intelfb: add hw cursor support for i9xx
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52         int p_inc_lo, p_inc_hi;
53 };
54
55 #define PLLS_I8xx 0
56 #define PLLS_I9xx 1
57 #define PLLS_MAX 2
58
59 struct pll_min_max plls[PLLS_MAX] = {
60         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62 };
63
64 int
65 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66 {
67         u32 tmp;
68         if (!pdev || !dinfo)
69                 return 1;
70
71         switch (pdev->device) {
72         case PCI_DEVICE_ID_INTEL_830M:
73                 dinfo->name = "Intel(R) 830M";
74                 dinfo->chipset = INTEL_830M;
75                 dinfo->mobile = 1;
76                 dinfo->pll_index = PLLS_I8xx;
77                 return 0;
78         case PCI_DEVICE_ID_INTEL_845G:
79                 dinfo->name = "Intel(R) 845G";
80                 dinfo->chipset = INTEL_845G;
81                 dinfo->mobile = 0;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_85XGM:
85                 tmp = 0;
86                 dinfo->mobile = 1;
87                 dinfo->pll_index = PLLS_I8xx;
88                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90                         INTEL_85X_VARIANT_MASK) {
91                 case INTEL_VAR_855GME:
92                         dinfo->name = "Intel(R) 855GME";
93                         dinfo->chipset = INTEL_855GME;
94                         return 0;
95                 case INTEL_VAR_855GM:
96                         dinfo->name = "Intel(R) 855GM";
97                         dinfo->chipset = INTEL_855GM;
98                         return 0;
99                 case INTEL_VAR_852GME:
100                         dinfo->name = "Intel(R) 852GME";
101                         dinfo->chipset = INTEL_852GME;
102                         return 0;
103                 case INTEL_VAR_852GM:
104                         dinfo->name = "Intel(R) 852GM";
105                         dinfo->chipset = INTEL_852GM;
106                         return 0;
107                 default:
108                         dinfo->name = "Intel(R) 852GM/855GM";
109                         dinfo->chipset = INTEL_85XGM;
110                         return 0;
111                 }
112                 break;
113         case PCI_DEVICE_ID_INTEL_865G:
114                 dinfo->name = "Intel(R) 865G";
115                 dinfo->chipset = INTEL_865G;
116                 dinfo->mobile = 0;
117                 dinfo->pll_index = PLLS_I8xx;
118                 return 0;
119         case PCI_DEVICE_ID_INTEL_915G:
120                 dinfo->name = "Intel(R) 915G";
121                 dinfo->chipset = INTEL_915G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I9xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915GM:
126                 dinfo->name = "Intel(R) 915GM";
127                 dinfo->chipset = INTEL_915GM;
128                 dinfo->mobile = 1;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         case PCI_DEVICE_ID_INTEL_945G:
132                 dinfo->name = "Intel(R) 945G";
133                 dinfo->chipset = INTEL_945G;
134                 dinfo->mobile = 0;
135                 dinfo->pll_index = PLLS_I9xx;
136                 return 0;
137         default:
138                 return 1;
139         }
140 }
141
142 int
143 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
144                      int *stolen_size)
145 {
146         struct pci_dev *bridge_dev;
147         u16 tmp;
148
149         if (!pdev || !aperture_size || !stolen_size)
150                 return 1;
151
152         /* Find the bridge device.  It is always 0:0.0 */
153         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
154                 ERR_MSG("cannot find bridge device\n");
155                 return 1;
156         }
157
158         /* Get the fb aperture size and "stolen" memory amount. */
159         tmp = 0;
160         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
161         switch (pdev->device) {
162         case PCI_DEVICE_ID_INTEL_830M:
163         case PCI_DEVICE_ID_INTEL_845G:
164                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
165                         *aperture_size = MB(64);
166                 else
167                         *aperture_size = MB(128);
168                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
169                 case INTEL_830_GMCH_GMS_STOLEN_512:
170                         *stolen_size = KB(512) - KB(132);
171                         return 0;
172                 case INTEL_830_GMCH_GMS_STOLEN_1024:
173                         *stolen_size = MB(1) - KB(132);
174                         return 0;
175                 case INTEL_830_GMCH_GMS_STOLEN_8192:
176                         *stolen_size = MB(8) - KB(132);
177                         return 0;
178                 case INTEL_830_GMCH_GMS_LOCAL:
179                         ERR_MSG("only local memory found\n");
180                         return 1;
181                 case INTEL_830_GMCH_GMS_DISABLED:
182                         ERR_MSG("video memory is disabled\n");
183                         return 1;
184                 default:
185                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
186                                 tmp & INTEL_830_GMCH_GMS_MASK);
187                         return 1;
188                 }
189                 break;
190         default:
191                 *aperture_size = MB(128);
192                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
193                 case INTEL_855_GMCH_GMS_STOLEN_1M:
194                         *stolen_size = MB(1) - KB(132);
195                         return 0;
196                 case INTEL_855_GMCH_GMS_STOLEN_4M:
197                         *stolen_size = MB(4) - KB(132);
198                         return 0;
199                 case INTEL_855_GMCH_GMS_STOLEN_8M:
200                         *stolen_size = MB(8) - KB(132);
201                         return 0;
202                 case INTEL_855_GMCH_GMS_STOLEN_16M:
203                         *stolen_size = MB(16) - KB(132);
204                         return 0;
205                 case INTEL_855_GMCH_GMS_STOLEN_32M:
206                         *stolen_size = MB(32) - KB(132);
207                         return 0;
208                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
209                         *stolen_size = MB(48) - KB(132);
210                         return 0;
211                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
212                         *stolen_size = MB(64) - KB(132);
213                         return 0;
