nfsd4: reshuffle lease-setting code to allow reuse
[safe/jmp/linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <asm/uaccess.h>
35 #include <asm/param.h>
36 #include <asm/page.h>
37
38 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
39 static int load_elf_library(struct file *);
40 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
41                                 int, int, unsigned long);
42
43 /*
44  * If we don't support core dumping, then supply a NULL so we
45  * don't even try.
46  */
47 #ifdef CONFIG_ELF_CORE
48 static int elf_core_dump(struct coredump_params *cprm);
49 #else
50 #define elf_core_dump   NULL
51 #endif
52
53 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
54 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
55 #else
56 #define ELF_MIN_ALIGN   PAGE_SIZE
57 #endif
58
59 #ifndef ELF_CORE_EFLAGS
60 #define ELF_CORE_EFLAGS 0
61 #endif
62
63 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
64 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
65 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
66
67 static struct linux_binfmt elf_format = {
68                 .module         = THIS_MODULE,
69                 .load_binary    = load_elf_binary,
70                 .load_shlib     = load_elf_library,
71                 .core_dump      = elf_core_dump,
72                 .min_coredump   = ELF_EXEC_PAGESIZE,
73                 .hasvdso        = 1
74 };
75
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80         start = ELF_PAGEALIGN(start);
81         end = ELF_PAGEALIGN(end);
82         if (end > start) {
83                 unsigned long addr;
84                 down_write(&current->mm->mmap_sem);
85                 addr = do_brk(start, end - start);
86                 up_write(&current->mm->mmap_sem);
87                 if (BAD_ADDR(addr))
88                         return addr;
89         }
90         current->mm->start_brk = current->mm->brk = end;
91         return 0;
92 }
93
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
99 static int padzero(unsigned long elf_bss)
100 {
101         unsigned long nbyte;
102
103         nbyte = ELF_PAGEOFFSET(elf_bss);
104         if (nbyte) {
105                 nbyte = ELF_MIN_ALIGN - nbyte;
106                 if (clear_user((void __user *) elf_bss, nbyte))
107                         return -EFAULT;
108         }
109         return 0;
110 }
111
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119         old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123         (((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138                 unsigned long load_addr, unsigned long interp_load_addr)
139 {
140         unsigned long p = bprm->p;
141         int argc = bprm->argc;
142         int envc = bprm->envc;
143         elf_addr_t __user *argv;
144         elf_addr_t __user *envp;
145         elf_addr_t __user *sp;
146         elf_addr_t __user *u_platform;
147         elf_addr_t __user *u_base_platform;
148         elf_addr_t __user *u_rand_bytes;
149         const char *k_platform = ELF_PLATFORM;
150         const char *k_base_platform = ELF_BASE_PLATFORM;
151         unsigned char k_rand_bytes[16];
152         int items;
153         elf_addr_t *elf_info;
154         int ei_index = 0;
155         const struct cred *cred = current_cred();
156         struct vm_area_struct *vma;
157
158         /*
159          * In some cases (e.g. Hyper-Threading), we want to avoid L1
160          * evictions by the processes running on the same package. One
161          * thing we can do is to shuffle the initial stack for them.
162          */
163
164         p = arch_align_stack(p);
165
166         /*
167          * If this architecture has a platform capability string, copy it
168          * to userspace.  In some cases (Sparc), this info is impossible
169          * for userspace to get any other way, in others (i386) it is
170          * merely difficult.
171          */
172         u_platform = NULL;
173         if (k_platform) {
174                 size_t len = strlen(k_platform) + 1;
175
176                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177                 if (__copy_to_user(u_platform, k_platform, len))
178                         return -EFAULT;
179         }
180
181         /*
182          * If this architecture has a "base" platform capability
183          * string, copy it to userspace.
184          */
185         u_base_platform = NULL;
186         if (k_base_platform) {
187                 size_t len = strlen(k_base_platform) + 1;
188
189                 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190                 if (__copy_to_user(u_base_platform, k_base_platform, len))
191                         return -EFAULT;
192         }
193
194         /*
195          * Generate 16 random bytes for userspace PRNG seeding.
196          */
197         get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198         u_rand_bytes = (elf_addr_t __user *)
199                        STACK_ALLOC(p, sizeof(k_rand_bytes));
200         if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201                 return -EFAULT;
202
203         /* Create the ELF interpreter info */
204         elf_info = (elf_addr_t *)current->mm->saved_auxv;
205         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207         do { \
208                 elf_info[ei_index++] = id; \
209                 elf_info[ei_index++] = val; \
210         } while (0)
211
212 #ifdef ARCH_DLINFO
213         /* 
214          * ARCH_DLINFO must come first so PPC can do its special alignment of
215          * AUXV.
216          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217          * ARCH_DLINFO changes
218          */
219         ARCH_DLINFO;
220 #endif
221         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227         NEW_AUX_ENT(AT_BASE, interp_load_addr);
228         NEW_AUX_ENT(AT_FLAGS, 0);
229         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230         NEW_AUX_ENT(AT_UID, cred->uid);
231         NEW_AUX_ENT(AT_EUID, cred->euid);
232         NEW_AUX_ENT(AT_GID, cred->gid);
233         NEW_AUX_ENT(AT_EGID, cred->egid);
234         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235         NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236         NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237         if (k_platform) {
238                 NEW_AUX_ENT(AT_PLATFORM,
239                             (elf_addr_t)(unsigned long)u_platform);
240         }
241         if (k_base_platform) {
242                 NEW_AUX_ENT(AT_BASE_PLATFORM,
243                             (elf_addr_t)(unsigned long)u_base_platform);
244         }
245         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247         }
248 #undef NEW_AUX_ENT
249         /* AT_NULL is zero; clear the rest too */
250         memset(&elf_info[ei_index], 0,
251                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252
253         /* And advance past the AT_NULL entry.  */
254         ei_index += 2;
255
256         sp = STACK_ADD(p, ei_index);
257
258         items = (argc + 1) + (envc + 1) + 1;
259         bprm->p = STACK_ROUND(sp, items);
260
261         /* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266         sp = (elf_addr_t __user *)bprm->p;
267 #endif
268
269
270         /*
271          * Grow the stack manually; some architectures have a limit on how
272          * far ahead a user-space access may be in order to grow the stack.
273          */
274         vma = find_extend_vma(current->mm, bprm->p);
275         if (!vma)
276                 return -EFAULT;
277
278         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279         if (__put_user(argc, sp++))
280                 return -EFAULT;
281         argv = sp;
282         envp = argv + argc + 1;
283
284         /* Populate argv and envp */
285         p = current->mm->arg_end = current->mm->arg_start;
286         while (argc-- > 0) {
287                 size_t len;
288                 if (__put_user((elf_addr_t)p, argv++))
289                         return -EFAULT;
290                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291                 if (!len || len > MAX_ARG_STRLEN)
292                         return -EINVAL;
293                 p += len;
294         }
295         if (__put_user(0, argv))
296                 return -EFAULT;
297         current->mm->arg_end = current->mm->env_start = p;
298         while (envc-- > 0) {
299                 size_t len;
300                 if (__put_user((elf_addr_t)p, envp++))
301                         return -EFAULT;
302                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303                 if (!len || len > MAX_ARG_STRLEN)
304                         return -EINVAL;
305                 p += len;
306         }
307         if (__put_user(0, envp))
308                 return -EFAULT;
309         current->mm->env_end = p;
310
311         /* Put the elf_info on the stack in the right place.  */
312         sp = (elf_addr_t __user *)envp + 1;
313         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314                 return -EFAULT;
315         return 0;
316 }
317
318 #ifndef elf_map
319
320 static unsigned long elf_map(struct file *filep, unsigned long addr,
321                 struct elf_phdr *eppnt, int prot, int type,
322                 unsigned long total_size)
323 {
324         unsigned long map_addr;
325         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
326         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
327         addr = ELF_PAGESTART(addr);
328         size = ELF_PAGEALIGN(size);
329
330         /* mmap() will return -EINVAL if given a zero size, but a
331          * segment with zero filesize is perfectly valid */
332         if (!size)
333                 return addr;
334
335         down_write(&current->mm->mmap_sem);
336         /*
337         * total_size is the size of the ELF (interpreter) image.
