Btrfs: constify dentry_operations
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                              &BTRFS_I(inode)->io_tree,
428                              start, end, NULL,
429                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430                              EXTENT_CLEAR_DELALLOC |
431                              EXTENT_CLEAR_ACCOUNTING |
432                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433                         ret = 0;
434                         goto free_pages_out;
435                 }
436         }
437
438         if (will_compress) {
439                 /*
440                  * we aren't doing an inline extent round the compressed size
441                  * up to a block size boundary so the allocator does sane
442                  * things
443                  */
444                 total_compressed = (total_compressed + blocksize - 1) &
445                         ~(blocksize - 1);
446
447                 /*
448                  * one last check to make sure the compression is really a
449                  * win, compare the page count read with the blocks on disk
450                  */
451                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452                         ~(PAGE_CACHE_SIZE - 1);
453                 if (total_compressed >= total_in) {
454                         will_compress = 0;
455                 } else {
456                         disk_num_bytes = total_compressed;
457                         num_bytes = total_in;
458                 }
459         }
460         if (!will_compress && pages) {
461                 /*
462                  * the compression code ran but failed to make things smaller,
463                  * free any pages it allocated and our page pointer array
464                  */
465                 for (i = 0; i < nr_pages_ret; i++) {
466                         WARN_ON(pages[i]->mapping);
467                         page_cache_release(pages[i]);
468                 }
469                 kfree(pages);
470                 pages = NULL;
471                 total_compressed = 0;
472                 nr_pages_ret = 0;
473
474                 /* flag the file so we don't compress in the future */
475                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476         }
477         if (will_compress) {
478                 *num_added += 1;
479
480                 /* the async work queues will take care of doing actual
481                  * allocation on disk for these compressed pages,
482                  * and will submit them to the elevator.
483                  */
484                 add_async_extent(async_cow, start, num_bytes,
485                                  total_compressed, pages, nr_pages_ret);
486
487                 if (start + num_bytes < end && start + num_bytes < actual_end) {
488                         start += num_bytes;
489                         pages = NULL;
490                         cond_resched();
491                         goto again;
492                 }
493         } else {
494 cleanup_and_bail_uncompressed:
495                 /*
496                  * No compression, but we still need to write the pages in
497                  * the file we've been given so far.  redirty the locked
498                  * page if it corresponds to our extent and set things up
499                  * for the async work queue to run cow_file_range to do
500                  * the normal delalloc dance
501                  */
502                 if (page_offset(locked_page) >= start &&
503                     page_offset(locked_page) <= end) {
504                         __set_page_dirty_nobuffers(locked_page);
505                         /* unlocked later on in the async handlers */
506                 }
507                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508                 *num_added += 1;
509         }
510
511 out:
512         return 0;
513
514 free_pages_out:
515         for (i = 0; i < nr_pages_ret; i++) {
516                 WARN_ON(pages[i]->mapping);
517                 page_cache_release(pages[i]);
518         }
519         kfree(pages);
520
521         goto out;
522 }
523
524 /*
525  * phase two of compressed writeback.  This is the ordered portion
526  * of the code, which only gets called in the order the work was
527  * queued.  We walk all the async extents created by compress_file_range
528  * and send them down to the disk.
529  */
530 static noinline int submit_compressed_extents(struct inode *inode,
531                                               struct async_cow *async_cow)
532 {
533         struct async_extent *async_extent;
534         u64 alloc_hint = 0;
535         struct btrfs_trans_handle *trans;
536         struct btrfs_key ins;
537         struct extent_map *em;
538         struct btrfs_root *root = BTRFS_I(inode)->root;
539         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540         struct extent_io_tree *io_tree;
541         int ret;
542
543         if (list_empty(&async_cow->extents))
544                 return 0;
545
546         trans = btrfs_join_transaction(root, 1);
547
548         while (!list_empty(&async_cow->extents)) {
549                 async_extent = list_entry(async_cow->extents.next,
550                                           struct async_extent, list);
551                 list_del(&async_extent->list);
552
553                 io_tree = &BTRFS_I(inode)->io_tree;
554
555                 /* did the compression code fall back to uncompressed IO? */
556                 if (!async_extent->pages) {
557                         int page_started = 0;
558                         unsigned long nr_written = 0;
559
560                         lock_extent(io_tree, async_extent->start,
561                                     async_extent->start +
562                                     async_extent->ram_size - 1, GFP_NOFS);
563
564                         /* allocate blocks */
565                         cow_file_range(inode, async_cow->locked_page,
566                                        async_extent->start,
567                                        async_extent->start +
568                                        async_extent->ram_size - 1,
569                                        &page_started, &nr_written, 0);
570
571                         /*
572                          * if page_started, cow_file_range inserted an
573                          * inline extent and took care of all the unlocking
574                          * and IO for us.  Otherwise, we need to submit
575                          * all those pages down to the drive.
576                          */
577                         if (!page_started)
578                                 extent_write_locked_range(io_tree,
579                                                   inode, async_extent->start,
580                                                   async_extent->start +
581                                                   async_extent->ram_size - 1,
582                                                   btrfs_get_extent,
583                                                   WB_SYNC_ALL);
584                         kfree(async_extent);
585                         cond_resched();
586                         continue;
587                 }
588
589                 lock_extent(io_tree, async_extent->start,
590                             async_extent->start + async_extent->ram_size - 1,
591                             GFP_NOFS);
592                 /*
593                  * here we're doing allocation and writeback of the
594                  * compressed pages
595                  */
596                 btrfs_drop_extent_cache(inode, async_extent->start,
597                                         async_extent->start +
598                                         async_extent->ram_size - 1, 0);
599
600                 ret = btrfs_reserve_extent(trans, root,
601                                            async_extent->compressed_size,
602                                            async_extent->compressed_size,
603                                            0, alloc_hint,
604                                            (u64)-1, &ins, 1);
605                 BUG_ON(ret);
606                 em = alloc_extent_map(GFP_NOFS);
607                 em->start = async_extent->start;
608                 em->len = async_extent->ram_size;
609                 em->orig_start = em->start;
610
611                 em->block_start = ins.objectid;
612                 em->block_len = ins.offset;
613                 em->bdev = root->fs_info->fs_devices->latest_bdev;
614                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616
617                 while (1) {
618                         write_lock(&em_tree->lock);
619                         ret = add_extent_mapping(em_tree, em);
620                         write_unlock(&em_tree->lock);
621                         if (ret != -EEXIST) {
622                                 free_extent_map(em);
623                                 break;
624                         }
625                         btrfs_drop_extent_cache(inode, async_extent->start,
626                                                 async_extent->start +
627                                                 async_extent->ram_size - 1, 0);
628                 }
629
630                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631                                                ins.objectid,
632                                                async_extent->ram_size,
633                                                ins.offset,
634                                                BTRFS_ORDERED_COMPRESSED);
635                 BUG_ON(ret);
636
637                 btrfs_end_transaction(trans, root);
638
639                 /*
640                  * clear dirty, set writeback and unlock the pages.
641                  */
642                 extent_clear_unlock_delalloc(inode,
643                                 &BTRFS_I(inode)->io_tree,
644                                 async_extent->start,
645                                 async_extent->start +
646                                 async_extent->ram_size - 1,
647                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648                                 EXTENT_CLEAR_UNLOCK |
649                                 EXTENT_CLEAR_DELALLOC |
650                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
651
652                 ret = btrfs_submit_compressed_write(inode,
653                                     async_extent->start,
654                                     async_extent->ram_size,
655                                     ins.objectid,
656                                     ins.offset, async_extent->pages,
657                                     async_extent->nr_pages);
658
659                 BUG_ON(ret);
660                 trans = btrfs_join_transaction(root, 1);
661                 alloc_hint = ins.objectid + ins.offset;
662                 kfree(async_extent);
663                 cond_resched();
664         }
665
666         btrfs_end_transaction(trans, root);
667         return 0;
668 }
669
670 /*
671  * when extent_io.c finds a delayed allocation range in the file,
672  * the call backs end up in this code.  The basic idea is to
673  * allocate extents on disk for the range, and create ordered data structs
674  * in ram to track those extents.
675  *
676  * locked_page is the page that writepage had locked already.  We use
677  * it to make sure we don't do extra locks or unlocks.
678  *
679  * *page_started is set to one if we unlock locked_page and do everything
680  * required to start IO on it.  It may be clean and already done with
681  * IO when we return.
682  */
683 static noinline int cow_file_range(struct inode *inode,
684                                    struct page *locked_page,
685                                    u64 start, u64 end, int *page_started,
686                                    unsigned long *nr_written,
687                                    int unlock)
688 {
689         struct btrfs_root *root = BTRFS_I(inode)->root;
690         struct btrfs_trans_handle *trans;
691         u64 alloc_hint = 0;
692         u64 num_bytes;
693         unsigned long ram_size;
694         u64 disk_num_bytes;
695         u64 cur_alloc_size;
696         u64 blocksize = root->sectorsize;
697         u64 actual_end;
698         u64 isize = i_size_read(inode);
699         struct btrfs_key ins;
700         struct extent_map *em;
701         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702         int ret = 0;
703
704         trans = btrfs_join_transaction(root, 1);
705         BUG_ON(!trans);
706         btrfs_set_trans_block_group(trans, inode);
707
708         actual_end = min_t(u64, isize, end + 1);
709
710         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711         num_bytes = max(blocksize,  num_bytes);
712         disk_num_bytes = num_bytes;
713         ret = 0;
714
715         if (start == 0) {
716                 /* lets try to make an inline extent */
717                 ret = cow_file_range_inline(trans, root, inode,
718                                             start, end, 0, NULL);
719                 if (ret == 0) {
720                         extent_clear_unlock_delalloc(inode,
721                                      &BTRFS_I(inode)->io_tree,
722                                      start, end, NULL,
723                                      EXTENT_CLEAR_UNLOCK_PAGE |
724                                      EXTENT_CLEAR_UNLOCK |
725                                      EXTENT_CLEAR_DELALLOC |
726                                      EXTENT_CLEAR_ACCOUNTING |
727                                      EXTENT_CLEAR_DIRTY |
728                                      EXTENT_SET_WRITEBACK |
729                                      EXTENT_END_WRITEBACK);
730                         *nr_written = *nr_written +
731                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732                         *page_started = 1;
733                         ret = 0;
734                         goto out;
735                 }
736         }
737
738         BUG_ON(disk_num_bytes >
739                btrfs_super_total_bytes(&root->fs_info->super_copy));
740
741
742         read_lock(&BTRFS_I(inode)->extent_tree.lock);
743         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744                                    start, num_bytes);
745         if (em) {
746                 alloc_hint = em->block_start;
747                 free_extent_map(em);
748         }
749         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
750         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
751
752         while (disk_num_bytes > 0) {
753                 unsigned long op;
754
755                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
756                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
757                                            root->sectorsize, 0, alloc_hint,
758                                            (u64)-1, &ins, 1);
759                 BUG_ON(ret);
760
761                 em = alloc_extent_map(GFP_NOFS);
762                 em->start = start;
763                 em->orig_start = em->start;
764                 ram_size = ins.offset;
765                 em->len = ins.offset;
766
767                 em->block_start = ins.objectid;
768                 em->block_len = ins.offset;
769                 em->bdev = root->fs_info->fs_devices->latest_bdev;
770                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
771
772                 while (1) {
773                         write_lock(&em_tree->lock);
774                         ret = add_extent_mapping(em_tree, em);
775                         write_unlock(&em_tree->lock);
776                         if (ret != -EEXIST) {
777                                 free_extent_map(em);
778                                 break;
779                         }
780                         btrfs_drop_extent_cache(inode, start,
781                                                 start + ram_size - 1, 0);
782                 }
783
784                 cur_alloc_size = ins.offset;
785                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
786                                                ram_size, cur_alloc_size, 0);
787                 BUG_ON(ret);
788
789                 if (root->root_key.objectid ==
790                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
791                         ret = btrfs_reloc_clone_csums(inode, start,
792                                                       cur_alloc_size);
793                         BUG_ON(ret);
794                 }
795
796                 if (disk_num_bytes < cur_alloc_size)
797                         break;
798
799                 /* we're not doing compressed IO, don't unlock the first
800                  * page (which the caller expects to stay locked), don't
801                  * clear any dirty bits and don't set any writeback bits
802                  *
803                  * Do set the Private2 bit so we know this page was properly
804                  * setup for writepage
805                  */
806                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
807                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
808                         EXTENT_SET_PRIVATE2;
809
810                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811                                              start, start + ram_size - 1,
812                                              locked_page, op);
813                 disk_num_bytes -= cur_alloc_size;
814                 num_bytes -= cur_alloc_size;
815                 alloc_hint = ins.objectid + ins.offset;
816                 start += cur_alloc_size;
817         }
818 out:
819         ret = 0;
820         btrfs_end_transaction(trans, root);
821
822         return ret;
823 }
824
825 /*
826  * work queue call back to started compression on a file and pages
827  */
828 static noinline void async_cow_start(struct btrfs_work *work)
829 {
830         struct async_cow *async_cow;
831         int num_added = 0;
832         async_cow = container_of(work, struct async_cow, work);
833
834         compress_file_range(async_cow->inode, async_cow->locked_page,
835                             async_cow->start, async_cow->end, async_cow,
836                             &num_added);
837         if (num_added == 0)
838                 async_cow->inode = NULL;
839 }
840
841 /*
842  * work queue call back to submit previously compressed pages
843  */
844 static noinline void async_cow_submit(struct btrfs_work *work)
845 {
846         struct async_cow *async_cow;
847         struct btrfs_root *root;
848         unsigned long nr_pages;
849
850         async_cow = container_of(work, struct async_cow, work);
851
852         root = async_cow->root;
853         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
854                 PAGE_CACHE_SHIFT;
855
856         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
857
858         if (atomic_read(&root->fs_info->async_delalloc_pages) <
859             5 * 1042 * 1024 &&
860             waitqueue_active(&root->fs_info->async_submit_wait))
861                 wake_up(&root->fs_info->async_submit_wait);
862
863         if (async_cow->inode)
864                 submit_compressed_extents(async_cow->inode, async_cow);
865 }
866
867 static noinline void async_cow_free(struct btrfs_work *work)
868 {
869         struct async_cow *async_cow;
870         async_cow = container_of(work, struct async_cow, work);
871         kfree(async_cow);
872 }
873
874 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
875                                 u64 start, u64 end, int *page_started,
876                                 unsigned long *nr_written)
877 {
878         struct async_cow *async_cow;
879         struct btrfs_root *root = BTRFS_I(inode)->root;
880         unsigned long nr_pages;
881         u64 cur_end;
882         int limit = 10 * 1024 * 1042;
883
884         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
885                          1, 0, NULL, GFP_NOFS);
886         while (start < end) {
887                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
888                 async_cow->inode = inode;
889                 async_cow->root = root;
890                 async_cow->locked_page = locked_page;
891                 async_cow->start = start;
892
893                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
894                         cur_end = end;
895                 else
896                         cur_end = min(end, start + 512 * 1024 - 1);
897
898                 async_cow->end = cur_end;
899                 INIT_LIST_HEAD(&async_cow->extents);
900
901                 async_cow->work.func = async_cow_start;
902                 async_cow->work.ordered_func = async_cow_submit;
903                 async_cow->work.ordered_free = async_cow_free;
904                 async_cow->work.flags = 0;
905
906                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
907                         PAGE_CACHE_SHIFT;
908                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
909
910                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
911                                    &async_cow->work);
912
913                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
914                         wait_event(root->fs_info->async_submit_wait,
915                            (atomic_read(&root->fs_info->async_delalloc_pages) <
916                             limit));
917                 }
918
919                 while (atomic_read(&root->fs_info->async_submit_draining) &&
920                       atomic_read(&root->fs_info->async_delalloc_pages)) {
921                         wait_event(root->fs_info->async_submit_wait,
922                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
923                            0));
924                 }
925
926                 *nr_written += nr_pages;
927                 start = cur_end + 1;
928         }
929         *page_started = 1;
930         return 0;
931 }
932
933 static noinline int csum_exist_in_range(struct btrfs_root *root,
934                                         u64 bytenr, u64 num_bytes)
935 {
936         int ret;
937         struct btrfs_ordered_sum *sums;
938         LIST_HEAD(list);
939
940         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
941                                        bytenr + num_bytes - 1, &list);
942         if (ret == 0 && list_empty(&list))
943                 return 0;
944
945         while (!list_empty(&list)) {
946                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
947                 list_del(&sums->list);
948                 kfree(sums);
949         }
950         return 1;
951 }
952
953 /*
954  * when nowcow writeback call back.  This checks for snapshots or COW copies
955  * of the extents that exist in the file, and COWs the file as required.
956  *
957  * If no cow copies or snapshots exist, we write directly to the existing
958  * blocks on disk
959  */
960 static noinline int run_delalloc_nocow(struct inode *inode,
961                                        struct page *locked_page,
962                               u64 start, u64 end, int *page_started, int force,
963                               unsigned long *nr_written)
964 {
965         struct btrfs_root *root = BTRFS_I(inode)->root;
966         struct btrfs_trans_handle *trans;
967         struct extent_buffer *leaf;
968         struct btrfs_path *path;
969         struct btrfs_file_extent_item *fi;
970         struct btrfs_key found_key;
971         u64 cow_start;
972         u64 cur_offset;
973         u64 extent_end;
974         u64 extent_offset;
975         u64 disk_bytenr;
976         u64 num_bytes;
977         int extent_type;
978         int ret;
979         int type;
980         int nocow;
981         int check_prev = 1;
982
983         path = btrfs_alloc_path();
984         BUG_ON(!path);
985         trans = btrfs_join_transaction(root, 1);
986         BUG_ON(!trans);
987
988         cow_start = (u64)-1;
989         cur_offset = start;
990         while (1) {
991                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
992                                                cur_offset, 0);
993                 BUG_ON(ret < 0);
994                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
995                         leaf = path->nodes[0];
996                         btrfs_item_key_to_cpu(leaf, &found_key,
997                                               path->slots[0] - 1);
998                         if (found_key.objectid == inode->i_ino &&
999                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1000                                 path->slots[0]--;
1001                 }
1002                 check_prev = 0;
1003 next_slot:
1004                 leaf = path->nodes[0];
1005                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006                         ret = btrfs_next_leaf(root, path);
1007                         if (ret < 0)
1008                                 BUG_ON(1);
1009                         if (ret > 0)
1010                                 break;
1011                         leaf = path->nodes[0];
1012                 }
1013
1014                 nocow = 0;
1015                 disk_bytenr = 0;
1016                 num_bytes = 0;
1017                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018
1019                 if (found_key.objectid > inode->i_ino ||
1020                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1021                     found_key.offset > end)
1022                         break;
1023
1024                 if (found_key.offset > cur_offset) {
1025                         extent_end = found_key.offset;
1026                         goto out_check;
1027                 }
1028
1029                 fi = btrfs_item_ptr(leaf, path->slots[0],
1030                                     struct btrfs_file_extent_item);
1031                 extent_type = btrfs_file_extent_type(leaf, fi);
1032
1033                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1034                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1035                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1036                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1037                         extent_end = found_key.offset +
1038                                 btrfs_file_extent_num_bytes(leaf, fi);
1039                         if (extent_end <= start) {
1040                                 path->slots[0]++;
1041                                 goto next_slot;
1042                         }
1043                         if (disk_bytenr == 0)
1044                                 goto out_check;
1045                         if (btrfs_file_extent_compression(leaf, fi) ||
1046                             btrfs_file_extent_encryption(leaf, fi) ||
1047                             btrfs_file_extent_other_encoding(leaf, fi))
1048                                 goto out_check;
1049                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1050                                 goto out_check;
1051                         if (btrfs_extent_readonly(root, disk_bytenr))
1052                                 goto out_check;
1053                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1054                                                   found_key.offset -
1055                                                   extent_offset, disk_bytenr))
1056                                 goto out_check;
1057                         disk_bytenr += extent_offset;
1058                         disk_bytenr += cur_offset - found_key.offset;
1059                         num_bytes = min(end + 1, extent_end) - cur_offset;
1060                         /*
1061                          * force cow if csum exists in the range.
1062                          * this ensure that csum for a given extent are
1063                          * either valid or do not exist.
