_page_state(NR_UNSTABLE_NFS) +
697                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
698         while (nr_to_write > 0) {
699                 wbc.more_io = 0;
700                 wbc.encountered_congestion = 0;
701                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
702                 writeback_inodes(&wbc);
703                 if (wbc.nr_to_write > 0) {
704                         if (wbc.encountered_congestion || wbc.more_io)
705                                 congestion_wait(WRITE, HZ/10);
706                         else
707                                 break;  /* All the old data is written */
708                 }
709                 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
710         }
711         if (time_before(next_jif, jiffies + HZ))
712                 next_jif = jiffies + HZ;
713         if (dirty_writeback_interval)
714                 mod_timer(&wb_timer, next_jif);
715 }
716
717 /*
718  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
719  */
720 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
721         struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
722 {
723         proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
724         if (dirty_writeback_interval)
725                 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
726         else
727                 del_timer(&wb_timer);
728         return 0;
729 }
730
731 static void wb_timer_fn(unsigned long unused)
732 {
733         if (pdflush_operation(wb_kupdate, 0) < 0)
734                 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
735 }
736
737 static void laptop_flush(unsigned long unused)
738 {
739         sys_sync();
740 }
741
742 static void laptop_timer_fn(unsigned long unused)
743 {
744         pdflush_operation(laptop_flush, 0);
745 }
746
747 /*
748  * We've spun up the disk and we're in laptop mode: schedule writeback
749  * of all dirty data a few seconds from now.  If the flush is already scheduled
750  * then push it back - the user is still using the disk.
751  */
752 void laptop_io_completion(void)
753 {
754         mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
755 }
756
757 /*
758  * We're in laptop mode and we've just synced. The sync's writes will have
759  * caused another writeback to be scheduled by laptop_io_completion.
760  * Nothing needs to be written back anymore, so we unschedule the writeback.
761  */
762 void laptop_sync_completion(void)
763 {
764         del_timer(&laptop_mode_wb_timer);
765 }
766
767 /*
768  * If ratelimit_pages is too high then we can get into dirty-data overload
769  * if a large number of processes all perform writes at the same time.
770  * If it is too low then SMP machines will call the (expensive)
771  * get_writeback_state too often.
772  *
773  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
774  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
775  * thresholds before writeback cuts in.
776  *
777  * But the limit should not be set too high.  Because it also controls the
778  * amount of memory which the balance_dirty_pages() caller has to write back.
779  * If this is too large then the caller will block on the IO queue all the
780  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
781  * will write six megabyte chunks, max.
782  */
783
784 void writeback_set_ratelimit(void)
785 {
786         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
787         if (ratelimit_pages < 16)
788                 ratelimit_pages = 16;
789         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
790                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
791 }
792
793 static int __cpuinit
794 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
795 {
796         writeback_set_ratelimit();
797         return NOTIFY_DONE;
798 }
799
800 static struct notifier_block __cpuinitdata ratelimit_nb = {
801         .notifier_call  = ratelimit_handler,
802         .next           = NULL,
803 };
804
805 /*
806  * Called early on to tune the page writeback dirty limits.
807  *
808  * We used to scale dirty pages according to how total memory
809  * related to pages that could be allocated for buffers (by
810  * comparing nr_free_buffer_pages() to vm_total_pages.
811  *
812  * However, that was when we used "dirty_ratio" to scale with
813  * all memory, and we don't do that any more. "dirty_ratio"
814  * is now applied to total non-HIGHPAGE memory (by subtracting
815  * totalhigh_pages from vm_total_pages), and as such we can't
816  * get into the old insane situation any more where we had
817  * large amounts of dirty pages compared to a small amount of
818  * non-HIGHMEM memory.
819  *
820  * But we might still want to scale the dirty_ratio by how
821  * much memory the box has..