214                 case INTEL_855_GMCH_GMS_DISABLED:
215                         ERR_MSG("video memory is disabled\n");
216                         return 0;
217                 default:
218                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
219                                 tmp & INTEL_855_GMCH_GMS_MASK);
220                         return 1;
221                 }
222         }
223 }
224
225 int
226 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
227 {
228         int dvo = 0;
229
230         if (INREG(LVDS) & PORT_ENABLE)
231                 dvo |= LVDS_PORT;
232         if (INREG(DVOA) & PORT_ENABLE)
233                 dvo |= DVOA_PORT;
234         if (INREG(DVOB) & PORT_ENABLE)
235                 dvo |= DVOB_PORT;
236         if (INREG(DVOC) & PORT_ENABLE)
237                 dvo |= DVOC_PORT;
238
239         return dvo;
240 }
241
242 const char *
243 intelfbhw_dvo_to_string(int dvo)
244 {
245         if (dvo & DVOA_PORT)
246                 return "DVO port A";
247         else if (dvo & DVOB_PORT)
248                 return "DVO port B";
249         else if (dvo & DVOC_PORT)
250                 return "DVO port C";
251         else if (dvo & LVDS_PORT)
252                 return "LVDS port";
253         else
254                 return NULL;
255 }
256
257
258 int
259 intelfbhw_validate_mode(struct intelfb_info *dinfo,
260                         struct fb_var_screeninfo *var)
261 {
262         int bytes_per_pixel;
263         int tmp;
264
265 #if VERBOSE > 0
266         DBG_MSG("intelfbhw_validate_mode\n");
267 #endif
268
269         bytes_per_pixel = var->bits_per_pixel / 8;
270         if (bytes_per_pixel == 3)
271                 bytes_per_pixel = 4;
272
273         /* Check if enough video memory. */
274         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
275         if (tmp > dinfo->fb.size) {
276                 WRN_MSG("Not enough video ram for mode "
277                         "(%d KByte vs %d KByte).\n",
278                         BtoKB(tmp), BtoKB(dinfo->fb.size));
279                 return 1;
280         }
281
282         /* Check if x/y limits are OK. */
283         if (var->xres - 1 > HACTIVE_MASK) {
284                 WRN_MSG("X resolution too large (%d vs %d).\n",
285                         var->xres, HACTIVE_MASK + 1);
286                 return 1;
287         }
288         if (var->yres - 1 > VACTIVE_MASK) {
289                 WRN_MSG("Y resolution too large (%d vs %d).\n",
290                         var->yres, VACTIVE_MASK + 1);
291                 return 1;
292         }
293
294         /* Check for interlaced/doublescan modes. */
295         if (var->vmode & FB_VMODE_INTERLACED) {
296                 WRN_MSG("Mode is interlaced.\n");
297                 return 1;
298         }
299         if (var->vmode & FB_VMODE_DOUBLE) {
300                 WRN_MSG("Mode is double-scan.\n");
301                 return 1;
302         }
303
304         /* Check if clock is OK. */
305         tmp = 1000000000 / var->pixclock;
306         if (tmp < MIN_CLOCK) {
307                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
308                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
309                 return 1;
310         }
311         if (tmp > MAX_CLOCK) {
312                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
313                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
314                 return 1;
315         }
316
317         return 0;
318 }
319
320 int
321 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
322 {
323         struct intelfb_info *dinfo = GET_DINFO(info);
324         u32 offset, xoffset, yoffset;
325
326 #if VERBOSE > 0
327         DBG_MSG("intelfbhw_pan_display\n");
328 #endif
329
330         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
331         yoffset = var->yoffset;
332
333         if ((xoffset + var->xres > var->xres_virtual) ||
334             (yoffset + var->yres > var->yres_virtual))
335                 return -EINVAL;
336
337         offset = (yoffset * dinfo->pitch) +
338                  (xoffset * var->bits_per_pixel) / 8;
339
340         offset += dinfo->fb.offset << 12;
341
342         OUTREG(DSPABASE, offset);
343
344         return 0;
345 }
346
347 /* Blank the screen. */
348 void
349 intelfbhw_do_blank(int blank, struct fb_info *info)
350 {
351         struct intelfb_info *dinfo = GET_DINFO(info);
352         u32 tmp;
353
354 #if VERBOSE > 0
355         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
356 #endif
357
358         /* Turn plane A on or off */
359         tmp = INREG(DSPACNTR);
360         if (blank)
361                 tmp &= ~DISPPLANE_PLANE_ENABLE;
362         else
363                 tmp |= DISPPLANE_PLANE_ENABLE;
364         OUTREG(DSPACNTR, tmp);
365         /* Flush */
366         tmp = INREG(DSPABASE);
367         OUTREG(DSPABASE, tmp);
368
369         /* Turn off/on the HW cursor */
370 #if VERBOSE > 0
371         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
372 #endif
373         if (dinfo->cursor_on) {
374                 if (blank) {
375                         intelfbhw_cursor_hide(dinfo);
376                 } else {
377                         intelfbhw_cursor_show(dinfo);
378                 }
379                 dinfo->cursor_on = 1;
380         }
381         dinfo->cursor_blanked = blank;
382
383         /* Set DPMS level */
384         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
385         switch (blank) {
386         case FB_BLANK_UNBLANK:
387         case FB_BLANK_NORMAL:
388                 tmp |= ADPA_DPMS_D0;
389                 break;
390         case FB_BLANK_VSYNC_SUSPEND:
391                 tmp |= ADPA_DPMS_D1;
392                 break;
393         case FB_BLANK_HSYNC_SUSPEND:
394                 tmp |= ADPA_DPMS_D2;
395                 break;
396         case FB_BLANK_POWERDOWN:
397                 tmp |= ADPA_DPMS_D3;
398                 break;
399         }
400         OUTREG(ADPA, tmp);
401
402         return;
403 }
404
405
406 void
407 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
408                     unsigned red, unsigned green, unsigned blue,
409                     unsigned transp)
410 {
411 #if VERBOSE > 0
412         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
413                 regno, red, green, blue);
414 #endif
415
416         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
417                           PALETTE_A : PALETTE_B;
418
419         OUTREG(palette_reg + (regno << 2),
420                (red << PALETTE_8_RED_SHIFT) |
421                (green << PALETTE_8_GREEN_SHIFT) |
422                (blue << PALETTE_8_BLUE_SHIFT));