338         * The _first_ mmap needs to know the full size, otherwise
339         * randomization might put this image into an overlapping
340         * position with the ELF binary image. (since size < total_size)
341         * So we first map the 'big' image - and unmap the remainder at
342         * the end. (which unmap is needed for ELF images with holes.)
343         */
344         if (total_size) {
345                 total_size = ELF_PAGEALIGN(total_size);
346                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
347                 if (!BAD_ADDR(map_addr))
348                         do_munmap(current->mm, map_addr+size, total_size-size);
349         } else
350                 map_addr = do_mmap(filep, addr, size, prot, type, off);
351
352         up_write(&current->mm->mmap_sem);
353         return(map_addr);
354 }
355
356 #endif /* !elf_map */
357
358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
359 {
360         int i, first_idx = -1, last_idx = -1;
361
362         for (i = 0; i < nr; i++) {
363                 if (cmds[i].p_type == PT_LOAD) {
364                         last_idx = i;
365                         if (first_idx == -1)
366                                 first_idx = i;
367                 }
368         }
369         if (first_idx == -1)
370                 return 0;
371
372         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
373                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
374 }
375
376
377 /* This is much more generalized than the library routine read function,
378    so we keep this separate.  Technically the library read function
379    is only provided so that we can read a.out libraries that have
380    an ELF header */
381
382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
383                 struct file *interpreter, unsigned long *interp_map_addr,
384                 unsigned long no_base)
385 {
386         struct elf_phdr *elf_phdata;
387         struct elf_phdr *eppnt;
388         unsigned long load_addr = 0;
389         int load_addr_set = 0;
390         unsigned long last_bss = 0, elf_bss = 0;
391         unsigned long error = ~0UL;
392         unsigned long total_size;
393         int retval, i, size;
394
395         /* First of all, some simple consistency checks */
396         if (interp_elf_ex->e_type != ET_EXEC &&
397             interp_elf_ex->e_type != ET_DYN)
398                 goto out;
399         if (!elf_check_arch(interp_elf_ex))
400                 goto out;
401         if (!interpreter->f_op || !interpreter->f_op->mmap)
402                 goto out;
403
404         /*
405          * If the size of this structure has changed, then punt, since
406          * we will be doing the wrong thing.
407          */
408         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
409                 goto out;
410         if (interp_elf_ex->e_phnum < 1 ||
411                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
412                 goto out;
413
414         /* Now read in all of the header information */
415         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
416         if (size > ELF_MIN_ALIGN)
417                 goto out;
418         elf_phdata = kmalloc(size, GFP_KERNEL);
419         if (!elf_phdata)
420                 goto out;
421
422         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
423                              (char *)elf_phdata,size);
424         error = -EIO;
425         if (retval != size) {
426                 if (retval < 0)
427                         error = retval; 
428                 goto out_close;
429         }
430
431         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
432         if (!total_size) {
433                 error = -EINVAL;
434                 goto out_close;
435         }
436
437         eppnt = elf_phdata;
438         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
439                 if (eppnt->p_type == PT_LOAD) {
440                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
441                         int elf_prot = 0;
442                         unsigned long vaddr = 0;
443                         unsigned long k, map_addr;
444
445                         if (eppnt->p_flags & PF_R)
446                                 elf_prot = PROT_READ;
447                         if (eppnt->p_flags & PF_W)
448                                 elf_prot |= PROT_WRITE;
449                         if (eppnt->p_flags & PF_X)
450                                 elf_prot |= PROT_EXEC;
451                         vaddr = eppnt->p_vaddr;
452                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
453                                 elf_type |= MAP_FIXED;
454                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
455                                 load_addr = -vaddr;
456
457                         map_addr = elf_map(interpreter, load_addr + vaddr,
458                                         eppnt, elf_prot, elf_type, total_size);
459                         total_size = 0;
460                         if (!*interp_map_addr)
461                                 *interp_map_addr = map_addr;
462                         error = map_addr;
463                         if (BAD_ADDR(map_addr))
464                                 goto out_close;
465
466                         if (!load_addr_set &&
467                             interp_elf_ex->e_type == ET_DYN) {
468                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
469                                 load_addr_set = 1;
470                         }
471
472                         /*
473                          * Check to see if the section's size will overflow the
474                          * allowed task size. Note that p_filesz must always be
475                          * <= p_memsize so it's only necessary to check p_memsz.
476                          */
477                         k = load_addr + eppnt->p_vaddr;
478                         if (BAD_ADDR(k) ||
479                             eppnt->p_filesz > eppnt->p_memsz ||
480                             eppnt->p_memsz > TASK_SIZE ||
481                             TASK_SIZE - eppnt->p_memsz < k) {
482                                 error = -ENOMEM;
483                                 goto out_close;
484                         }
485
486                         /*
487                          * Find the end of the file mapping for this phdr, and
488                          * keep track of the largest address we see for this.
489                          */
490                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
491                         if (k > elf_bss)
492                                 elf_bss = k;
493
494                         /*
495                          * Do the same thing for the memory mapping - between
496                          * elf_bss and last_bss is the bss section.
497                          */
498                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
499                         if (k > last_bss)
500                                 last_bss = k;
501                 }
502         }
503
504         if (last_bss > elf_bss) {
505                 /*
506                  * Now fill out the bss section.  First pad the last page up
507                  * to the page boundary, and then perform a mmap to make sure
508                  * that there are zero-mapped pages up to and including the
509                  * last bss page.
510                  */
511                 if (padzero(elf_bss)) {
512                         error = -EFAULT;
513                         goto out_close;
514                 }
515
516                 /* What we have mapped so far */
517                 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
518
519                 /* Map the last of the bss segment */
520                 down_write(&current->mm->mmap_sem);
521                 error = do_brk(elf_bss, last_bss - elf_bss);
522                 up_write(&current->mm->mmap_sem);
523                 if (BAD_ADDR(error))
524                         goto out_close;
525         }
526
527         error = load_addr;
528
529 out_close:
530         kfree(elf_phdata);
531 out:
532         return error;
533 }
534
535 /*
536  * These are the functions used to load ELF style executables and shared
537  * libraries.  There is no binary dependent code anywhere else.
