intelfb: add pll index to the intelfb structure
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52 };
53
54 #define PLLS_I8xx 0
55 #define PLLS_I9xx 1
56 #define PLLS_MAX 2
57
58 struct pll_min_max plls[PLLS_MAX] = {
59         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000 }, //I8xx
60         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000 }  //I9xx
61 };
62
63 int
64 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
65 {
66         u32 tmp;
67         if (!pdev || !dinfo)
68                 return 1;
69
70         switch (pdev->device) {
71         case PCI_DEVICE_ID_INTEL_830M:
72                 dinfo->name = "Intel(R) 830M";
73                 dinfo->chipset = INTEL_830M;
74                 dinfo->mobile = 1;
75                 dinfo->pll_index = PLLS_I8xx;
76                 return 0;
77         case PCI_DEVICE_ID_INTEL_845G:
78                 dinfo->name = "Intel(R) 845G";
79                 dinfo->chipset = INTEL_845G;
80                 dinfo->mobile = 0;
81                 dinfo->pll_index = PLLS_I8xx;
82                 return 0;
83         case PCI_DEVICE_ID_INTEL_85XGM:
84                 tmp = 0;
85                 dinfo->mobile = 1;
86                 dinfo->pll_index = PLLS_I8xx;
87                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
88                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
89                         INTEL_85X_VARIANT_MASK) {
90                 case INTEL_VAR_855GME:
91                         dinfo->name = "Intel(R) 855GME";
92                         dinfo->chipset = INTEL_855GME;
93                         return 0;
94                 case INTEL_VAR_855GM:
95                         dinfo->name = "Intel(R) 855GM";
96                         dinfo->chipset = INTEL_855GM;
97                         return 0;
98                 case INTEL_VAR_852GME:
99                         dinfo->name = "Intel(R) 852GME";
100                         dinfo->chipset = INTEL_852GME;
101                         return 0;
102                 case INTEL_VAR_852GM:
103                         dinfo->name = "Intel(R) 852GM";
104                         dinfo->chipset = INTEL_852GM;
105                         return 0;
106                 default:
107                         dinfo->name = "Intel(R) 852GM/855GM";
108                         dinfo->chipset = INTEL_85XGM;
109                         return 0;
110                 }
111                 break;
112         case PCI_DEVICE_ID_INTEL_865G:
113                 dinfo->name = "Intel(R) 865G";
114                 dinfo->chipset = INTEL_865G;
115                 dinfo->mobile = 0;
116                 dinfo->pll_index = PLLS_I8xx;
117                 return 0;
118         case PCI_DEVICE_ID_INTEL_915G:
119                 dinfo->name = "Intel(R) 915G";
120                 dinfo->chipset = INTEL_915G;
121                 dinfo->mobile = 0;
122                 dinfo->pll_index = PLLS_I9xx;
123                 return 0;
124         case PCI_DEVICE_ID_INTEL_915GM:
125                 dinfo->name = "Intel(R) 915GM";
126                 dinfo->chipset = INTEL_915GM;
127                 dinfo->mobile = 1;
128                 dinfo->pll_index = PLLS_I9xx;
129                 return 0;
130         default:
131                 return 1;
132         }
133 }
134
135 int
136 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
137                      int *stolen_size)
138 {
139         struct pci_dev *bridge_dev;
140         u16 tmp;
141
142         if (!pdev || !aperture_size || !stolen_size)
143                 return 1;
144
145         /* Find the bridge device.  It is always 0:0.0 */
146         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
147                 ERR_MSG("cannot find bridge device\n");
148                 return 1;
149         }
150
151         /* Get the fb aperture size and "stolen" memory amount. */
152         tmp = 0;
153         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
154         switch (pdev->device) {
155         case PCI_DEVICE_ID_INTEL_830M:
156         case PCI_DEVICE_ID_INTEL_845G:
157                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
158                         *aperture_size = MB(64);
159                 else
160                         *aperture_size = MB(128);
161                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
162                 case INTEL_830_GMCH_GMS_STOLEN_512:
163                         *stolen_size = KB(512) - KB(132);
164                         return 0;
165                 case INTEL_830_GMCH_GMS_STOLEN_1024:
166                         *stolen_size = MB(1) - KB(132);
167                         return 0;
168                 case INTEL_830_GMCH_GMS_STOLEN_8192:
169                         *stolen_size = MB(8) - KB(132);
170                         return 0;
171                 case INTEL_830_GMCH_GMS_LOCAL:
172                         ERR_MSG("only local memory found\n");
173                         return 1;
174                 case INTEL_830_GMCH_GMS_DISABLED:
175                         ERR_MSG("video memory is disabled\n");
176                         return 1;
177                 default:
178                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
179                                 tmp & INTEL_830_GMCH_GMS_MASK);
180                         return 1;
181                 }
182                 break;
183         default:
184                 *aperture_size = MB(128);
185                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
186                 case INTEL_855_GMCH_GMS_STOLEN_1M:
187                         *stolen_size = MB(1) - KB(132);
188                         return 0;
189                 case INTEL_855_GMCH_GMS_STOLEN_4M:
190                         *stolen_size = MB(4) - KB(132);
191                         return 0;
192                 case INTEL_855_GMCH_GMS_STOLEN_8M:
193                         *stolen_size = MB(8) - KB(132);
194                         return 0;
195                 case INTEL_855_GMCH_GMS_STOLEN_16M:
196                         *stolen_size = MB(16) - KB(132);
197                         return 0;
198                 case INTEL_855_GMCH_GMS_STOLEN_32M:
199                         *stolen_size = MB(32) - KB(132);
200                         return 0;
201                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
202                         *stolen_size = MB(48) - KB(132);
203                         return 0;
204                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
205                         *stolen_size = MB(64) - KB(132);
206                         return 0;
207                 case INTEL_855_GMCH_GMS_DISABLED:
208                         ERR_MSG("video memory is disabled\n");
209                         return 0;
210                 default:
211                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
212                                 tmp & INTEL_855_GMCH_GMS_MASK);
213                         return 1;
214                 }
215         }
216 }
217
218 int
219 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
220 {
221         int dvo = 0;
222
223         if (INREG(LVDS) & PORT_ENABLE)
224                 dvo |= LVDS_PORT;
225         if (INREG(DVOA) & PORT_ENABLE)
226                 dvo |= DVOA_PORT;
227         if (INREG(DVOB) & PORT_ENABLE)
228                 dvo |= DVOB_PORT;
229         if (INREG(DVOC) & PORT_ENABLE)
230                 dvo |= DVOC_PORT;
231
232         return dvo;
233 }
234
235 const char *
236 intelfbhw_dvo_to_string(int dvo)
237 {
238         if (dvo & DVOA_PORT)
239                 return "DVO port A";
240         else if (dvo & DVOB_PORT)
241                 return "DVO port B";
242         else if (dvo & DVOC_PORT)
243                 return "DVO port C";
244         else if (dvo & LVDS_PORT)
245                 return "LVDS port";
246         else
247                 return NULL;
248 }
249
250
251 int
252 intelfbhw_validate_mode(struct intelfb_info *dinfo,
253                         struct fb_var_screeninfo *var)
254 {
255         int bytes_per_pixel;
256         int tmp;
257
258 #if VERBOSE > 0
259         DBG_MSG("intelfbhw_validate_mode\n");
260 #endif
261
262         bytes_per_pixel = var->bits_per_pixel / 8;
263         if (bytes_per_pixel == 3)
264                 bytes_per_pixel = 4;
265
266         /* Check if enough video memory. */
267         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
268         if (tmp > dinfo->fb.size) {
269                 WRN_MSG("Not enough video ram for mode "