822  */
823 void __init page_writeback_init(void)
824 {
825         int shift;
826
827         mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
828         writeback_set_ratelimit();
829         register_cpu_notifier(&ratelimit_nb);
830
831         shift = calc_period_shift();
832         prop_descriptor_init(&vm_completions, shift);
833         prop_descriptor_init(&vm_dirties, shift);
834 }
835
836 /**
837  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
838  * @mapping: address space structure to write
839  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
840  * @writepage: function called for each page
841  * @data: data passed to writepage function
842  *
843  * If a page is already under I/O, write_cache_pages() skips it, even
844  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
845  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
846  * and msync() need to guarantee that all the data which was dirty at the time
847  * the call was made get new I/O started against them.  If wbc->sync_mode is
848  * WB_SYNC_ALL then we were called for data integrity and we must wait for
849  * existing IO to complete.
850  */
851 int write_cache_pages(struct address_space *mapping,
852                       struct writeback_control *wbc, writepage_t writepage,
853                       void *data)
854 {
855         struct backing_dev_info *bdi = mapping->backing_dev_info;
856         int ret = 0;
857         int done = 0;
858         struct pagevec pvec;
859         int nr_pages;
860         pgoff_t index;
861         pgoff_t end;            /* Inclusive */
862         int scanned = 0;
863         int range_whole = 0;
864
865         if (wbc->nonblocking && bdi_write_congested(bdi)) {
866                 wbc->encountered_congestion = 1;
867                 return 0;
868         }
869
870         pagevec_init(&pvec, 0);
871         if (wbc->range_cyclic) {
872                 index = mapping->writeback_index; /* Start from prev offset */
873                 end = -1;
874         } else {
875                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
876                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
877                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
878                         range_whole = 1;
879                 scanned = 1;
880         }
881 retry:
882         while (!done && (index <= end) &&
883                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
884                                               PAGECACHE_TAG_DIRTY,
885                                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
886                 unsigned i;
887
888                 scanned = 1;
889                 for (i = 0; i < nr_pages; i++) {
890                         struct page *page = pvec.pages[i];
891
892                         /*
893                          * At this point we hold neither mapping->tree_lock nor
894                          * lock on the page itself: the page may be truncated or
895                          * invalidated (changing page->mapping to NULL), or even
896                          * swizzled back from swapper_space to tmpfs file
897                          * mapping
898                          */
899                         lock_page(page);
900
901                         if (unlikely(page->mapping != mapping)) {
902                                 unlock_page(page);
903                                 continue;
904                         }
905
906                         if (!wbc->range_cyclic && page->index > end) {
907                                 done = 1;
908                                 unlock_page(page);
909                                 continue;
910                         }
911
912                         if (wbc->sync_mode != WB_SYNC_NONE)
913                                 wait_on_page_writeback(page);
914
915                         if (PageWriteback(page) ||
916                             !clear_page_dirty_for_io(page)) {
917                                 unlock_page(page);
918                                 continue;
919                         }
920
921                         ret = (*writepage)(page, wbc, data);
922
923                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
924                                 unlock_page(page);
925                                 ret = 0;
926                         }
927                         if (ret || (--(wbc->nr_to_write) <= 0))
928                                 done = 1;
929                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
930                                 wbc->encountered_congestion = 1;
931                                 done = 1;
932                         }
933                 }
934                 pagevec_release(&pvec);
935                 cond_resched();
936         }
937         if (!scanned && !done) {
938                 /*
939                  * We hit the last page and there is more work to be done: wrap
940                  * back to the start of the file
941                  */
942                 scanned = 1;
943                 index = 0;
944                 goto retry;
945         }
946         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
947                 mapping->writeback_index = index;
948         return ret;
949 }
950 EXPORT_SYMBOL(write_cache_pages);
951
952 /*
953  * Function used by generic_writepages to call the real writepage
954  * function and set the mapping flags on error
955  */
956 static int __writepage(struct page *page, struct writeback_control *wbc,
957                        void *data)
958 {
959         struct address_space *mapping = data;
960         int ret = mapping->a_ops->writepage(page, wbc);
961         mapping_set_error(mapping, ret);
962         return ret;
963 }
964
965 /**
966  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
967  * @mapping: address space structure to write
968  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
969  *
970  * This is a library function, which implements the writepages()
971  * address_space_operation.