538  */
539
540 #define INTERPRETER_NONE 0
541 #define INTERPRETER_ELF 2
542
543 #ifndef STACK_RND_MASK
544 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
545 #endif
546
547 static unsigned long randomize_stack_top(unsigned long stack_top)
548 {
549         unsigned int random_variable = 0;
550
551         if ((current->flags & PF_RANDOMIZE) &&
552                 !(current->personality & ADDR_NO_RANDOMIZE)) {
553                 random_variable = get_random_int() & STACK_RND_MASK;
554                 random_variable <<= PAGE_SHIFT;
555         }
556 #ifdef CONFIG_STACK_GROWSUP
557         return PAGE_ALIGN(stack_top) + random_variable;
558 #else
559         return PAGE_ALIGN(stack_top) - random_variable;
560 #endif
561 }
562
563 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
564 {
565         struct file *interpreter = NULL; /* to shut gcc up */
566         unsigned long load_addr = 0, load_bias = 0;
567         int load_addr_set = 0;
568         char * elf_interpreter = NULL;
569         unsigned long error;
570         struct elf_phdr *elf_ppnt, *elf_phdata;
571         unsigned long elf_bss, elf_brk;
572         int retval, i;
573         unsigned int size;
574         unsigned long elf_entry;
575         unsigned long interp_load_addr = 0;
576         unsigned long start_code, end_code, start_data, end_data;
577         unsigned long reloc_func_desc = 0;
578         int executable_stack = EXSTACK_DEFAULT;
579         unsigned long def_flags = 0;
580         struct {
581                 struct elfhdr elf_ex;
582                 struct elfhdr interp_elf_ex;
583         } *loc;
584
585         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
586         if (!loc) {
587                 retval = -ENOMEM;
588                 goto out_ret;
589         }
590         
591         /* Get the exec-header */
592         loc->elf_ex = *((struct elfhdr *)bprm->buf);
593
594         retval = -ENOEXEC;
595         /* First of all, some simple consistency checks */
596         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
597                 goto out;
598
599         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
600                 goto out;
601         if (!elf_check_arch(&loc->elf_ex))
602                 goto out;
603         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
604                 goto out;
605
606         /* Now read in all of the header information */
607         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
608                 goto out;
609         if (loc->elf_ex.e_phnum < 1 ||
610                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
611                 goto out;
612         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
613         retval = -ENOMEM;
614         elf_phdata = kmalloc(size, GFP_KERNEL);
615         if (!elf_phdata)
616                 goto out;
617
618         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
619                              (char *)elf_phdata, size);
620         if (retval != size) {
621                 if (retval >= 0)
622                         retval = -EIO;
623                 goto out_free_ph;
624         }
625
626         elf_ppnt = elf_phdata;
627         elf_bss = 0;
628         elf_brk = 0;
629
630         start_code = ~0UL;
631         end_code = 0;
632         start_data = 0;
633         end_data = 0;
634
635         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
636                 if (elf_ppnt->p_type == PT_INTERP) {
637                         /* This is the program interpreter used for
638                          * shared libraries - for now assume that this
639                          * is an a.out format binary
640                          */
641                         retval = -ENOEXEC;
642                         if (elf_ppnt->p_filesz > PATH_MAX || 
643                             elf_ppnt->p_filesz < 2)
644                                 goto out_free_ph;
645
646                         retval = -ENOMEM;
647                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
648                                                   GFP_KERNEL);
649                         if (!elf_interpreter)
650                                 goto out_free_ph;
651
652                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
653                                              elf_interpreter,
654                                              elf_ppnt->p_filesz);
655                         if (retval != elf_ppnt->p_filesz) {
656                                 if (retval >= 0)
657                                         retval = -EIO;
658                                 goto out_free_interp;
659                         }
660                         /* make sure path is NULL terminated */
661                         retval = -ENOEXEC;
662                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
663                                 goto out_free_interp;
664
665                         interpreter = open_exec(elf_interpreter);
666                         retval = PTR_ERR(interpreter);
667                         if (IS_ERR(interpreter))
668                                 goto out_free_interp;
669
670                         /*
671                          * If the binary is not readable then enforce
672                          * mm->dumpable = 0 regardless of the interpreter's
673                          * permissions.
674                          */
675                         if (file_permission(interpreter, MAY_READ) < 0)
676                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
677
678                         retval = kernel_read(interpreter, 0, bprm->buf,
679                                              BINPRM_BUF_SIZE);
680                         if (retval != BINPRM_BUF_SIZE) {
681                                 if (retval >= 0)
682                                         retval = -EIO;
683                                 goto out_free_dentry;
684                         }
685
686                         /* Get the exec headers */
687                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
688                         break;
689                 }
690                 elf_ppnt++;
691         }
692
693         elf_ppnt = elf_phdata;
694         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
695                 if (elf_ppnt->p_type == PT_GNU_STACK) {
696                         if (elf_ppnt->p_flags & PF_X)
697                                 executable_stack = EXSTACK_ENABLE_X;
698                         else
699                                 executable_stack = EXSTACK_DISABLE_X;
700                         break;
701                 }
702
703         /* Some simple consistency checks for the interpreter */
704         if (elf_interpreter) {
705                 retval = -ELIBBAD;
706                 /* Not an ELF interpreter */
707                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
708                         goto out_free_dentry;
709                 /* Verify the interpreter has a valid arch */
710                 if (!elf_check_arch(&loc->interp_elf_ex))
711                         goto out_free_dentry;
712         }
713
714         /* Flush all traces of the currently running executable */
715         retval = flush_old_exec(bprm);
716         if (retval)
717                 goto out_free_dentry;
718
719         /* OK, This is the point of no return */
720         current->flags &= ~PF_FORKNOEXEC;
721         current->mm->def_flags = def_flags;
722
723         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
724            may depend on the personality.  */
725         SET_PERSONALITY(loc->elf_ex);
726         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
727                 current->personality |= READ_IMPLIES_EXEC;
728
729         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
730                 current->flags |= PF_RANDOMIZE;
731
732         setup_new_exec(bprm);
733
734         /* Do this so that we can load the interpreter, if need be.  We will
735            change some of these later */
736         current->mm->free_area_cache = current->mm->mmap_base;
737         current->mm->cached_hole_size = 0;
738         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
739                                  executable_stack);
740         if (retval < 0) {
741                 send_sig(SIGKILL, current, 0);
742                 goto out_free_dentry;
743         }
744         
745         current->mm->start_stack = bprm->p;
746
747         /* Now we do a little grungy work by mmapping the ELF image into
748            the correct location in memory. */
749         for(i = 0, elf_ppnt = elf_phdata;
750             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
751                 int elf_prot = 0, elf_flags;
752                 unsigned long k, vaddr;
753
754                 if (elf_ppnt->p_type != PT_LOAD)
755                         continue;
756
757                 if (unlikely (elf_brk > elf_bss)) {
758                         unsigned long nbyte;
759                     
760                         /* There was a PT_LOAD segment with p_memsz > p_filesz
761                            before this one. Map anonymous pages, if needed,
762                            and clear the area.  */
763                         retval = set_brk (elf_bss + load_bias,
764                                           elf_brk + load_bias);
765                         if (retval) {
766                                 send_sig(SIGKILL, current, 0);
767                                 goto out_free_dentry;
768                         }
769                         nbyte = ELF_PAGEOFFSET(elf_bss);
770                         if (nbyte) {
771                                 nbyte = ELF_MIN_ALIGN - nbyte;
772                                 if (nbyte > elf_brk - elf_bss)
773                                         nbyte = elf_brk - elf_bss;
774                                 if (clear_user((void __user *)elf_bss +
775                                                         load_bias, nbyte)) {
776                                         /*
777                                          * This bss-zeroing can fail if the ELF
778                                          * file specifies odd protections. So
779                                          * we don't check the return value
780                                          */
781                                 }
782                         }
783                 }
784
785                 if (elf_ppnt->p_flags & PF_R)
786                         elf_prot |= PROT_READ;
787                 if (elf_ppnt->p_flags & PF_W)
788                         elf_prot |= PROT_WRITE;
789                 if (elf_ppnt->p_flags & PF_X)
790                         elf_prot |= PROT_EXEC;
791
792                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
793
794                 vaddr = elf_ppnt->p_vaddr;
795                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
796                         elf_flags |= MAP_FIXED;
797                 } else if (loc->elf_ex.e_type == ET_DYN) {
798                         /* Try and get dynamic programs out of the way of the
799                          * default mmap base, as well as whatever program they
800                          * might try to exec.  This is because the brk will
801                          * follow the loader, and is not movable.  */
802 #ifdef CONFIG_X86
803                         load_bias = 0;
804 #else
805                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
806 #endif
807                 }
808
809                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
810                                 elf_prot, elf_flags, 0);
811                 if (BAD_ADDR(error)) {
812                         send_sig(SIGKILL, current, 0);
813                         retval = IS_ERR((void *)error) ?