423 }
424
425
426 int
427 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
428                         int flag)
429 {
430         int i;
431
432 #if VERBOSE > 0
433         DBG_MSG("intelfbhw_read_hw_state\n");
434 #endif
435
436         if (!hw || !dinfo)
437                 return -1;
438
439         /* Read in as much of the HW state as possible. */
440         hw->vga0_divisor = INREG(VGA0_DIVISOR);
441         hw->vga1_divisor = INREG(VGA1_DIVISOR);
442         hw->vga_pd = INREG(VGAPD);
443         hw->dpll_a = INREG(DPLL_A);
444         hw->dpll_b = INREG(DPLL_B);
445         hw->fpa0 = INREG(FPA0);
446         hw->fpa1 = INREG(FPA1);
447         hw->fpb0 = INREG(FPB0);
448         hw->fpb1 = INREG(FPB1);
449
450         if (flag == 1)
451                 return flag;
452
453 #if 0
454         /* This seems to be a problem with the 852GM/855GM */
455         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
456                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
457                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
458         }
459 #endif
460
461         if (flag == 2)
462                 return flag;
463
464         hw->htotal_a = INREG(HTOTAL_A);
465         hw->hblank_a = INREG(HBLANK_A);
466         hw->hsync_a = INREG(HSYNC_A);
467         hw->vtotal_a = INREG(VTOTAL_A);
468         hw->vblank_a = INREG(VBLANK_A);
469         hw->vsync_a = INREG(VSYNC_A);
470         hw->src_size_a = INREG(SRC_SIZE_A);
471         hw->bclrpat_a = INREG(BCLRPAT_A);
472         hw->htotal_b = INREG(HTOTAL_B);
473         hw->hblank_b = INREG(HBLANK_B);
474         hw->hsync_b = INREG(HSYNC_B);
475         hw->vtotal_b = INREG(VTOTAL_B);
476         hw->vblank_b = INREG(VBLANK_B);
477         hw->vsync_b = INREG(VSYNC_B);
478         hw->src_size_b = INREG(SRC_SIZE_B);
479         hw->bclrpat_b = INREG(BCLRPAT_B);
480
481         if (flag == 3)
482                 return flag;
483
484         hw->adpa = INREG(ADPA);
485         hw->dvoa = INREG(DVOA);
486         hw->dvob = INREG(DVOB);
487         hw->dvoc = INREG(DVOC);
488         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
489         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
490         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
491         hw->lvds = INREG(LVDS);
492
493         if (flag == 4)
494                 return flag;
495
496         hw->pipe_a_conf = INREG(PIPEACONF);
497         hw->pipe_b_conf = INREG(PIPEBCONF);
498         hw->disp_arb = INREG(DISPARB);
499
500         if (flag == 5)
501                 return flag;
502
503         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
504         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
505         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
506         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
507
508         if (flag == 6)
509                 return flag;
510
511         for (i = 0; i < 4; i++) {
512                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
513                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
514         }
515
516         if (flag == 7)
517                 return flag;
518
519         hw->cursor_size = INREG(CURSOR_SIZE);
520
521         if (flag == 8)
522                 return flag;
523
524         hw->disp_a_ctrl = INREG(DSPACNTR);
525         hw->disp_b_ctrl = INREG(DSPBCNTR);
526         hw->disp_a_base = INREG(DSPABASE);
527         hw->disp_b_base = INREG(DSPBBASE);
528         hw->disp_a_stride = INREG(DSPASTRIDE);
529         hw->disp_b_stride = INREG(DSPBSTRIDE);
530
531         if (flag == 9)
532                 return flag;
533
534         hw->vgacntrl = INREG(VGACNTRL);
535
536         if (flag == 10)
537                 return flag;
538
539         hw->add_id = INREG(ADD_ID);
540
541         if (flag == 11)
542                 return flag;
543
544         for (i = 0; i < 7; i++) {
545                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
546                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
547                 if (i < 3)
548                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
549         }
550
551         for (i = 0; i < 8; i++)
552                 hw->fence[i] = INREG(FENCE + (i << 2));
553
554         hw->instpm = INREG(INSTPM);
555         hw->mem_mode = INREG(MEM_MODE);
556         hw->fw_blc_0 = INREG(FW_BLC_0);
557         hw->fw_blc_1 = INREG(FW_BLC_1);
558
559         return 0;
560 }
561
562
563 static int calc_vclock3(int index, int m, int n, int p)
564 {
565         if (p == 0 || n == 0)
566                 return 0;
567         return PLL_REFCLK * m / n / p;
568 }
569                        
570 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
571 {
572         switch(index)
573         {
574         case PLLS_I9xx:
575                 if (p1 == 0)
576                         return 0;
577                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
578                          ((p1)) * (p2 ? 10 : 5)));
579         case PLLS_I8xx:
580         default:
581                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / 
582                          ((p1+2) * (1 << (p2 + 1)))));
583         }
584 }
585
586 void
587 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
588 {
589 #if REGDUMP
590         int i, m1, m2, n, p1, p2;
591         int index = dinfo->pll_index;
592         DBG_MSG("intelfbhw_print_hw_state\n");
593         
594         if (!hw || !dinfo)
595                 return;
596         /* Read in as much of the HW state as possible. */
597         printk("hw state dump start\n");
598         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
599         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
600         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
601         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
602         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
603         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
604         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
605                 p1 = 0;
606         else
607                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
608         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
609         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
610                m1, m2, n, p1, p2);
611         printk("        VGA0: clock is %d\n", 
612                calc_vclock(index, m1, m2, n, p1, p2));
613         
614         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
615         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