1064                          */
1065                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1066                                 goto out_check;
1067                         nocow = 1;
1068                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1069                         extent_end = found_key.offset +
1070                                 btrfs_file_extent_inline_len(leaf, fi);
1071                         extent_end = ALIGN(extent_end, root->sectorsize);
1072                 } else {
1073                         BUG_ON(1);
1074                 }
1075 out_check:
1076                 if (extent_end <= start) {
1077                         path->slots[0]++;
1078                         goto next_slot;
1079                 }
1080                 if (!nocow) {
1081                         if (cow_start == (u64)-1)
1082                                 cow_start = cur_offset;
1083                         cur_offset = extent_end;
1084                         if (cur_offset > end)
1085                                 break;
1086                         path->slots[0]++;
1087                         goto next_slot;
1088                 }
1089
1090                 btrfs_release_path(root, path);
1091                 if (cow_start != (u64)-1) {
1092                         ret = cow_file_range(inode, locked_page, cow_start,
1093                                         found_key.offset - 1, page_started,
1094                                         nr_written, 1);
1095                         BUG_ON(ret);
1096                         cow_start = (u64)-1;
1097                 }
1098
1099                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1100                         struct extent_map *em;
1101                         struct extent_map_tree *em_tree;
1102                         em_tree = &BTRFS_I(inode)->extent_tree;
1103                         em = alloc_extent_map(GFP_NOFS);
1104                         em->start = cur_offset;
1105                         em->orig_start = em->start;
1106                         em->len = num_bytes;
1107                         em->block_len = num_bytes;
1108                         em->block_start = disk_bytenr;
1109                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1110                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1111                         while (1) {
1112                                 write_lock(&em_tree->lock);
1113                                 ret = add_extent_mapping(em_tree, em);
1114                                 write_unlock(&em_tree->lock);
1115                                 if (ret != -EEXIST) {
1116                                         free_extent_map(em);
1117                                         break;
1118                                 }
1119                                 btrfs_drop_extent_cache(inode, em->start,
1120                                                 em->start + em->len - 1, 0);
1121                         }
1122                         type = BTRFS_ORDERED_PREALLOC;
1123                 } else {
1124                         type = BTRFS_ORDERED_NOCOW;
1125                 }
1126
1127                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1128                                                num_bytes, num_bytes, type);
1129                 BUG_ON(ret);
1130
1131                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1132                                 cur_offset, cur_offset + num_bytes - 1,
1133                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1134                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1135                                 EXTENT_SET_PRIVATE2);
1136                 cur_offset = extent_end;
1137                 if (cur_offset > end)
1138                         break;
1139         }
1140         btrfs_release_path(root, path);
1141
1142         if (cur_offset <= end && cow_start == (u64)-1)
1143                 cow_start = cur_offset;
1144         if (cow_start != (u64)-1) {
1145                 ret = cow_file_range(inode, locked_page, cow_start, end,
1146                                      page_started, nr_written, 1);
1147                 BUG_ON(ret);
1148         }
1149
1150         ret = btrfs_end_transaction(trans, root);
1151         BUG_ON(ret);
1152         btrfs_free_path(path);
1153         return 0;
1154 }
1155
1156 /*
1157  * extent_io.c call back to do delayed allocation processing
1158  */
1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1160                               u64 start, u64 end, int *page_started,
1161                               unsigned long *nr_written)
1162 {
1163         int ret;
1164         struct btrfs_root *root = BTRFS_I(inode)->root;
1165
1166         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1167                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1168                                          page_started, 1, nr_written);
1169         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1170                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1171                                          page_started, 0, nr_written);
1172         else if (!btrfs_test_opt(root, COMPRESS))
1173                 ret = cow_file_range(inode, locked_page, start, end,
1174                                       page_started, nr_written, 1);
1175         else
1176                 ret = cow_file_range_async(inode, locked_page, start, end,
1177                                            page_started, nr_written);
1178         return ret;
1179 }
1180
1181 static int btrfs_split_extent_hook(struct inode *inode,
1182                                     struct extent_state *orig, u64 split)
1183 {
1184         struct btrfs_root *root = BTRFS_I(inode)->root;
1185         u64 size;
1186
1187         if (!(orig->state & EXTENT_DELALLOC))
1188                 return 0;
1189
1190         size = orig->end - orig->start + 1;
1191         if (size > root->fs_info->max_extent) {
1192                 u64 num_extents;
1193                 u64 new_size;
1194
1195                 new_size = orig->end - split + 1;
1196                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1197                                         root->fs_info->max_extent);
1198
1199                 /*
1200                  * if we break a large extent up then leave oustanding_extents
1201                  * be, since we've already accounted for the large extent.
1202                  */
1203                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1204                               root->fs_info->max_extent) < num_extents)
1205                         return 0;
1206         }
1207
1208         spin_lock(&BTRFS_I(inode)->accounting_lock);
1209         BTRFS_I(inode)->outstanding_extents++;
1210         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1211
1212         return 0;
1213 }
1214
1215 /*
1216  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1217  * extents so we can keep track of new extents that are just merged onto old
1218  * extents, such as when we are doing sequential writes, so we can properly
1219  * account for the metadata space we'll need.
1220  */
1221 static int btrfs_merge_extent_hook(struct inode *inode,
1222                                    struct extent_state *new,
1223                                    struct extent_state *other)
1224 {
1225         struct btrfs_root *root = BTRFS_I(inode)->root;
1226         u64 new_size, old_size;
1227         u64 num_extents;
1228
1229         /* not delalloc, ignore it */
1230         if (!(other->state & EXTENT_DELALLOC))
1231                 return 0;
1232
1233         old_size = other->end - other->start + 1;
1234         if (new->start < other->start)
1235                 new_size = other->end - new->start + 1;
1236         else
1237                 new_size = new->end - other->start + 1;
1238
1239         /* we're not bigger than the max, unreserve the space and go */
1240         if (new_size <= root->fs_info->max_extent) {
1241                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1242                 BTRFS_I(inode)->outstanding_extents--;
1243                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1244                 return 0;
1245         }
1246
1247         /*
1248          * If we grew by another max_extent, just return, we want to keep that
1249          * reserved amount.
1250          */
1251         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1252                                 root->fs_info->max_extent);
1253         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1254                       root->fs_info->max_extent) > num_extents)
1255                 return 0;
1256
1257         spin_lock(&BTRFS_I(inode)->accounting_lock);
1258         BTRFS_I(inode)->outstanding_extents--;
1259         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1260
1261         return 0;
1262 }
1263
1264 /*
1265  * extent_io.c set_bit_hook, used to track delayed allocation
1266  * bytes in this file, and to maintain the list of inodes that
1267  * have pending delalloc work to be done.
1268  */
1269 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1270                        unsigned long old, unsigned long bits)
1271 {
1272
1273         /*
1274          * set_bit and clear bit hooks normally require _irqsave/restore
1275          * but in this case, we are only testeing for the DELALLOC
1276          * bit, which is only set or cleared with irqs on
1277          */
1278         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1279                 struct btrfs_root *root = BTRFS_I(inode)->root;
1280
1281                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1282                 BTRFS_I(inode)->outstanding_extents++;
1283                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1284                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1285                 spin_lock(&root->fs_info->delalloc_lock);
1286                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1287                 root->fs_info->delalloc_bytes += end - start + 1;
1288                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1289                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1290                                       &root->fs_info->delalloc_inodes);
1291                 }
1292                 spin_unlock(&root->fs_info->delalloc_lock);
1293         }
1294         return 0;
1295 }
1296
1297 /*
1298  * extent_io.c clear_bit_hook, see set_bit_hook for why
1299  */
1300 static int btrfs_clear_bit_hook(struct inode *inode,
1301                                 struct extent_state *state, unsigned long bits)
1302 {
1303         /*
1304          * set_bit and clear bit hooks normally require _irqsave/restore
1305          * but in this case, we are only testeing for the DELALLOC
1306          * bit, which is only set or cleared with irqs on
1307          */
1308         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1309                 struct btrfs_root *root = BTRFS_I(inode)->root;
1310
1311                 if (bits & EXTENT_DO_ACCOUNTING) {
1312                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1313                         BTRFS_I(inode)->outstanding_extents--;
1314                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1315                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1316                 }
1317
1318                 spin_lock(&root->fs_info->delalloc_lock);
1319                 if (state->end - state->start + 1 >
1320                     root->fs_info->delalloc_bytes) {
1321                         printk(KERN_INFO "btrfs warning: delalloc account "
1322                                "%llu %llu\n",
1323                                (unsigned long long)
1324                                state->end - state->start + 1,
1325                                (unsigned long long)
1326                                root->fs_info->delalloc_bytes);
1327                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1328                         root->fs_info->delalloc_bytes = 0;
1329                         BTRFS_I(inode)->delalloc_bytes = 0;
1330                 } else {
1331                         btrfs_delalloc_free_space(root, inode,
1332                                                   state->end -
1333                                                   state->start + 1);
1334                         root->fs_info->delalloc_bytes -= state->end -
1335                                 state->start + 1;
1336                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1337                                 state->start + 1;
1338                 }
1339                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1340                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1341                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1342                 }
1343                 spin_unlock(&root->fs_info->delalloc_lock);
1344         }
1345         return 0;
1346 }
1347
1348 /*
1349  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1350  * we don't create bios that span stripes or chunks
1351  */
1352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1353                          size_t size, struct bio *bio,
1354                          unsigned long bio_flags)
1355 {
1356         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1357         struct btrfs_mapping_tree *map_tree;
1358         u64 logical = (u64)bio->bi_sector << 9;
1359         u64 length = 0;
1360         u64 map_length;
1361         int ret;
1362
1363         if (bio_flags & EXTENT_BIO_COMPRESSED)
1364                 return 0;
1365
1366         length = bio->bi_size;
1367         map_tree = &root->fs_info->mapping_tree;
1368         map_length = length;
1369         ret = btrfs_map_block(map_tree, READ, logical,
1370                               &map_length, NULL, 0);
1371
1372         if (map_length < length + size)
1373                 return 1;
1374         return 0;
1375 }
1376
1377 /*
1378  * in order to insert checksums into the metadata in large chunks,
1379  * we wait until bio submission time.   All the pages in the bio are
1380  * checksummed and sums are attached onto the ordered extent record.
1381  *
1382  * At IO completion time the cums attached on the ordered extent record
1383  * are inserted into the btree
1384  */
1385 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1386                                     struct bio *bio, int mirror_num,
1387                                     unsigned long bio_flags)
1388 {
1389         struct btrfs_root *root = BTRFS_I(inode)->root;
1390         int ret = 0;
1391
1392         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1393         BUG_ON(ret);
1394         return 0;
1395 }
1396
1397 /*
1398  * in order to insert checksums into the metadata in large chunks,
1399  * we wait until bio submission time.   All the pages in the bio are
1400  * checksummed and sums are attached onto the ordered extent record.
1401  *
1402  * At IO completion time the cums attached on the ordered extent record
1403  * are inserted into the btree
1404  */
1405 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1406                           int mirror_num, unsigned long bio_flags)
1407 {
1408         struct btrfs_root *root = BTRFS_I(inode)->root;
1409         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1410 }
1411
1412 /*
1413  * extent_io.c submission hook. This does the right thing for csum calculation
1414  * on write, or reading the csums from the tree before a read
1415  */
1416 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1417                           int mirror_num, unsigned long bio_flags)
1418 {
1419         struct btrfs_root *root = BTRFS_I(inode)->root;
1420         int ret = 0;
1421         int skip_sum;
1422
1423         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1424
1425         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1426         BUG_ON(ret);
1427
1428         if (!(rw & (1 << BIO_RW))) {
1429                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1430                         return btrfs_submit_compressed_read(inode, bio,
1431                                                     mirror_num, bio_flags);
1432                 } else if (!skip_sum)
1433                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1434                 goto mapit;
1435         } else if (!skip_sum) {
1436                 /* csum items have already been cloned */
1437                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1438                         goto mapit;
1439                 /* we're doing a write, do the async checksumming */
1440                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1441                                    inode, rw, bio, mirror_num,
1442                                    bio_flags, __btrfs_submit_bio_start,
1443                                    __btrfs_submit_bio_done);
1444         }
1445
1446 mapit:
1447         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1448 }
1449
1450 /*
1451  * given a list of ordered sums record them in the inode.  This happens
1452  * at IO completion time based on sums calculated at bio submission time.
1453  */
1454 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1455                              struct inode *inode, u64 file_offset,
1456                              struct list_head *list)
1457 {
1458         struct btrfs_ordered_sum *sum;
1459
1460         btrfs_set_trans_block_group(trans, inode);
1461
1462         list_for_each_entry(sum, list, list) {
1463                 btrfs_csum_file_blocks(trans,
1464                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1465         }
1466         return 0;
1467 }
1468
1469 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1470 {
1471         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1472                 WARN_ON(1);
1473         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1474                                    GFP_NOFS);
1475 }
1476
1477 /* see btrfs_writepage_start_hook for details on why this is required */
1478 struct btrfs_writepage_fixup {
1479         struct page *page;
1480         struct btrfs_work work;
1481 };
1482
1483 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1484 {
1485         struct btrfs_writepage_fixup *fixup;
1486         struct btrfs_ordered_extent *ordered;
1487         struct page *page;
1488         struct inode *inode;
1489         u64 page_start;
1490         u64 page_end;
1491
1492         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1493         page = fixup->page;
1494 again:
1495         lock_page(page);
1496         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1497                 ClearPageChecked(page);
1498                 goto out_page;
1499         }
1500
1501         inode = page->mapping->host;
1502         page_start = page_offset(page);
1503         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1504
1505         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1506
1507         /* already ordered? We're done */
1508         if (PagePrivate2(page))
1509                 goto out;
1510
1511         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1512         if (ordered) {
1513                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1514                               page_end, GFP_NOFS);
1515                 unlock_page(page);
1516                 btrfs_start_ordered_extent(inode, ordered, 1);
1517                 goto again;
1518         }
1519
1520         btrfs_set_extent_delalloc(inode, page_start, page_end);
1521         ClearPageChecked(page);
1522 out:
1523         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1524 out_page:
1525         unlock_page(page);
1526         page_cache_release(page);
1527 }
1528
1529 /*
1530  * There are a few paths in the higher layers of the kernel that directly
1531  * set the page dirty bit without asking the filesystem if it is a
1532  * good idea.  This causes problems because we want to make sure COW
1533  * properly happens and the data=ordered rules are followed.
1534  *
1535  * In our case any range that doesn't have the ORDERED bit set
1536  * hasn't been properly setup for IO.  We kick off an async process
1537  * to fix it up.  The async helper will wait for ordered extents, set
1538  * the delalloc bit and make it safe to write the page.
1539  */
1540 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1541 {
1542         struct inode *inode = page->mapping->host;
1543         struct btrfs_writepage_fixup *fixup;
1544         struct btrfs_root *root = BTRFS_I(inode)->root;
1545
1546         /* this page is properly in the ordered list */
1547         if (TestClearPagePrivate2(page))
1548                 return 0;
1549
1550         if (PageChecked(page))
1551                 return -EAGAIN;
1552
1553         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1554         if (!fixup)
1555                 return -EAGAIN;
1556
1557         SetPageChecked(page);
1558         page_cache_get(page);
1559         fixup->work.func = btrfs_writepage_fixup_worker;
1560         fixup->page = page;
1561         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1562         return -EAGAIN;
1563 }
1564
1565 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1566                                        struct inode *inode, u64 file_pos,
1567                                        u64 disk_bytenr, u64 disk_num_bytes,
1568                                        u64 num_bytes, u64 ram_bytes,
1569                                        u64 locked_end,
1570                                        u8 compression, u8 encryption,
1571                                        u16 other_encoding, int extent_type)
1572 {
1573         struct btrfs_root *root = BTRFS_I(inode)->root;
1574         struct btrfs_file_extent_item *fi;
1575         struct btrfs_path *path;
1576         struct extent_buffer *leaf;
1577         struct btrfs_key ins;
1578         u64 hint;
1579         int ret;
1580
1581         path = btrfs_alloc_path();
1582         BUG_ON(!path);
1583
1584         path->leave_spinning = 1;
1585
1586         /*
1587          * we may be replacing one extent in the tree with another.
1588          * The new extent is pinned in the extent map, and we don't want
1589          * to drop it from the cache until it is completely in the btree.
1590          *
1591          * So, tell btrfs_drop_extents to leave this extent in the cache.
1592          * the caller is expected to unpin it and allow it to be merged
1593          * with the others.
1594          */
1595         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1596                                  file_pos + num_bytes, locked_end,
1597                                  file_pos, &hint, 0);
1598         BUG_ON(ret);
1599
1600         ins.objectid = inode->i_ino;
1601         ins.offset = file_pos;
1602         ins.type = BTRFS_EXTENT_DATA_KEY;
1603         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1604         BUG_ON(ret);
1605         leaf = path->nodes[0];
1606         fi = btrfs_item_ptr(leaf, path->slots[0],
1607                             struct btrfs_file_extent_item);
1608         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1609         btrfs_set_file_extent_type(leaf, fi, extent_type);
1610         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1611         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1612         btrfs_set_file_extent_offset(leaf, fi, 0);
1613         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1614         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1615         btrfs_set_file_extent_compression(leaf, fi, compression);
1616         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1617         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1618
1619         btrfs_unlock_up_safe(path, 1);
1620         btrfs_set_lock_blocking(leaf);
1621
1622         btrfs_mark_buffer_dirty(leaf);
1623
1624         inode_add_bytes(inode, num_bytes);
1625
1626         ins.objectid = disk_bytenr;
1627         ins.offset = disk_num_bytes;
1628         ins.type = BTRFS_EXTENT_ITEM_KEY;
1629         ret = btrfs_alloc_reserved_file_extent(trans, root,
1630                                         root->root_key.objectid,
1631                                         inode->i_ino, file_pos, &ins);
1632         BUG_ON(ret);
1633         btrfs_free_path(path);
1634
1635         return 0;
1636 }
1637
1638 /*
1639  * helper function for btrfs_finish_ordered_io, this
1640  * just reads in some of the csum leaves to prime them into ram
1641  * before we start the transaction.  It limits the amount of btree
1642  * reads required while inside the transaction.
1643  */
1644 static noinline void reada_csum(struct btrfs_root *root,
1645                                 struct btrfs_path *path,
1646                                 struct btrfs_ordered_extent *ordered_extent)
1647 {
1648         struct btrfs_ordered_sum *sum;
1649         u64 bytenr;
1650
1651         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1652                          list);
1653         bytenr = sum->sums[0].bytenr;
1654
1655         /*
1656          * we don't care about the results, the point of this search is
1657          * just to get the btree leaves into ram
1658          */
1659         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1660 }
1661
1662 /* as ordered data IO finishes, this gets called so we can finish
1663  * an ordered extent if the range of bytes in the file it covers are
1664  * fully written.
1665  */
1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1667 {
1668         struct btrfs_root *root = BTRFS_I(inode)->root;
1669         struct btrfs_trans_handle *trans;
1670         struct btrfs_ordered_extent *ordered_extent = NULL;
1671         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1672         struct btrfs_path *path;
1673         int compressed = 0;
1674         int ret;
1675
1676         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1677         if (!ret)
1678                 return 0;
1679
1680         /*
1681          * before we join the transaction, try to do some of our IO.
1682          * This will limit the amount of IO that we have to do with
1683          * the transaction running.  We're unlikely to need to do any
1684          * IO if the file extents are new, the disk_i_size checks
1685          * covers the most common case.
1686          */
1687         if (start < BTRFS_I(inode)->disk_i_size) {
1688                 path = btrfs_alloc_path();
1689                 if (path) {
1690                         ret = btrfs_lookup_file_extent(NULL, root, path,
1691                                                        inode->i_ino,
1692                                                        start, 0);
1693                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1694                                                                      start);
1695                         if (!list_empty(&ordered_extent->list)) {
1696                                 btrfs_release_path(root, path);
1697                                 reada_csum(root, path, ordered_extent);
1698                         }
1699                         btrfs_free_path(path);
1700                 }
1701         }
1702
1703         trans = btrfs_join_transaction(root, 1);
1704
1705         if (!ordered_extent)
1706                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1707         BUG_ON(!ordered_extent);
1708         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1709                 goto nocow;
1710
1711         lock_extent(io_tree, ordered_extent->file_offset,
1712                     ordered_extent->file_offset + ordered_extent->len - 1,
1713                     GFP_NOFS);
1714
1715         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1716                 compressed = 1;
1717         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1718                 BUG_ON(compressed);
1719                 ret = btrfs_mark_extent_written(trans, root, inode,
1720                                                 ordered_extent->file_offset,
1721                                                 ordered_extent->file_offset +
1722                                                 ordered_extent->len);
1723                 BUG_ON(ret);
1724         } else {
1725                 ret = insert_reserved_file_extent(trans, inode,
1726                                                 ordered_extent->file_offset,
1727                                                 ordered_extent->start,
1728                                                 ordered_extent->disk_len,
1729                                                 ordered_extent->len,
1730                                                 ordered_extent->len,
1731                                                 ordered_extent->file_offset +
1732                                                 ordered_extent->len,
1733                                                 compressed, 0, 0,
1734                                                 BTRFS_FILE_EXTENT_REG);
1735                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1736                                    ordered_extent->file_offset,
1737                                    ordered_extent->len);
1738                 BUG_ON(ret);
1739         }
1740         unlock_extent(io_tree, ordered_extent->file_offset,
1741                     ordered_extent->file_offset + ordered_extent->len - 1,
1742                     GFP_NOFS);
1743 nocow:
1744         add_pending_csums(trans, inode, ordered_extent->file_offset,
1745                           &ordered_extent->list);
1746
1747         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1748         btrfs_ordered_update_i_size(inode, ordered_extent);
1749         btrfs_update_inode(trans, root, inode);
1750         btrfs_remove_ordered_extent(inode, ordered_extent);
1751         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1752
1753         /* once for us */
1754         btrfs_put_ordered_extent(ordered_extent);
1755         /* once for the tree */
1756         btrfs_put_ordered_extent(ordered_extent);
1757
1758         btrfs_end_transaction(trans, root);
1759         return 0;
1760 }
1761
1762 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1763                                 struct extent_state *state, int uptodate)
1764 {
1765         ClearPagePrivate2(page);
1766         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1767 }
1768
1769 /*
1770  * When IO fails, either with EIO or csum verification fails, we
1771  * try other mirrors that might have a good copy of the data.  This
1772  * io_failure_record is used to record state as we go through all the
1773  * mirrors.  If another mirror has good data, the page is set up to date
1774  * and things continue.  If a good mirror can't be found, the original
1775  * bio end_io callback is called to indicate things have failed.