972  */
973 int generic_writepages(struct address_space *mapping,
974                        struct writeback_control *wbc)
975 {
976         /* deal with chardevs and other special file */
977         if (!mapping->a_ops->writepage)
978                 return 0;
979
980         return write_cache_pages(mapping, wbc, __writepage, mapping);
981 }
982
983 EXPORT_SYMBOL(generic_writepages);
984
985 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
986 {
987         int ret;
988
989         if (wbc->nr_to_write <= 0)
990                 return 0;
991         wbc->for_writepages = 1;
992         if (mapping->a_ops->writepages)
993                 ret = mapping->a_ops->writepages(mapping, wbc);
994         else
995                 ret = generic_writepages(mapping, wbc);
996         wbc->for_writepages = 0;
997         return ret;
998 }
999
1000 /**
1001  * write_one_page - write out a single page and optionally wait on I/O
1002  * @page: the page to write
1003  * @wait: if true, wait on writeout
1004  *
1005  * The page must be locked by the caller and will be unlocked upon return.
1006  *
1007  * write_one_page() returns a negative error code if I/O failed.
1008  */
1009 int write_one_page(struct page *page, int wait)
1010 {
1011         struct address_space *mapping = page->mapping;
1012         int ret = 0;
1013         struct writeback_control wbc = {
1014                 .sync_mode = WB_SYNC_ALL,
1015                 .nr_to_write = 1,
1016         };
1017
1018         BUG_ON(!PageLocked(page));
1019
1020         if (wait)
1021                 wait_on_page_writeback(page);
1022
1023         if (clear_page_dirty_for_io(page)) {
1024                 page_cache_get(page);
1025                 ret = mapping->a_ops->writepage(page, &wbc);
1026                 if (ret == 0 && wait) {
1027                         wait_on_page_writeback(page);
1028                         if (PageError(page))
1029                                 ret = -EIO;
1030                 }
1031                 page_cache_release(page);
1032         } else {
1033                 unlock_page(page);
1034         }
1035         return ret;
1036 }
1037 EXPORT_SYMBOL(write_one_page);
1038
1039 /*
1040  * For address_spaces which do not use buffers nor write back.
1041  */
1042 int __set_page_dirty_no_writeback(struct page *page)
1043 {
1044         if (!PageDirty(page))
1045                 SetPageDirty(page);
1046         return 0;
1047 }
1048
1049 /*
1050  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1051  * its radix tree.
1052  *
1053  * This is also used when a single buffer is being dirtied: we want to set the
1054  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1055  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1056  *
1057  * Most callers have locked the page, which pins the address_space in memory.
1058  * But zap_pte_range() does not lock the page, however in that case the
1059  * mapping is pinned by the vma's ->vm_file reference.
1060  *
1061  * We take care to handle the case where the page was truncated from the
1062  * mapping by re-checking page_mapping() inside tree_lock.
1063  */
1064 int __set_page_dirty_nobuffers(struct page *page)
1065 {
1066         if (!TestSetPageDirty(page)) {
1067                 struct address_space *mapping = page_mapping(page);
1068                 struct address_space *mapping2;
1069
1070                 if (!mapping)
1071                         return 1;
1072
1073                 write_lock_irq(&mapping->tree_lock);
1074                 mapping2 = page_mapping(page);
1075                 if (mapping2) { /* Race with truncate? */
1076                         BUG_ON(mapping2 != mapping);
1077                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1078                         if (mapping_cap_account_dirty(mapping)) {
1079                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1080                                 __inc_bdi_stat(mapping->backing_dev_info,
1081                                                 BDI_RECLAIMABLE);
1082                                 task_io_account_write(PAGE_CACHE_SIZE);
1083                         }
1084                         radix_tree_tag_set(&mapping->page_tree,
1085                                 page_index(page), PAGECACHE_TAG_DIRTY);
1086                 }
1087                 write_unlock_irq(&mapping->tree_lock);
1088                 if (mapping->host) {
1089                         /* !PageAnon && !swapper_space */
1090                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1091                 }
1092                 return 1;
1093         }
1094         return 0;
1095 }
1096 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1097
1098 /*
1099  * When a writepage implementation decides that it doesn't want to write this
1100  * page for some reason, it should redirty the locked page via
1101  * redirty_page_for_writepage() and it should then unlock the page and return 0
1102  */
1103 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1104 {
1105         wbc->pages_skipped++;
1106         return __set_page_dirty_nobuffers(page);
1107 }
1108 EXPORT_SYMBOL(redirty_page_for_writepage);
1109
1110 /*
1111  * If the mapping doesn't provide a set_page_dirty a_op, then
1112  * just fall through and assume that it wants buffer_heads.