270                         "(%d KByte vs %d KByte).\n",
271                         BtoKB(tmp), BtoKB(dinfo->fb.size));
272                 return 1;
273         }
274
275         /* Check if x/y limits are OK. */
276         if (var->xres - 1 > HACTIVE_MASK) {
277                 WRN_MSG("X resolution too large (%d vs %d).\n",
278                         var->xres, HACTIVE_MASK + 1);
279                 return 1;
280         }
281         if (var->yres - 1 > VACTIVE_MASK) {
282                 WRN_MSG("Y resolution too large (%d vs %d).\n",
283                         var->yres, VACTIVE_MASK + 1);
284                 return 1;
285         }
286
287         /* Check for interlaced/doublescan modes. */
288         if (var->vmode & FB_VMODE_INTERLACED) {
289                 WRN_MSG("Mode is interlaced.\n");
290                 return 1;
291         }
292         if (var->vmode & FB_VMODE_DOUBLE) {
293                 WRN_MSG("Mode is double-scan.\n");
294                 return 1;
295         }
296
297         /* Check if clock is OK. */
298         tmp = 1000000000 / var->pixclock;
299         if (tmp < MIN_CLOCK) {
300                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
301                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
302                 return 1;
303         }
304         if (tmp > MAX_CLOCK) {
305                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
306                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
307                 return 1;
308         }
309
310         return 0;
311 }
312
313 int
314 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
315 {
316         struct intelfb_info *dinfo = GET_DINFO(info);
317         u32 offset, xoffset, yoffset;
318
319 #if VERBOSE > 0
320         DBG_MSG("intelfbhw_pan_display\n");
321 #endif
322
323         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
324         yoffset = var->yoffset;
325
326         if ((xoffset + var->xres > var->xres_virtual) ||
327             (yoffset + var->yres > var->yres_virtual))
328                 return -EINVAL;
329
330         offset = (yoffset * dinfo->pitch) +
331                  (xoffset * var->bits_per_pixel) / 8;
332
333         offset += dinfo->fb.offset << 12;
334
335         OUTREG(DSPABASE, offset);
336
337         return 0;
338 }
339
340 /* Blank the screen. */
341 void
342 intelfbhw_do_blank(int blank, struct fb_info *info)
343 {
344         struct intelfb_info *dinfo = GET_DINFO(info);
345         u32 tmp;
346
347 #if VERBOSE > 0
348         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
349 #endif
350
351         /* Turn plane A on or off */
352         tmp = INREG(DSPACNTR);
353         if (blank)
354                 tmp &= ~DISPPLANE_PLANE_ENABLE;
355         else
356                 tmp |= DISPPLANE_PLANE_ENABLE;
357         OUTREG(DSPACNTR, tmp);
358         /* Flush */
359         tmp = INREG(DSPABASE);
360         OUTREG(DSPABASE, tmp);
361
362         /* Turn off/on the HW cursor */
363 #if VERBOSE > 0
364         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
365 #endif
366         if (dinfo->cursor_on) {
367                 if (blank) {
368                         intelfbhw_cursor_hide(dinfo);
369                 } else {
370                         intelfbhw_cursor_show(dinfo);
371                 }
372                 dinfo->cursor_on = 1;
373         }
374         dinfo->cursor_blanked = blank;
375
376         /* Set DPMS level */
377         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
378         switch (blank) {
379         case FB_BLANK_UNBLANK:
380         case FB_BLANK_NORMAL:
381                 tmp |= ADPA_DPMS_D0;
382                 break;
383         case FB_BLANK_VSYNC_SUSPEND:
384                 tmp |= ADPA_DPMS_D1;
385                 break;
386         case FB_BLANK_HSYNC_SUSPEND:
387                 tmp |= ADPA_DPMS_D2;
388                 break;
389         case FB_BLANK_POWERDOWN:
390                 tmp |= ADPA_DPMS_D3;
391                 break;
392         }
393         OUTREG(ADPA, tmp);
394
395         return;
396 }
397
398
399 void
400 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
401                     unsigned red, unsigned green, unsigned blue,
402                     unsigned transp)
403 {
404 #if VERBOSE > 0
405         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
406                 regno, red, green, blue);
407 #endif
408
409         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
410                           PALETTE_A : PALETTE_B;
411
412         OUTREG(palette_reg + (regno << 2),
413                (red << PALETTE_8_RED_SHIFT) |
414                (green << PALETTE_8_GREEN_SHIFT) |
415                (blue << PALETTE_8_BLUE_SHIFT));
416 }
417
418
419 int
420 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
421                         int flag)
422 {
423         int i;
424
425 #if VERBOSE > 0
426         DBG_MSG("intelfbhw_read_hw_state\n");
427 #endif
428
429         if (!hw || !dinfo)
430                 return -1;
431
432         /* Read in as much of the HW state as possible. */
433         hw->vga0_divisor = INREG(VGA0_DIVISOR);
434         hw->vga1_divisor = INREG(VGA1_DIVISOR);
435         hw->vga_pd = INREG(VGAPD);
436         hw->dpll_a = INREG(DPLL_A);
437         hw->dpll_b = INREG(DPLL_B);
438         hw->fpa0 = INREG(FPA0);
439         hw->fpa1 = INREG(FPA1);
440         hw->fpb0 = INREG(FPB0);
441         hw->fpb1 = INREG(FPB1);
442
443         if (flag == 1)
444                 return flag;
445
446 #if 0
447         /* This seems to be a problem with the 852GM/855GM */
448         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
449                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
450                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
451         }
452 #endif
453
454         if (flag == 2)
455                 return flag;
456
457         hw->htotal_a = INREG(HTOTAL_A);
458         hw->hblank_a = INREG(HBLANK_A);
459         hw->hsync_a = INREG(HSYNC_A);
460         hw->vtotal_a = INREG(VTOTAL_A);
461         hw->vblank_a = INREG(VBLANK_A);
462         hw->vsync_a = INREG(VSYNC_A);
463         hw->src_size_a = INREG(SRC_SIZE_A);
464         hw->bclrpat_a = INREG(BCLRPAT_A);
465         hw->htotal_b = INREG(HTOTAL_B);
466         hw->hblank_b = INREG(HBLANK_B);
467         hw->hsync_b = INREG(HSYNC_B);
468         hw->vtotal_b = INREG(VTOTAL_B);
469         hw->vblank_b = INREG(VBLANK_B);
470         hw->vsync_b = INREG(VSYNC_B);
471         hw->src_size_b = INREG(SRC_SIZE_B);
472         hw->bclrpat_b = INREG(BCLRPAT_B);
473
474         if (flag == 3)
475                 return flag;
476
477         hw->adpa = INREG(ADPA);
478         hw->dvoa = INREG(DVOA);
479         hw->dvob = INREG(DVOB);
480         hw->dvoc = INREG(DVOC);
481         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
482         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
483         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
484         hw->lvds = INREG(LVDS);
485
486         if (flag == 4)
487                 return flag;
488
489         hw->pipe_a_conf = INREG(PIPEACONF);
490         hw->pipe_b_conf = INREG(PIPEBCONF);
491         hw->disp_arb = INREG(DISPARB);
492
493         if (flag == 5)
494                 return flag;
495
496         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
497         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
498         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
499         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
500
501         if (flag == 6)
502                 return flag;
503
504         for (i = 0; i < 4; i++) {
505                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
506                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
507         }
508
509         if (flag == 7)
510                 return flag;
511
512         hw->cursor_size = INREG(CURSOR_SIZE);
513
514         if (flag == 8)
515                 return flag;
516
517         hw->disp_a_ctrl = INREG(DSPACNTR);
518         hw->disp_b_ctrl = INREG(DSPBCNTR);
519         hw->disp_a_base = INREG(DSPABASE);
520         hw->disp_b_base = INREG(DSPBBASE);
521         hw->disp_a_stride = INREG(DSPASTRIDE);
522         hw->disp_b_stride = INREG(DSPBSTRIDE);
523
524         if (flag == 9)
525                 return flag;
526
527         hw->vgacntrl = INREG(VGACNTRL);
528
529         if (flag == 10)
530                 return flag;
531
532         hw->add_id = INREG(ADD_ID);
533
534         if (flag == 11)