616         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
617         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
618                 p1 = 0;
619         else
620                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
621         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
622         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
623                m1, m2, n, p1, p2);
624         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
625         
626         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
627         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
628         printk("        FPA0:                   0x%08x\n", hw->fpa0);
629         printk("        FPA1:                   0x%08x\n", hw->fpa1);
630         printk("        FPB0:                   0x%08x\n", hw->fpb0);
631         printk("        FPB1:                   0x%08x\n", hw->fpb1);
632         
633         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
634         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
635         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
637                 p1 = 0;
638         else
639                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
640         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
641         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
642                m1, m2, n, p1, p2);
643         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
644         
645         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
646         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
647         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
648         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
649                 p1 = 0;
650         else
651                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
652         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
653         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
654                m1, m2, n, p1, p2);
655         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
656         
657 #if 0
658         printk("        PALETTE_A:\n");
659         for (i = 0; i < PALETTE_8_ENTRIES)
660                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
661         printk("        PALETTE_B:\n");
662         for (i = 0; i < PALETTE_8_ENTRIES)
663                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
664 #endif
665
666         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
667         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
668         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
669         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
670         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
671         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
672         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
673         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
674         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
675         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
676         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
677         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
678         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
679         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
680         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
681         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
682
683         printk("        ADPA:                   0x%08x\n", hw->adpa);
684         printk("        DVOA:                   0x%08x\n", hw->dvoa);
685         printk("        DVOB:                   0x%08x\n", hw->dvob);
686         printk("        DVOC:                   0x%08x\n", hw->dvoc);
687         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
688         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
689         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
690         printk("        LVDS:                   0x%08x\n", hw->lvds);
691
692         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
693         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
694         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
695
696         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
697         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
698         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
699         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
700
701         printk("        CURSOR_A_PALETTE:       ");
702         for (i = 0; i < 4; i++) {
703                 printk("0x%08x", hw->cursor_a_palette[i]);
704                 if (i < 3)
705                         printk(", ");
706         }
707         printk("\n");
708         printk("        CURSOR_B_PALETTE:       ");
709         for (i = 0; i < 4; i++) {
710                 printk("0x%08x", hw->cursor_b_palette[i]);
711                 if (i < 3)
712                         printk(", ");
713         }
714         printk("\n");
715
716         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
717
718         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
719         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
720         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
721         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
722         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
723         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
724
725         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
726         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
727
728         for (i = 0; i < 7; i++) {
729                 printk("        SWF0%d                  0x%08x\n", i,
730                         hw->swf0x[i]);
731         }
732         for (i = 0; i < 7; i++) {
733                 printk("        SWF1%d                  0x%08x\n", i,
734                         hw->swf1x[i]);
735         }
736         for (i = 0; i < 3; i++) {
737                 printk("        SWF3%d                  0x%08x\n", i,
738                        hw->swf3x[i]);
739         }
740         for (i = 0; i < 8; i++)
741                 printk("        FENCE%d                 0x%08x\n", i,
742                        hw->fence[i]);
743                        
744         printk("        INSTPM                  0x%08x\n", hw->instpm);
745         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
746         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
747         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
748