1776  */
1777 struct io_failure_record {
1778         struct page *page;
1779         u64 start;
1780         u64 len;
1781         u64 logical;
1782         unsigned long bio_flags;
1783         int last_mirror;
1784 };
1785
1786 static int btrfs_io_failed_hook(struct bio *failed_bio,
1787                          struct page *page, u64 start, u64 end,
1788                          struct extent_state *state)
1789 {
1790         struct io_failure_record *failrec = NULL;
1791         u64 private;
1792         struct extent_map *em;
1793         struct inode *inode = page->mapping->host;
1794         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1795         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1796         struct bio *bio;
1797         int num_copies;
1798         int ret;
1799         int rw;
1800         u64 logical;
1801
1802         ret = get_state_private(failure_tree, start, &private);
1803         if (ret) {
1804                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1805                 if (!failrec)
1806                         return -ENOMEM;
1807                 failrec->start = start;
1808                 failrec->len = end - start + 1;
1809                 failrec->last_mirror = 0;
1810                 failrec->bio_flags = 0;
1811
1812                 read_lock(&em_tree->lock);
1813                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1814                 if (em->start > start || em->start + em->len < start) {
1815                         free_extent_map(em);
1816                         em = NULL;
1817                 }
1818                 read_unlock(&em_tree->lock);
1819
1820                 if (!em || IS_ERR(em)) {
1821                         kfree(failrec);
1822                         return -EIO;
1823                 }
1824                 logical = start - em->start;
1825                 logical = em->block_start + logical;
1826                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1827                         logical = em->block_start;
1828                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1829                 }
1830                 failrec->logical = logical;
1831                 free_extent_map(em);
1832                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1833                                 EXTENT_DIRTY, GFP_NOFS);
1834                 set_state_private(failure_tree, start,
1835                                  (u64)(unsigned long)failrec);
1836         } else {
1837                 failrec = (struct io_failure_record *)(unsigned long)private;
1838         }
1839         num_copies = btrfs_num_copies(
1840                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1841                               failrec->logical, failrec->len);
1842         failrec->last_mirror++;
1843         if (!state) {
1844                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1845                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1846                                                     failrec->start,
1847                                                     EXTENT_LOCKED);
1848                 if (state && state->start != failrec->start)
1849                         state = NULL;
1850                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1851         }
1852         if (!state || failrec->last_mirror > num_copies) {
1853                 set_state_private(failure_tree, failrec->start, 0);
1854                 clear_extent_bits(failure_tree, failrec->start,
1855                                   failrec->start + failrec->len - 1,
1856                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1857                 kfree(failrec);
1858                 return -EIO;
1859         }
1860         bio = bio_alloc(GFP_NOFS, 1);
1861         bio->bi_private = state;
1862         bio->bi_end_io = failed_bio->bi_end_io;
1863         bio->bi_sector = failrec->logical >> 9;
1864         bio->bi_bdev = failed_bio->bi_bdev;
1865         bio->bi_size = 0;
1866
1867         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1868         if (failed_bio->bi_rw & (1 << BIO_RW))
1869                 rw = WRITE;
1870         else
1871                 rw = READ;
1872
1873         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1874                                                       failrec->last_mirror,
1875                                                       failrec->bio_flags);
1876         return 0;
1877 }
1878
1879 /*
1880  * each time an IO finishes, we do a fast check in the IO failure tree
1881  * to see if we need to process or clean up an io_failure_record
1882  */
1883 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1884 {
1885         u64 private;
1886         u64 private_failure;
1887         struct io_failure_record *failure;
1888         int ret;
1889
1890         private = 0;
1891         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1892                              (u64)-1, 1, EXTENT_DIRTY)) {
1893                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1894                                         start, &private_failure);
1895                 if (ret == 0) {
1896                         failure = (struct io_failure_record *)(unsigned long)
1897                                    private_failure;
1898                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1899                                           failure->start, 0);
1900                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1901                                           failure->start,
1902                                           failure->start + failure->len - 1,
1903                                           EXTENT_DIRTY | EXTENT_LOCKED,
1904                                           GFP_NOFS);
1905                         kfree(failure);
1906                 }
1907         }
1908         return 0;
1909 }
1910
1911 /*
1912  * when reads are done, we need to check csums to verify the data is correct
1913  * if there's a match, we allow the bio to finish.  If not, we go through
1914  * the io_failure_record routines to find good copies
1915  */
1916 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1917                                struct extent_state *state)
1918 {
1919         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1920         struct inode *inode = page->mapping->host;
1921         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1922         char *kaddr;
1923         u64 private = ~(u32)0;
1924         int ret;
1925         struct btrfs_root *root = BTRFS_I(inode)->root;
1926         u32 csum = ~(u32)0;
1927
1928         if (PageChecked(page)) {
1929                 ClearPageChecked(page);
1930                 goto good;
1931         }
1932
1933         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1934                 return 0;
1935
1936         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1937             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1938                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1939                                   GFP_NOFS);
1940                 return 0;
1941         }
1942
1943         if (state && state->start == start) {
1944                 private = state->private;
1945                 ret = 0;
1946         } else {
1947                 ret = get_state_private(io_tree, start, &private);
1948         }
1949         kaddr = kmap_atomic(page, KM_USER0);
1950         if (ret)
1951                 goto zeroit;
1952
1953         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1954         btrfs_csum_final(csum, (char *)&csum);
1955         if (csum != private)
1956                 goto zeroit;
1957
1958         kunmap_atomic(kaddr, KM_USER0);
1959 good:
1960         /* if the io failure tree for this inode is non-empty,
1961          * check to see if we've recovered from a failed IO
1962          */
1963         btrfs_clean_io_failures(inode, start);
1964         return 0;
1965
1966 zeroit:
1967         if (printk_ratelimit()) {
1968                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1969                        "private %llu\n", page->mapping->host->i_ino,
1970                        (unsigned long long)start, csum,
1971                        (unsigned long long)private);
1972         }
1973         memset(kaddr + offset, 1, end - start + 1);
1974         flush_dcache_page(page);
1975         kunmap_atomic(kaddr, KM_USER0);
1976         if (private == 0)
1977                 return 0;
1978         return -EIO;
1979 }
1980
1981 /*
1982  * This creates an orphan entry for the given inode in case something goes
1983  * wrong in the middle of an unlink/truncate.
1984  */
1985 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1986 {
1987         struct btrfs_root *root = BTRFS_I(inode)->root;
1988         int ret = 0;
1989
1990         spin_lock(&root->list_lock);
1991
1992         /* already on the orphan list, we're good */
1993         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1994                 spin_unlock(&root->list_lock);
1995                 return 0;
1996         }
1997
1998         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1999
2000         spin_unlock(&root->list_lock);
2001
2002         /*
2003          * insert an orphan item to track this unlinked/truncated file
2004          */
2005         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2006
2007         return ret;
2008 }
2009
2010 /*
2011  * We have done the truncate/delete so we can go ahead and remove the orphan
2012  * item for this particular inode.
2013  */
2014 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2015 {
2016         struct btrfs_root *root = BTRFS_I(inode)->root;
2017         int ret = 0;
2018
2019         spin_lock(&root->list_lock);
2020
2021         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2022                 spin_unlock(&root->list_lock);
2023                 return 0;
2024         }
2025
2026         list_del_init(&BTRFS_I(inode)->i_orphan);
2027         if (!trans) {
2028                 spin_unlock(&root->list_lock);
2029                 return 0;
2030         }
2031
2032         spin_unlock(&root->list_lock);
2033
2034         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2035
2036         return ret;
2037 }
2038
2039 /*
2040  * this cleans up any orphans that may be left on the list from the last use
2041  * of this root.
2042  */
2043 void btrfs_orphan_cleanup(struct btrfs_root *root)
2044 {
2045         struct btrfs_path *path;
2046         struct extent_buffer *leaf;
2047         struct btrfs_item *item;
2048         struct btrfs_key key, found_key;
2049         struct btrfs_trans_handle *trans;
2050         struct inode *inode;
2051         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2052
2053         path = btrfs_alloc_path();
2054         if (!path)
2055                 return;
2056         path->reada = -1;
2057
2058         key.objectid = BTRFS_ORPHAN_OBJECTID;
2059         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2060         key.offset = (u64)-1;
2061
2062
2063         while (1) {
2064                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2065                 if (ret < 0) {
2066                         printk(KERN_ERR "Error searching slot for orphan: %d"
2067                                "\n", ret);
2068                         break;
2069                 }
2070
2071                 /*
2072                  * if ret == 0 means we found what we were searching for, which
2073                  * is weird, but possible, so only screw with path if we didnt
2074                  * find the key and see if we have stuff that matches
2075                  */
2076                 if (ret > 0) {
2077                         if (path->slots[0] == 0)
2078                                 break;
2079                         path->slots[0]--;
2080                 }
2081
2082                 /* pull out the item */
2083                 leaf = path->nodes[0];
2084                 item = btrfs_item_nr(leaf, path->slots[0]);
2085                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2086
2087                 /* make sure the item matches what we want */
2088                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2089                         break;
2090                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2091                         break;
2092
2093                 /* release the path since we're done with it */
2094                 btrfs_release_path(root, path);
2095
2096                 /*
2097                  * this is where we are basically btrfs_lookup, without the
2098                  * crossing root thing.  we store the inode number in the
2099                  * offset of the orphan item.
2100                  */
2101                 found_key.objectid = found_key.offset;
2102                 found_key.type = BTRFS_INODE_ITEM_KEY;
2103                 found_key.offset = 0;
2104                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2105                 if (IS_ERR(inode))
2106                         break;
2107
2108                 /*
2109                  * add this inode to the orphan list so btrfs_orphan_del does
2110                  * the proper thing when we hit it
2111                  */
2112                 spin_lock(&root->list_lock);
2113                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2114                 spin_unlock(&root->list_lock);
2115
2116                 /*
2117                  * if this is a bad inode, means we actually succeeded in
2118                  * removing the inode, but not the orphan record, which means
2119                  * we need to manually delete the orphan since iput will just
2120                  * do a destroy_inode
2121                  */
2122                 if (is_bad_inode(inode)) {
2123                         trans = btrfs_start_transaction(root, 1);
2124                         btrfs_orphan_del(trans, inode);
2125                         btrfs_end_transaction(trans, root);
2126                         iput(inode);
2127                         continue;
2128                 }
2129
2130                 /* if we have links, this was a truncate, lets do that */
2131                 if (inode->i_nlink) {
2132                         nr_truncate++;
2133                         btrfs_truncate(inode);
2134                 } else {
2135                         nr_unlink++;
2136                 }
2137
2138                 /* this will do delete_inode and everything for us */
2139                 iput(inode);
2140         }
2141
2142         if (nr_unlink)
2143                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2144         if (nr_truncate)
2145                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2146
2147         btrfs_free_path(path);
2148 }
2149
2150 /*
2151  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2152  * don't find any xattrs, we know there can't be any acls.
2153  *
2154  * slot is the slot the inode is in, objectid is the objectid of the inode
2155  */
2156 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2157                                           int slot, u64 objectid)
2158 {
2159         u32 nritems = btrfs_header_nritems(leaf);
2160         struct btrfs_key found_key;
2161         int scanned = 0;
2162
2163         slot++;
2164         while (slot < nritems) {
2165                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2166
2167                 /* we found a different objectid, there must not be acls */
2168                 if (found_key.objectid != objectid)
2169                         return 0;
2170
2171                 /* we found an xattr, assume we've got an acl */
2172                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2173                         return 1;
2174
2175                 /*
2176                  * we found a key greater than an xattr key, there can't
2177                  * be any acls later on
2178                  */
2179                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2180                         return 0;
2181
2182                 slot++;
2183                 scanned++;
2184
2185                 /*
2186                  * it goes inode, inode backrefs, xattrs, extents,
2187                  * so if there are a ton of hard links to an inode there can
2188                  * be a lot of backrefs.  Don't waste time searching too hard,
2189                  * this is just an optimization
2190                  */
2191                 if (scanned >= 8)
2192                         break;
2193         }
2194         /* we hit the end of the leaf before we found an xattr or
2195          * something larger than an xattr.  We have to assume the inode
2196          * has acls
2197          */
2198         return 1;
2199 }
2200
2201 /*
2202  * read an inode from the btree into the in-memory inode
2203  */
2204 static void btrfs_read_locked_inode(struct inode *inode)
2205 {
2206         struct btrfs_path *path;
2207         struct extent_buffer *leaf;
2208         struct btrfs_inode_item *inode_item;
2209         struct btrfs_timespec *tspec;
2210         struct btrfs_root *root = BTRFS_I(inode)->root;
2211         struct btrfs_key location;
2212         int maybe_acls;
2213         u64 alloc_group_block;
2214         u32 rdev;
2215         int ret;
2216
2217         path = btrfs_alloc_path();
2218         BUG_ON(!path);
2219         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2220
2221         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2222         if (ret)
2223                 goto make_bad;
2224
2225         leaf = path->nodes[0];
2226         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2227                                     struct btrfs_inode_item);
2228
2229         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2230         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2231         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2232         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2233         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2234
2235         tspec = btrfs_inode_atime(inode_item);
2236         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2237         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2238
2239         tspec = btrfs_inode_mtime(inode_item);
2240         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2241         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2242
2243         tspec = btrfs_inode_ctime(inode_item);
2244         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2245         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2246
2247         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2248         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2249         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2250         inode->i_generation = BTRFS_I(inode)->generation;
2251         inode->i_rdev = 0;
2252         rdev = btrfs_inode_rdev(leaf, inode_item);
2253
2254         BTRFS_I(inode)->index_cnt = (u64)-1;
2255         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2256
2257         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2258
2259         /*
2260          * try to precache a NULL acl entry for files that don't have
2261          * any xattrs or acls
2262          */
2263         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2264         if (!maybe_acls)
2265                 cache_no_acl(inode);
2266
2267         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2268                                                 alloc_group_block, 0);
2269         btrfs_free_path(path);
2270         inode_item = NULL;
2271
2272         switch (inode->i_mode & S_IFMT) {
2273         case S_IFREG:
2274                 inode->i_mapping->a_ops = &btrfs_aops;
2275                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2276                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2277                 inode->i_fop = &btrfs_file_operations;
2278                 inode->i_op = &btrfs_file_inode_operations;
2279                 break;
2280         case S_IFDIR:
2281                 inode->i_fop = &btrfs_dir_file_operations;
2282                 if (root == root->fs_info->tree_root)
2283                         inode->i_op = &btrfs_dir_ro_inode_operations;
2284                 else
2285                         inode->i_op = &btrfs_dir_inode_operations;
2286                 break;
2287         case S_IFLNK:
2288                 inode->i_op = &btrfs_symlink_inode_operations;
2289                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2290                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2291                 break;
2292         default:
2293                 inode->i_op = &btrfs_special_inode_operations;
2294                 init_special_inode(inode, inode->i_mode, rdev);
2295                 break;
2296         }
2297
2298         btrfs_update_iflags(inode);
2299         return;
2300
2301 make_bad:
2302         btrfs_free_path(path);
2303         make_bad_inode(inode);
2304 }
2305
2306 /*
2307  * given a leaf and an inode, copy the inode fields into the leaf
2308  */
2309 static void fill_inode_item(struct btrfs_trans_handle *trans,
2310                             struct extent_buffer *leaf,
2311                             struct btrfs_inode_item *item,
2312                             struct inode *inode)
2313 {
2314         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2315         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2316         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2317         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2318         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2319
2320         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2321                                inode->i_atime.tv_sec);
2322         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2323                                 inode->i_atime.tv_nsec);
2324
2325         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2326                                inode->i_mtime.tv_sec);
2327         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2328                                 inode->i_mtime.tv_nsec);
2329
2330         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2331                                inode->i_ctime.tv_sec);
2332         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2333                                 inode->i_ctime.tv_nsec);
2334
2335         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2336         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2337         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2338         btrfs_set_inode_transid(leaf, item, trans->transid);
2339         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2340         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2341         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2342 }
2343
2344 /*
2345  * copy everything in the in-memory inode into the btree.
2346  */
2347 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2348                                 struct btrfs_root *root, struct inode *inode)
2349 {
2350         struct btrfs_inode_item *inode_item;
2351         struct btrfs_path *path;
2352         struct extent_buffer *leaf;
2353         int ret;
2354
2355         path = btrfs_alloc_path();
2356         BUG_ON(!path);
2357         path->leave_spinning = 1;
2358         ret = btrfs_lookup_inode(trans, root, path,
2359                                  &BTRFS_I(inode)->location, 1);
2360         if (ret) {
2361                 if (ret > 0)
2362                         ret = -ENOENT;
2363                 goto failed;
2364         }
2365
2366         btrfs_unlock_up_safe(path, 1);
2367         leaf = path->nodes[0];
2368         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2369                                   struct btrfs_inode_item);
2370
2371         fill_inode_item(trans, leaf, inode_item, inode);
2372         btrfs_mark_buffer_dirty(leaf);
2373         btrfs_set_inode_last_trans(trans, inode);
2374         ret = 0;
2375 failed:
2376         btrfs_free_path(path);
2377         return ret;
2378 }
2379
2380
2381 /*
2382  * unlink helper that gets used here in inode.c and in the tree logging
2383  * recovery code.  It remove a link in a directory with a given name, and
2384  * also drops the back refs in the inode to the directory
2385  */
2386 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2387                        struct btrfs_root *root,
2388                        struct inode *dir, struct inode *inode,
2389                        const char *name, int name_len)
2390 {
2391         struct btrfs_path *path;
2392         int ret = 0;
2393         struct extent_buffer *leaf;
2394         struct btrfs_dir_item *di;
2395         struct btrfs_key key;
2396         u64 index;
2397
2398         path = btrfs_alloc_path();
2399         if (!path) {
2400                 ret = -ENOMEM;
2401                 goto err;
2402         }
2403
2404         path->leave_spinning = 1;
2405         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2406                                     name, name_len, -1);
2407         if (IS_ERR(di)) {
2408                 ret = PTR_ERR(di);
2409                 goto err;
2410         }
2411         if (!di) {
2412                 ret = -ENOENT;
2413                 goto err;
2414         }
2415         leaf = path->nodes[0];
2416         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2417         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2418         if (ret)
2419                 goto err;
2420         btrfs_release_path(root, path);
2421
2422         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2423                                   inode->i_ino,
2424                                   dir->i_ino, &index);
2425         if (ret) {
2426                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2427                        "inode %lu parent %lu\n", name_len, name,
2428                        inode->i_ino, dir->i_ino);
2429                 goto err;
2430         }
2431
2432         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2433                                          index, name, name_len, -1);
2434         if (IS_ERR(di)) {
2435                 ret = PTR_ERR(di);
2436                 goto err;
2437         }
2438         if (!di) {
2439                 ret = -ENOENT;
2440                 goto err;
2441         }
2442         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2443         btrfs_release_path(root, path);
2444
2445         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2446                                          inode, dir->i_ino);
2447         BUG_ON(ret != 0 && ret != -ENOENT);
2448
2449         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2450                                            dir, index);
2451         BUG_ON(ret);
2452 err:
2453         btrfs_free_path(path);
2454         if (ret)
2455                 goto out;
2456
2457         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2458         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2459         btrfs_update_inode(trans, root, dir);
2460         btrfs_drop_nlink(inode);
2461         ret = btrfs_update_inode(trans, root, inode);
2462 out:
2463         return ret;
2464 }
2465
2466 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2467 {
2468         struct btrfs_root *root;
2469         struct btrfs_trans_handle *trans;
2470         struct inode *inode = dentry->d_inode;
2471         int ret;
2472         unsigned long nr = 0;
2473
2474         root = BTRFS_I(dir)->root;
2475
2476         trans = btrfs_start_transaction(root, 1);
2477
2478         btrfs_set_trans_block_group(trans, dir);
2479
2480         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2481
2482         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2483                                  dentry->d_name.name, dentry->d_name.len);
2484
2485         if (inode->i_nlink == 0)
2486                 ret = btrfs_orphan_add(trans, inode);
2487
2488         nr = trans->blocks_used;
2489
2490         btrfs_end_transaction_throttle(trans, root);
2491         btrfs_btree_balance_dirty(root, nr);
2492         return ret;
2493 }
2494
2495 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2496                         struct btrfs_root *root,
2497                         struct inode *dir, u64 objectid,
2498                         const char *name, int name_len)
2499 {
2500         struct btrfs_path *path;
2501         struct extent_buffer *leaf;
2502         struct btrfs_dir_item *di;
2503         struct btrfs_key key;
2504         u64 index;
2505         int ret;
2506
2507         path = btrfs_alloc_path();
2508         if (!path)
2509                 return -ENOMEM;
2510
2511         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2512                                    name, name_len, -1);
2513         BUG_ON(!di || IS_ERR(di));
2514
2515         leaf = path->nodes[0];
2516         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2517         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2518         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2519         BUG_ON(ret);
2520         btrfs_release_path(root, path);
2521
2522         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2523                                  objectid, root->root_key.objectid,
2524                                  dir->i_ino, &index, name, name_len);
2525         if (ret < 0) {
2526                 BUG_ON(ret != -ENOENT);
2527                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2528                                                  name, name_len);
2529                 BUG_ON(!di || IS_ERR(di));
2530
2531                 leaf = path->nodes[0];
2532                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2533                 btrfs_release_path(root, path);
2534                 index = key.offset;
2535         }
2536
2537         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2538                                          index, name, name_len, -1);
2539         BUG_ON(!di || IS_ERR(di));
2540
2541         leaf = path->nodes[0];
2542         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2543         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2544         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2545         BUG_ON(ret);
2546         btrfs_release_path(root, path);
2547
2548         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2549         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2550         ret = btrfs_update_inode(trans, root, dir);
2551         BUG_ON(ret);
2552         dir->i_sb->s_dirt = 1;
2553
2554         btrfs_free_path(path);
2555         return 0;
2556 }
2557
2558 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2559 {
2560         struct inode *inode = dentry->d_inode;
2561         int err = 0;
2562         int ret;
2563         struct btrfs_root *root = BTRFS_I(dir)->root;
2564         struct btrfs_trans_handle *trans;
2565         unsigned long nr = 0;
2566
2567         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2568             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2569                 return -ENOTEMPTY;
2570
2571         trans = btrfs_start_transaction(root, 1);
2572         btrfs_set_trans_block_group(trans, dir);
2573
2574         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2575                 err = btrfs_unlink_subvol(trans, root, dir,
2576                                           BTRFS_I(inode)->location.objectid,
2577                                           dentry->d_name.name,
2578                                           dentry->d_name.len);
2579                 goto out;
2580         }
2581
2582         err = btrfs_orphan_add(trans, inode);
2583         if (err)
2584                 goto out;
2585
2586         /* now the directory is empty */
2587         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2588                                  dentry->d_name.name, dentry->d_name.len);
2589         if (!err)
2590                 btrfs_i_size_write(inode, 0);
2591 out:
2592         nr = trans->blocks_used;
2593         ret = btrfs_end_transaction_throttle(trans, root);
2594         btrfs_btree_balance_dirty(root, nr);
2595
2596         if (ret && !err)
2597                 err = ret;
2598         return err;
2599 }
2600
2601 #if 0
2602 /*
2603  * when truncating bytes in a file, it is possible to avoid reading
2604  * the leaves that contain only checksum items.  This can be the
2605  * majority of the IO required to delete a large file, but it must
2606  * be done carefully.