1113  */
1114 static int __set_page_dirty(struct page *page)
1115 {
1116         struct address_space *mapping = page_mapping(page);
1117
1118         if (likely(mapping)) {
1119                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1120 #ifdef CONFIG_BLOCK
1121                 if (!spd)
1122                         spd = __set_page_dirty_buffers;
1123 #endif
1124                 return (*spd)(page);
1125         }
1126         if (!PageDirty(page)) {
1127                 if (!TestSetPageDirty(page))
1128                         return 1;
1129         }
1130         return 0;
1131 }
1132
1133 int set_page_dirty(struct page *page)
1134 {
1135         int ret = __set_page_dirty(page);
1136         if (ret)
1137                 task_dirty_inc(current);
1138         return ret;
1139 }
1140 EXPORT_SYMBOL(set_page_dirty);
1141
1142 /*
1143  * set_page_dirty() is racy if the caller has no reference against
1144  * page->mapping->host, and if the page is unlocked.  This is because another
1145  * CPU could truncate the page off the mapping and then free the mapping.
1146  *
1147  * Usually, the page _is_ locked, or the caller is a user-space process which
1148  * holds a reference on the inode by having an open file.
1149  *
1150  * In other cases, the page should be locked before running set_page_dirty().
1151  */
1152 int set_page_dirty_lock(struct page *page)
1153 {
1154         int ret;
1155
1156         lock_page_nosync(page);
1157         ret = set_page_dirty(page);
1158         unlock_page(page);
1159         return ret;
1160 }
1161 EXPORT_SYMBOL(set_page_dirty_lock);
1162
1163 /*
1164  * Clear a page's dirty flag, while caring for dirty memory accounting.
1165  * Returns true if the page was previously dirty.
1166  *
1167  * This is for preparing to put the page under writeout.  We leave the page
1168  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1169  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1170  * implementation will run either set_page_writeback() or set_page_dirty(),
1171  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1172  * back into sync.
1173  *
1174  * This incoherency between the page's dirty flag and radix-tree tag is
1175  * unfortunate, but it only exists while the page is locked.
1176  */
1177 int clear_page_dirty_for_io(struct page *page)
1178 {
1179         struct address_space *mapping = page_mapping(page);
1180
1181         BUG_ON(!PageLocked(page));
1182
1183         ClearPageReclaim(page);
1184         if (mapping && mapping_cap_account_dirty(mapping)) {
1185                 /*
1186                  * Yes, Virginia, this is indeed insane.
1187                  *
1188                  * We use this sequence to make sure that
1189                  *  (a) we account for dirty stats properly
1190                  *  (b) we tell the low-level filesystem to
1191                  *      mark the whole page dirty if it was
1192                  *      dirty in a pagetable. Only to then
1193                  *  (c) clean the page again and return 1 to
1194                  *      cause the writeback.
1195                  *
1196                  * This way we avoid all nasty races with the
1197                  * dirty bit in multiple places and clearing
1198                  * them concurrently from different threads.