814                                 PTR_ERR((void*)error) : -EINVAL;
815                         goto out_free_dentry;
816                 }
817
818                 if (!load_addr_set) {
819                         load_addr_set = 1;
820                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
821                         if (loc->elf_ex.e_type == ET_DYN) {
822                                 load_bias += error -
823                                              ELF_PAGESTART(load_bias + vaddr);
824                                 load_addr += load_bias;
825                                 reloc_func_desc = load_bias;
826                         }
827                 }
828                 k = elf_ppnt->p_vaddr;
829                 if (k < start_code)
830                         start_code = k;
831                 if (start_data < k)
832                         start_data = k;
833
834                 /*
835                  * Check to see if the section's size will overflow the
836                  * allowed task size. Note that p_filesz must always be
837                  * <= p_memsz so it is only necessary to check p_memsz.
838                  */
839                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
840                     elf_ppnt->p_memsz > TASK_SIZE ||
841                     TASK_SIZE - elf_ppnt->p_memsz < k) {
842                         /* set_brk can never work. Avoid overflows. */
843                         send_sig(SIGKILL, current, 0);
844                         retval = -EINVAL;
845                         goto out_free_dentry;
846                 }
847
848                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
849
850                 if (k > elf_bss)
851                         elf_bss = k;
852                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
853                         end_code = k;
854                 if (end_data < k)
855                         end_data = k;
856                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
857                 if (k > elf_brk)
858                         elf_brk = k;
859         }
860
861         loc->elf_ex.e_entry += load_bias;
862         elf_bss += load_bias;
863         elf_brk += load_bias;
864         start_code += load_bias;
865         end_code += load_bias;
866         start_data += load_bias;
867         end_data += load_bias;
868
869         /* Calling set_brk effectively mmaps the pages that we need
870          * for the bss and break sections.  We must do this before
871          * mapping in the interpreter, to make sure it doesn't wind
872          * up getting placed where the bss needs to go.
873          */
874         retval = set_brk(elf_bss, elf_brk);
875         if (retval) {
876                 send_sig(SIGKILL, current, 0);
877                 goto out_free_dentry;
878         }
879         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
880                 send_sig(SIGSEGV, current, 0);
881                 retval = -EFAULT; /* Nobody gets to see this, but.. */
882                 goto out_free_dentry;
883         }
884
885         if (elf_interpreter) {
886                 unsigned long uninitialized_var(interp_map_addr);
887
888                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
889                                             interpreter,
890                                             &interp_map_addr,
891                                             load_bias);
892                 if (!IS_ERR((void *)elf_entry)) {
893                         /*
894                          * load_elf_interp() returns relocation
895                          * adjustment
896                          */
897                         interp_load_addr = elf_entry;
898                         elf_entry += loc->interp_elf_ex.e_entry;
899                 }
900                 if (BAD_ADDR(elf_entry)) {
901                         force_sig(SIGSEGV, current);
902                         retval = IS_ERR((void *)elf_entry) ?
903                                         (int)elf_entry : -EINVAL;
904                         goto out_free_dentry;
905                 }
906                 reloc_func_desc = interp_load_addr;
907
908                 allow_write_access(interpreter);
909                 fput(interpreter);
910                 kfree(elf_interpreter);
911         } else {
912                 elf_entry = loc->elf_ex.e_entry;
913                 if (BAD_ADDR(elf_entry)) {
914                         force_sig(SIGSEGV, current);
915                         retval = -EINVAL;
916                         goto out_free_dentry;
917                 }
918         }
919
920         kfree(elf_phdata);
921
922         set_binfmt(&elf_format);
923
924 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
925         retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
926         if (retval < 0) {
927                 send_sig(SIGKILL, current, 0);
928                 goto out;
929         }
930 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
931
932         install_exec_creds(bprm);
933         current->flags &= ~PF_FORKNOEXEC;
934         retval = create_elf_tables(bprm, &loc->elf_ex,
935                           load_addr, interp_load_addr);
936         if (retval < 0) {
937                 send_sig(SIGKILL, current, 0);
938                 goto out;
939         }
940         /* N.B. passed_fileno might not be initialized? */
941         current->mm->end_code = end_code;
942         current->mm->start_code = start_code;
943         current->mm->start_data = start_data;
944         current->mm->end_data = end_data;
945         current->mm->start_stack = bprm->p;
946
947 #ifdef arch_randomize_brk
948         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
949                 current->mm->brk = current->mm->start_brk =
950                         arch_randomize_brk(current->mm);
951 #endif
952
953         if (current->personality & MMAP_PAGE_ZERO) {
954                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
955                    and some applications "depend" upon this behavior.
956                    Since we do not have the power to recompile these, we
957                    emulate the SVr4 behavior. Sigh. */
958                 down_write(&current->mm->mmap_sem);
959                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
960                                 MAP_FIXED | MAP_PRIVATE, 0);
961                 up_write(&current->mm->mmap_sem);
962         }
963
964 #ifdef ELF_PLAT_INIT
965         /*
966          * The ABI may specify that certain registers be set up in special
967          * ways (on i386 %edx is the address of a DT_FINI function, for
968          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
969          * that the e_entry field is the address of the function descriptor
970          * for the startup routine, rather than the address of the startup
971          * routine itself.  This macro performs whatever initialization to
972          * the regs structure is required as well as any relocations to the
973          * function descriptor entries when executing dynamically links apps.
974          */
975         ELF_PLAT_INIT(regs, reloc_func_desc);
976 #endif
977
978         start_thread(regs, elf_entry, bprm->p);
979         retval = 0;
980 out:
981         kfree(loc);
982 out_ret:
983         return retval;
984
985         /* error cleanup */
986 out_free_dentry:
987         allow_write_access(interpreter);
988         if (interpreter)
989                 fput(interpreter);
990 out_free_interp:
991         kfree(elf_interpreter);
992 out_free_ph:
993         kfree(elf_phdata);
994         goto out;
995 }
996
997 /* This is really simpleminded and specialized - we are loading an
998    a.out library that is given an ELF header. */
999 static int load_elf_library(struct file *file)
1000 {
1001         struct elf_phdr *elf_phdata;
1002         struct elf_phdr *eppnt;
1003         unsigned long elf_bss, bss, len;
1004         int retval, error, i, j;
1005         struct elfhdr elf_ex;
1006
1007         error = -ENOEXEC;
1008         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1009         if (retval != sizeof(elf_ex))
1010                 goto out;
1011
1012         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1013                 goto out;
1014
1015         /* First of all, some simple consistency checks */
1016         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1017             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1018                 goto out;
1019
1020         /* Now read in all of the header information */
1021
1022         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1023         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1024
1025         error = -ENOMEM;
1026         elf_phdata = kmalloc(j, GFP_KERNEL);
1027         if (!elf_phdata)
1028                 goto out;
1029
1030         eppnt = elf_phdata;
1031         error = -ENOEXEC;
1032         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1033         if (retval != j)
1034                 goto out_free_ph;
1035
1036         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1037                 if ((eppnt + i)->p_type == PT_LOAD)
1038                         j++;
1039         if (j != 1)
1040                 goto out_free_ph;
1041
1042         while (eppnt->p_type != PT_LOAD)
1043                 eppnt++;
1044
1045         /* Now use mmap to map the library into memory. */
1046         down_write(&current->mm->mmap_sem);
1047         error = do_mmap(file,
1048                         ELF_PAGESTART(eppnt->p_vaddr),
1049                         (eppnt->p_filesz +
1050                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1051                         PROT_READ | PROT_WRITE | PROT_EXEC,
1052                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1053                         (eppnt->p_offset -
1054                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1055         up_write(&current->mm->mmap_sem);
1056         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1057                 goto out_free_ph;
1058
1059         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1060         if (padzero(elf_bss)) {
1061                 error = -EFAULT;
1062                 goto out_free_ph;
1063         }
1064
1065         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1066                             ELF_MIN_ALIGN - 1);
1067         bss = eppnt->p_memsz + eppnt->p_vaddr;
1068         if (bss > len) {
1069                 down_write(&current->mm->mmap_sem);
1070                 do_brk(len, bss - len);
1071                 up_write(&current->mm->mmap_sem);
1072         }
1073         error = 0;
1074
1075 out_free_ph:
1076         kfree(elf_phdata);
1077 out:
1078         return error;
1079 }
1080
1081 #ifdef CONFIG_ELF_CORE
1082 /*
1083  * ELF core dumper
1084  *
1085  * Modelled on fs/exec.c:aout_core_dump()
1086  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1087  */
1088 /*
1089  * These are the only things you should do on a core-file: use only these
1090  * functions to write out all the necessary info.