2607  *
2608  * The keys in the level just above the leaves are checked to make sure
2609  * the lowest key in a given leaf is a csum key, and starts at an offset
2610  * after the new  size.
2611  *
2612  * Then the key for the next leaf is checked to make sure it also has
2613  * a checksum item for the same file.  If it does, we know our target leaf
2614  * contains only checksum items, and it can be safely freed without reading
2615  * it.
2616  *
2617  * This is just an optimization targeted at large files.  It may do
2618  * nothing.  It will return 0 unless things went badly.
2619  */
2620 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2621                                      struct btrfs_root *root,
2622                                      struct btrfs_path *path,
2623                                      struct inode *inode, u64 new_size)
2624 {
2625         struct btrfs_key key;
2626         int ret;
2627         int nritems;
2628         struct btrfs_key found_key;
2629         struct btrfs_key other_key;
2630         struct btrfs_leaf_ref *ref;
2631         u64 leaf_gen;
2632         u64 leaf_start;
2633
2634         path->lowest_level = 1;
2635         key.objectid = inode->i_ino;
2636         key.type = BTRFS_CSUM_ITEM_KEY;
2637         key.offset = new_size;
2638 again:
2639         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2640         if (ret < 0)
2641                 goto out;
2642
2643         if (path->nodes[1] == NULL) {
2644                 ret = 0;
2645                 goto out;
2646         }
2647         ret = 0;
2648         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2649         nritems = btrfs_header_nritems(path->nodes[1]);
2650
2651         if (!nritems)
2652                 goto out;
2653
2654         if (path->slots[1] >= nritems)
2655                 goto next_node;
2656
2657         /* did we find a key greater than anything we want to delete? */
2658         if (found_key.objectid > inode->i_ino ||
2659            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2660                 goto out;
2661
2662         /* we check the next key in the node to make sure the leave contains
2663          * only checksum items.  This comparison doesn't work if our
2664          * leaf is the last one in the node
2665          */
2666         if (path->slots[1] + 1 >= nritems) {
2667 next_node:
2668                 /* search forward from the last key in the node, this
2669                  * will bring us into the next node in the tree
2670                  */
2671                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2672
2673                 /* unlikely, but we inc below, so check to be safe */
2674                 if (found_key.offset == (u64)-1)
2675                         goto out;
2676
2677                 /* search_forward needs a path with locks held, do the
2678                  * search again for the original key.  It is possible
2679                  * this will race with a balance and return a path that
2680                  * we could modify, but this drop is just an optimization
2681                  * and is allowed to miss some leaves.
2682                  */
2683                 btrfs_release_path(root, path);
2684                 found_key.offset++;
2685
2686                 /* setup a max key for search_forward */
2687                 other_key.offset = (u64)-1;
2688                 other_key.type = key.type;
2689                 other_key.objectid = key.objectid;
2690
2691                 path->keep_locks = 1;
2692                 ret = btrfs_search_forward(root, &found_key, &other_key,
2693                                            path, 0, 0);
2694                 path->keep_locks = 0;
2695                 if (ret || found_key.objectid != key.objectid ||
2696                     found_key.type != key.type) {
2697                         ret = 0;
2698                         goto out;
2699                 }
2700
2701                 key.offset = found_key.offset;
2702                 btrfs_release_path(root, path);
2703                 cond_resched();
2704                 goto again;
2705         }
2706
2707         /* we know there's one more slot after us in the tree,
2708          * read that key so we can verify it is also a checksum item
2709          */
2710         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2711
2712         if (found_key.objectid < inode->i_ino)
2713                 goto next_key;
2714
2715         if (found_key.type != key.type || found_key.offset < new_size)
2716                 goto next_key;
2717
2718         /*
2719          * if the key for the next leaf isn't a csum key from this objectid,
2720          * we can't be sure there aren't good items inside this leaf.
2721          * Bail out
2722          */
2723         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2724                 goto out;
2725
2726         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2727         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2728         /*
2729          * it is safe to delete this leaf, it contains only
2730          * csum items from this inode at an offset >= new_size
2731          */
2732         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2733         BUG_ON(ret);
2734
2735         if (root->ref_cows && leaf_gen < trans->transid) {
2736                 ref = btrfs_alloc_leaf_ref(root, 0);
2737                 if (ref) {
2738                         ref->root_gen = root->root_key.offset;
2739                         ref->bytenr = leaf_start;
2740                         ref->owner = 0;
2741                         ref->generation = leaf_gen;
2742                         ref->nritems = 0;
2743
2744                         btrfs_sort_leaf_ref(ref);
2745
2746                         ret = btrfs_add_leaf_ref(root, ref, 0);
2747                         WARN_ON(ret);
2748                         btrfs_free_leaf_ref(root, ref);
2749                 } else {
2750                         WARN_ON(1);
2751                 }
2752         }
2753 next_key:
2754         btrfs_release_path(root, path);
2755
2756         if (other_key.objectid == inode->i_ino &&
2757             other_key.type == key.type && other_key.offset > key.offset) {
2758                 key.offset = other_key.offset;
2759                 cond_resched();
2760                 goto again;
2761         }
2762         ret = 0;
2763 out:
2764         /* fixup any changes we've made to the path */
2765         path->lowest_level = 0;
2766         path->keep_locks = 0;
2767         btrfs_release_path(root, path);
2768         return ret;
2769 }
2770
2771 #endif
2772
2773 /*
2774  * this can truncate away extent items, csum items and directory items.
2775  * It starts at a high offset and removes keys until it can't find
2776  * any higher than new_size
2777  *
2778  * csum items that cross the new i_size are truncated to the new size
2779  * as well.
2780  *
2781  * min_type is the minimum key type to truncate down to.  If set to 0, this
2782  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2783  */
2784 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2785                                         struct btrfs_root *root,
2786                                         struct inode *inode,
2787                                         u64 new_size, u32 min_type)
2788 {
2789         int ret;
2790         struct btrfs_path *path;
2791         struct btrfs_key key;
2792         struct btrfs_key found_key;
2793         u32 found_type = (u8)-1;
2794         struct extent_buffer *leaf;
2795         struct btrfs_file_extent_item *fi;
2796         u64 extent_start = 0;
2797         u64 extent_num_bytes = 0;
2798         u64 extent_offset = 0;
2799         u64 item_end = 0;
2800         int found_extent;
2801         int del_item;
2802         int pending_del_nr = 0;
2803         int pending_del_slot = 0;
2804         int extent_type = -1;
2805         int encoding;
2806         u64 mask = root->sectorsize - 1;
2807
2808         if (root->ref_cows)
2809                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2810         path = btrfs_alloc_path();
2811         BUG_ON(!path);
2812         path->reada = -1;
2813
2814         /* FIXME, add redo link to tree so we don't leak on crash */
2815         key.objectid = inode->i_ino;
2816         key.offset = (u64)-1;
2817         key.type = (u8)-1;
2818
2819 search_again:
2820         path->leave_spinning = 1;
2821         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2822         if (ret < 0)
2823                 goto error;
2824
2825         if (ret > 0) {
2826                 /* there are no items in the tree for us to truncate, we're
2827                  * done
2828                  */
2829                 if (path->slots[0] == 0) {
2830                         ret = 0;
2831                         goto error;
2832                 }
2833                 path->slots[0]--;
2834         }
2835
2836         while (1) {
2837                 fi = NULL;
2838                 leaf = path->nodes[0];
2839                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2840                 found_type = btrfs_key_type(&found_key);
2841                 encoding = 0;
2842
2843                 if (found_key.objectid != inode->i_ino)
2844                         break;
2845
2846                 if (found_type < min_type)
2847                         break;
2848
2849                 item_end = found_key.offset;
2850                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2851                         fi = btrfs_item_ptr(leaf, path->slots[0],
2852                                             struct btrfs_file_extent_item);
2853                         extent_type = btrfs_file_extent_type(leaf, fi);
2854                         encoding = btrfs_file_extent_compression(leaf, fi);
2855                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2856                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2857
2858                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2859                                 item_end +=
2860                                     btrfs_file_extent_num_bytes(leaf, fi);
2861                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2862                                 item_end += btrfs_file_extent_inline_len(leaf,
2863                                                                          fi);
2864                         }
2865                         item_end--;
2866                 }
2867                 if (item_end < new_size) {
2868                         if (found_type == BTRFS_DIR_ITEM_KEY)
2869                                 found_type = BTRFS_INODE_ITEM_KEY;
2870                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2871                                 found_type = BTRFS_EXTENT_DATA_KEY;
2872                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2873                                 found_type = BTRFS_XATTR_ITEM_KEY;
2874                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2875                                 found_type = BTRFS_INODE_REF_KEY;
2876                         else if (found_type)
2877                                 found_type--;
2878                         else
2879                                 break;
2880                         btrfs_set_key_type(&key, found_type);
2881                         goto next;
2882                 }
2883                 if (found_key.offset >= new_size)
2884                         del_item = 1;
2885                 else
2886                         del_item = 0;
2887                 found_extent = 0;
2888
2889                 /* FIXME, shrink the extent if the ref count is only 1 */
2890                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2891                         goto delete;
2892
2893                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2894                         u64 num_dec;
2895                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2896                         if (!del_item && !encoding) {
2897                                 u64 orig_num_bytes =
2898                                         btrfs_file_extent_num_bytes(leaf, fi);
2899                                 extent_num_bytes = new_size -
2900                                         found_key.offset + root->sectorsize - 1;
2901                                 extent_num_bytes = extent_num_bytes &
2902                                         ~((u64)root->sectorsize - 1);
2903                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2904                                                          extent_num_bytes);
2905                                 num_dec = (orig_num_bytes -
2906                                            extent_num_bytes);
2907                                 if (root->ref_cows && extent_start != 0)
2908                                         inode_sub_bytes(inode, num_dec);
2909                                 btrfs_mark_buffer_dirty(leaf);
2910                         } else {
2911                                 extent_num_bytes =
2912                                         btrfs_file_extent_disk_num_bytes(leaf,
2913                                                                          fi);
2914                                 extent_offset = found_key.offset -
2915                                         btrfs_file_extent_offset(leaf, fi);
2916
2917                                 /* FIXME blocksize != 4096 */
2918                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2919                                 if (extent_start != 0) {
2920                                         found_extent = 1;
2921                                         if (root->ref_cows)
2922                                                 inode_sub_bytes(inode, num_dec);
2923                                 }
2924                         }
2925                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2926                         /*
2927                          * we can't truncate inline items that have had
2928                          * special encodings
2929                          */
2930                         if (!del_item &&
2931                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2932                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2933                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2934                                 u32 size = new_size - found_key.offset;
2935
2936                                 if (root->ref_cows) {
2937                                         inode_sub_bytes(inode, item_end + 1 -
2938                                                         new_size);
2939                                 }
2940                                 size =
2941                                     btrfs_file_extent_calc_inline_size(size);
2942                                 ret = btrfs_truncate_item(trans, root, path,
2943                                                           size, 1);
2944                                 BUG_ON(ret);
2945                         } else if (root->ref_cows) {
2946                                 inode_sub_bytes(inode, item_end + 1 -
2947                                                 found_key.offset);
2948                         }
2949                 }
2950 delete:
2951                 if (del_item) {
2952                         if (!pending_del_nr) {
2953                                 /* no pending yet, add ourselves */
2954                                 pending_del_slot = path->slots[0];
2955                                 pending_del_nr = 1;
2956                         } else if (pending_del_nr &&
2957                                    path->slots[0] + 1 == pending_del_slot) {
2958                                 /* hop on the pending chunk */
2959                                 pending_del_nr++;
2960                                 pending_del_slot = path->slots[0];
2961                         } else {
2962                                 BUG();
2963                         }
2964                 } else {
2965                         break;
2966                 }
2967                 if (found_extent && root->ref_cows) {
2968                         btrfs_set_path_blocking(path);
2969                         ret = btrfs_free_extent(trans, root, extent_start,
2970                                                 extent_num_bytes, 0,
2971                                                 btrfs_header_owner(leaf),
2972                                                 inode->i_ino, extent_offset);
2973                         BUG_ON(ret);
2974                 }
2975 next:
2976                 if (path->slots[0] == 0) {
2977                         if (pending_del_nr)
2978                                 goto del_pending;
2979                         btrfs_release_path(root, path);
2980                         if (found_type == BTRFS_INODE_ITEM_KEY)
2981                                 break;
2982                         goto search_again;
2983                 }
2984
2985                 path->slots[0]--;
2986                 if (pending_del_nr &&
2987                     path->slots[0] + 1 != pending_del_slot) {
2988                         struct btrfs_key debug;
2989 del_pending:
2990                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2991                                               pending_del_slot);
2992                         ret = btrfs_del_items(trans, root, path,
2993                                               pending_del_slot,
2994                                               pending_del_nr);
2995                         BUG_ON(ret);
2996                         pending_del_nr = 0;
2997                         btrfs_release_path(root, path);
2998                         if (found_type == BTRFS_INODE_ITEM_KEY)
2999                                 break;
3000                         goto search_again;
3001                 }
3002         }
3003         ret = 0;
3004 error:
3005         if (pending_del_nr) {
3006                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3007                                       pending_del_nr);
3008         }
3009         btrfs_free_path(path);
3010         return ret;
3011 }
3012
3013 /*
3014  * taken from block_truncate_page, but does cow as it zeros out
3015  * any bytes left in the last page in the file.
3016  */
3017 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3018 {
3019         struct inode *inode = mapping->host;
3020         struct btrfs_root *root = BTRFS_I(inode)->root;
3021         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3022         struct btrfs_ordered_extent *ordered;
3023         char *kaddr;
3024         u32 blocksize = root->sectorsize;
3025         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3026         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3027         struct page *page;
3028         int ret = 0;
3029         u64 page_start;
3030         u64 page_end;
3031
3032         if ((offset & (blocksize - 1)) == 0)
3033                 goto out;
3034
3035         ret = -ENOMEM;
3036 again:
3037         page = grab_cache_page(mapping, index);
3038         if (!page)
3039                 goto out;
3040
3041         page_start = page_offset(page);
3042         page_end = page_start + PAGE_CACHE_SIZE - 1;
3043
3044         if (!PageUptodate(page)) {
3045                 ret = btrfs_readpage(NULL, page);
3046                 lock_page(page);
3047                 if (page->mapping != mapping) {
3048                         unlock_page(page);
3049                         page_cache_release(page);
3050                         goto again;
3051                 }
3052                 if (!PageUptodate(page)) {
3053                         ret = -EIO;
3054                         goto out_unlock;
3055                 }
3056         }
3057         wait_on_page_writeback(page);
3058
3059         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3060         set_page_extent_mapped(page);
3061
3062         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3063         if (ordered) {
3064                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3065                 unlock_page(page);
3066                 page_cache_release(page);
3067                 btrfs_start_ordered_extent(inode, ordered, 1);
3068                 btrfs_put_ordered_extent(ordered);
3069                 goto again;
3070         }
3071
3072         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3073         if (ret) {
3074                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3075                 goto out_unlock;
3076         }
3077
3078         ret = 0;
3079         if (offset != PAGE_CACHE_SIZE) {
3080                 kaddr = kmap(page);
3081                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3082                 flush_dcache_page(page);
3083                 kunmap(page);
3084         }
3085         ClearPageChecked(page);
3086         set_page_dirty(page);
3087         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3088
3089 out_unlock:
3090         unlock_page(page);
3091         page_cache_release(page);
3092 out:
3093         return ret;
3094 }
3095
3096 int btrfs_cont_expand(struct inode *inode, loff_t size)
3097 {
3098         struct btrfs_trans_handle *trans;
3099         struct btrfs_root *root = BTRFS_I(inode)->root;
3100         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3101         struct extent_map *em;
3102         u64 mask = root->sectorsize - 1;
3103         u64 hole_start = (inode->i_size + mask) & ~mask;
3104         u64 block_end = (size + mask) & ~mask;
3105         u64 last_byte;
3106         u64 cur_offset;
3107         u64 hole_size;
3108         int err = 0;
3109
3110         if (size <= hole_start)
3111                 return 0;
3112
3113         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3114
3115         while (1) {
3116                 struct btrfs_ordered_extent *ordered;
3117                 btrfs_wait_ordered_range(inode, hole_start,
3118                                          block_end - hole_start);
3119                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3120                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3121                 if (!ordered)
3122                         break;
3123                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3124                 btrfs_put_ordered_extent(ordered);
3125         }
3126
3127         trans = btrfs_start_transaction(root, 1);
3128         btrfs_set_trans_block_group(trans, inode);
3129
3130         cur_offset = hole_start;
3131         while (1) {
3132                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3133                                 block_end - cur_offset, 0);
3134                 BUG_ON(IS_ERR(em) || !em);
3135                 last_byte = min(extent_map_end(em), block_end);
3136                 last_byte = (last_byte + mask) & ~mask;
3137                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3138                         u64 hint_byte = 0;
3139                         hole_size = last_byte - cur_offset;
3140                         err = btrfs_drop_extents(trans, root, inode,
3141                                                  cur_offset,
3142                                                  cur_offset + hole_size,
3143                                                  block_end,
3144                                                  cur_offset, &hint_byte, 1);
3145                         if (err)
3146                                 break;
3147
3148                         err = btrfs_reserve_metadata_space(root, 1);
3149                         if (err)
3150                                 break;
3151
3152                         err = btrfs_insert_file_extent(trans, root,
3153                                         inode->i_ino, cur_offset, 0,
3154                                         0, hole_size, 0, hole_size,
3155                                         0, 0, 0);
3156                         btrfs_drop_extent_cache(inode, hole_start,
3157                                         last_byte - 1, 0);
3158                         btrfs_unreserve_metadata_space(root, 1);
3159                 }
3160                 free_extent_map(em);
3161                 cur_offset = last_byte;
3162                 if (err || cur_offset >= block_end)
3163                         break;
3164         }
3165
3166         btrfs_end_transaction(trans, root);
3167         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3168         return err;
3169 }
3170
3171 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3172 {
3173         struct inode *inode = dentry->d_inode;
3174         int err;
3175
3176         err = inode_change_ok(inode, attr);
3177         if (err)
3178                 return err;
3179
3180         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3181                 if (attr->ia_size > inode->i_size) {
3182                         err = btrfs_cont_expand(inode, attr->ia_size);
3183                         if (err)
3184                                 return err;
3185                 } else if (inode->i_size > 0 &&
3186                            attr->ia_size == 0) {
3187
3188                         /* we're truncating a file that used to have good
3189                          * data down to zero.  Make sure it gets into
3190                          * the ordered flush list so that any new writes
3191                          * get down to disk quickly.