1199                  *
1200                  * Note! Normally the "set_page_dirty(page)"
1201                  * has no effect on the actual dirty bit - since
1202                  * that will already usually be set. But we
1203                  * need the side effects, and it can help us
1204                  * avoid races.
1205                  *
1206                  * We basically use the page "master dirty bit"
1207                  * as a serialization point for all the different
1208                  * threads doing their things.
1209                  */
1210                 if (page_mkclean(page))
1211                         set_page_dirty(page);
1212                 /*
1213                  * We carefully synchronise fault handlers against
1214                  * installing a dirty pte and marking the page dirty
1215                  * at this point. We do this by having them hold the
1216                  * page lock at some point after installing their
1217                  * pte, but before marking the page dirty.
1218                  * Pages are always locked coming in here, so we get
1219                  * the desired exclusion. See mm/memory.c:do_wp_page()
1220                  * for more comments.
1221                  */
1222                 if (TestClearPageDirty(page)) {
1223                         dec_zone_page_state(page, NR_FILE_DIRTY);
1224                         dec_bdi_stat(mapping->backing_dev_info,
1225                                         BDI_RECLAIMABLE);
1226                         return 1;
1227                 }
1228                 return 0;
1229         }
1230         return TestClearPageDirty(page);
1231 }
1232 EXPORT_SYMBOL(clear_page_dirty_for_io);
1233
1234 int test_clear_page_writeback(struct page *page)
1235 {
1236         struct address_space *mapping = page_mapping(page);
1237         int ret;
1238
1239         if (mapping) {
1240                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1241                 unsigned long flags;
1242
1243                 write_lock_irqsave(&mapping->tree_lock, flags);
1244                 ret = TestClearPageWriteback(page);
1245                 if (ret) {
1246                         radix_tree_tag_clear(&mapping->page_tree,
1247                                                 page_index(page),
1248                                                 PAGECACHE_TAG_WRITEBACK);
1249                         if (bdi_cap_writeback_dirty(bdi)) {
1250                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1251                                 __bdi_writeout_inc(bdi);
1252                         }
1253                 }
1254                 write_unlock_irqrestore(&mapping->tree_lock, flags);
1255         } else {
1256                 ret = TestClearPageWriteback(page);
1257         }
1258         if (ret)
1259                 dec_zone_page_state(page, NR_WRITEBACK);
1260         return ret;
1261 }
1262
1263 int test_set_page_writeback(struct page *page)
1264 {
1265         struct address_space *mapping = page_mapping(page);
1266         int ret;
1267
1268         if (mapping) {
1269                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1270                 unsigned long flags;
1271
1272                 write_lock_irqsave(&mapping->tree_lock, flags);
1273                 ret = TestSetPageWriteback(page);
1274                 if (!ret) {
1275                         radix_tree_tag_set(&mapping->page_tree,
1276                                                 page_index(page),
1277                                                 PAGECACHE_TAG_WRITEBACK);
1278                         if (bdi_cap_writeback_dirty(bdi))
1279                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1280                 }
1281                 if (!PageDirty(page))
1282                         radix_tree_tag_clear(&mapping->page_tree,
1283                                                 page_index(page),
1284                                                 PAGECACHE_TAG_DIRTY);
1285                 write_unlock_irqrestore(&mapping->tree_lock, flags);
1286         } else {
1287                 ret = TestSetPageWriteback(page);
1288         }
1289         if (!ret)
1290                 inc_zone_page_state(page, NR_WRITEBACK);
1291         return ret;
1292
1293 }
1294 EXPORT_SYMBOL(test_set_page_writeback);
1295
1296 /*
1297  * Return true if any of the pages in the mapping are marked with the
1298  * passed tag.
1299  */
1300 int mapping_tagged(struct address_space *mapping, int tag)
1301 {
1302         int ret;
1303         rcu_read_lock();
1304         ret = radix_tree_tagged(&mapping->page_tree, tag);
1305         rcu_read_unlock();
1306         return ret;
1307 }
1308 EXPORT_SYMBOL(mapping_tagged);