535                 return flag;
536
537         for (i = 0; i < 7; i++) {
538                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
539                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
540                 if (i < 3)
541                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
542         }
543
544         for (i = 0; i < 8; i++)
545                 hw->fence[i] = INREG(FENCE + (i << 2));
546
547         hw->instpm = INREG(INSTPM);
548         hw->mem_mode = INREG(MEM_MODE);
549         hw->fw_blc_0 = INREG(FW_BLC_0);
550         hw->fw_blc_1 = INREG(FW_BLC_1);
551
552         return 0;
553 }
554
555
556 static int calc_vclock3(int index, int m, int n, int p)
557 {
558         return PLL_REFCLK * m / n / p;
559 }
560                        
561 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
562 {
563         switch(index)
564         {
565         case PLLS_I9xx:
566                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
567                          ((p1)) * (p2 ? 10 : 5)));
568         case PLLS_I8xx:
569         default:
570                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / 
571                          ((p1+2) * (1 << (p2 + 1)))));
572         }
573 }
574
575 void
576 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
577 {
578 #if REGDUMP
579         int i, m1, m2, n, p1, p2;
580         int index = dinfo->pll_index;
581         DBG_MSG("intelfbhw_print_hw_state\n");
582         
583         if (!hw || !dinfo)
584                 return;
585         /* Read in as much of the HW state as possible. */
586         printk("hw state dump start\n");
587         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
588         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
589         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
590         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
591         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
592         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
593         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
594                 p1 = 0;
595         else
596                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
597         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
598         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
599                m1, m2, n, p1, p2);
600         printk("        VGA0: clock is %d\n", 
601                calc_vclock(index, m1, m2, n, p1, p2));
602         
603         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
604         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
605         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
606         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
607                 p1 = 0;
608         else
609                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
610         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
611         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
612                m1, m2, n, p1, p2);
613         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
614         
615         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
616         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
617         printk("        FPA0:                   0x%08x\n", hw->fpa0);
618         printk("        FPA1:                   0x%08x\n", hw->fpa1);
619         printk("        FPB0:                   0x%08x\n", hw->fpb0);
620         printk("        FPB1:                   0x%08x\n", hw->fpb1);
621         
622         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
623         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
624         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
625         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
626                 p1 = 0;
627         else
628                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
629         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
630         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
631                m1, m2, n, p1, p2);
632         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
633         
634         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
635         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
637         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
638                 p1 = 0;
639         else
640                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
641         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
642         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
643                m1, m2, n, p1, p2);
644         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
645         
646 #if 0
647         printk("        PALETTE_A:\n");
648         for (i = 0; i < PALETTE_8_ENTRIES)
649                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
650         printk("        PALETTE_B:\n");
651         for (i = 0; i < PALETTE_8_ENTRIES)
652                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
653 #endif
654
655         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
656         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
657         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
658         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
659         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
660         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
661         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
662         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
663         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
664         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
665         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
666         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
667         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
668         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
669         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
670         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
671
672         printk("        ADPA:                   0x%08x\n", hw->adpa);
673         printk("        DVOA:                   0x%08x\n", hw->dvoa);
674         printk("        DVOB:                   0x%08x\n", hw->dvob);
675         printk("        DVOC:                   0x%08x\n", hw->dvoc);
676         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
677         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
678         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
679         printk("        LVDS:                   0x%08x\n", hw->lvds);
680
681         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
682         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
683         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
684
685         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
686         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
687         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
688         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
689
690         printk("        CURSOR_A_PALETTE:       ");
691         for (i = 0; i < 4; i++) {
692                 printk("0x%08x", hw->cursor_a_palette[i]);
693                 if (i < 3)
694                         printk(", ");
695         }
696         printk("\n");
697         printk("        CURSOR_B_PALETTE:       ");
698         for (i = 0; i < 4; i++) {
699                 printk("0x%08x", hw->cursor_b_palette[i]);
700                 if (i < 3)
701                         printk(", ");
702         }
703         printk("\n");
704
705         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
706
707         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
708         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
709         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
710         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
711         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
712         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
713
714         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
715         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
716
717         for (i = 0; i < 7; i++) {
718                 printk("        SWF0%d                  0x%08x\n", i,
719                         hw->swf0x[i]);
720         }
721         for (i = 0; i < 7; i++) {