3192                          */
3193                         BTRFS_I(inode)->ordered_data_close = 1;
3194                 }
3195         }
3196
3197         err = inode_setattr(inode, attr);
3198
3199         if (!err && ((attr->ia_valid & ATTR_MODE)))
3200                 err = btrfs_acl_chmod(inode);
3201         return err;
3202 }
3203
3204 void btrfs_delete_inode(struct inode *inode)
3205 {
3206         struct btrfs_trans_handle *trans;
3207         struct btrfs_root *root = BTRFS_I(inode)->root;
3208         unsigned long nr;
3209         int ret;
3210
3211         truncate_inode_pages(&inode->i_data, 0);
3212         if (is_bad_inode(inode)) {
3213                 btrfs_orphan_del(NULL, inode);
3214                 goto no_delete;
3215         }
3216         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3217
3218         if (inode->i_nlink > 0) {
3219                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3220                 goto no_delete;
3221         }
3222
3223         btrfs_i_size_write(inode, 0);
3224         trans = btrfs_join_transaction(root, 1);
3225
3226         btrfs_set_trans_block_group(trans, inode);
3227         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3228         if (ret) {
3229                 btrfs_orphan_del(NULL, inode);
3230                 goto no_delete_lock;
3231         }
3232
3233         btrfs_orphan_del(trans, inode);
3234
3235         nr = trans->blocks_used;
3236         clear_inode(inode);
3237
3238         btrfs_end_transaction(trans, root);
3239         btrfs_btree_balance_dirty(root, nr);
3240         return;
3241
3242 no_delete_lock:
3243         nr = trans->blocks_used;
3244         btrfs_end_transaction(trans, root);
3245         btrfs_btree_balance_dirty(root, nr);
3246 no_delete:
3247         clear_inode(inode);
3248 }
3249
3250 /*
3251  * this returns the key found in the dir entry in the location pointer.
3252  * If no dir entries were found, location->objectid is 0.
3253  */
3254 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3255                                struct btrfs_key *location)
3256 {
3257         const char *name = dentry->d_name.name;
3258         int namelen = dentry->d_name.len;
3259         struct btrfs_dir_item *di;
3260         struct btrfs_path *path;
3261         struct btrfs_root *root = BTRFS_I(dir)->root;
3262         int ret = 0;
3263
3264         path = btrfs_alloc_path();
3265         BUG_ON(!path);
3266
3267         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3268                                     namelen, 0);
3269         if (IS_ERR(di))
3270                 ret = PTR_ERR(di);
3271
3272         if (!di || IS_ERR(di))
3273                 goto out_err;
3274
3275         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3276 out:
3277         btrfs_free_path(path);
3278         return ret;
3279 out_err:
3280         location->objectid = 0;
3281         goto out;
3282 }
3283
3284 /*
3285  * when we hit a tree root in a directory, the btrfs part of the inode
3286  * needs to be changed to reflect the root directory of the tree root.  This
3287  * is kind of like crossing a mount point.
3288  */
3289 static int fixup_tree_root_location(struct btrfs_root *root,
3290                                     struct inode *dir,
3291                                     struct dentry *dentry,
3292                                     struct btrfs_key *location,
3293                                     struct btrfs_root **sub_root)
3294 {
3295         struct btrfs_path *path;
3296         struct btrfs_root *new_root;
3297         struct btrfs_root_ref *ref;
3298         struct extent_buffer *leaf;
3299         int ret;
3300         int err = 0;
3301
3302         path = btrfs_alloc_path();
3303         if (!path) {
3304                 err = -ENOMEM;
3305                 goto out;
3306         }
3307
3308         err = -ENOENT;
3309         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3310                                   BTRFS_I(dir)->root->root_key.objectid,
3311                                   location->objectid);
3312         if (ret) {
3313                 if (ret < 0)
3314                         err = ret;
3315                 goto out;
3316         }
3317
3318         leaf = path->nodes[0];
3319         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3320         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3321             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3322                 goto out;
3323
3324         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3325                                    (unsigned long)(ref + 1),
3326                                    dentry->d_name.len);
3327         if (ret)
3328                 goto out;
3329
3330         btrfs_release_path(root->fs_info->tree_root, path);
3331
3332         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3333         if (IS_ERR(new_root)) {
3334                 err = PTR_ERR(new_root);
3335                 goto out;
3336         }
3337
3338         if (btrfs_root_refs(&new_root->root_item) == 0) {
3339                 err = -ENOENT;
3340                 goto out;
3341         }
3342
3343         *sub_root = new_root;
3344         location->objectid = btrfs_root_dirid(&new_root->root_item);
3345         location->type = BTRFS_INODE_ITEM_KEY;
3346         location->offset = 0;
3347         err = 0;
3348 out:
3349         btrfs_free_path(path);
3350         return err;
3351 }
3352
3353 static void inode_tree_add(struct inode *inode)
3354 {
3355         struct btrfs_root *root = BTRFS_I(inode)->root;
3356         struct btrfs_inode *entry;
3357         struct rb_node **p;
3358         struct rb_node *parent;
3359 again:
3360         p = &root->inode_tree.rb_node;
3361         parent = NULL;
3362
3363         if (hlist_unhashed(&inode->i_hash))
3364                 return;
3365
3366         spin_lock(&root->inode_lock);
3367         while (*p) {
3368                 parent = *p;
3369                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3370
3371                 if (inode->i_ino < entry->vfs_inode.i_ino)
3372                         p = &parent->rb_left;
3373                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3374                         p = &parent->rb_right;
3375                 else {
3376                         WARN_ON(!(entry->vfs_inode.i_state &
3377                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3378                         rb_erase(parent, &root->inode_tree);
3379                         RB_CLEAR_NODE(parent);
3380                         spin_unlock(&root->inode_lock);
3381                         goto again;
3382                 }
3383         }
3384         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3385         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3386         spin_unlock(&root->inode_lock);
3387 }
3388
3389 static void inode_tree_del(struct inode *inode)
3390 {
3391         struct btrfs_root *root = BTRFS_I(inode)->root;
3392         int empty = 0;
3393
3394         spin_lock(&root->inode_lock);
3395         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3396                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3397                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3398                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3399         }
3400         spin_unlock(&root->inode_lock);
3401
3402         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3403                 synchronize_srcu(&root->fs_info->subvol_srcu);
3404                 spin_lock(&root->inode_lock);
3405                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3406                 spin_unlock(&root->inode_lock);
3407                 if (empty)
3408                         btrfs_add_dead_root(root);
3409         }
3410 }
3411
3412 int btrfs_invalidate_inodes(struct btrfs_root *root)
3413 {
3414         struct rb_node *node;
3415         struct rb_node *prev;
3416         struct btrfs_inode *entry;
3417         struct inode *inode;
3418         u64 objectid = 0;
3419
3420         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3421
3422         spin_lock(&root->inode_lock);
3423 again:
3424         node = root->inode_tree.rb_node;
3425         prev = NULL;
3426         while (node) {
3427                 prev = node;
3428                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3429
3430                 if (objectid < entry->vfs_inode.i_ino)
3431                         node = node->rb_left;
3432                 else if (objectid > entry->vfs_inode.i_ino)
3433                         node = node->rb_right;
3434                 else
3435                         break;
3436         }
3437         if (!node) {
3438                 while (prev) {
3439                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3440                         if (objectid <= entry->vfs_inode.i_ino) {
3441                                 node = prev;
3442                                 break;
3443                         }
3444                         prev = rb_next(prev);
3445                 }
3446         }
3447         while (node) {
3448                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3449                 objectid = entry->vfs_inode.i_ino + 1;
3450                 inode = igrab(&entry->vfs_inode);
3451                 if (inode) {
3452                         spin_unlock(&root->inode_lock);
3453                         if (atomic_read(&inode->i_count) > 1)
3454                                 d_prune_aliases(inode);
3455                         /*
3456                          * btrfs_drop_inode will remove it from
3457                          * the inode cache when its usage count
3458                          * hits zero.
3459                          */
3460                         iput(inode);
3461                         cond_resched();
3462                         spin_lock(&root->inode_lock);
3463                         goto again;
3464                 }
3465
3466                 if (cond_resched_lock(&root->inode_lock))
3467                         goto again;
3468
3469                 node = rb_next(node);
3470         }
3471         spin_unlock(&root->inode_lock);
3472         return 0;
3473 }
3474
3475 static noinline void init_btrfs_i(struct inode *inode)
3476 {
3477         struct btrfs_inode *bi = BTRFS_I(inode);
3478
3479         bi->generation = 0;
3480         bi->sequence = 0;
3481         bi->last_trans = 0;
3482         bi->logged_trans = 0;
3483         bi->delalloc_bytes = 0;
3484         bi->reserved_bytes = 0;
3485         bi->disk_i_size = 0;
3486         bi->flags = 0;
3487         bi->index_cnt = (u64)-1;
3488         bi->last_unlink_trans = 0;
3489         bi->ordered_data_close = 0;
3490         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3491         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3492                              inode->i_mapping, GFP_NOFS);
3493         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3494                              inode->i_mapping, GFP_NOFS);
3495         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3496         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3497         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3498         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3499         mutex_init(&BTRFS_I(inode)->extent_mutex);
3500         mutex_init(&BTRFS_I(inode)->log_mutex);
3501 }
3502
3503 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3504 {
3505         struct btrfs_iget_args *args = p;
3506         inode->i_ino = args->ino;
3507         init_btrfs_i(inode);
3508         BTRFS_I(inode)->root = args->root;
3509         btrfs_set_inode_space_info(args->root, inode);
3510         return 0;
3511 }
3512
3513 static int btrfs_find_actor(struct inode *inode, void *opaque)
3514 {
3515         struct btrfs_iget_args *args = opaque;
3516         return args->ino == inode->i_ino &&
3517                 args->root == BTRFS_I(inode)->root;
3518 }
3519
3520 static struct inode *btrfs_iget_locked(struct super_block *s,
3521                                        u64 objectid,
3522                                        struct btrfs_root *root)
3523 {
3524         struct inode *inode;
3525         struct btrfs_iget_args args;
3526         args.ino = objectid;
3527         args.root = root;
3528
3529         inode = iget5_locked(s, objectid, btrfs_find_actor,
3530                              btrfs_init_locked_inode,
3531                              (void *)&args);
3532         return inode;
3533 }
3534
3535 /* Get an inode object given its location and corresponding root.
3536  * Returns in *is_new if the inode was read from disk
3537  */
3538 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3539                          struct btrfs_root *root)
3540 {
3541         struct inode *inode;
3542
3543         inode = btrfs_iget_locked(s, location->objectid, root);
3544         if (!inode)
3545                 return ERR_PTR(-ENOMEM);
3546
3547         if (inode->i_state & I_NEW) {
3548                 BTRFS_I(inode)->root = root;
3549                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3550                 btrfs_read_locked_inode(inode);
3551
3552                 inode_tree_add(inode);
3553                 unlock_new_inode(inode);
3554         }
3555
3556         return inode;
3557 }
3558
3559 static struct inode *new_simple_dir(struct super_block *s,
3560                                     struct btrfs_key *key,
3561                                     struct btrfs_root *root)
3562 {
3563         struct inode *inode = new_inode(s);
3564
3565         if (!inode)
3566                 return ERR_PTR(-ENOMEM);
3567
3568         init_btrfs_i(inode);
3569
3570         BTRFS_I(inode)->root = root;
3571         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3572         BTRFS_I(inode)->dummy_inode = 1;
3573
3574         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3575         inode->i_op = &simple_dir_inode_operations;
3576         inode->i_fop = &simple_dir_operations;
3577         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3578         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3579
3580         return inode;
3581 }
3582
3583 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3584 {
3585         struct inode *inode;
3586         struct btrfs_root *root = BTRFS_I(dir)->root;
3587         struct btrfs_root *sub_root = root;
3588         struct btrfs_key location;
3589         int index;
3590         int ret;
3591
3592         dentry->d_op = &btrfs_dentry_operations;
3593
3594         if (dentry->d_name.len > BTRFS_NAME_LEN)
3595                 return ERR_PTR(-ENAMETOOLONG);
3596
3597         ret = btrfs_inode_by_name(dir, dentry, &location);
3598
3599         if (ret < 0)
3600                 return ERR_PTR(ret);
3601
3602         if (location.objectid == 0)
3603                 return NULL;
3604
3605         if (location.type == BTRFS_INODE_ITEM_KEY) {
3606                 inode = btrfs_iget(dir->i_sb, &location, root);
3607                 return inode;
3608         }
3609
3610         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3611
3612         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3613         ret = fixup_tree_root_location(root, dir, dentry,
3614                                        &location, &sub_root);
3615         if (ret < 0) {
3616                 if (ret != -ENOENT)
3617                         inode = ERR_PTR(ret);
3618                 else
3619                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3620         } else {
3621                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3622         }
3623         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3624
3625         return inode;
3626 }
3627
3628 static int btrfs_dentry_delete(struct dentry *dentry)
3629 {
3630         struct btrfs_root *root;
3631
3632         if (!dentry->d_inode && !IS_ROOT(dentry))
3633                 dentry = dentry->d_parent;
3634
3635         if (dentry->d_inode) {
3636                 root = BTRFS_I(dentry->d_inode)->root;
3637                 if (btrfs_root_refs(&root->root_item) == 0)
3638                         return 1;
3639         }
3640         return 0;
3641 }
3642
3643 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3644                                    struct nameidata *nd)
3645 {
3646         struct inode *inode;
3647
3648         inode = btrfs_lookup_dentry(dir, dentry);
3649         if (IS_ERR(inode))
3650                 return ERR_CAST(inode);
3651
3652         return d_splice_alias(inode, dentry);
3653 }
3654
3655 static unsigned char btrfs_filetype_table[] = {
3656         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3657 };
3658
3659 static int btrfs_real_readdir(struct file *filp, void *dirent,
3660                               filldir_t filldir)
3661 {
3662         struct inode *inode = filp->f_dentry->d_inode;
3663         struct btrfs_root *root = BTRFS_I(inode)->root;
3664         struct btrfs_item *item;
3665         struct btrfs_dir_item *di;
3666         struct btrfs_key key;
3667         struct btrfs_key found_key;
3668         struct btrfs_path *path;
3669         int ret;
3670         u32 nritems;
3671         struct extent_buffer *leaf;
3672         int slot;
3673         int advance;
3674         unsigned char d_type;
3675         int over = 0;
3676         u32 di_cur;
3677         u32 di_total;
3678         u32 di_len;
3679         int key_type = BTRFS_DIR_INDEX_KEY;
3680         char tmp_name[32];
3681         char *name_ptr;
3682         int name_len;
3683
3684         /* FIXME, use a real flag for deciding about the key type */
3685         if (root->fs_info->tree_root == root)
3686                 key_type = BTRFS_DIR_ITEM_KEY;
3687
3688         /* special case for "." */
3689         if (filp->f_pos == 0) {
3690                 over = filldir(dirent, ".", 1,
3691                                1, inode->i_ino,
3692                                DT_DIR);
3693                 if (over)
3694                         return 0;
3695                 filp->f_pos = 1;
3696         }
3697         /* special case for .., just use the back ref */
3698         if (filp->f_pos == 1) {
3699                 u64 pino = parent_ino(filp->f_path.dentry);
3700                 over = filldir(dirent, "..", 2,
3701                                2, pino, DT_DIR);
3702                 if (over)
3703                         return 0;
3704                 filp->f_pos = 2;
3705         }
3706         path = btrfs_alloc_path();
3707         path->reada = 2;
3708
3709         btrfs_set_key_type(&key, key_type);
3710         key.offset = filp->f_pos;
3711         key.objectid = inode->i_ino;
3712
3713         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3714         if (ret < 0)
3715                 goto err;
3716         advance = 0;
3717
3718         while (1) {
3719                 leaf = path->nodes[0];
3720                 nritems = btrfs_header_nritems(leaf);
3721                 slot = path->slots[0];
3722                 if (advance || slot >= nritems) {
3723                         if (slot >= nritems - 1) {
3724                                 ret = btrfs_next_leaf(root, path);
3725                                 if (ret)
3726                                         break;
3727                                 leaf = path->nodes[0];
3728                                 nritems = btrfs_header_nritems(leaf);
3729                                 slot = path->slots[0];
3730                         } else {
3731                                 slot++;
3732                                 path->slots[0]++;
3733                         }
3734                 }
3735
3736                 advance = 1;
3737                 item = btrfs_item_nr(leaf, slot);
3738                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3739
3740                 if (found_key.objectid != key.objectid)
3741                         break;
3742                 if (btrfs_key_type(&found_key) != key_type)
3743                         break;
3744                 if (found_key.offset < filp->f_pos)
3745                         continue;
3746
3747                 filp->f_pos = found_key.offset;
3748
3749                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3750                 di_cur = 0;
3751                 di_total = btrfs_item_size(leaf, item);
3752
3753                 while (di_cur < di_total) {
3754                         struct btrfs_key location;
3755
3756                         name_len = btrfs_dir_name_len(leaf, di);
3757                         if (name_len <= sizeof(tmp_name)) {
3758                                 name_ptr = tmp_name;
3759                         } else {
3760                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3761                                 if (!name_ptr) {
3762                                         ret = -ENOMEM;
3763                                         goto err;
3764                                 }
3765                         }
3766                         read_extent_buffer(leaf, name_ptr,
3767                                            (unsigned long)(di + 1), name_len);
3768
3769                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3770                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3771
3772                         /* is this a reference to our own snapshot? If so
3773                          * skip it
3774                          */
3775                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3776                             location.objectid == root->root_key.objectid) {
3777                                 over = 0;
3778                                 goto skip;
3779                         }
3780                         over = filldir(dirent, name_ptr, name_len,
3781                                        found_key.offset, location.objectid,
3782                                        d_type);
3783
3784 skip:
3785                         if (name_ptr != tmp_name)
3786                                 kfree(name_ptr);
3787
3788                         if (over)
3789                                 goto nopos;
3790                         di_len = btrfs_dir_name_len(leaf, di) +
3791                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3792                         di_cur += di_len;
3793                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3794                 }
3795         }
3796
3797         /* Reached end of directory/root. Bump pos past the last item. */
3798         if (key_type == BTRFS_DIR_INDEX_KEY)
3799                 filp->f_pos = INT_LIMIT(off_t);
3800         else
3801                 filp->f_pos++;
3802 nopos:
3803         ret = 0;
3804 err:
3805         btrfs_free_path(path);
3806         return ret;
3807 }
3808
3809 int btrfs_write_inode(struct inode *inode, int wait)
3810 {
3811         struct btrfs_root *root = BTRFS_I(inode)->root;
3812         struct btrfs_trans_handle *trans;
3813         int ret = 0;
3814
3815         if (root->fs_info->btree_inode == inode)
3816                 return 0;
3817
3818         if (wait) {
3819                 trans = btrfs_join_transaction(root, 1);
3820                 btrfs_set_trans_block_group(trans, inode);
3821                 ret = btrfs_commit_transaction(trans, root);
3822         }
3823         return ret;
3824 }
3825
3826 /*
3827  * This is somewhat expensive, updating the tree every time the
3828  * inode changes.  But, it is most likely to find the inode in cache.
3829  * FIXME, needs more benchmarking...there are no reasons other than performance
3830  * to keep or drop this code.