1091  */
1092 static int dump_write(struct file *file, const void *addr, int nr)
1093 {
1094         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1095 }
1096
1097 static int dump_seek(struct file *file, loff_t off)
1098 {
1099         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1100                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1101                         return 0;
1102         } else {
1103                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1104                 if (!buf)
1105                         return 0;
1106                 while (off > 0) {
1107                         unsigned long n = off;
1108                         if (n > PAGE_SIZE)
1109                                 n = PAGE_SIZE;
1110                         if (!dump_write(file, buf, n))
1111                                 return 0;
1112                         off -= n;
1113                 }
1114                 free_page((unsigned long)buf);
1115         }
1116         return 1;
1117 }
1118
1119 /*
1120  * Decide what to dump of a segment, part, all or none.
1121  */
1122 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1123                                    unsigned long mm_flags)
1124 {
1125 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1126
1127         /* The vma can be set up to tell us the answer directly.  */
1128         if (vma->vm_flags & VM_ALWAYSDUMP)
1129                 goto whole;
1130
1131         /* Hugetlb memory check */
1132         if (vma->vm_flags & VM_HUGETLB) {
1133                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1134                         goto whole;
1135                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1136                         goto whole;
1137         }
1138
1139         /* Do not dump I/O mapped devices or special mappings */
1140         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1141                 return 0;
1142
1143         /* By default, dump shared memory if mapped from an anonymous file. */
1144         if (vma->vm_flags & VM_SHARED) {
1145                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1146                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1147                         goto whole;
1148                 return 0;
1149         }
1150
1151         /* Dump segments that have been written to.  */
1152         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1153                 goto whole;
1154         if (vma->vm_file == NULL)
1155                 return 0;
1156
1157         if (FILTER(MAPPED_PRIVATE))
1158                 goto whole;
1159
1160         /*
1161          * If this looks like the beginning of a DSO or executable mapping,
1162          * check for an ELF header.  If we find one, dump the first page to
1163          * aid in determining what was mapped here.
1164          */
1165         if (FILTER(ELF_HEADERS) &&
1166             vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1167                 u32 __user *header = (u32 __user *) vma->vm_start;
1168                 u32 word;
1169                 mm_segment_t fs = get_fs();
1170                 /*
1171                  * Doing it this way gets the constant folded by GCC.
1172                  */
1173                 union {
1174                         u32 cmp;
1175                         char elfmag[SELFMAG];
1176                 } magic;
1177                 BUILD_BUG_ON(SELFMAG != sizeof word);
1178                 magic.elfmag[EI_MAG0] = ELFMAG0;
1179                 magic.elfmag[EI_MAG1] = ELFMAG1;
1180                 magic.elfmag[EI_MAG2] = ELFMAG2;
1181                 magic.elfmag[EI_MAG3] = ELFMAG3;
1182                 /*
1183                  * Switch to the user "segment" for get_user(),
1184                  * then put back what elf_core_dump() had in place.
1185                  */
1186                 set_fs(USER_DS);
1187                 if (unlikely(get_user(word, header)))
1188                         word = 0;
1189                 set_fs(fs);
1190                 if (word == magic.cmp)
1191                         return PAGE_SIZE;
1192         }
1193
1194 #undef  FILTER
1195
1196         return 0;
1197
1198 whole:
1199         return vma->vm_end - vma->vm_start;
1200 }
1201
1202 /* An ELF note in memory */
1203 struct memelfnote
1204 {
1205         const char *name;
1206         int type;
1207         unsigned int datasz;
1208         void *data;
1209 };
1210
1211 static int notesize(struct memelfnote *en)
1212 {
1213         int sz;
1214
1215         sz = sizeof(struct elf_note);
1216         sz += roundup(strlen(en->name) + 1, 4);
1217         sz += roundup(en->datasz, 4);
1218
1219         return sz;
1220 }
1221
1222 #define DUMP_WRITE(addr, nr, foffset)   \
1223         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1224
1225 static int alignfile(struct file *file, loff_t *foffset)
1226 {
1227         static const char buf[4] = { 0, };
1228         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1229         return 1;
1230 }
1231
1232 static int writenote(struct memelfnote *men, struct file *file,
1233                         loff_t *foffset)
1234 {
1235         struct elf_note en;
1236         en.n_namesz = strlen(men->name) + 1;
1237         en.n_descsz = men->datasz;
1238         en.n_type = men->type;
1239
1240         DUMP_WRITE(&en, sizeof(en), foffset);
1241         DUMP_WRITE(men->name, en.n_namesz, foffset);
1242         if (!alignfile(file, foffset))
1243                 return 0;
1244         DUMP_WRITE(men->data, men->datasz, foffset);
1245         if (!alignfile(file, foffset))
1246                 return 0;
1247
1248         return 1;
1249 }
1250 #undef DUMP_WRITE
1251
1252 #define DUMP_WRITE(addr, nr)                            \
1253         if ((size += (nr)) > cprm->limit ||             \
1254             !dump_write(cprm->file, (addr), (nr)))      \
1255                 goto end_coredump;
1256
1257 static void fill_elf_header(struct elfhdr *elf, int segs,
1258                             u16 machine, u32 flags, u8 osabi)
1259 {
1260         memset(elf, 0, sizeof(*elf));
1261
1262         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1263         elf->e_ident[EI_CLASS] = ELF_CLASS;
1264         elf->e_ident[EI_DATA] = ELF_DATA;
1265         elf->e_ident[EI_VERSION] = EV_CURRENT;
1266         elf->e_ident[EI_OSABI] = ELF_OSABI;
1267
1268         elf->e_type = ET_CORE;
1269         elf->e_machine = machine;
1270         elf->e_version = EV_CURRENT;
1271         elf->e_phoff = sizeof(struct elfhdr);
1272         elf->e_flags = flags;
1273         elf->e_ehsize = sizeof(struct elfhdr);
1274         elf->e_phentsize = sizeof(struct elf_phdr);
1275         elf->e_phnum = segs;
1276
1277         return;
1278 }
1279
1280 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1281 {
1282         phdr->p_type = PT_NOTE;
1283         phdr->p_offset = offset;
1284         phdr->p_vaddr = 0;
1285         phdr->p_paddr = 0;
1286         phdr->p_filesz = sz;
1287         phdr->p_memsz = 0;
1288         phdr->p_flags = 0;
1289         phdr->p_align = 0;
1290         return;
1291 }
1292
1293 static void fill_note(struct memelfnote *note, const char *name, int type, 
1294                 unsigned int sz, void *data)
1295 {
1296         note->name = name;
1297         note->type = type;
1298         note->datasz = sz;
1299         note->data = data;
1300         return;
1301 }
1302
1303 /*
1304  * fill up all the fields in prstatus from the given task struct, except
1305  * registers which need to be filled up separately.