722                 printk("        SWF1%d                  0x%08x\n", i,
723                         hw->swf1x[i]);
724         }
725         for (i = 0; i < 3; i++) {
726                 printk("        SWF3%d                  0x%08x\n", i,
727                        hw->swf3x[i]);
728         }
729         for (i = 0; i < 8; i++)
730                 printk("        FENCE%d                 0x%08x\n", i,
731                        hw->fence[i]);
732                        
733         printk("        INSTPM                  0x%08x\n", hw->instpm);
734         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
735         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
736         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
737
738         printk("hw state dump end\n");
739 #endif
740 }
741
742                
743
744 /* Split the M parameter into M1 and M2. */
745 static int
746 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
747 {
748         int m1, m2;
749
750         m1 = (m - 2 - (plls[index].min_m1 + plls[index].max_m2) / 2) / 5 - 2;
751         if (m1 < plls[index].min_m1)
752                 m1 = plls[index].min_m1;
753         if (m1 > plls[index].max_m1)
754                 m1 = plls[index].max_m1;
755         m2 = m - 5 * (m1 + 2) - 2;
756         if (m2 < plls[index].min_m2 || m2 > plls[index].max_m2 || m2 >= m1) {
757                 return 1;
758         } else {
759                 *retm1 = (unsigned int)m1;
760                 *retm2 = (unsigned int)m2;
761                 return 0;
762         }
763 }
764
765 /* Split the P parameter into P1 and P2. */
766 static int
767 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
768 {
769         int p1, p2;
770
771         if (index == PLLS_I9xx)
772         {
773                 p1 = (p / 10) + 1;
774                 p2 = 0;
775                 
776                 *retp1 = (unsigned int)p1;
777                 *retp2 = (unsigned int)p2;
778                 return 0;
779         }
780
781         if (index == PLLS_I8xx)
782         {
783                 if (p % 4 == 0)
784                         p2 = 1;
785                 else
786                         p2 = 0;
787                 p1 = (p / (1 << (p2 + 1))) - 2;
788                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
789                         p2 = 0;
790                         p1 = (p / (1 << (p2 + 1))) - 2;
791                 }
792                 if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
793                         return 1;
794                 } else {
795                         *retp1 = (unsigned int)p1;
796                         *retp2 = (unsigned int)p2;
797                         return 0;
798                 }
799         }
800         return 1;
801 }
802
803 static int
804 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
805                 u32 *retp2, u32 *retclock)
806 {
807         u32 m1, m2, n, p1, p2, n1;
808         u32 f_vco, p, p_best = 0, m, f_out;
809         u32 err_max, err_target, err_best = 10000000;
810         u32 n_best = 0, m_best = 0, f_best, f_err;
811         u32 p_min, p_max, p_inc, div_min, div_max;
812
813         /* Accept 0.5% difference, but aim for 0.1% */
814         err_max = 5 * clock / 1000;
815         err_target = clock / 1000;
816
817         DBG_MSG("Clock is %d\n", clock);
818
819         div_max = plls[index].max_vco_freq / clock;
820         div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
821
822         if (clock <= plls[index].p_transition_clock)
823                 p_inc = 4;
824         else
825                 p_inc = 2;
826         p_min = ROUND_UP_TO(div_min, p_inc);
827         p_max = ROUND_DOWN_TO(div_max, p_inc);
828         if (p_min < plls[index].min_p)
829                 p_min = 4;
830         if (p_max > plls[index].max_p)
831                 p_max = 128;
832
833         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
834
835         p = p_min;
836         do {
837                 if (splitp(index, p, &p1, &p2)) {
838                         WRN_MSG("cannot split p = %d\n", p);
839                         p += p_inc;
840                         continue;
841                 }
842                 n = plls[index].min_n;
843                 f_vco = clock * p;
844
845                 do {
846                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
847                         if (m < plls[index].min_m)
848                                 m = plls[index].min_m;
849                         if (m > plls[index].max_m)
850                                 m = plls[index].max_m;
851                         f_out = calc_vclock3(index, m, n, p);
852                         if (splitm(index, m, &m1, &m2)) {
853                                 WRN_MSG("cannot split m = %d\n", m);
854                                 n++;
855                                 continue;
856                         }
857                         if (clock > f_out)
858                                 f_err = clock - f_out;
859                         else
860                                 f_err = f_out - clock;
861
862                         if (f_err < err_best) {
863                                 m_best = m;
864                                 n_best = n;
865                                 p_best = p;
866                                 f_best = f_out;
867                                 err_best = f_err;
868                         }
869                         n++;
870                 } while ((n <= plls[index].max_n) && (f_out >= clock));
871                 p += p_inc;
872         } while ((p <= p_max));
873
874         if (!m_best) {
875                 WRN_MSG("cannot find parameters for clock %d\n", clock);
876                 return 1;
877         }
878         m = m_best;
879         n = n_best;
880         p = p_best;
881         splitm(index, m, &m1, &m2);
882         splitp(index, p, &p1, &p2);
883         n1 = n - 2;
884
885         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
886                 "f: %d (%d), VCO: %d\n",
887                 m, m1, m2, n, n1, p, p1, p2,
888                 calc_vclock3(index, m, n, p), 
889                 calc_vclock(index, m1, m2, n1, p1, p2),
890                 calc_vclock3(index, m, n, p) * p);
891         *retm1 = m1;
892         *retm2 = m2;
893         *retn = n1;
894         *retp1 = p1;
895         *retp2 = p2;
896         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
897
898         return 0;
899 }
900
901 static __inline__ int
902 check_overflow(u32 value, u32 limit, const char *description)
903 {
904         if (value > limit) {
905                 WRN_MSG("%s value %d exceeds limit %d\n",
906                         description, value, limit);
907                 return 1;
908         }
909         return 0;
910 }
911
912 /* It is assumed that hw is filled in with the initial state information. */
913 int
914 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
915                      struct fb_var_screeninfo *var)
916 {
917         int pipe = PIPE_A;
918         u32 *dpll, *fp0, *fp1;
919         u32 m1, m2, n, p1, p2, clock_target, clock;
920         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
921         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
922         u32 vsync_pol, hsync_pol;
923         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
924
925         DBG_MSG("intelfbhw_mode_to_hw\n");
926
927         /* Disable VGA */
928         hw->vgacntrl |= VGA_DISABLE;
929
930         /* Check whether pipe A or pipe B is enabled. */
931         if (hw->pipe_a_conf & PIPECONF_ENABLE)
932                 pipe = PIPE_A;
933         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
934                 pipe = PIPE_B;
935
936         /* Set which pipe's registers will be set. */
937         if (pipe == PIPE_B) {
938                 dpll = &hw->dpll_b;
939                 fp0 = &hw->fpb0;
940                 fp1 = &hw->fpb1;
941                 hs = &hw->hsync_b;
942                 hb = &hw->hblank_b;
943                 ht = &hw->htotal_b;
944                 vs = &hw->vsync_b;
945                 vb = &hw->vblank_b;
946                 vt = &hw->vtotal_b;
947                 ss = &hw->src_size_b;
948                 pipe_conf = &hw->pipe_b_conf;
949         } else {
950                 dpll = &hw->dpll_a;
951                 fp0 = &hw->fpa0;
952                 fp1 = &hw->fpa1;
953                 hs = &hw->hsync_a;
954                 hb = &hw->hblank_a;
955                 ht = &hw->htotal_a;
956                 vs = &hw->vsync_a;