3831  */
3832 void btrfs_dirty_inode(struct inode *inode)
3833 {
3834         struct btrfs_root *root = BTRFS_I(inode)->root;
3835         struct btrfs_trans_handle *trans;
3836
3837         trans = btrfs_join_transaction(root, 1);
3838         btrfs_set_trans_block_group(trans, inode);
3839         btrfs_update_inode(trans, root, inode);
3840         btrfs_end_transaction(trans, root);
3841 }
3842
3843 /*
3844  * find the highest existing sequence number in a directory
3845  * and then set the in-memory index_cnt variable to reflect
3846  * free sequence numbers
3847  */
3848 static int btrfs_set_inode_index_count(struct inode *inode)
3849 {
3850         struct btrfs_root *root = BTRFS_I(inode)->root;
3851         struct btrfs_key key, found_key;
3852         struct btrfs_path *path;
3853         struct extent_buffer *leaf;
3854         int ret;
3855
3856         key.objectid = inode->i_ino;
3857         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3858         key.offset = (u64)-1;
3859
3860         path = btrfs_alloc_path();
3861         if (!path)
3862                 return -ENOMEM;
3863
3864         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865         if (ret < 0)
3866                 goto out;
3867         /* FIXME: we should be able to handle this */
3868         if (ret == 0)
3869                 goto out;
3870         ret = 0;
3871
3872         /*
3873          * MAGIC NUMBER EXPLANATION:
3874          * since we search a directory based on f_pos we have to start at 2
3875          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3876          * else has to start at 2
3877          */
3878         if (path->slots[0] == 0) {
3879                 BTRFS_I(inode)->index_cnt = 2;
3880                 goto out;
3881         }
3882
3883         path->slots[0]--;
3884
3885         leaf = path->nodes[0];
3886         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3887
3888         if (found_key.objectid != inode->i_ino ||
3889             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3890                 BTRFS_I(inode)->index_cnt = 2;
3891                 goto out;
3892         }
3893
3894         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3895 out:
3896         btrfs_free_path(path);
3897         return ret;
3898 }
3899
3900 /*
3901  * helper to find a free sequence number in a given directory.  This current
3902  * code is very simple, later versions will do smarter things in the btree
3903  */
3904 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3905 {
3906         int ret = 0;
3907
3908         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3909                 ret = btrfs_set_inode_index_count(dir);
3910                 if (ret)
3911                         return ret;
3912         }
3913
3914         *index = BTRFS_I(dir)->index_cnt;
3915         BTRFS_I(dir)->index_cnt++;
3916
3917         return ret;
3918 }
3919
3920 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3921                                      struct btrfs_root *root,
3922                                      struct inode *dir,
3923                                      const char *name, int name_len,
3924                                      u64 ref_objectid, u64 objectid,
3925                                      u64 alloc_hint, int mode, u64 *index)
3926 {
3927         struct inode *inode;
3928         struct btrfs_inode_item *inode_item;
3929         struct btrfs_key *location;
3930         struct btrfs_path *path;
3931         struct btrfs_inode_ref *ref;
3932         struct btrfs_key key[2];
3933         u32 sizes[2];
3934         unsigned long ptr;
3935         int ret;
3936         int owner;
3937
3938         path = btrfs_alloc_path();
3939         BUG_ON(!path);
3940
3941         inode = new_inode(root->fs_info->sb);
3942         if (!inode)
3943                 return ERR_PTR(-ENOMEM);
3944
3945         if (dir) {
3946                 ret = btrfs_set_inode_index(dir, index);
3947                 if (ret) {
3948                         iput(inode);
3949                         return ERR_PTR(ret);
3950                 }
3951         }
3952         /*
3953          * index_cnt is ignored for everything but a dir,
3954          * btrfs_get_inode_index_count has an explanation for the magic
3955          * number
3956          */
3957         init_btrfs_i(inode);
3958         BTRFS_I(inode)->index_cnt = 2;
3959         BTRFS_I(inode)->root = root;
3960         BTRFS_I(inode)->generation = trans->transid;
3961         btrfs_set_inode_space_info(root, inode);
3962
3963         if (mode & S_IFDIR)
3964                 owner = 0;
3965         else
3966                 owner = 1;
3967         BTRFS_I(inode)->block_group =
3968                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3969
3970         key[0].objectid = objectid;
3971         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3972         key[0].offset = 0;
3973
3974         key[1].objectid = objectid;
3975         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3976         key[1].offset = ref_objectid;
3977
3978         sizes[0] = sizeof(struct btrfs_inode_item);
3979         sizes[1] = name_len + sizeof(*ref);
3980
3981         path->leave_spinning = 1;
3982         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3983         if (ret != 0)
3984                 goto fail;
3985
3986         inode->i_uid = current_fsuid();
3987
3988         if (dir && (dir->i_mode & S_ISGID)) {
3989                 inode->i_gid = dir->i_gid;
3990                 if (S_ISDIR(mode))
3991                         mode |= S_ISGID;
3992         } else
3993                 inode->i_gid = current_fsgid();
3994
3995         inode->i_mode = mode;
3996         inode->i_ino = objectid;
3997         inode_set_bytes(inode, 0);
3998         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3999         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4000                                   struct btrfs_inode_item);
4001         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4002
4003         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4004                              struct btrfs_inode_ref);
4005         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4006         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4007         ptr = (unsigned long)(ref + 1);
4008         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4009
4010         btrfs_mark_buffer_dirty(path->nodes[0]);
4011         btrfs_free_path(path);
4012
4013         location = &BTRFS_I(inode)->location;
4014         location->objectid = objectid;
4015         location->offset = 0;
4016         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4017
4018         btrfs_inherit_iflags(inode, dir);
4019
4020         if ((mode & S_IFREG)) {
4021                 if (btrfs_test_opt(root, NODATASUM))
4022                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4023                 if (btrfs_test_opt(root, NODATACOW))
4024                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4025         }
4026
4027         insert_inode_hash(inode);
4028         inode_tree_add(inode);
4029         return inode;
4030 fail:
4031         if (dir)
4032                 BTRFS_I(dir)->index_cnt--;
4033         btrfs_free_path(path);
4034         iput(inode);
4035         return ERR_PTR(ret);
4036 }
4037
4038 static inline u8 btrfs_inode_type(struct inode *inode)
4039 {
4040         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4041 }
4042
4043 /*
4044  * utility function to add 'inode' into 'parent_inode' with
4045  * a give name and a given sequence number.
4046  * if 'add_backref' is true, also insert a backref from the
4047  * inode to the parent directory.
4048  */
4049 int btrfs_add_link(struct btrfs_trans_handle *trans,
4050                    struct inode *parent_inode, struct inode *inode,
4051                    const char *name, int name_len, int add_backref, u64 index)
4052 {
4053         int ret = 0;
4054         struct btrfs_key key;
4055         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4056
4057         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4058                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4059         } else {
4060                 key.objectid = inode->i_ino;
4061                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4062                 key.offset = 0;
4063         }
4064
4065         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4066                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4067                                          key.objectid, root->root_key.objectid,
4068                                          parent_inode->i_ino,
4069                                          index, name, name_len);
4070         } else if (add_backref) {
4071                 ret = btrfs_insert_inode_ref(trans, root,
4072                                              name, name_len, inode->i_ino,
4073                                              parent_inode->i_ino, index);
4074         }
4075
4076         if (ret == 0) {
4077                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4078                                             parent_inode->i_ino, &key,
4079                                             btrfs_inode_type(inode), index);
4080                 BUG_ON(ret);
4081
4082                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4083                                    name_len * 2);
4084                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4085                 ret = btrfs_update_inode(trans, root, parent_inode);
4086         }
4087         return ret;
4088 }
4089
4090 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4091                             struct dentry *dentry, struct inode *inode,
4092                             int backref, u64 index)
4093 {
4094         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4095                                  inode, dentry->d_name.name,
4096                                  dentry->d_name.len, backref, index);
4097         if (!err) {
4098                 d_instantiate(dentry, inode);
4099                 return 0;
4100         }
4101         if (err > 0)
4102                 err = -EEXIST;
4103         return err;
4104 }
4105
4106 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4107                         int mode, dev_t rdev)
4108 {
4109         struct btrfs_trans_handle *trans;
4110         struct btrfs_root *root = BTRFS_I(dir)->root;
4111         struct inode *inode = NULL;
4112         int err;
4113         int drop_inode = 0;
4114         u64 objectid;
4115         unsigned long nr = 0;
4116         u64 index = 0;
4117
4118         if (!new_valid_dev(rdev))
4119                 return -EINVAL;
4120
4121         /*
4122          * 2 for inode item and ref
4123          * 2 for dir items
4124          * 1 for xattr if selinux is on
4125          */
4126         err = btrfs_reserve_metadata_space(root, 5);
4127         if (err)
4128                 return err;
4129
4130         trans = btrfs_start_transaction(root, 1);
4131         if (!trans)
4132                 goto fail;
4133         btrfs_set_trans_block_group(trans, dir);
4134
4135         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4136         if (err) {
4137                 err = -ENOSPC;
4138                 goto out_unlock;
4139         }
4140
4141         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4142                                 dentry->d_name.len,
4143                                 dentry->d_parent->d_inode->i_ino, objectid,
4144                                 BTRFS_I(dir)->block_group, mode, &index);
4145         err = PTR_ERR(inode);
4146         if (IS_ERR(inode))
4147                 goto out_unlock;
4148
4149         err = btrfs_init_inode_security(inode, dir);
4150         if (err) {
4151                 drop_inode = 1;
4152                 goto out_unlock;
4153         }
4154
4155         btrfs_set_trans_block_group(trans, inode);
4156         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4157         if (err)
4158                 drop_inode = 1;
4159         else {
4160                 inode->i_op = &btrfs_special_inode_operations;
4161                 init_special_inode(inode, inode->i_mode, rdev);
4162                 btrfs_update_inode(trans, root, inode);
4163         }
4164         btrfs_update_inode_block_group(trans, inode);
4165         btrfs_update_inode_block_group(trans, dir);
4166 out_unlock:
4167         nr = trans->blocks_used;
4168         btrfs_end_transaction_throttle(trans, root);
4169 fail:
4170         btrfs_unreserve_metadata_space(root, 5);
4171         if (drop_inode) {
4172                 inode_dec_link_count(inode);
4173                 iput(inode);
4174         }
4175         btrfs_btree_balance_dirty(root, nr);
4176         return err;
4177 }
4178
4179 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4180                         int mode, struct nameidata *nd)
4181 {
4182         struct btrfs_trans_handle *trans;
4183         struct btrfs_root *root = BTRFS_I(dir)->root;
4184         struct inode *inode = NULL;
4185         int err;
4186         int drop_inode = 0;
4187         unsigned long nr = 0;
4188         u64 objectid;
4189         u64 index = 0;
4190
4191         /*
4192          * 2 for inode item and ref
4193          * 2 for dir items
4194          * 1 for xattr if selinux is on
4195          */
4196         err = btrfs_reserve_metadata_space(root, 5);
4197         if (err)
4198                 return err;
4199
4200         trans = btrfs_start_transaction(root, 1);
4201         if (!trans)
4202                 goto fail;
4203         btrfs_set_trans_block_group(trans, dir);
4204
4205         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4206         if (err) {
4207                 err = -ENOSPC;
4208                 goto out_unlock;
4209         }
4210
4211         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4212                                 dentry->d_name.len,
4213                                 dentry->d_parent->d_inode->i_ino,
4214                                 objectid, BTRFS_I(dir)->block_group, mode,
4215                                 &index);
4216         err = PTR_ERR(inode);
4217         if (IS_ERR(inode))
4218                 goto out_unlock;
4219
4220         err = btrfs_init_inode_security(inode, dir);
4221         if (err) {
4222                 drop_inode = 1;
4223                 goto out_unlock;
4224         }
4225
4226         btrfs_set_trans_block_group(trans, inode);
4227         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4228         if (err)
4229                 drop_inode = 1;
4230         else {
4231                 inode->i_mapping->a_ops = &btrfs_aops;
4232                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4233                 inode->i_fop = &btrfs_file_operations;
4234                 inode->i_op = &btrfs_file_inode_operations;
4235                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4236         }
4237         btrfs_update_inode_block_group(trans, inode);
4238         btrfs_update_inode_block_group(trans, dir);
4239 out_unlock:
4240         nr = trans->blocks_used;
4241         btrfs_end_transaction_throttle(trans, root);
4242 fail:
4243         btrfs_unreserve_metadata_space(root, 5);
4244         if (drop_inode) {
4245                 inode_dec_link_count(inode);
4246                 iput(inode);
4247         }
4248         btrfs_btree_balance_dirty(root, nr);
4249         return err;
4250 }
4251
4252 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4253                       struct dentry *dentry)
4254 {
4255         struct btrfs_trans_handle *trans;
4256         struct btrfs_root *root = BTRFS_I(dir)->root;
4257         struct inode *inode = old_dentry->d_inode;
4258         u64 index;
4259         unsigned long nr = 0;
4260         int err;
4261         int drop_inode = 0;
4262
4263         if (inode->i_nlink == 0)
4264                 return -ENOENT;
4265
4266         /*
4267          * 1 item for inode ref
4268          * 2 items for dir items
4269          */
4270         err = btrfs_reserve_metadata_space(root, 3);
4271         if (err)
4272                 return err;
4273
4274         btrfs_inc_nlink(inode);
4275
4276         err = btrfs_set_inode_index(dir, &index);
4277         if (err)
4278                 goto fail;
4279
4280         trans = btrfs_start_transaction(root, 1);
4281
4282         btrfs_set_trans_block_group(trans, dir);
4283         atomic_inc(&inode->i_count);
4284
4285         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4286
4287         if (err) {
4288                 drop_inode = 1;
4289         } else {
4290                 btrfs_update_inode_block_group(trans, dir);
4291                 err = btrfs_update_inode(trans, root, inode);
4292                 BUG_ON(err);
4293                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4294         }
4295
4296         nr = trans->blocks_used;
4297         btrfs_end_transaction_throttle(trans, root);
4298 fail:
4299         btrfs_unreserve_metadata_space(root, 3);
4300         if (drop_inode) {
4301                 inode_dec_link_count(inode);
4302                 iput(inode);
4303         }
4304         btrfs_btree_balance_dirty(root, nr);
4305         return err;
4306 }
4307
4308 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4309 {
4310         struct inode *inode = NULL;
4311         struct btrfs_trans_handle *trans;
4312         struct btrfs_root *root = BTRFS_I(dir)->root;
4313         int err = 0;
4314         int drop_on_err = 0;
4315         u64 objectid = 0;
4316         u64 index = 0;
4317         unsigned long nr = 1;
4318
4319         /*
4320          * 2 items for inode and ref
4321          * 2 items for dir items
4322          * 1 for xattr if selinux is on
4323          */
4324         err = btrfs_reserve_metadata_space(root, 5);
4325         if (err)
4326                 return err;
4327
4328         trans = btrfs_start_transaction(root, 1);
4329         if (!trans) {
4330                 err = -ENOMEM;
4331                 goto out_unlock;
4332         }
4333         btrfs_set_trans_block_group(trans, dir);
4334
4335         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4336         if (err) {
4337                 err = -ENOSPC;
4338                 goto out_unlock;
4339         }
4340
4341         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4342                                 dentry->d_name.len,
4343                                 dentry->d_parent->d_inode->i_ino, objectid,
4344                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4345                                 &index);
4346         if (IS_ERR(inode)) {
4347                 err = PTR_ERR(inode);
4348                 goto out_fail;
4349         }
4350
4351         drop_on_err = 1;
4352
4353         err = btrfs_init_inode_security(inode, dir);
4354         if (err)
4355                 goto out_fail;
4356
4357         inode->i_op = &btrfs_dir_inode_operations;
4358         inode->i_fop = &btrfs_dir_file_operations;
4359         btrfs_set_trans_block_group(trans, inode);
4360
4361         btrfs_i_size_write(inode, 0);
4362         err = btrfs_update_inode(trans, root, inode);
4363         if (err)
4364                 goto out_fail;
4365
4366         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4367                                  inode, dentry->d_name.name,
4368                                  dentry->d_name.len, 0, index);
4369         if (err)
4370                 goto out_fail;
4371
4372         d_instantiate(dentry, inode);
4373         drop_on_err = 0;
4374         btrfs_update_inode_block_group(trans, inode);
4375         btrfs_update_inode_block_group(trans, dir);
4376
4377 out_fail:
4378         nr = trans->blocks_used;
4379         btrfs_end_transaction_throttle(trans, root);
4380
4381 out_unlock:
4382         btrfs_unreserve_metadata_space(root, 5);
4383         if (drop_on_err)
4384                 iput(inode);
4385         btrfs_btree_balance_dirty(root, nr);
4386         return err;
4387 }
4388
4389 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4390  * and an extent that you want to insert, deal with overlap and insert
4391  * the new extent into the tree.
4392  */
4393 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4394                                 struct extent_map *existing,
4395                                 struct extent_map *em,
4396                                 u64 map_start, u64 map_len)
4397 {
4398         u64 start_diff;
4399
4400         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4401         start_diff = map_start - em->start;
4402         em->start = map_start;
4403         em->len = map_len;
4404         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4405             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4406                 em->block_start += start_diff;
4407                 em->block_len -= start_diff;
4408         }
4409         return add_extent_mapping(em_tree, em);
4410 }
4411
4412 static noinline int uncompress_inline(struct btrfs_path *path,
4413                                       struct inode *inode, struct page *page,
4414                                       size_t pg_offset, u64 extent_offset,
4415                                       struct btrfs_file_extent_item *item)
4416 {
4417         int ret;
4418         struct extent_buffer *leaf = path->nodes[0];
4419         char *tmp;
4420         size_t max_size;
4421         unsigned long inline_size;
4422         unsigned long ptr;
4423
4424         WARN_ON(pg_offset != 0);
4425         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4426         inline_size = btrfs_file_extent_inline_item_len(leaf,
4427                                         btrfs_item_nr(leaf, path->slots[0]));
4428         tmp = kmalloc(inline_size, GFP_NOFS);
4429         ptr = btrfs_file_extent_inline_start(item);
4430
4431         read_extent_buffer(leaf, tmp, ptr, inline_size);
4432
4433         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4434         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4435                                     inline_size, max_size);
4436         if (ret) {
4437                 char *kaddr = kmap_atomic(page, KM_USER0);
4438                 unsigned long copy_size = min_t(u64,
4439                                   PAGE_CACHE_SIZE - pg_offset,
4440                                   max_size - extent_offset);
4441                 memset(kaddr + pg_offset, 0, copy_size);
4442                 kunmap_atomic(kaddr, KM_USER0);
4443         }
4444         kfree(tmp);
4445         return 0;
4446 }
4447
4448 /*
4449  * a bit scary, this does extent mapping from logical file offset to the disk.
4450  * the ugly parts come from merging extents from the disk with the in-ram
4451  * representation.  This gets more complex because of the data=ordered code,
4452  * where the in-ram extents might be locked pending data=ordered completion.
4453  *
4454  * This also copies inline extents directly into the page.