1306  */
1307 static void fill_prstatus(struct elf_prstatus *prstatus,
1308                 struct task_struct *p, long signr)
1309 {
1310         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1311         prstatus->pr_sigpend = p->pending.signal.sig[0];
1312         prstatus->pr_sighold = p->blocked.sig[0];
1313         rcu_read_lock();
1314         prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1315         rcu_read_unlock();
1316         prstatus->pr_pid = task_pid_vnr(p);
1317         prstatus->pr_pgrp = task_pgrp_vnr(p);
1318         prstatus->pr_sid = task_session_vnr(p);
1319         if (thread_group_leader(p)) {
1320                 struct task_cputime cputime;
1321
1322                 /*
1323                  * This is the record for the group leader.  It shows the
1324                  * group-wide total, not its individual thread total.
1325                  */
1326                 thread_group_cputime(p, &cputime);
1327                 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1328                 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1329         } else {
1330                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1331                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1332         }
1333         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1334         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1335 }
1336
1337 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1338                        struct mm_struct *mm)
1339 {
1340         const struct cred *cred;
1341         unsigned int i, len;
1342         
1343         /* first copy the parameters from user space */
1344         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1345
1346         len = mm->arg_end - mm->arg_start;
1347         if (len >= ELF_PRARGSZ)
1348                 len = ELF_PRARGSZ-1;
1349         if (copy_from_user(&psinfo->pr_psargs,
1350                            (const char __user *)mm->arg_start, len))
1351                 return -EFAULT;
1352         for(i = 0; i < len; i++)
1353                 if (psinfo->pr_psargs[i] == 0)
1354                         psinfo->pr_psargs[i] = ' ';
1355         psinfo->pr_psargs[len] = 0;
1356
1357         rcu_read_lock();
1358         psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1359         rcu_read_unlock();
1360         psinfo->pr_pid = task_pid_vnr(p);
1361         psinfo->pr_pgrp = task_pgrp_vnr(p);
1362         psinfo->pr_sid = task_session_vnr(p);
1363
1364         i = p->state ? ffz(~p->state) + 1 : 0;
1365         psinfo->pr_state = i;
1366         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1367         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1368         psinfo->pr_nice = task_nice(p);
1369         psinfo->pr_flag = p->flags;
1370         rcu_read_lock();
1371         cred = __task_cred(p);
1372         SET_UID(psinfo->pr_uid, cred->uid);
1373         SET_GID(psinfo->pr_gid, cred->gid);
1374         rcu_read_unlock();
1375         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1376         
1377         return 0;
1378 }
1379
1380 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1381 {
1382         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1383         int i = 0;
1384         do
1385                 i += 2;
1386         while (auxv[i - 2] != AT_NULL);
1387         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1388 }
1389
1390 #ifdef CORE_DUMP_USE_REGSET
1391 #include <linux/regset.h>
1392
1393 struct elf_thread_core_info {
1394         struct elf_thread_core_info *next;
1395         struct task_struct *task;
1396         struct elf_prstatus prstatus;
1397         struct memelfnote notes[0];
1398 };
1399
1400 struct elf_note_info {
1401         struct elf_thread_core_info *thread;
1402         struct memelfnote psinfo;
1403         struct memelfnote auxv;
1404         size_t size;
1405         int thread_notes;
1406 };
1407
1408 /*
1409  * When a regset has a writeback hook, we call it on each thread before
1410  * dumping user memory.  On register window machines, this makes sure the
1411  * user memory backing the register data is up to date before we read it.
1412  */
1413 static void do_thread_regset_writeback(struct task_struct *task,
1414                                        const struct user_regset *regset)
1415 {
1416         if (regset->writeback)
1417                 regset->writeback(task, regset, 1);
1418 }
1419
1420 static int fill_thread_core_info(struct elf_thread_core_info *t,
1421                                  const struct user_regset_view *view,
1422                                  long signr, size_t *total)
1423 {
1424         unsigned int i;
1425
1426         /*
1427          * NT_PRSTATUS is the one special case, because the regset data
1428          * goes into the pr_reg field inside the note contents, rather
1429          * than being the whole note contents.  We fill the reset in here.
1430          * We assume that regset 0 is NT_PRSTATUS.
1431          */
1432         fill_prstatus(&t->prstatus, t->task, signr);
1433         (void) view->regsets[0].get(t->task, &view->regsets[0],
1434                                     0, sizeof(t->prstatus.pr_reg),
1435                                     &t->prstatus.pr_reg, NULL);
1436
1437         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1438                   sizeof(t->prstatus), &t->prstatus);
1439         *total += notesize(&t->notes[0]);
1440
1441         do_thread_regset_writeback(t->task, &view->regsets[0]);
1442
1443         /*
1444          * Each other regset might generate a note too.  For each regset
1445          * that has no core_note_type or is inactive, we leave t->notes[i]
1446          * all zero and we'll know to skip writing it later.
1447          */
1448         for (i = 1; i < view->n; ++i) {
1449                 const struct user_regset *regset = &view->regsets[i];
1450                 do_thread_regset_writeback(t->task, regset);
1451                 if (regset->core_note_type &&
1452                     (!regset->active || regset->active(t->task, regset))) {
1453                         int ret;
1454                         size_t size = regset->n * regset->size;
1455                         void *data = kmalloc(size, GFP_KERNEL);
1456                         if (unlikely(!data))
1457                                 return 0;
1458                         ret = regset->get(t->task, regset,
1459                                           0, size, data, NULL);
1460                         if (unlikely(ret))
1461                                 kfree(data);
1462                         else {
1463                                 if (regset->core_note_type != NT_PRFPREG)
1464                                         fill_note(&t->notes[i], "LINUX",
1465                                                   regset->core_note_type,
1466                                                   size, data);
1467                                 else {
1468                                         t->prstatus.pr_fpvalid = 1;
1469                                         fill_note(&t->notes[i], "CORE",
1470                                                   NT_PRFPREG, size, data);
1471                                 }
1472                                 *total += notesize(&t->notes[i]);
1473                         }
1474                 }
1475         }
1476
1477         return 1;
1478 }
1479
1480 static int fill_note_info(struct elfhdr *elf, int phdrs,
1481                           struct elf_note_info *info,
1482                           long signr, struct pt_regs *regs)
1483 {
1484         struct task_struct *dump_task = current;
1485         const struct user_regset_view *view = task_user_regset_view(dump_task);
1486         struct elf_thread_core_info *t;
1487         struct elf_prpsinfo *psinfo;
1488         struct core_thread *ct;
1489         unsigned int i;
1490
1491         info->size = 0;
1492         info->thread = NULL;
1493
1494         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1495         if (psinfo == NULL)
1496                 return 0;
1497
1498         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1499
1500         /*
1501          * Figure out how many notes we're going to need for each thread.
1502          */
1503         info->thread_notes = 0;
1504         for (i = 0; i < view->n; ++i)
1505                 if (view->regsets[i].core_note_type != 0)
1506                         ++info->thread_notes;
1507
1508         /*
1509          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1510          * since it is our one special case.
1511          */
1512         if (unlikely(info->thread_notes == 0) ||
1513             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1514                 WARN_ON(1);
1515                 return 0;
1516         }
1517
1518         /*
1519          * Initialize the ELF file header.
1520          */
1521         fill_elf_header(elf, phdrs,
1522                         view->e_machine, view->e_flags, view->ei_osabi);
1523
1524         /*
1525          * Allocate a structure for each thread.
1526          */
1527         for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1528                 t = kzalloc(offsetof(struct elf_thread_core_info,
1529                                      notes[info->thread_notes]),
1530                             GFP_KERNEL);
1531                 if (unlikely(!t))
1532                         return 0;
1533
1534                 t->task = ct->task;
1535                 if (ct->task == dump_task || !info->thread) {
1536                         t->next = info->thread;
1537                         info->thread = t;
1538                 } else {
1539                         /*
1540                          * Make sure to keep the original task at
1541                          * the head of the list.
1542                          */
1543                         t->next = info->thread->next;
1544                         info->thread->next = t;
1545                 }
1546         }
1547
1548         /*
1549          * Now fill in each thread's information.