957                 vb = &hw->vblank_a;
958                 vt = &hw->vtotal_a;
959                 ss = &hw->src_size_a;
960                 pipe_conf = &hw->pipe_a_conf;
961         }
962
963         /* Use ADPA register for sync control. */
964         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
965
966         /* sync polarity */
967         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
968                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
969         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
970                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
971         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
972                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
973         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
974                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
975
976         /* Connect correct pipe to the analog port DAC */
977         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
978         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
979
980         /* Set DPMS state to D0 (on) */
981         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
982         hw->adpa |= ADPA_DPMS_D0;
983
984         hw->adpa |= ADPA_DAC_ENABLE;
985
986         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
987         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
988         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
989
990         /* Desired clock in kHz */
991         clock_target = 1000000000 / var->pixclock;
992
993         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
994                 WRN_MSG("calc_pll_params failed\n");
995                 return 1;
996         }
997
998         /* Check for overflow. */
999         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1000                 return 1;
1001         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1002                 return 1;
1003         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1004                 return 1;
1005         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1006                 return 1;
1007         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1008                 return 1;
1009
1010         *dpll &= ~DPLL_P1_FORCE_DIV2;
1011         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1012                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1013         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1014         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1015                (m1 << FP_M1_DIVISOR_SHIFT) |
1016                (m2 << FP_M2_DIVISOR_SHIFT);
1017         *fp1 = *fp0;
1018
1019         hw->dvob &= ~PORT_ENABLE;
1020         hw->dvoc &= ~PORT_ENABLE;
1021
1022         /* Use display plane A. */
1023         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1024         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1025         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1026         switch (intelfb_var_to_depth(var)) {
1027         case 8:
1028                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1029                 break;
1030         case 15:
1031                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1032                 break;
1033         case 16:
1034                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1035                 break;
1036         case 24:
1037                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1038                 break;
1039         }
1040         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1041         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1042
1043         /* Set CRTC registers. */
1044         hactive = var->xres;
1045         hsync_start = hactive + var->right_margin;
1046         hsync_end = hsync_start + var->hsync_len;
1047         htotal = hsync_end + var->left_margin;
1048         hblank_start = hactive;
1049         hblank_end = htotal;
1050
1051         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1052                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1053                 hblank_end);
1054
1055         vactive = var->yres;
1056         vsync_start = vactive + var->lower_margin;
1057         vsync_end = vsync_start + var->vsync_len;
1058         vtotal = vsync_end + var->upper_margin;
1059         vblank_start = vactive;
1060         vblank_end = vtotal;
1061         vblank_end = vsync_end + 1;
1062
1063         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1064                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1065                 vblank_end);
1066
1067         /* Adjust for register values, and check for overflow. */
1068         hactive--;
1069         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1070                 return 1;
1071         hsync_start--;
1072         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1073                 return 1;
1074         hsync_end--;
1075         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1076                 return 1;
1077         htotal--;
1078         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1079                 return 1;
1080         hblank_start--;
1081         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1082                 return 1;
1083         hblank_end--;
1084         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1085                 return 1;
1086
1087         vactive--;
1088         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1089                 return 1;
1090         vsync_start--;
1091         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1092                 return 1;
1093         vsync_end--;
1094         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1095                 return 1;
1096         vtotal--;
1097         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1098                 return 1;
1099         vblank_start--;
1100         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1101                 return 1;
1102         vblank_end--;
1103         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1104                 return 1;
1105
1106         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1107         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1108               (hblank_end << HSYNCEND_SHIFT);
1109         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1110
1111         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1112         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1113               (vblank_end << VSYNCEND_SHIFT);
1114         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1115         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1116               (vactive << SRC_SIZE_VERT_SHIFT);
1117
1118         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1119         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1120
1121         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1122                           var->xoffset * var->bits_per_pixel / 8;
1123
1124         hw->disp_a_base += dinfo->fb.offset << 12;
1125
1126         /* Check stride alignment. */
1127         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1128                 WRN_MSG("display stride %d has bad alignment %d\n",
1129                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1130                 return 1;
1131         }
1132
1133         /* Set the palette to 8-bit mode. */
1134         *pipe_conf &= ~PIPECONF_GAMMA;
1135         return 0;
1136 }
1137
1138 /* Program a (non-VGA) video mode. */
1139 int
1140 intelfbhw_program_mode(struct intelfb_info *dinfo,
1141                      const struct intelfb_hwstate *hw, int blank)
1142 {
1143         int pipe = PIPE_A;
1144         u32 tmp;
1145         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1146         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1147         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1148         u32 hsync_reg, htotal_reg, hblank_reg;
1149         u32 vsync_reg, vtotal_reg, vblank_reg;
1150         u32 src_size_reg;
1151
1152         /* Assume single pipe, display plane A, analog CRT. */
1153
1154 #if VERBOSE > 0
1155         DBG_MSG("intelfbhw_program_mode\n");
1156 #endif
1157
1158         /* Disable VGA */
1159         tmp = INREG(VGACNTRL);
1160         tmp |= VGA_DISABLE;
1161         OUTREG(VGACNTRL, tmp);
1162
1163         /* Check whether pipe A or pipe B is enabled. */