749         printk("hw state dump end\n");
750 #endif
751 }
752
753                
754
755 /* Split the M parameter into M1 and M2. */
756 static int
757 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
758 {
759         int m1, m2;
760         int testm;
761         /* no point optimising too much - brute force m */
762         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
763         {
764           for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
765           {
766             testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
767             if (testm == m)
768             {
769                 *retm1 = (unsigned int)m1;
770                 *retm2 = (unsigned int)m2;            
771                 return 0;
772             }
773           }
774         }
775         return 1;
776 }
777
778 /* Split the P parameter into P1 and P2. */
779 static int
780 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
781 {
782         int p1, p2;
783
784         if (index == PLLS_I9xx)
785         {
786                 switch (p) {
787                 case 10:
788                         p1 = 2;
789                         p2 = 0;
790                         break;
791                 case 20:
792                         p1 = 1;
793                         p2 = 0;
794                         break;
795                 default:
796                         p1 = (p / 10) + 1;
797                         p2 = 0;
798                         break;
799                 }
800                 
801                 *retp1 = (unsigned int)p1;
802                 *retp2 = (unsigned int)p2;
803                 return 0;
804         }
805
806         if (index == PLLS_I8xx)
807         {
808                 if (p % 4 == 0)
809                         p2 = 1;
810                 else
811                         p2 = 0;
812                 p1 = (p / (1 << (p2 + 1))) - 2;
813                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
814                         p2 = 0;
815                         p1 = (p / (1 << (p2 + 1))) - 2;
816                 }
817                 if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
818                         return 1;
819                 } else {
820                         *retp1 = (unsigned int)p1;
821                         *retp2 = (unsigned int)p2;
822                         return 0;
823                 }
824         }
825         return 1;
826 }
827
828 static int
829 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
830                 u32 *retp2, u32 *retclock)
831 {
832         u32 m1, m2, n, p1, p2, n1, testm;
833         u32 f_vco, p, p_best = 0, m, f_out = 0;
834         u32 err_max, err_target, err_best = 10000000;
835         u32 n_best = 0, m_best = 0, f_best, f_err;
836         u32 p_min, p_max, p_inc, div_min, div_max;
837
838         /* Accept 0.5% difference, but aim for 0.1% */
839         err_max = 5 * clock / 1000;
840         err_target = clock / 1000;
841
842         DBG_MSG("Clock is %d\n", clock);
843
844         div_max = plls[index].max_vco_freq / clock;
845         if (index == PLLS_I9xx)
846                 div_min = 5;
847         else
848                 div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
849
850         if (clock <= plls[index].p_transition_clock)
851                 p_inc = plls[index].p_inc_lo;
852         else
853                 p_inc = plls[index].p_inc_hi;
854         p_min = ROUND_UP_TO(div_min, p_inc);
855         p_max = ROUND_DOWN_TO(div_max, p_inc);
856         if (p_min < plls[index].min_p)
857                 p_min = plls[index].min_p;
858         if (p_max > plls[index].max_p)
859                 p_max = plls[index].max_p;
860
861         if (clock < PLL_REFCLK && index==PLLS_I9xx)
862         {
863           p_min = 10;
864           p_max = 20;
865           /* this makes 640x480 work it really shouldn't 
866              - SOMEONE WITHOUT DOCS WOZ HERE */
867           if (clock < 30000)
868             clock *= 4;
869         }
870
871         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
872
873         p = p_min;
874         do {
875                 if (splitp(index, p, &p1, &p2)) {
876                         WRN_MSG("cannot split p = %d\n", p);
877                         p += p_inc;
878                         continue;
879                 }
880                 n = plls[index].min_n;
881                 f_vco = clock * p;
882
883                 do {
884                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
885                         if (m < plls[index].min_m)
886                                 m = plls[index].min_m + 1;
887                         if (m > plls[index].max_m)
888                                 m = plls[index].max_m - 1;
889                         for (testm = m - 1; testm <= m; testm++) {
890                                 f_out = calc_vclock3(index, m, n, p);
891                                 if (splitm(index, m, &m1, &m2)) {
892                                         WRN_MSG("cannot split m = %d\n", m);
893                                         n++;
894                                         continue;
895                                 }
896                                 if (clock > f_out)
897                                         f_err = clock - f_out;
898                                 else/* slightly bias the error for bigger clocks */
899                                         f_err = f_out - clock + 1;
900                                 
901                                 if (f_err < err_best) {
902                                         m_best = m;
903                                         n_best = n;
904                                         p_best = p;
905                                         f_best = f_out;
906                                         err_best = f_err;
907                                 }
908                         }
909                         n++;
910                 } while ((n <= plls[index].max_n) && (f_out >= clock));
911                 p += p_inc;
912         } while ((p <= p_max));
913
914         if (!m_best) {
915                 WRN_MSG("cannot find parameters for clock %d\n", clock);
916                 return 1;
917         }
918         m = m_best;
919         n = n_best;
920         p = p_best;
921         splitm(index, m, &m1, &m2);
922         splitp(index, p, &p1, &p2);
923         n1 = n - 2;
924
925         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
926                 "f: %d (%d), VCO: %d\n",
927                 m, m1, m2, n, n1, p, p1, p2,
928                 calc_vclock3(index, m, n, p), 