1550          */
1551         for (t = info->thread; t != NULL; t = t->next)
1552                 if (!fill_thread_core_info(t, view, signr, &info->size))
1553                         return 0;
1554
1555         /*
1556          * Fill in the two process-wide notes.
1557          */
1558         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1559         info->size += notesize(&info->psinfo);
1560
1561         fill_auxv_note(&info->auxv, current->mm);
1562         info->size += notesize(&info->auxv);
1563
1564         return 1;
1565 }
1566
1567 static size_t get_note_info_size(struct elf_note_info *info)
1568 {
1569         return info->size;
1570 }
1571
1572 /*
1573  * Write all the notes for each thread.  When writing the first thread, the
1574  * process-wide notes are interleaved after the first thread-specific note.
1575  */
1576 static int write_note_info(struct elf_note_info *info,
1577                            struct file *file, loff_t *foffset)
1578 {
1579         bool first = 1;
1580         struct elf_thread_core_info *t = info->thread;
1581
1582         do {
1583                 int i;
1584
1585                 if (!writenote(&t->notes[0], file, foffset))
1586                         return 0;
1587
1588                 if (first && !writenote(&info->psinfo, file, foffset))
1589                         return 0;
1590                 if (first && !writenote(&info->auxv, file, foffset))
1591                         return 0;
1592
1593                 for (i = 1; i < info->thread_notes; ++i)
1594                         if (t->notes[i].data &&
1595                             !writenote(&t->notes[i], file, foffset))
1596                                 return 0;
1597
1598                 first = 0;
1599                 t = t->next;
1600         } while (t);
1601
1602         return 1;
1603 }
1604
1605 static void free_note_info(struct elf_note_info *info)
1606 {
1607         struct elf_thread_core_info *threads = info->thread;
1608         while (threads) {
1609                 unsigned int i;
1610                 struct elf_thread_core_info *t = threads;
1611                 threads = t->next;
1612                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1613                 for (i = 1; i < info->thread_notes; ++i)
1614                         kfree(t->notes[i].data);
1615                 kfree(t);
1616         }
1617         kfree(info->psinfo.data);
1618 }
1619
1620 #else
1621
1622 /* Here is the structure in which status of each thread is captured. */
1623 struct elf_thread_status
1624 {
1625         struct list_head list;
1626         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1627         elf_fpregset_t fpu;             /* NT_PRFPREG */
1628         struct task_struct *thread;
1629 #ifdef ELF_CORE_COPY_XFPREGS
1630         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1631 #endif
1632         struct memelfnote notes[3];
1633         int num_notes;
1634 };
1635
1636 /*
1637  * In order to add the specific thread information for the elf file format,
1638  * we need to keep a linked list of every threads pr_status and then create
1639  * a single section for them in the final core file.
1640  */
1641 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1642 {
1643         int sz = 0;
1644         struct task_struct *p = t->thread;
1645         t->num_notes = 0;
1646
1647         fill_prstatus(&t->prstatus, p, signr);
1648         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1649         
1650         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1651                   &(t->prstatus));
1652         t->num_notes++;
1653         sz += notesize(&t->notes[0]);
1654
1655         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1656                                                                 &t->fpu))) {
1657                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1658                           &(t->fpu));
1659                 t->num_notes++;
1660                 sz += notesize(&t->notes[1]);
1661         }
1662
1663 #ifdef ELF_CORE_COPY_XFPREGS
1664         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1665                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1666                           sizeof(t->xfpu), &t->xfpu);
1667                 t->num_notes++;
1668                 sz += notesize(&t->notes[2]);
1669         }
1670 #endif  
1671         return sz;
1672 }
1673
1674 struct elf_note_info {
1675         struct memelfnote *notes;
1676         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1677         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1678         struct list_head thread_list;
1679         elf_fpregset_t *fpu;
1680 #ifdef ELF_CORE_COPY_XFPREGS
1681         elf_fpxregset_t *xfpu;
1682 #endif
1683         int thread_status_size;
1684         int numnote;
1685 };
1686
1687 static int elf_note_info_init(struct elf_note_info *info)
1688 {
1689         memset(info, 0, sizeof(*info));
1690         INIT_LIST_HEAD(&info->thread_list);
1691
1692         /* Allocate space for six ELF notes */
1693         info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1694         if (!info->notes)
1695                 return 0;
1696         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1697         if (!info->psinfo)
1698                 goto notes_free;
1699         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1700         if (!info->prstatus)
1701                 goto psinfo_free;
1702         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1703         if (!info->fpu)
1704                 goto prstatus_free;
1705 #ifdef ELF_CORE_COPY_XFPREGS
1706         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1707         if (!info->xfpu)
1708                 goto fpu_free;
1709 #endif
1710         return 1;
1711 #ifdef ELF_CORE_COPY_XFPREGS
1712  fpu_free:
1713         kfree(info->fpu);
1714 #endif
1715  prstatus_free:
1716         kfree(info->prstatus);
1717  psinfo_free:
1718         kfree(info->psinfo);
1719  notes_free:
1720         kfree(info->notes);
1721         return 0;
1722 }
1723
1724 static int fill_note_info(struct elfhdr *elf, int phdrs,
1725                           struct elf_note_info *info,
1726                           long signr, struct pt_regs *regs)
1727 {
1728         struct list_head *t;
1729
1730         if (!elf_note_info_init(info))
1731                 return 0;
1732
1733         if (signr) {
1734                 struct core_thread *ct;
1735                 struct elf_thread_status *ets;
1736
1737                 for (ct = current->mm->core_state->dumper.next;
1738                                                 ct; ct = ct->next) {
1739                         ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1740                         if (!ets)
1741                                 return 0;
1742
1743                         ets->thread = ct->task;
1744                         list_add(&ets->list, &info->thread_list);
1745                 }
1746
1747                 list_for_each(t, &info->thread_list) {
1748                         int sz;
1749
1750                         ets = list_entry(t, struct elf_thread_status, list);
1751                         sz = elf_dump_thread_status(signr, ets);
1752                         info->thread_status_size += sz;
1753                 }
1754         }
1755         /* now collect the dump for the current */
1756         memset(info->prstatus, 0, sizeof(*info->prstatus));
1757         fill_prstatus(info->prstatus, current, signr);
1758         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1759
1760         /* Set up header */
1761         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1762
1763         /*
1764          * Set up the notes in similar form to SVR4 core dumps made
1765          * with info from their /proc.