1164         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1165                 pipe = PIPE_A;
1166         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1167                 pipe = PIPE_B;
1168
1169         dinfo->pipe = pipe;
1170
1171         if (pipe == PIPE_B) {
1172                 dpll = &hw->dpll_b;
1173                 fp0 = &hw->fpb0;
1174                 fp1 = &hw->fpb1;
1175                 pipe_conf = &hw->pipe_b_conf;
1176                 hs = &hw->hsync_b;
1177                 hb = &hw->hblank_b;
1178                 ht = &hw->htotal_b;
1179                 vs = &hw->vsync_b;
1180                 vb = &hw->vblank_b;
1181                 vt = &hw->vtotal_b;
1182                 ss = &hw->src_size_b;
1183                 dpll_reg = DPLL_B;
1184                 fp0_reg = FPB0;
1185                 fp1_reg = FPB1;
1186                 pipe_conf_reg = PIPEBCONF;
1187                 hsync_reg = HSYNC_B;
1188                 htotal_reg = HTOTAL_B;
1189                 hblank_reg = HBLANK_B;
1190                 vsync_reg = VSYNC_B;
1191                 vtotal_reg = VTOTAL_B;
1192                 vblank_reg = VBLANK_B;
1193                 src_size_reg = SRC_SIZE_B;
1194         } else {
1195                 dpll = &hw->dpll_a;
1196                 fp0 = &hw->fpa0;
1197                 fp1 = &hw->fpa1;
1198                 pipe_conf = &hw->pipe_a_conf;
1199                 hs = &hw->hsync_a;
1200                 hb = &hw->hblank_a;
1201                 ht = &hw->htotal_a;
1202                 vs = &hw->vsync_a;
1203                 vb = &hw->vblank_a;
1204                 vt = &hw->vtotal_a;
1205                 ss = &hw->src_size_a;
1206                 dpll_reg = DPLL_A;
1207                 fp0_reg = FPA0;
1208                 fp1_reg = FPA1;
1209                 pipe_conf_reg = PIPEACONF;
1210                 hsync_reg = HSYNC_A;
1211                 htotal_reg = HTOTAL_A;
1212                 hblank_reg = HBLANK_A;
1213                 vsync_reg = VSYNC_A;
1214                 vtotal_reg = VTOTAL_A;
1215                 vblank_reg = VBLANK_A;
1216                 src_size_reg = SRC_SIZE_A;
1217         }
1218
1219         /* Disable planes A and B. */
1220         tmp = INREG(DSPACNTR);
1221         tmp &= ~DISPPLANE_PLANE_ENABLE;
1222         OUTREG(DSPACNTR, tmp);
1223         tmp = INREG(DSPBCNTR);
1224         tmp &= ~DISPPLANE_PLANE_ENABLE;
1225         OUTREG(DSPBCNTR, tmp);
1226
1227         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1228         mdelay(20);
1229
1230         /* Disable Sync */
1231         tmp = INREG(ADPA);
1232         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1233         tmp |= ADPA_DPMS_D3;
1234         OUTREG(ADPA, tmp);
1235
1236         /* turn off pipe */
1237         tmp = INREG(pipe_conf_reg);
1238         tmp &= ~PIPECONF_ENABLE;
1239         OUTREG(pipe_conf_reg, tmp);
1240
1241         /* turn off PLL */
1242         tmp = INREG(dpll_reg);
1243         dpll_reg &= ~DPLL_VCO_ENABLE;
1244         OUTREG(dpll_reg, tmp);
1245
1246         /* Set PLL parameters */
1247         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1248         OUTREG(fp0_reg, *fp0);
1249         OUTREG(fp1_reg, *fp1);
1250
1251         /* Set pipe parameters */
1252         OUTREG(hsync_reg, *hs);
1253         OUTREG(hblank_reg, *hb);
1254         OUTREG(htotal_reg, *ht);
1255         OUTREG(vsync_reg, *vs);
1256         OUTREG(vblank_reg, *vb);
1257         OUTREG(vtotal_reg, *vt);
1258         OUTREG(src_size_reg, *ss);
1259
1260         /* Set DVOs B/C */
1261         OUTREG(DVOB, hw->dvob);
1262         OUTREG(DVOC, hw->dvoc);
1263
1264         /* Set ADPA */
1265         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1266
1267         /* Enable PLL */
1268         tmp = INREG(dpll_reg);
1269         tmp |= DPLL_VCO_ENABLE;
1270         OUTREG(dpll_reg, tmp);
1271
1272         /* Enable pipe */
1273         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1274
1275         /* Enable sync */
1276         tmp = INREG(ADPA);
1277         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1278         tmp |= ADPA_DPMS_D0;
1279         OUTREG(ADPA, tmp);
1280
1281         /* setup display plane */
1282         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1283                 /*
1284                  *      i830M errata: the display plane must be enabled
1285                  *      to allow writes to the other bits in the plane
1286                  *      control register.
1287                  */
1288                 tmp = INREG(DSPACNTR);
1289                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1290                         tmp |= DISPPLANE_PLANE_ENABLE;
1291                         OUTREG(DSPACNTR, tmp);
1292                         OUTREG(DSPACNTR,
1293                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1294                         mdelay(1);
1295               }
1296         }
1297
1298         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1299         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1300         OUTREG(DSPABASE, hw->disp_a_base);
1301
1302         /* Enable plane */
1303         if (!blank) {
1304                 tmp = INREG(DSPACNTR);
1305                 tmp |= DISPPLANE_PLANE_ENABLE;
1306                 OUTREG(DSPACNTR, tmp);
1307                 OUTREG(DSPABASE, hw->disp_a_base);
1308         }
1309
1310         return 0;
1311 }
1312
1313 /* forward declarations */
1314 static void refresh_ring(struct intelfb_info *dinfo);
1315 static void reset_state(struct intelfb_info *dinfo);
1316 static void do_flush(struct intelfb_info *dinfo);
1317
1318 static int
1319 wait_ring(struct intelfb_info *dinfo, int n)
1320 {
1321         int i = 0;
1322         unsigned long end;
1323         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1324
1325 #if VERBOSE > 0
1326         DBG_MSG("wait_ring: %d\n", n);
1327 #endif
1328
1329         end = jiffies + (HZ * 3);
1330         while (dinfo->ring_space < n) {
1331                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1332                                                    RING_HEAD_MASK);
1333                 if (dinfo->ring_tail + RING_MIN_FREE <
1334                     (u32 __iomem) dinfo->ring_head)
1335                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1336                                 - (dinfo->ring_tail + RING_MIN_FREE);
1337                 else
1338                         dinfo->ring_space = (dinfo->ring.size +
1339                                              (u32 __iomem) dinfo->ring_head)
1340                                 - (dinfo->ring_tail + RING_MIN_FREE);
1341                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1342                         end = jiffies + (HZ * 3);
1343                         last_head = (u32 __iomem) dinfo->ring_head;
1344                 }
1345                 i++;
1346                 if (time_before(end, jiffies)) {
1347                         if (!i) {
1348                                 /* Try again */
1349                                 reset_state(dinfo);
1350                                 refresh_ring(dinfo);
1351                                 do_flush(dinfo);
1352                                 end = jiffies + (HZ * 3);
1353                                 i = 1;
1354                         } else {
1355                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1356                                         dinfo->ring_space, n);
1357                                 WRN_MSG("lockup - turning off hardware "
1358                                         "acceleration\n");
1359                                 dinfo->ring_lockup = 1;
1360                                 break;
1361                         }
1362                 }
1363                 udelay(1);
1364         }
1365         return i;
1366 }
1367
1368 static void
1369 do_flush(struct intelfb_info *dinfo) {
1370         START_RING(2);
1371         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1372         OUT_RING(MI_NOOP);
1373         ADVANCE_RING();
1374 }
1375
1376 void
1377 intelfbhw_do_sync(struct intelfb_info *dinfo)
1378 {
1379 #if VERBOSE > 0
1380         DBG_MSG("intelfbhw_do_sync\n");
1381 #endif
1382
1383         if (!dinfo->accel)
1384                 return;
1385
1386         /*
1387          * Send a flush, then wait until the ring is empty.  This is what
1388          * the XFree86 driver does, and actually it doesn't seem a lot worse
1389          * than the recommended method (both have problems).