929                 calc_vclock(index, m1, m2, n1, p1, p2),
930                 calc_vclock3(index, m, n, p) * p);
931         *retm1 = m1;
932         *retm2 = m2;
933         *retn = n1;
934         *retp1 = p1;
935         *retp2 = p2;
936         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
937
938         return 0;
939 }
940
941 static __inline__ int
942 check_overflow(u32 value, u32 limit, const char *description)
943 {
944         if (value > limit) {
945                 WRN_MSG("%s value %d exceeds limit %d\n",
946                         description, value, limit);
947                 return 1;
948         }
949         return 0;
950 }
951
952 /* It is assumed that hw is filled in with the initial state information. */
953 int
954 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
955                      struct fb_var_screeninfo *var)
956 {
957         int pipe = PIPE_A;
958         u32 *dpll, *fp0, *fp1;
959         u32 m1, m2, n, p1, p2, clock_target, clock;
960         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
961         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
962         u32 vsync_pol, hsync_pol;
963         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
964
965         DBG_MSG("intelfbhw_mode_to_hw\n");
966
967         /* Disable VGA */
968         hw->vgacntrl |= VGA_DISABLE;
969
970         /* Check whether pipe A or pipe B is enabled. */
971         if (hw->pipe_a_conf & PIPECONF_ENABLE)
972                 pipe = PIPE_A;
973         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
974                 pipe = PIPE_B;
975
976         /* Set which pipe's registers will be set. */
977         if (pipe == PIPE_B) {
978                 dpll = &hw->dpll_b;
979                 fp0 = &hw->fpb0;
980                 fp1 = &hw->fpb1;
981                 hs = &hw->hsync_b;
982                 hb = &hw->hblank_b;
983                 ht = &hw->htotal_b;
984                 vs = &hw->vsync_b;
985                 vb = &hw->vblank_b;
986                 vt = &hw->vtotal_b;
987                 ss = &hw->src_size_b;
988                 pipe_conf = &hw->pipe_b_conf;
989         } else {
990                 dpll = &hw->dpll_a;
991                 fp0 = &hw->fpa0;
992                 fp1 = &hw->fpa1;
993                 hs = &hw->hsync_a;
994                 hb = &hw->hblank_a;
995                 ht = &hw->htotal_a;
996                 vs = &hw->vsync_a;
997                 vb = &hw->vblank_a;
998                 vt = &hw->vtotal_a;
999                 ss = &hw->src_size_a;
1000                 pipe_conf = &hw->pipe_a_conf;
1001         }
1002
1003         /* Use ADPA register for sync control. */
1004         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1005
1006         /* sync polarity */
1007         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1008                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1009         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1010                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1011         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1012                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1013         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1014                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1015
1016         /* Connect correct pipe to the analog port DAC */
1017         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1018         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1019
1020         /* Set DPMS state to D0 (on) */
1021         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1022         hw->adpa |= ADPA_DPMS_D0;
1023
1024         hw->adpa |= ADPA_DAC_ENABLE;
1025
1026         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1027         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1028         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1029
1030         /* Desired clock in kHz */
1031         clock_target = 1000000000 / var->pixclock;
1032
1033         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
1034                 WRN_MSG("calc_pll_params failed\n");
1035                 return 1;
1036         }
1037
1038         /* Check for overflow. */
1039         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1040                 return 1;
1041         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1042                 return 1;
1043         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1044                 return 1;
1045         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1046                 return 1;
1047         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1048                 return 1;
1049
1050         *dpll &= ~DPLL_P1_FORCE_DIV2;
1051         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1052                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1053         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1054         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1055                (m1 << FP_M1_DIVISOR_SHIFT) |
1056                (m2 << FP_M2_DIVISOR_SHIFT);
1057         *fp1 = *fp0;
1058
1059         hw->dvob &= ~PORT_ENABLE;
1060         hw->dvoc &= ~PORT_ENABLE;
1061
1062         /* Use display plane A. */
1063         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1064         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1065         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1066         switch (intelfb_var_to_depth(var)) {
1067         case 8:
1068                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1069                 break;
1070         case 15:
1071                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1072                 break;
1073         case 16:
1074                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1075                 break;
1076         case 24:
1077                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1078                 break;
1079         }
1080         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1081         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1082
1083         /* Set CRTC registers. */
1084         hactive = var->xres;
1085         hsync_start = hactive + var->right_margin;
1086         hsync_end = hsync_start + var->hsync_len;
1087         htotal = hsync_end + var->left_margin;
1088         hblank_start = hactive;
1089         hblank_end = htotal;
1090
1091         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1092                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1093                 hblank_end);