4455  */
4456
4457 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4458                                     size_t pg_offset, u64 start, u64 len,
4459                                     int create)
4460 {
4461         int ret;
4462         int err = 0;
4463         u64 bytenr;
4464         u64 extent_start = 0;
4465         u64 extent_end = 0;
4466         u64 objectid = inode->i_ino;
4467         u32 found_type;
4468         struct btrfs_path *path = NULL;
4469         struct btrfs_root *root = BTRFS_I(inode)->root;
4470         struct btrfs_file_extent_item *item;
4471         struct extent_buffer *leaf;
4472         struct btrfs_key found_key;
4473         struct extent_map *em = NULL;
4474         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4475         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4476         struct btrfs_trans_handle *trans = NULL;
4477         int compressed;
4478
4479 again:
4480         read_lock(&em_tree->lock);
4481         em = lookup_extent_mapping(em_tree, start, len);
4482         if (em)
4483                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4484         read_unlock(&em_tree->lock);
4485
4486         if (em) {
4487                 if (em->start > start || em->start + em->len <= start)
4488                         free_extent_map(em);
4489                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4490                         free_extent_map(em);
4491                 else
4492                         goto out;
4493         }
4494         em = alloc_extent_map(GFP_NOFS);
4495         if (!em) {
4496                 err = -ENOMEM;
4497                 goto out;
4498         }
4499         em->bdev = root->fs_info->fs_devices->latest_bdev;
4500         em->start = EXTENT_MAP_HOLE;
4501         em->orig_start = EXTENT_MAP_HOLE;
4502         em->len = (u64)-1;
4503         em->block_len = (u64)-1;
4504
4505         if (!path) {
4506                 path = btrfs_alloc_path();
4507                 BUG_ON(!path);
4508         }
4509
4510         ret = btrfs_lookup_file_extent(trans, root, path,
4511                                        objectid, start, trans != NULL);
4512         if (ret < 0) {
4513                 err = ret;
4514                 goto out;
4515         }
4516
4517         if (ret != 0) {
4518                 if (path->slots[0] == 0)
4519                         goto not_found;
4520                 path->slots[0]--;
4521         }
4522
4523         leaf = path->nodes[0];
4524         item = btrfs_item_ptr(leaf, path->slots[0],
4525                               struct btrfs_file_extent_item);
4526         /* are we inside the extent that was found? */
4527         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4528         found_type = btrfs_key_type(&found_key);
4529         if (found_key.objectid != objectid ||
4530             found_type != BTRFS_EXTENT_DATA_KEY) {
4531                 goto not_found;
4532         }
4533
4534         found_type = btrfs_file_extent_type(leaf, item);
4535         extent_start = found_key.offset;
4536         compressed = btrfs_file_extent_compression(leaf, item);
4537         if (found_type == BTRFS_FILE_EXTENT_REG ||
4538             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4539                 extent_end = extent_start +
4540                        btrfs_file_extent_num_bytes(leaf, item);
4541         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4542                 size_t size;
4543                 size = btrfs_file_extent_inline_len(leaf, item);
4544                 extent_end = (extent_start + size + root->sectorsize - 1) &
4545                         ~((u64)root->sectorsize - 1);
4546         }
4547
4548         if (start >= extent_end) {
4549                 path->slots[0]++;
4550                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4551                         ret = btrfs_next_leaf(root, path);
4552                         if (ret < 0) {
4553                                 err = ret;
4554                                 goto out;
4555                         }
4556                         if (ret > 0)
4557                                 goto not_found;
4558                         leaf = path->nodes[0];
4559                 }
4560                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4561                 if (found_key.objectid != objectid ||
4562                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4563                         goto not_found;
4564                 if (start + len <= found_key.offset)
4565                         goto not_found;
4566                 em->start = start;
4567                 em->len = found_key.offset - start;
4568                 goto not_found_em;
4569         }
4570
4571         if (found_type == BTRFS_FILE_EXTENT_REG ||
4572             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4573                 em->start = extent_start;
4574                 em->len = extent_end - extent_start;
4575                 em->orig_start = extent_start -
4576                                  btrfs_file_extent_offset(leaf, item);
4577                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4578                 if (bytenr == 0) {
4579                         em->block_start = EXTENT_MAP_HOLE;
4580                         goto insert;
4581                 }
4582                 if (compressed) {
4583                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4584                         em->block_start = bytenr;
4585                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4586                                                                          item);
4587                 } else {
4588                         bytenr += btrfs_file_extent_offset(leaf, item);
4589                         em->block_start = bytenr;
4590                         em->block_len = em->len;
4591                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4592                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4593                 }
4594                 goto insert;
4595         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4596                 unsigned long ptr;
4597                 char *map;
4598                 size_t size;
4599                 size_t extent_offset;
4600                 size_t copy_size;
4601
4602                 em->block_start = EXTENT_MAP_INLINE;
4603                 if (!page || create) {
4604                         em->start = extent_start;
4605                         em->len = extent_end - extent_start;
4606                         goto out;
4607                 }
4608
4609                 size = btrfs_file_extent_inline_len(leaf, item);
4610                 extent_offset = page_offset(page) + pg_offset - extent_start;
4611                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4612                                 size - extent_offset);
4613                 em->start = extent_start + extent_offset;
4614                 em->len = (copy_size + root->sectorsize - 1) &
4615                         ~((u64)root->sectorsize - 1);
4616                 em->orig_start = EXTENT_MAP_INLINE;
4617                 if (compressed)
4618                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4619                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4620                 if (create == 0 && !PageUptodate(page)) {
4621                         if (btrfs_file_extent_compression(leaf, item) ==
4622                             BTRFS_COMPRESS_ZLIB) {
4623                                 ret = uncompress_inline(path, inode, page,
4624                                                         pg_offset,
4625                                                         extent_offset, item);
4626                                 BUG_ON(ret);
4627                         } else {
4628                                 map = kmap(page);
4629                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4630                                                    copy_size);
4631                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4632                                         memset(map + pg_offset + copy_size, 0,
4633                                                PAGE_CACHE_SIZE - pg_offset -
4634                                                copy_size);
4635                                 }
4636                                 kunmap(page);
4637                         }
4638                         flush_dcache_page(page);
4639                 } else if (create && PageUptodate(page)) {
4640                         if (!trans) {
4641                                 kunmap(page);
4642                                 free_extent_map(em);
4643                                 em = NULL;
4644                                 btrfs_release_path(root, path);
4645                                 trans = btrfs_join_transaction(root, 1);
4646                                 goto again;
4647                         }
4648                         map = kmap(page);
4649                         write_extent_buffer(leaf, map + pg_offset, ptr,
4650                                             copy_size);
4651                         kunmap(page);
4652                         btrfs_mark_buffer_dirty(leaf);
4653                 }
4654                 set_extent_uptodate(io_tree, em->start,
4655                                     extent_map_end(em) - 1, GFP_NOFS);
4656                 goto insert;
4657         } else {
4658                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4659                 WARN_ON(1);
4660         }
4661 not_found:
4662         em->start = start;
4663         em->len = len;
4664 not_found_em:
4665         em->block_start = EXTENT_MAP_HOLE;
4666         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4667 insert:
4668         btrfs_release_path(root, path);
4669         if (em->start > start || extent_map_end(em) <= start) {
4670                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4671                        "[%llu %llu]\n", (unsigned long long)em->start,
4672                        (unsigned long long)em->len,
4673                        (unsigned long long)start,
4674                        (unsigned long long)len);
4675                 err = -EIO;
4676                 goto out;
4677         }
4678
4679         err = 0;
4680         write_lock(&em_tree->lock);
4681         ret = add_extent_mapping(em_tree, em);
4682         /* it is possible that someone inserted the extent into the tree
4683          * while we had the lock dropped.  It is also possible that
4684          * an overlapping map exists in the tree
4685          */
4686         if (ret == -EEXIST) {
4687                 struct extent_map *existing;
4688
4689                 ret = 0;
4690
4691                 existing = lookup_extent_mapping(em_tree, start, len);
4692                 if (existing && (existing->start > start ||
4693                     existing->start + existing->len <= start)) {
4694                         free_extent_map(existing);
4695                         existing = NULL;
4696                 }
4697                 if (!existing) {
4698                         existing = lookup_extent_mapping(em_tree, em->start,
4699                                                          em->len);
4700                         if (existing) {
4701                                 err = merge_extent_mapping(em_tree, existing,
4702                                                            em, start,
4703                                                            root->sectorsize);
4704                                 free_extent_map(existing);
4705                                 if (err) {
4706                                         free_extent_map(em);
4707                                         em = NULL;
4708                                 }
4709                         } else {
4710                                 err = -EIO;
4711                                 free_extent_map(em);
4712                                 em = NULL;
4713                         }
4714                 } else {
4715                         free_extent_map(em);
4716                         em = existing;
4717                         err = 0;
4718                 }
4719         }
4720         write_unlock(&em_tree->lock);
4721 out:
4722         if (path)
4723                 btrfs_free_path(path);
4724         if (trans) {
4725                 ret = btrfs_end_transaction(trans, root);
4726                 if (!err)
4727                         err = ret;
4728         }
4729         if (err) {
4730                 free_extent_map(em);
4731                 return ERR_PTR(err);
4732         }
4733         return em;
4734 }
4735
4736 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4737                         const struct iovec *iov, loff_t offset,
4738                         unsigned long nr_segs)
4739 {
4740         return -EINVAL;
4741 }
4742
4743 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4744                 __u64 start, __u64 len)
4745 {
4746         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4747 }
4748
4749 int btrfs_readpage(struct file *file, struct page *page)
4750 {
4751         struct extent_io_tree *tree;
4752         tree = &BTRFS_I(page->mapping->host)->io_tree;
4753         return extent_read_full_page(tree, page, btrfs_get_extent);
4754 }
4755
4756 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4757 {
4758         struct extent_io_tree *tree;
4759
4760
4761         if (current->flags & PF_MEMALLOC) {
4762                 redirty_page_for_writepage(wbc, page);
4763                 unlock_page(page);
4764                 return 0;
4765         }
4766         tree = &BTRFS_I(page->mapping->host)->io_tree;
4767         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4768 }
4769
4770 int btrfs_writepages(struct address_space *mapping,
4771                      struct writeback_control *wbc)
4772 {
4773         struct extent_io_tree *tree;
4774
4775         tree = &BTRFS_I(mapping->host)->io_tree;
4776         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4777 }
4778
4779 static int
4780 btrfs_readpages(struct file *file, struct address_space *mapping,
4781                 struct list_head *pages, unsigned nr_pages)
4782 {
4783         struct extent_io_tree *tree;
4784         tree = &BTRFS_I(mapping->host)->io_tree;
4785         return extent_readpages(tree, mapping, pages, nr_pages,
4786                                 btrfs_get_extent);
4787 }
4788 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4789 {
4790         struct extent_io_tree *tree;
4791         struct extent_map_tree *map;
4792         int ret;
4793
4794         tree = &BTRFS_I(page->mapping->host)->io_tree;
4795         map = &BTRFS_I(page->mapping->host)->extent_tree;
4796         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4797         if (ret == 1) {
4798                 ClearPagePrivate(page);
4799                 set_page_private(page, 0);
4800                 page_cache_release(page);
4801         }
4802         return ret;
4803 }
4804
4805 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4806 {
4807         if (PageWriteback(page) || PageDirty(page))
4808                 return 0;
4809         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4810 }
4811
4812 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4813 {
4814         struct extent_io_tree *tree;
4815         struct btrfs_ordered_extent *ordered;
4816         u64 page_start = page_offset(page);
4817         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4818
4819
4820         /*
4821          * we have the page locked, so new writeback can't start,
4822          * and the dirty bit won't be cleared while we are here.
4823          *
4824          * Wait for IO on this page so that we can safely clear
4825          * the PagePrivate2 bit and do ordered accounting
4826          */
4827         wait_on_page_writeback(page);
4828
4829         tree = &BTRFS_I(page->mapping->host)->io_tree;
4830         if (offset) {
4831                 btrfs_releasepage(page, GFP_NOFS);
4832                 return;
4833         }
4834         lock_extent(tree, page_start, page_end, GFP_NOFS);
4835         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4836                                            page_offset(page));
4837         if (ordered) {
4838                 /*
4839                  * IO on this page will never be started, so we need
4840                  * to account for any ordered extents now
4841                  */
4842                 clear_extent_bit(tree, page_start, page_end,
4843                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4844                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4845                                  NULL, GFP_NOFS);
4846                 /*
4847                  * whoever cleared the private bit is responsible
4848                  * for the finish_ordered_io
4849                  */
4850                 if (TestClearPagePrivate2(page)) {
4851                         btrfs_finish_ordered_io(page->mapping->host,
4852                                                 page_start, page_end);
4853                 }
4854                 btrfs_put_ordered_extent(ordered);
4855                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4856         }
4857         clear_extent_bit(tree, page_start, page_end,
4858                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4859                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4860         __btrfs_releasepage(page, GFP_NOFS);
4861
4862         ClearPageChecked(page);
4863         if (PagePrivate(page)) {
4864                 ClearPagePrivate(page);
4865                 set_page_private(page, 0);
4866                 page_cache_release(page);
4867         }
4868 }
4869
4870 /*
4871  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4872  * called from a page fault handler when a page is first dirtied. Hence we must
4873  * be careful to check for EOF conditions here. We set the page up correctly
4874  * for a written page which means we get ENOSPC checking when writing into
4875  * holes and correct delalloc and unwritten extent mapping on filesystems that
4876  * support these features.
4877  *
4878  * We are not allowed to take the i_mutex here so we have to play games to
4879  * protect against truncate races as the page could now be beyond EOF.  Because
4880  * vmtruncate() writes the inode size before removing pages, once we have the
4881  * page lock we can determine safely if the page is beyond EOF. If it is not
4882  * beyond EOF, then the page is guaranteed safe against truncation until we
4883  * unlock the page.
4884  */
4885 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4886 {
4887         struct page *page = vmf->page;
4888         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4889         struct btrfs_root *root = BTRFS_I(inode)->root;
4890         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4891         struct btrfs_ordered_extent *ordered;
4892         char *kaddr;
4893         unsigned long zero_start;
4894         loff_t size;
4895         int ret;
4896         u64 page_start;
4897         u64 page_end;
4898
4899         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4900         if (ret) {
4901                 if (ret == -ENOMEM)
4902                         ret = VM_FAULT_OOM;
4903                 else /* -ENOSPC, -EIO, etc */
4904                         ret = VM_FAULT_SIGBUS;
4905                 goto out;
4906         }
4907
4908         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4909         if (ret) {
4910                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4911                 ret = VM_FAULT_SIGBUS;
4912                 goto out;
4913         }
4914
4915         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4916 again:
4917         lock_page(page);
4918         size = i_size_read(inode);
4919         page_start = page_offset(page);
4920         page_end = page_start + PAGE_CACHE_SIZE - 1;
4921
4922         if ((page->mapping != inode->i_mapping) ||
4923             (page_start >= size)) {
4924                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4925                 /* page got truncated out from underneath us */
4926                 goto out_unlock;
4927         }
4928         wait_on_page_writeback(page);
4929
4930         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4931         set_page_extent_mapped(page);
4932
4933         /*
4934          * we can't set the delalloc bits if there are pending ordered
4935          * extents.  Drop our locks and wait for them to finish
4936          */
4937         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4938         if (ordered) {
4939                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4940                 unlock_page(page);
4941                 btrfs_start_ordered_extent(inode, ordered, 1);
4942                 btrfs_put_ordered_extent(ordered);
4943                 goto again;
4944         }
4945
4946         /*
4947          * XXX - page_mkwrite gets called every time the page is dirtied, even
4948          * if it was already dirty, so for space accounting reasons we need to
4949          * clear any delalloc bits for the range we are fixing to save.  There
4950          * is probably a better way to do this, but for now keep consistent with
4951          * prepare_pages in the normal write path.
4952          */
4953         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4954                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
4955                           GFP_NOFS);
4956
4957         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4958         if (ret) {
4959                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4960                 ret = VM_FAULT_SIGBUS;
4961                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4962                 goto out_unlock;
4963         }
4964         ret = 0;
4965
4966         /* page is wholly or partially inside EOF */
4967         if (page_start + PAGE_CACHE_SIZE > size)
4968                 zero_start = size & ~PAGE_CACHE_MASK;
4969         else
4970                 zero_start = PAGE_CACHE_SIZE;
4971
4972         if (zero_start != PAGE_CACHE_SIZE) {
4973                 kaddr = kmap(page);
4974                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4975                 flush_dcache_page(page);
4976                 kunmap(page);
4977         }
4978         ClearPageChecked(page);
4979         set_page_dirty(page);
4980         SetPageUptodate(page);
4981
4982         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4983         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4984
4985 out_unlock:
4986         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
4987         if (!ret)
4988                 return VM_FAULT_LOCKED;
4989         unlock_page(page);
4990 out:
4991         return ret;
4992 }
4993
4994 static void btrfs_truncate(struct inode *inode)
4995 {
4996         struct btrfs_root *root = BTRFS_I(inode)->root;
4997         int ret;
4998         struct btrfs_trans_handle *trans;
4999         unsigned long nr;
5000         u64 mask = root->sectorsize - 1;
5001
5002         if (!S_ISREG(inode->i_mode))
5003                 return;
5004         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5005                 return;
5006
5007         btrfs_truncate_page(inode->i_mapping, inode->i_size);
5008         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5009
5010         trans = btrfs_start_transaction(root, 1);
5011
5012         /*
5013          * setattr is responsible for setting the ordered_data_close flag,
5014          * but that is only tested during the last file release.  That
5015          * could happen well after the next commit, leaving a great big
5016          * window where new writes may get lost if someone chooses to write
5017          * to this file after truncating to zero
5018          *
5019          * The inode doesn't have any dirty data here, and so if we commit
5020          * this is a noop.  If someone immediately starts writing to the inode
5021          * it is very likely we'll catch some of their writes in this
5022          * transaction, and the commit will find this file on the ordered
5023          * data list with good things to send down.
5024          *
5025          * This is a best effort solution, there is still a window where
5026          * using truncate to replace the contents of the file will
5027          * end up with a zero length file after a crash.
5028          */
5029         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5030                 btrfs_add_ordered_operation(trans, root, inode);
5031
5032         btrfs_set_trans_block_group(trans, inode);
5033         btrfs_i_size_write(inode, inode->i_size);
5034
5035         ret = btrfs_orphan_add(trans, inode);
5036         if (ret)
5037                 goto out;
5038         /* FIXME, add redo link to tree so we don't leak on crash */
5039         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5040                                       BTRFS_EXTENT_DATA_KEY);
5041         btrfs_update_inode(trans, root, inode);
5042
5043         ret = btrfs_orphan_del(trans, inode);
5044         BUG_ON(ret);
5045
5046 out:
5047         nr = trans->blocks_used;
5048         ret = btrfs_end_transaction_throttle(trans, root);
5049         BUG_ON(ret);
5050         btrfs_btree_balance_dirty(root, nr);
5051 }
5052
5053 /*
5054  * create a new subvolume directory/inode (helper for the ioctl).
5055  */
5056 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5057                              struct btrfs_root *new_root,
5058                              u64 new_dirid, u64 alloc_hint)
5059 {
5060         struct inode *inode;
5061         int err;
5062         u64 index = 0;
5063
5064         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5065                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5066         if (IS_ERR(inode))
5067                 return PTR_ERR(inode);
5068         inode->i_op = &btrfs_dir_inode_operations;
5069         inode->i_fop = &btrfs_dir_file_operations;
5070
5071         inode->i_nlink = 1;
5072         btrfs_i_size_write(inode, 0);
5073
5074         err = btrfs_update_inode(trans, new_root, inode);
5075         BUG_ON(err);
5076
5077         iput(inode);
5078         return 0;
5079 }
5080
5081 /* helper function for file defrag and space balancing.  This
5082  * forces readahead on a given range of bytes in an inode
5083  */
5084 unsigned long btrfs_force_ra(struct address_space *mapping,
5085                               struct file_ra_state *ra, struct file *file,
5086                               pgoff_t offset, pgoff_t last_index)
5087 {
5088         pgoff_t req_size = last_index - offset + 1;
5089
5090         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5091         return offset + req_size;
5092 }
5093
5094 struct inode *btrfs_alloc_inode(struct super_block *sb)
5095 {
5096         struct btrfs_inode *ei;
5097
5098         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5099         if (!ei)
5100                 return NULL;
5101         ei->last_trans = 0;
5102         ei->logged_trans = 0;
5103         ei->outstanding_extents = 0;
5104         ei->reserved_extents = 0;
5105         spin_lock_init(&ei->accounting_lock);
5106         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5107         INIT_LIST_HEAD(&ei->i_orphan);
5108         INIT_LIST_HEAD(&ei->ordered_operations);
5109         return &ei->vfs_inode;
5110 }
5111
5112 void btrfs_destroy_inode(struct inode *inode)
5113 {
5114         struct btrfs_ordered_extent *ordered;
5115         struct btrfs_root *root = BTRFS_I(inode)->root;
5116
5117         WARN_ON(!list_empty(&inode->i_dentry));
5118         WARN_ON(inode->i_data.nrpages);
5119
5120         /*
5121          * Make sure we're properly removed from the ordered operation
5122          * lists.
5123          */
5124         smp_mb();
5125         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5126                 spin_lock(&root->fs_info->ordered_extent_lock);
5127                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5128                 spin_unlock(&root->fs_info->ordered_extent_lock);
5129         }
5130
5131         spin_lock(&root->list_lock);
5132         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5133                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5134                        " list\n", inode->i_ino);
5135                 dump_stack();
5136         }
5137         spin_unlock(&root->list_lock);
5138
5139         while (1) {
5140                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5141                 if (!ordered)
5142                         break;
5143                 else {
5144                         printk(KERN_ERR "btrfs found ordered "
5145                                "extent %llu %llu on inode cleanup\n",
5146                                (unsigned long long)ordered->file_offset,
5147                                (unsigned long long)ordered->len);
5148                         btrfs_remove_ordered_extent(inode, ordered);
5149                         btrfs_put_ordered_extent(ordered);
5150                         btrfs_put_ordered_extent(ordered);
5151                 }
5152         }
5153         inode_tree_del(inode);
5154         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5155         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5156 }
5157
5158 void btrfs_drop_inode(struct inode *inode)
5159 {
5160         struct btrfs_root *root = BTRFS_I(inode)->root;
5161
5162         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5163                 generic_delete_inode(inode);
5164         else
5165                 generic_drop_inode(inode);
5166 }
5167
5168 static void init_once(void *foo)
5169 {
5170         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5171
5172         inode_init_once(&ei->vfs_inode);
5173 }
5174
5175 void btrfs_destroy_cachep(void)
5176 {
5177         if (btrfs_inode_cachep)
5178                 kmem_cache_destroy(btrfs_inode_cachep);
5179         if (btrfs_trans_handle_cachep)
5180                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5181         if (btrfs_transaction_cachep)
5182                 kmem_cache_destroy(btrfs_transaction_cachep);
5183         if (btrfs_path_cachep)
5184                 kmem_cache_destroy(btrfs_path_cachep);
5185 }
5186
5187 int btrfs_init_cachep(void)
5188 {
5189         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5190                         sizeof(struct btrfs_inode), 0,
5191                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5192         if (!btrfs_inode_cachep)
5193                 goto fail;
5194
5195         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5196                         sizeof(struct btrfs_trans_handle), 0,
5197                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5198         if (!btrfs_trans_handle_cachep)
5199                 goto fail;
5200
5201         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5202                         sizeof(struct btrfs_transaction), 0,
5203                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5204         if (!btrfs_transaction_cachep)
5205                 goto fail;
5206
5207         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5208                         sizeof(struct btrfs_path), 0,
5209                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5210         if (!btrfs_path_cachep)
5211                 goto fail;
5212
5213         return 0;
5214 fail:
5215         btrfs_destroy_cachep();
5216         return -ENOMEM;
5217 }
5218
5219 static int btrfs_getattr(struct vfsmount *mnt,
5220                          struct dentry *dentry, struct kstat *stat)
5221 {
5222         struct inode *inode = dentry->d_inode;
5223         generic_fillattr(inode, stat);
5224         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5225         stat->blksize = PAGE_CACHE_SIZE;
5226         stat->blocks = (inode_get_bytes(inode) +
5227                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5228         return 0;
5229 }
5230
5231 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5232                            struct inode *new_dir, struct dentry *new_dentry)
5233 {
5234         struct btrfs_trans_handle *trans;
5235         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5236         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5237         struct inode *new_inode = new_dentry->d_inode;
5238         struct inode *old_inode = old_dentry->d_inode;
5239         struct timespec ctime = CURRENT_TIME;
5240         u64 index = 0;
5241         u64 root_objectid;
5242         int ret;
5243
5244         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5245                 return -EPERM;
5246
5247         /* we only allow rename subvolume link between subvolumes */
5248         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5249                 return -EXDEV;
5250
5251         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5252             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5253                 return -ENOTEMPTY;
5254
5255         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5256             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5257                 return -ENOTEMPTY;
5258
5259         /*
5260          * 2 items for dir items
5261          * 1 item for orphan entry
5262          * 1 item for ref
5263          */
5264         ret = btrfs_reserve_metadata_space(root, 4);
5265         if (ret)
5266                 return ret;
5267
5268         /*
5269          * we're using rename to replace one file with another.