1390          */
1391         do_flush(dinfo);
1392         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1393         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1394 }
1395
1396 static void
1397 refresh_ring(struct intelfb_info *dinfo)
1398 {
1399 #if VERBOSE > 0
1400         DBG_MSG("refresh_ring\n");
1401 #endif
1402
1403         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1404                                            RING_HEAD_MASK);
1405         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1406         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1407                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1408                         - (dinfo->ring_tail + RING_MIN_FREE);
1409         else
1410                 dinfo->ring_space = (dinfo->ring.size +
1411                                      (u32 __iomem) dinfo->ring_head)
1412                         - (dinfo->ring_tail + RING_MIN_FREE);
1413 }
1414
1415 static void
1416 reset_state(struct intelfb_info *dinfo)
1417 {
1418         int i;
1419         u32 tmp;
1420
1421 #if VERBOSE > 0
1422         DBG_MSG("reset_state\n");
1423 #endif
1424
1425         for (i = 0; i < FENCE_NUM; i++)
1426                 OUTREG(FENCE + (i << 2), 0);
1427
1428         /* Flush the ring buffer if it's enabled. */
1429         tmp = INREG(PRI_RING_LENGTH);
1430         if (tmp & RING_ENABLE) {
1431 #if VERBOSE > 0
1432                 DBG_MSG("reset_state: ring was enabled\n");
1433 #endif
1434                 refresh_ring(dinfo);
1435                 intelfbhw_do_sync(dinfo);
1436                 DO_RING_IDLE();
1437         }
1438
1439         OUTREG(PRI_RING_LENGTH, 0);
1440         OUTREG(PRI_RING_HEAD, 0);
1441         OUTREG(PRI_RING_TAIL, 0);
1442         OUTREG(PRI_RING_START, 0);
1443 }
1444
1445 /* Stop the 2D engine, and turn off the ring buffer. */
1446 void
1447 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1448 {
1449 #if VERBOSE > 0
1450         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1451                 dinfo->ring_active);
1452 #endif
1453
1454         if (!dinfo->accel)
1455                 return;
1456
1457         dinfo->ring_active = 0;
1458         reset_state(dinfo);
1459 }
1460
1461 /*
1462  * Enable the ring buffer, and initialise the 2D engine.
1463  * It is assumed that the graphics engine has been stopped by previously
1464  * calling intelfb_2d_stop().
1465  */
1466 void
1467 intelfbhw_2d_start(struct intelfb_info *dinfo)
1468 {
1469 #if VERBOSE > 0
1470         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1471                 dinfo->accel, dinfo->ring_active);
1472 #endif
1473
1474         if (!dinfo->accel)
1475                 return;
1476
1477         /* Initialise the primary ring buffer. */
1478         OUTREG(PRI_RING_LENGTH, 0);
1479         OUTREG(PRI_RING_TAIL, 0);
1480         OUTREG(PRI_RING_HEAD, 0);
1481
1482         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1483         OUTREG(PRI_RING_LENGTH,
1484                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1485                 RING_NO_REPORT | RING_ENABLE);
1486         refresh_ring(dinfo);
1487         dinfo->ring_active = 1;
1488 }
1489
1490 /* 2D fillrect (solid fill or invert) */
1491 void
1492 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1493                       u32 color, u32 pitch, u32 bpp, u32 rop)
1494 {
1495         u32 br00, br09, br13, br14, br16;
1496
1497 #if VERBOSE > 0
1498         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1499                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1500 #endif
1501
1502         br00 = COLOR_BLT_CMD;
1503         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1504         br13 = (rop << ROP_SHIFT) | pitch;
1505         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1506         br16 = color;
1507
1508         switch (bpp) {
1509         case 8:
1510                 br13 |= COLOR_DEPTH_8;
1511                 break;
1512         case 16:
1513                 br13 |= COLOR_DEPTH_16;
1514                 break;
1515         case 32:
1516                 br13 |= COLOR_DEPTH_32;
1517                 br00 |= WRITE_ALPHA | WRITE_RGB;
1518                 break;
1519         }
1520
1521         START_RING(6);
1522         OUT_RING(br00);
1523         OUT_RING(br13);
1524         OUT_RING(br14);
1525         OUT_RING(br09);
1526         OUT_RING(br16);
1527         OUT_RING(MI_NOOP);
1528         ADVANCE_RING();
1529
1530 #if VERBOSE > 0
1531         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1532                 dinfo->ring_tail, dinfo->ring_space);
1533 #endif
1534 }
1535
1536 void
1537 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1538                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1539 {
1540         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1541
1542 #if VERBOSE > 0
1543         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1544                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1545 #endif
1546
1547         br00 = XY_SRC_COPY_BLT_CMD;
1548         br09 = dinfo->fb_start;
1549         br11 = (pitch << PITCH_SHIFT);
1550         br12 = dinfo->fb_start;
1551         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1552         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1553         br23 = ((dstx + w) << WIDTH_SHIFT) |
1554                ((dsty + h) << HEIGHT_SHIFT);
1555         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1556
1557         switch (bpp) {
1558         case 8:
1559                 br13 |= COLOR_DEPTH_8;
1560                 break;
1561         case 16:
1562                 br13 |= COLOR_DEPTH_16;
1563                 break;
1564         case 32:
1565                 br13 |= COLOR_DEPTH_32;
1566                 br00 |= WRITE_ALPHA | WRITE_RGB;
1567                 break;
1568         }
1569
1570         START_RING(8);
1571         OUT_RING(br00);
1572         OUT_RING(br13);
1573         OUT_RING(br22);
1574         OUT_RING(br23);
1575         OUT_RING(br09);
1576         OUT_RING(br26);
1577         OUT_RING(br11);
1578         OUT_RING(br12);
1579         ADVANCE_RING();
1580 }
1581
1582 int
1583 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1584                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1585 {
1586         int nbytes, ndwords, pad, tmp;
1587         u32 br00, br09, br13, br18, br19, br22, br23;
1588         int dat, ix, iy, iw;
1589         int i, j;
1590
1591 #if VERBOSE > 0
1592         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1593 #endif
1594
1595         /* size in bytes of a padded scanline */
1596         nbytes = ROUND_UP_TO(w, 16) / 8;
1597
1598         /* Total bytes of padded scanline data to write out. */
1599         nbytes = nbytes * h;
1600
1601         /*
1602          * Check if the glyph data exceeds the immediate mode limit.
1603          * It would take a large font (1K pixels) to hit this limit.