1094
1095         vactive = var->yres;
1096         vsync_start = vactive + var->lower_margin;
1097         vsync_end = vsync_start + var->vsync_len;
1098         vtotal = vsync_end + var->upper_margin;
1099         vblank_start = vactive;
1100         vblank_end = vtotal;
1101         vblank_end = vsync_end + 1;
1102
1103         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1104                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1105                 vblank_end);
1106
1107         /* Adjust for register values, and check for overflow. */
1108         hactive--;
1109         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1110                 return 1;
1111         hsync_start--;
1112         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1113                 return 1;
1114         hsync_end--;
1115         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1116                 return 1;
1117         htotal--;
1118         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1119                 return 1;
1120         hblank_start--;
1121         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1122                 return 1;
1123         hblank_end--;
1124         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1125                 return 1;
1126
1127         vactive--;
1128         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1129                 return 1;
1130         vsync_start--;
1131         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1132                 return 1;
1133         vsync_end--;
1134         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1135                 return 1;
1136         vtotal--;
1137         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1138                 return 1;
1139         vblank_start--;
1140         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1141                 return 1;
1142         vblank_end--;
1143         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1144                 return 1;
1145
1146         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1147         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1148               (hblank_end << HSYNCEND_SHIFT);
1149         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1150
1151         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1152         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1153               (vblank_end << VSYNCEND_SHIFT);
1154         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1155         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1156               (vactive << SRC_SIZE_VERT_SHIFT);
1157
1158         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1159         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1160
1161         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1162                           var->xoffset * var->bits_per_pixel / 8;
1163
1164         hw->disp_a_base += dinfo->fb.offset << 12;
1165
1166         /* Check stride alignment. */
1167         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1168                 WRN_MSG("display stride %d has bad alignment %d\n",
1169                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1170                 return 1;
1171         }
1172
1173         /* Set the palette to 8-bit mode. */
1174         *pipe_conf &= ~PIPECONF_GAMMA;
1175         return 0;
1176 }
1177
1178 /* Program a (non-VGA) video mode. */
1179 int
1180 intelfbhw_program_mode(struct intelfb_info *dinfo,
1181                      const struct intelfb_hwstate *hw, int blank)
1182 {
1183         int pipe = PIPE_A;
1184         u32 tmp;
1185         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1186         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1187         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1188         u32 hsync_reg, htotal_reg, hblank_reg;
1189         u32 vsync_reg, vtotal_reg, vblank_reg;
1190         u32 src_size_reg;
1191         u32 count, tmp_val[3];
1192
1193         /* Assume single pipe, display plane A, analog CRT. */
1194
1195 #if VERBOSE > 0
1196         DBG_MSG("intelfbhw_program_mode\n");
1197 #endif
1198
1199         /* Disable VGA */
1200         tmp = INREG(VGACNTRL);
1201         tmp |= VGA_DISABLE;
1202         OUTREG(VGACNTRL, tmp);
1203
1204         /* Check whether pipe A or pipe B is enabled. */
1205         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1206                 pipe = PIPE_A;
1207         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1208                 pipe = PIPE_B;
1209
1210         dinfo->pipe = pipe;
1211
1212         if (pipe == PIPE_B) {
1213                 dpll = &hw->dpll_b;
1214                 fp0 = &hw->fpb0;
1215                 fp1 = &hw->fpb1;
1216                 pipe_conf = &hw->pipe_b_conf;
1217                 hs = &hw->hsync_b;
1218                 hb = &hw->hblank_b;
1219                 ht = &hw->htotal_b;
1220                 vs = &hw->vsync_b;
1221                 vb = &hw->vblank_b;
1222                 vt = &hw->vtotal_b;
1223                 ss = &hw->src_size_b;
1224                 dpll_reg = DPLL_B;
1225                 fp0_reg = FPB0;
1226                 fp1_reg = FPB1;
1227                 pipe_conf_reg = PIPEBCONF;
1228                 hsync_reg = HSYNC_B;
1229                 htotal_reg = HTOTAL_B;
1230                 hblank_reg = HBLANK_B;
1231                 vsync_reg = VSYNC_B;
1232                 vtotal_reg = VTOTAL_B;
1233                 vblank_reg = VBLANK_B;
1234                 src_size_reg = SRC_SIZE_B;
1235         } else {
1236                 dpll = &hw->dpll_a;
1237                 fp0 = &hw->fpa0;
1238                 fp1 = &hw->fpa1;
1239                 pipe_conf = &hw->pipe_a_conf;
1240                 hs = &hw->hsync_a;
1241                 hb = &hw->hblank_a;
1242                 ht = &hw->htotal_a;
1243                 vs = &hw->vsync_a;
1244                 vb = &hw->vblank_a;
1245                 vt = &hw->vtotal_a;
1246                 ss = &hw->src_size_a;
1247                 dpll_reg = DPLL_A;
1248                 fp0_reg = FPA0;
1249                 fp1_reg = FPA1;
1250                 pipe_conf_reg = PIPEACONF;
1251                 hsync_reg = HSYNC_A;
1252                 htotal_reg = HTOTAL_A;
1253                 hblank_reg = HBLANK_A;
1254                 vsync_reg = VSYNC_A;
1255                 vtotal_reg = VTOTAL_A;
1256                 vblank_reg = VBLANK_A;
1257                 src_size_reg = SRC_SIZE_A;
1258         }
1259
1260         /* turn off pipe */
1261         tmp = INREG(pipe_conf_reg);