5270          * and the replacement file is large.  Start IO on it now so
5271          * we don't add too much work to the end of the transaction
5272          */
5273         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5274             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5275                 filemap_flush(old_inode->i_mapping);
5276
5277         /* close the racy window with snapshot create/destroy ioctl */
5278         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5279                 down_read(&root->fs_info->subvol_sem);
5280
5281         trans = btrfs_start_transaction(root, 1);
5282         btrfs_set_trans_block_group(trans, new_dir);
5283
5284         if (dest != root)
5285                 btrfs_record_root_in_trans(trans, dest);
5286
5287         ret = btrfs_set_inode_index(new_dir, &index);
5288         if (ret)
5289                 goto out_fail;
5290
5291         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5292                 /* force full log commit if subvolume involved. */
5293                 root->fs_info->last_trans_log_full_commit = trans->transid;
5294         } else {
5295                 ret = btrfs_insert_inode_ref(trans, dest,
5296                                              new_dentry->d_name.name,
5297                                              new_dentry->d_name.len,
5298                                              old_inode->i_ino,
5299                                              new_dir->i_ino, index);
5300                 if (ret)
5301                         goto out_fail;
5302                 /*
5303                  * this is an ugly little race, but the rename is required
5304                  * to make sure that if we crash, the inode is either at the
5305                  * old name or the new one.  pinning the log transaction lets
5306                  * us make sure we don't allow a log commit to come in after
5307                  * we unlink the name but before we add the new name back in.
5308                  */
5309                 btrfs_pin_log_trans(root);
5310         }
5311         /*
5312          * make sure the inode gets flushed if it is replacing
5313          * something.
5314          */
5315         if (new_inode && new_inode->i_size &&
5316             old_inode && S_ISREG(old_inode->i_mode)) {
5317                 btrfs_add_ordered_operation(trans, root, old_inode);
5318         }
5319
5320         old_dir->i_ctime = old_dir->i_mtime = ctime;
5321         new_dir->i_ctime = new_dir->i_mtime = ctime;
5322         old_inode->i_ctime = ctime;
5323
5324         if (old_dentry->d_parent != new_dentry->d_parent)
5325                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5326
5327         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5328                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5329                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5330                                         old_dentry->d_name.name,
5331                                         old_dentry->d_name.len);
5332         } else {
5333                 btrfs_inc_nlink(old_dentry->d_inode);
5334                 ret = btrfs_unlink_inode(trans, root, old_dir,
5335                                          old_dentry->d_inode,
5336                                          old_dentry->d_name.name,
5337                                          old_dentry->d_name.len);
5338         }
5339         BUG_ON(ret);
5340
5341         if (new_inode) {
5342                 new_inode->i_ctime = CURRENT_TIME;
5343                 if (unlikely(new_inode->i_ino ==
5344                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5345                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5346                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5347                                                 root_objectid,
5348                                                 new_dentry->d_name.name,
5349                                                 new_dentry->d_name.len);
5350                         BUG_ON(new_inode->i_nlink == 0);
5351                 } else {
5352                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5353                                                  new_dentry->d_inode,
5354                                                  new_dentry->d_name.name,
5355                                                  new_dentry->d_name.len);
5356                 }
5357                 BUG_ON(ret);
5358                 if (new_inode->i_nlink == 0) {
5359                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5360                         BUG_ON(ret);
5361                 }
5362         }
5363
5364         ret = btrfs_add_link(trans, new_dir, old_inode,
5365                              new_dentry->d_name.name,
5366                              new_dentry->d_name.len, 0, index);
5367         BUG_ON(ret);
5368
5369         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5370                 btrfs_log_new_name(trans, old_inode, old_dir,
5371                                    new_dentry->d_parent);
5372                 btrfs_end_log_trans(root);
5373         }
5374 out_fail:
5375         btrfs_end_transaction_throttle(trans, root);
5376
5377         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5378                 up_read(&root->fs_info->subvol_sem);
5379
5380         btrfs_unreserve_metadata_space(root, 4);
5381         return ret;
5382 }
5383
5384 /*
5385  * some fairly slow code that needs optimization. This walks the list
5386  * of all the inodes with pending delalloc and forces them to disk.
5387  */
5388 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5389 {
5390         struct list_head *head = &root->fs_info->delalloc_inodes;
5391         struct btrfs_inode *binode;
5392         struct inode *inode;
5393
5394         if (root->fs_info->sb->s_flags & MS_RDONLY)
5395                 return -EROFS;
5396
5397         spin_lock(&root->fs_info->delalloc_lock);
5398         while (!list_empty(head)) {
5399                 binode = list_entry(head->next, struct btrfs_inode,
5400                                     delalloc_inodes);
5401                 inode = igrab(&binode->vfs_inode);
5402                 if (!inode)
5403                         list_del_init(&binode->delalloc_inodes);
5404                 spin_unlock(&root->fs_info->delalloc_lock);
5405                 if (inode) {
5406                         filemap_flush(inode->i_mapping);
5407                         iput(inode);
5408                 }
5409                 cond_resched();
5410                 spin_lock(&root->fs_info->delalloc_lock);
5411         }
5412         spin_unlock(&root->fs_info->delalloc_lock);
5413
5414         /* the filemap_flush will queue IO into the worker threads, but
5415          * we have to make sure the IO is actually started and that
5416          * ordered extents get created before we return
5417          */
5418         atomic_inc(&root->fs_info->async_submit_draining);
5419         while (atomic_read(&root->fs_info->nr_async_submits) ||
5420               atomic_read(&root->fs_info->async_delalloc_pages)) {
5421                 wait_event(root->fs_info->async_submit_wait,
5422                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5423                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5424         }
5425         atomic_dec(&root->fs_info->async_submit_draining);
5426         return 0;
5427 }
5428
5429 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5430                          const char *symname)
5431 {
5432         struct btrfs_trans_handle *trans;
5433         struct btrfs_root *root = BTRFS_I(dir)->root;
5434         struct btrfs_path *path;
5435         struct btrfs_key key;
5436         struct inode *inode = NULL;
5437         int err;
5438         int drop_inode = 0;
5439         u64 objectid;
5440         u64 index = 0 ;
5441         int name_len;
5442         int datasize;
5443         unsigned long ptr;
5444         struct btrfs_file_extent_item *ei;
5445         struct extent_buffer *leaf;
5446         unsigned long nr = 0;
5447
5448         name_len = strlen(symname) + 1;
5449         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5450                 return -ENAMETOOLONG;
5451
5452         /*
5453          * 2 items for inode item and ref
5454          * 2 items for dir items
5455          * 1 item for xattr if selinux is on
5456          */
5457         err = btrfs_reserve_metadata_space(root, 5);
5458         if (err)
5459                 return err;
5460
5461         trans = btrfs_start_transaction(root, 1);
5462         if (!trans)
5463                 goto out_fail;
5464         btrfs_set_trans_block_group(trans, dir);
5465
5466         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5467         if (err) {
5468                 err = -ENOSPC;
5469                 goto out_unlock;
5470         }
5471
5472         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5473                                 dentry->d_name.len,
5474                                 dentry->d_parent->d_inode->i_ino, objectid,
5475                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5476                                 &index);
5477         err = PTR_ERR(inode);
5478         if (IS_ERR(inode))
5479                 goto out_unlock;
5480
5481         err = btrfs_init_inode_security(inode, dir);
5482         if (err) {
5483                 drop_inode = 1;
5484                 goto out_unlock;
5485         }
5486
5487         btrfs_set_trans_block_group(trans, inode);
5488         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5489         if (err)
5490                 drop_inode = 1;
5491         else {
5492                 inode->i_mapping->a_ops = &btrfs_aops;
5493                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5494                 inode->i_fop = &btrfs_file_operations;
5495                 inode->i_op = &btrfs_file_inode_operations;
5496                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5497         }
5498         btrfs_update_inode_block_group(trans, inode);
5499         btrfs_update_inode_block_group(trans, dir);
5500         if (drop_inode)
5501                 goto out_unlock;
5502
5503         path = btrfs_alloc_path();
5504         BUG_ON(!path);
5505         key.objectid = inode->i_ino;
5506         key.offset = 0;
5507         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5508         datasize = btrfs_file_extent_calc_inline_size(name_len);
5509         err = btrfs_insert_empty_item(trans, root, path, &key,
5510                                       datasize);
5511         if (err) {
5512                 drop_inode = 1;
5513                 goto out_unlock;
5514         }
5515         leaf = path->nodes[0];
5516         ei = btrfs_item_ptr(leaf, path->slots[0],
5517                             struct btrfs_file_extent_item);
5518         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5519         btrfs_set_file_extent_type(leaf, ei,
5520                                    BTRFS_FILE_EXTENT_INLINE);
5521         btrfs_set_file_extent_encryption(leaf, ei, 0);
5522         btrfs_set_file_extent_compression(leaf, ei, 0);
5523         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5524         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5525
5526         ptr = btrfs_file_extent_inline_start(ei);
5527         write_extent_buffer(leaf, symname, ptr, name_len);
5528         btrfs_mark_buffer_dirty(leaf);
5529         btrfs_free_path(path);
5530
5531         inode->i_op = &btrfs_symlink_inode_operations;
5532         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5533         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5534         inode_set_bytes(inode, name_len);
5535         btrfs_i_size_write(inode, name_len - 1);
5536         err = btrfs_update_inode(trans, root, inode);
5537         if (err)
5538                 drop_inode = 1;
5539
5540 out_unlock:
5541         nr = trans->blocks_used;
5542         btrfs_end_transaction_throttle(trans, root);
5543 out_fail:
5544         btrfs_unreserve_metadata_space(root, 5);
5545         if (drop_inode) {
5546                 inode_dec_link_count(inode);
5547                 iput(inode);
5548         }
5549         btrfs_btree_balance_dirty(root, nr);
5550         return err;
5551 }
5552
5553 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5554                                struct inode *inode, u64 start, u64 end,
5555                                u64 locked_end, u64 alloc_hint, int mode)
5556 {
5557         struct btrfs_root *root = BTRFS_I(inode)->root;
5558         struct btrfs_key ins;
5559         u64 alloc_size;
5560         u64 cur_offset = start;
5561         u64 num_bytes = end - start;
5562         int ret = 0;
5563
5564         while (num_bytes > 0) {
5565                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5566
5567                 ret = btrfs_reserve_metadata_space(root, 1);
5568                 if (ret)
5569                         goto out;
5570
5571                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5572                                            root->sectorsize, 0, alloc_hint,
5573                                            (u64)-1, &ins, 1);
5574                 if (ret) {
5575                         WARN_ON(1);
5576                         goto out;
5577                 }
5578                 ret = insert_reserved_file_extent(trans, inode,
5579                                                   cur_offset, ins.objectid,
5580                                                   ins.offset, ins.offset,
5581                                                   ins.offset, locked_end,
5582                                                   0, 0, 0,
5583                                                   BTRFS_FILE_EXTENT_PREALLOC);
5584                 BUG_ON(ret);
5585                 btrfs_drop_extent_cache(inode, cur_offset,
5586                                         cur_offset + ins.offset -1, 0);
5587                 num_bytes -= ins.offset;
5588                 cur_offset += ins.offset;
5589                 alloc_hint = ins.objectid + ins.offset;
5590                 btrfs_unreserve_metadata_space(root, 1);
5591         }
5592 out:
5593         if (cur_offset > start) {
5594                 inode->i_ctime = CURRENT_TIME;
5595                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5596                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5597                     cur_offset > i_size_read(inode))
5598                         btrfs_i_size_write(inode, cur_offset);
5599                 ret = btrfs_update_inode(trans, root, inode);
5600                 BUG_ON(ret);
5601         }
5602
5603         return ret;
5604 }
5605
5606 static long btrfs_fallocate(struct inode *inode, int mode,
5607                             loff_t offset, loff_t len)
5608 {
5609         u64 cur_offset;
5610         u64 last_byte;
5611         u64 alloc_start;
5612         u64 alloc_end;
5613         u64 alloc_hint = 0;
5614         u64 locked_end;
5615         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5616         struct extent_map *em;
5617         struct btrfs_trans_handle *trans;
5618         struct btrfs_root *root;
5619         int ret;
5620
5621         alloc_start = offset & ~mask;
5622         alloc_end =  (offset + len + mask) & ~mask;
5623
5624         /*
5625          * wait for ordered IO before we have any locks.  We'll loop again
5626          * below with the locks held.
5627          */
5628         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5629
5630         mutex_lock(&inode->i_mutex);
5631         if (alloc_start > inode->i_size) {
5632                 ret = btrfs_cont_expand(inode, alloc_start);
5633                 if (ret)
5634                         goto out;
5635         }
5636
5637         root = BTRFS_I(inode)->root;
5638
5639         ret = btrfs_check_data_free_space(root, inode,
5640                                           alloc_end - alloc_start);
5641         if (ret)
5642                 goto out;
5643
5644         locked_end = alloc_end - 1;
5645         while (1) {
5646                 struct btrfs_ordered_extent *ordered;
5647
5648                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5649                 if (!trans) {
5650                         ret = -EIO;
5651                         goto out_free;
5652                 }
5653
5654                 /* the extent lock is ordered inside the running
5655                  * transaction
5656                  */
5657                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5658                             GFP_NOFS);
5659                 ordered = btrfs_lookup_first_ordered_extent(inode,
5660                                                             alloc_end - 1);
5661                 if (ordered &&
5662                     ordered->file_offset + ordered->len > alloc_start &&
5663                     ordered->file_offset < alloc_end) {
5664                         btrfs_put_ordered_extent(ordered);
5665                         unlock_extent(&BTRFS_I(inode)->io_tree,
5666                                       alloc_start, locked_end, GFP_NOFS);
5667                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5668
5669                         /*
5670                          * we can't wait on the range with the transaction
5671                          * running or with the extent lock held
5672                          */
5673                         btrfs_wait_ordered_range(inode, alloc_start,
5674                                                  alloc_end - alloc_start);
5675                 } else {
5676                         if (ordered)
5677                                 btrfs_put_ordered_extent(ordered);
5678                         break;
5679                 }
5680         }
5681
5682         cur_offset = alloc_start;
5683         while (1) {
5684                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5685                                       alloc_end - cur_offset, 0);
5686                 BUG_ON(IS_ERR(em) || !em);
5687                 last_byte = min(extent_map_end(em), alloc_end);
5688                 last_byte = (last_byte + mask) & ~mask;
5689                 if (em->block_start == EXTENT_MAP_HOLE) {
5690                         ret = prealloc_file_range(trans, inode, cur_offset,
5691                                         last_byte, locked_end + 1,
5692                                         alloc_hint, mode);
5693                         if (ret < 0) {
5694                                 free_extent_map(em);
5695                                 break;
5696                         }
5697                 }
5698                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5699                         alloc_hint = em->block_start;
5700                 free_extent_map(em);
5701
5702                 cur_offset = last_byte;
5703                 if (cur_offset >= alloc_end) {
5704                         ret = 0;
5705                         break;
5706                 }
5707         }
5708         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5709                       GFP_NOFS);
5710
5711         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5712 out_free:
5713         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5714 out:
5715         mutex_unlock(&inode->i_mutex);
5716         return ret;
5717 }
5718
5719 static int btrfs_set_page_dirty(struct page *page)
5720 {
5721         return __set_page_dirty_nobuffers(page);
5722 }
5723
5724 static int btrfs_permission(struct inode *inode, int mask)
5725 {
5726         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5727                 return -EACCES;
5728         return generic_permission(inode, mask, btrfs_check_acl);
5729 }
5730
5731 static struct inode_operations btrfs_dir_inode_operations = {
5732         .getattr        = btrfs_getattr,
5733         .lookup         = btrfs_lookup,
5734         .create         = btrfs_create,
5735         .unlink         = btrfs_unlink,
5736         .link           = btrfs_link,
5737         .mkdir          = btrfs_mkdir,
5738         .rmdir          = btrfs_rmdir,
5739         .rename         = btrfs_rename,
5740         .symlink        = btrfs_symlink,
5741         .setattr        = btrfs_setattr,
5742         .mknod          = btrfs_mknod,
5743         .setxattr       = btrfs_setxattr,
5744         .getxattr       = btrfs_getxattr,
5745         .listxattr      = btrfs_listxattr,
5746         .removexattr    = btrfs_removexattr,
5747         .permission     = btrfs_permission,
5748 };
5749 static struct inode_operations btrfs_dir_ro_inode_operations = {
5750         .lookup         = btrfs_lookup,
5751         .permission     = btrfs_permission,
5752 };
5753
5754 static struct file_operations btrfs_dir_file_operations = {
5755         .llseek         = generic_file_llseek,
5756         .read           = generic_read_dir,
5757         .readdir        = btrfs_real_readdir,
5758         .unlocked_ioctl = btrfs_ioctl,
5759 #ifdef CONFIG_COMPAT
5760         .compat_ioctl   = btrfs_ioctl,
5761 #endif
5762         .release        = btrfs_release_file,
5763         .fsync          = btrfs_sync_file,
5764 };
5765
5766 static struct extent_io_ops btrfs_extent_io_ops = {
5767         .fill_delalloc = run_delalloc_range,
5768         .submit_bio_hook = btrfs_submit_bio_hook,
5769         .merge_bio_hook = btrfs_merge_bio_hook,
5770         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5771         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5772         .writepage_start_hook = btrfs_writepage_start_hook,
5773         .readpage_io_failed_hook = btrfs_io_failed_hook,
5774         .set_bit_hook = btrfs_set_bit_hook,
5775         .clear_bit_hook = btrfs_clear_bit_hook,
5776         .merge_extent_hook = btrfs_merge_extent_hook,
5777         .split_extent_hook = btrfs_split_extent_hook,
5778 };
5779
5780 /*
5781  * btrfs doesn't support the bmap operation because swapfiles
5782  * use bmap to make a mapping of extents in the file.  They assume
5783  * these extents won't change over the life of the file and they
5784  * use the bmap result to do IO directly to the drive.
5785  *
5786  * the btrfs bmap call would return logical addresses that aren't
5787  * suitable for IO and they also will change frequently as COW
5788  * operations happen.  So, swapfile + btrfs == corruption.
5789  *
5790  * For now we're avoiding this by dropping bmap.
5791  */
5792 static struct address_space_operations btrfs_aops = {
5793         .readpage       = btrfs_readpage,
5794         .writepage      = btrfs_writepage,
5795         .writepages     = btrfs_writepages,
5796         .readpages      = btrfs_readpages,
5797         .sync_page      = block_sync_page,
5798         .direct_IO      = btrfs_direct_IO,
5799         .invalidatepage = btrfs_invalidatepage,
5800         .releasepage    = btrfs_releasepage,
5801         .set_page_dirty = btrfs_set_page_dirty,
5802 };
5803
5804 static struct address_space_operations btrfs_symlink_aops = {
5805         .readpage       = btrfs_readpage,
5806         .writepage      = btrfs_writepage,
5807         .invalidatepage = btrfs_invalidatepage,
5808         .releasepage    = btrfs_releasepage,
5809 };
5810
5811 static struct inode_operations btrfs_file_inode_operations = {
5812         .truncate       = btrfs_truncate,
5813         .getattr        = btrfs_getattr,
5814         .setattr        = btrfs_setattr,
5815         .setxattr       = btrfs_setxattr,
5816         .getxattr       = btrfs_getxattr,
5817         .listxattr      = btrfs_listxattr,
5818         .removexattr    = btrfs_removexattr,
5819         .permission     = btrfs_permission,
5820         .fallocate      = btrfs_fallocate,
5821         .fiemap         = btrfs_fiemap,
5822 };
5823 static struct inode_operations btrfs_special_inode_operations = {
5824         .getattr        = btrfs_getattr,
5825         .setattr        = btrfs_setattr,
5826         .permission     = btrfs_permission,
5827         .setxattr       = btrfs_setxattr,
5828         .getxattr       = btrfs_getxattr,
5829         .listxattr      = btrfs_listxattr,
5830         .removexattr    = btrfs_removexattr,
5831 };
5832 static struct inode_operations btrfs_symlink_inode_operations = {
5833         .readlink       = generic_readlink,
5834         .follow_link    = page_follow_link_light,
5835         .put_link       = page_put_link,
5836         .permission     = btrfs_permission,
5837         .setxattr       = btrfs_setxattr,
5838         .getxattr       = btrfs_getxattr,
5839         .listxattr      = btrfs_listxattr,
5840         .removexattr    = btrfs_removexattr,
5841 };
5842
5843 const struct dentry_operations btrfs_dentry_operations = {
5844         .d_delete       = btrfs_dentry_delete,
5845 };