1766          */
1767
1768         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1769                   sizeof(*info->prstatus), info->prstatus);
1770         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1771         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1772                   sizeof(*info->psinfo), info->psinfo);
1773
1774         info->numnote = 2;
1775
1776         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1777
1778         /* Try to dump the FPU. */
1779         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1780                                                                info->fpu);
1781         if (info->prstatus->pr_fpvalid)
1782                 fill_note(info->notes + info->numnote++,
1783                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1784 #ifdef ELF_CORE_COPY_XFPREGS
1785         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1786                 fill_note(info->notes + info->numnote++,
1787                           "LINUX", ELF_CORE_XFPREG_TYPE,
1788                           sizeof(*info->xfpu), info->xfpu);
1789 #endif
1790
1791         return 1;
1792 }
1793
1794 static size_t get_note_info_size(struct elf_note_info *info)
1795 {
1796         int sz = 0;
1797         int i;
1798
1799         for (i = 0; i < info->numnote; i++)
1800                 sz += notesize(info->notes + i);
1801
1802         sz += info->thread_status_size;
1803
1804         return sz;
1805 }
1806
1807 static int write_note_info(struct elf_note_info *info,
1808                            struct file *file, loff_t *foffset)
1809 {
1810         int i;
1811         struct list_head *t;
1812
1813         for (i = 0; i < info->numnote; i++)
1814                 if (!writenote(info->notes + i, file, foffset))
1815                         return 0;
1816
1817         /* write out the thread status notes section */
1818         list_for_each(t, &info->thread_list) {
1819                 struct elf_thread_status *tmp =
1820                                 list_entry(t, struct elf_thread_status, list);
1821
1822                 for (i = 0; i < tmp->num_notes; i++)
1823                         if (!writenote(&tmp->notes[i], file, foffset))
1824                                 return 0;
1825         }
1826
1827         return 1;
1828 }
1829
1830 static void free_note_info(struct elf_note_info *info)
1831 {
1832         while (!list_empty(&info->thread_list)) {
1833                 struct list_head *tmp = info->thread_list.next;
1834                 list_del(tmp);
1835                 kfree(list_entry(tmp, struct elf_thread_status, list));
1836         }
1837
1838         kfree(info->prstatus);
1839         kfree(info->psinfo);
1840         kfree(info->notes);
1841         kfree(info->fpu);
1842 #ifdef ELF_CORE_COPY_XFPREGS
1843         kfree(info->xfpu);
1844 #endif
1845 }
1846
1847 #endif
1848
1849 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1850                                         struct vm_area_struct *gate_vma)
1851 {
1852         struct vm_area_struct *ret = tsk->mm->mmap;
1853
1854         if (ret)
1855                 return ret;
1856         return gate_vma;
1857 }
1858 /*
1859  * Helper function for iterating across a vma list.  It ensures that the caller
1860  * will visit `gate_vma' prior to terminating the search.
1861  */
1862 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1863                                         struct vm_area_struct *gate_vma)
1864 {
1865         struct vm_area_struct *ret;
1866
1867         ret = this_vma->vm_next;
1868         if (ret)
1869                 return ret;
1870         if (this_vma == gate_vma)
1871                 return NULL;
1872         return gate_vma;
1873 }
1874
1875 /*
1876  * Actual dumper
1877  *
1878  * This is a two-pass process; first we find the offsets of the bits,
1879  * and then they are actually written out.  If we run out of core limit
1880  * we just truncate.
1881  */
1882 static int elf_core_dump(struct coredump_params *cprm)
1883 {
1884         int has_dumped = 0;
1885         mm_segment_t fs;
1886         int segs;
1887         size_t size = 0;
1888         struct vm_area_struct *vma, *gate_vma;
1889         struct elfhdr *elf = NULL;
1890         loff_t offset = 0, dataoff, foffset;
1891         unsigned long mm_flags;
1892         struct elf_note_info info;
1893
1894         /*
1895          * We no longer stop all VM operations.
1896          * 
1897          * This is because those proceses that could possibly change map_count
1898          * or the mmap / vma pages are now blocked in do_exit on current
1899          * finishing this core dump.
1900          *
1901          * Only ptrace can touch these memory addresses, but it doesn't change
1902          * the map_count or the pages allocated. So no possibility of crashing
1903          * exists while dumping the mm->vm_next areas to the core file.
1904          */
1905   
1906         /* alloc memory for large data structures: too large to be on stack */
1907         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1908         if (!elf)
1909                 goto out;
1910         /*
1911          * The number of segs are recored into ELF header as 16bit value.
1912          * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1913          */
1914         segs = current->mm->map_count;
1915 #ifdef ELF_CORE_EXTRA_PHDRS
1916         segs += ELF_CORE_EXTRA_PHDRS;
1917 #endif
1918
1919         gate_vma = get_gate_vma(current);
1920         if (gate_vma != NULL)
1921                 segs++;
1922
1923         /*
1924          * Collect all the non-memory information about the process for the
1925          * notes.  This also sets up the file header.
1926          */
1927         if (!fill_note_info(elf, segs + 1, /* including notes section */
1928                             &info, cprm->signr, cprm->regs))
1929                 goto cleanup;
1930
1931         has_dumped = 1;
1932         current->flags |= PF_DUMPCORE;
1933   
1934         fs = get_fs();
1935         set_fs(KERNEL_DS);
1936
1937         DUMP_WRITE(elf, sizeof(*elf));
1938         offset += sizeof(*elf);                         /* Elf header */
1939         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1940         foffset = offset;
1941
1942         /* Write notes phdr entry */
1943         {
1944                 struct elf_phdr phdr;
1945                 size_t sz = get_note_info_size(&info);
1946
1947                 sz += elf_coredump_extra_notes_size();
1948
1949                 fill_elf_note_phdr(&phdr, sz, offset);
1950                 offset += sz;
1951                 DUMP_WRITE(&phdr, sizeof(phdr));
1952         }
1953
1954         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1955
1956         /*
1957          * We must use the same mm->flags while dumping core to avoid
1958          * inconsistency between the program headers and bodies, otherwise an
1959          * unusable core file can be generated.
1960          */
1961         mm_flags = current->mm->flags;
1962
1963         /* Write program headers for segments dump */
1964         for (vma = first_vma(current, gate_vma); vma != NULL;
1965                         vma = next_vma(vma, gate_vma)) {
1966                 struct elf_phdr phdr;
1967
1968                 phdr.p_type = PT_LOAD;
1969                 phdr.p_offset = offset;
1970                 phdr.p_vaddr = vma->vm_start;
1971                 phdr.p_paddr = 0;
1972                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1973                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1974                 offset += phdr.p_filesz;
1975                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1976                 if (vma->vm_flags & VM_WRITE)
1977                         phdr.p_flags |= PF_W;
1978                 if (vma->vm_flags & VM_EXEC)
1979                         phdr.p_flags |= PF_X;
1980                 phdr.p_align = ELF_EXEC_PAGESIZE;
1981
1982                 DUMP_WRITE(&phdr, sizeof(phdr));
1983         }
1984
1985 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1986         ELF_CORE_WRITE_EXTRA_PHDRS;
1987 #endif
1988
1989         /* write out the notes section */
1990         if (!write_note_info(&info, cprm->file, &foffset))
1991                 goto end_coredump;
1992
1993         if (elf_coredump_extra_notes_write(cprm->file, &foffset))
1994                 goto end_coredump;
1995
1996         /* Align to page */
1997         if (!dump_seek(cprm->file, dataoff - foffset))
1998                 goto end_coredump;
1999
2000         for (vma = first_vma(current, gate_vma); vma != NULL;
2001                         vma = next_vma(vma, gate_vma)) {
2002                 unsigned long addr;
2003                 unsigned long end;
2004
2005                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2006
2007                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2008                         struct page *page;
2009                         int stop;
2010
2011                         page = get_dump_page(addr);
2012                         if (page) {
2013                                 void *kaddr = kmap(page);
2014                                 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2015                                         !dump_write(cprm->file, kaddr,
2016                                                     PAGE_SIZE);
2017                                 kunmap(page);
2018                                 page_cache_release(page);
2019                         } else
2020                                 stop = !dump_seek(cprm->file, PAGE_SIZE);
2021                         if (stop)
2022                                 goto end_coredump;
2023                 }
2024         }
2025
2026 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2027         ELF_CORE_WRITE_EXTRA_DATA;
2028 #endif
2029
2030 end_coredump:
2031         set_fs(fs);
2032
2033 cleanup:
2034         free_note_info(&info);
2035         kfree(elf);
2036 out:
2037         return has_dumped;
2038 }
2039
2040 #endif          /* CONFIG_ELF_CORE */
2041
2042 static int __init init_elf_binfmt(void)
2043 {
2044         return register_binfmt(&elf_format);
2045 }
2046
2047 static void __exit exit_elf_binfmt(void)
2048 {
2049         /* Remove the COFF and ELF loaders. */
2050         unregister_binfmt(&elf_format);
2051 }
2052
2053 core_initcall(init_elf_binfmt);
2054 module_exit(exit_elf_binfmt);
2055 MODULE_LICENSE("GPL");