1604          */
1605         if (nbytes > MAX_MONO_IMM_SIZE)
1606                 return 0;
1607
1608         /* Src data is packaged a dword (32-bit) at a time. */
1609         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1610
1611         /*
1612          * Ring has to be padded to a quad word. But because the command starts
1613            with 7 bytes, pad only if there is an even number of ndwords
1614          */
1615         pad = !(ndwords % 2);
1616
1617         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1618         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1619         br09 = dinfo->fb_start;
1620         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1621         br18 = bg;
1622         br19 = fg;
1623         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1624         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1625
1626         switch (bpp) {
1627         case 8:
1628                 br13 |= COLOR_DEPTH_8;
1629                 break;
1630         case 16:
1631                 br13 |= COLOR_DEPTH_16;
1632                 break;
1633         case 32:
1634                 br13 |= COLOR_DEPTH_32;
1635                 br00 |= WRITE_ALPHA | WRITE_RGB;
1636                 break;
1637         }
1638
1639         START_RING(8 + ndwords);
1640         OUT_RING(br00);
1641         OUT_RING(br13);
1642         OUT_RING(br22);
1643         OUT_RING(br23);
1644         OUT_RING(br09);
1645         OUT_RING(br18);
1646         OUT_RING(br19);
1647         ix = iy = 0;
1648         iw = ROUND_UP_TO(w, 8) / 8;
1649         while (ndwords--) {
1650                 dat = 0;
1651                 for (j = 0; j < 2; ++j) {
1652                         for (i = 0; i < 2; ++i) {
1653                                 if (ix != iw || i == 0)
1654                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1655                         }
1656                         if (ix == iw && iy != (h-1)) {
1657                                 ix = 0;
1658                                 ++iy;
1659                         }
1660                 }
1661                 OUT_RING(dat);
1662         }
1663         if (pad)
1664                 OUT_RING(MI_NOOP);
1665         ADVANCE_RING();
1666
1667         return 1;
1668 }
1669
1670 /* HW cursor functions. */
1671 void
1672 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1673 {
1674         u32 tmp;
1675
1676 #if VERBOSE > 0
1677         DBG_MSG("intelfbhw_cursor_init\n");
1678 #endif
1679
1680         if (dinfo->mobile) {
1681                 if (!dinfo->cursor.physical)
1682                         return;
1683                 tmp = INREG(CURSOR_A_CONTROL);
1684                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1685                          CURSOR_MEM_TYPE_LOCAL |
1686                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1687                 tmp |= CURSOR_MODE_DISABLE;
1688                 OUTREG(CURSOR_A_CONTROL, tmp);
1689                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1690         } else {
1691                 tmp = INREG(CURSOR_CONTROL);
1692                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1693                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1694                 tmp = CURSOR_FORMAT_3C;
1695                 OUTREG(CURSOR_CONTROL, tmp);
1696                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1697                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1698                       (64 << CURSOR_SIZE_V_SHIFT);
1699                 OUTREG(CURSOR_SIZE, tmp);
1700         }
1701 }
1702
1703 void
1704 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1705 {
1706         u32 tmp;
1707
1708 #if VERBOSE > 0
1709         DBG_MSG("intelfbhw_cursor_hide\n");
1710 #endif
1711
1712         dinfo->cursor_on = 0;
1713         if (dinfo->mobile) {
1714                 if (!dinfo->cursor.physical)
1715                         return;
1716                 tmp = INREG(CURSOR_A_CONTROL);
1717                 tmp &= ~CURSOR_MODE_MASK;
1718                 tmp |= CURSOR_MODE_DISABLE;
1719                 OUTREG(CURSOR_A_CONTROL, tmp);
1720                 /* Flush changes */
1721                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1722         } else {
1723                 tmp = INREG(CURSOR_CONTROL);
1724                 tmp &= ~CURSOR_ENABLE;
1725                 OUTREG(CURSOR_CONTROL, tmp);
1726         }
1727 }
1728
1729 void
1730 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1731 {
1732         u32 tmp;
1733
1734 #if VERBOSE > 0
1735         DBG_MSG("intelfbhw_cursor_show\n");
1736 #endif
1737
1738         dinfo->cursor_on = 1;
1739
1740         if (dinfo->cursor_blanked)
1741                 return;
1742
1743         if (dinfo->mobile) {
1744                 if (!dinfo->cursor.physical)
1745                         return;
1746                 tmp = INREG(CURSOR_A_CONTROL);
1747                 tmp &= ~CURSOR_MODE_MASK;
1748                 tmp |= CURSOR_MODE_64_4C_AX;
1749                 OUTREG(CURSOR_A_CONTROL, tmp);
1750                 /* Flush changes */
1751                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1752         } else {
1753                 tmp = INREG(CURSOR_CONTROL);
1754                 tmp |= CURSOR_ENABLE;
1755                 OUTREG(CURSOR_CONTROL, tmp);
1756         }
1757 }
1758
1759 void
1760 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1761 {
1762         u32 tmp;
1763
1764 #if VERBOSE > 0
1765         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1766 #endif
1767
1768         /*
1769          * Sets the position.  The coordinates are assumed to already
1770          * have any offset adjusted.  Assume that the cursor is never
1771          * completely off-screen, and that x, y are always >= 0.
1772          */
1773
1774         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1775               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1776         OUTREG(CURSOR_A_POSITION, tmp);
1777 }
1778
1779 void
1780 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1781 {
1782 #if VERBOSE > 0
1783         DBG_MSG("intelfbhw_cursor_setcolor\n");
1784 #endif
1785
1786         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1787         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1788         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1789         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1790 }
1791
1792 void
1793 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1794                       u8 *data)
1795 {
1796         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1797         int i, j, w = width / 8;
1798         int mod = width % 8, t_mask, d_mask;
1799
1800 #if VERBOSE > 0
1801         DBG_MSG("intelfbhw_cursor_load\n");
1802 #endif
1803
1804         if (!dinfo->cursor.virtual)
1805                 return;
1806
1807         t_mask = 0xff >> mod;
1808         d_mask = ~(0xff >> mod);
1809         for (i = height; i--; ) {
1810                 for (j = 0; j < w; j++) {
1811                         writeb(0x00, addr + j);
1812                         writeb(*(data++), addr + j+8);
1813                 }
1814                 if (mod) {
1815                         writeb(t_mask, addr + j);
1816                         writeb(*(data++) & d_mask, addr + j+8);
1817                 }
1818                 addr += 16;
1819         }
1820 }
1821
1822 void
1823 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1824         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1825         int i, j;
1826
1827 #if VERBOSE > 0
1828         DBG_MSG("intelfbhw_cursor_reset\n");
1829 #endif
1830
1831         if (!dinfo->cursor.virtual)
1832                 return;
1833
1834         for (i = 64; i--; ) {
1835                 for (j = 0; j < 8; j++) {
1836                         writeb(0xff, addr + j+0);
1837                         writeb(0x00, addr + j+8);
1838                 }
1839                 addr += 16;
1840         }
1841 }