1262         tmp &= ~PIPECONF_ENABLE;
1263         OUTREG(pipe_conf_reg, tmp);
1264         
1265         count = 0;
1266         do{
1267           tmp_val[count%3] = INREG(0x70000);
1268           if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1269             break;
1270           count++;
1271           udelay(1);
1272           if (count % 200 == 0)
1273           {
1274             tmp = INREG(pipe_conf_reg);
1275             tmp &= ~PIPECONF_ENABLE;
1276             OUTREG(pipe_conf_reg, tmp);
1277           }
1278         } while(count < 2000);
1279
1280         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1281
1282         /* Disable planes A and B. */
1283         tmp = INREG(DSPACNTR);
1284         tmp &= ~DISPPLANE_PLANE_ENABLE;
1285         OUTREG(DSPACNTR, tmp);
1286         tmp = INREG(DSPBCNTR);
1287         tmp &= ~DISPPLANE_PLANE_ENABLE;
1288         OUTREG(DSPBCNTR, tmp);
1289
1290         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1291         mdelay(20);
1292
1293         /* Disable Sync */
1294         tmp = INREG(ADPA);
1295         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1296         tmp |= ADPA_DPMS_D3;
1297         OUTREG(ADPA, tmp);
1298
1299         /* do some funky magic - xyzzy */
1300         OUTREG(0x61204, 0xabcd0000);
1301
1302         /* turn off PLL */
1303         tmp = INREG(dpll_reg);
1304         dpll_reg &= ~DPLL_VCO_ENABLE;
1305         OUTREG(dpll_reg, tmp);
1306
1307         /* Set PLL parameters */
1308         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1309         OUTREG(fp0_reg, *fp0);
1310         OUTREG(fp1_reg, *fp1);
1311
1312         /* Enable PLL */
1313         tmp = INREG(dpll_reg);
1314         tmp |= DPLL_VCO_ENABLE;
1315         OUTREG(dpll_reg, tmp);
1316
1317         /* Set DVOs B/C */
1318         OUTREG(DVOB, hw->dvob);
1319         OUTREG(DVOC, hw->dvoc);
1320
1321         /* undo funky magic */
1322         OUTREG(0x61204, 0x00000000);
1323
1324         /* Set ADPA */
1325         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1326         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1327
1328         /* Set pipe parameters */
1329         OUTREG(hsync_reg, *hs);
1330         OUTREG(hblank_reg, *hb);
1331         OUTREG(htotal_reg, *ht);
1332         OUTREG(vsync_reg, *vs);
1333         OUTREG(vblank_reg, *vb);
1334         OUTREG(vtotal_reg, *vt);
1335         OUTREG(src_size_reg, *ss);
1336
1337         /* Enable pipe */
1338         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1339
1340         /* Enable sync */
1341         tmp = INREG(ADPA);
1342         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1343         tmp |= ADPA_DPMS_D0;
1344         OUTREG(ADPA, tmp);
1345
1346         /* setup display plane */
1347         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1348                 /*
1349                  *      i830M errata: the display plane must be enabled
1350                  *      to allow writes to the other bits in the plane
1351                  *      control register.
1352                  */
1353                 tmp = INREG(DSPACNTR);
1354                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1355                         tmp |= DISPPLANE_PLANE_ENABLE;
1356                         OUTREG(DSPACNTR, tmp);
1357                         OUTREG(DSPACNTR,
1358                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1359                         mdelay(1);
1360               }
1361         }
1362
1363         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1364         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1365         OUTREG(DSPABASE, hw->disp_a_base);
1366
1367         /* Enable plane */
1368         if (!blank) {
1369                 tmp = INREG(DSPACNTR);
1370                 tmp |= DISPPLANE_PLANE_ENABLE;
1371                 OUTREG(DSPACNTR, tmp);
1372                 OUTREG(DSPABASE, hw->disp_a_base);
1373         }
1374
1375         return 0;
1376 }
1377
1378 /* forward declarations */
1379 static void refresh_ring(struct intelfb_info *dinfo);
1380 static void reset_state(struct intelfb_info *dinfo);
1381 static void do_flush(struct intelfb_info *dinfo);
1382
1383 static int
1384 wait_ring(struct intelfb_info *dinfo, int n)
1385 {
1386         int i = 0;
1387         unsigned long end;
1388         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1389
1390 #if VERBOSE > 0
1391         DBG_MSG("wait_ring: %d\n", n);
1392 #endif
1393
1394         end = jiffies + (HZ * 3);
1395         while (dinfo->ring_space < n) {
1396                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1397                                                    RING_HEAD_MASK);
1398                 if (dinfo->ring_tail + RING_MIN_FREE <
1399                     (u32 __iomem) dinfo->ring_head)
1400                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1401                                 - (dinfo->ring_tail + RING_MIN_FREE);
1402                 else
1403                         dinfo->ring_space = (dinfo->ring.size +
1404                                              (u32 __iomem) dinfo->ring_head)
1405                                 - (dinfo->ring_tail + RING_MIN_FREE);
1406                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1407                         end = jiffies + (HZ * 3);
1408                         last_head = (u32 __iomem) dinfo->ring_head;
1409                 }
1410                 i++;
1411                 if (time_before(end, jiffies)) {
1412                         if (!i) {
1413                                 /* Try again */
1414                                 reset_state(dinfo);
1415                                 refresh_ring(dinfo);
1416                                 do_flush(dinfo);
1417                                 end = jiffies + (HZ * 3);
1418                                 i = 1;
1419                         } else {
1420                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1421                                         dinfo->ring_space, n);
1422                                 WRN_MSG("lockup - turning off hardware "
1423                                         "acceleration\n");
1424                                 dinfo->ring_lockup = 1;
1425                                 break;
1426                         }
1427                 }
1428                 udelay(1);
1429         }
1430         return i;
1431 }
1432
1433 static void
1434 do_flush(struct intelfb_info *dinfo) {
1435         START_RING(2);
1436         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1437         OUT_RING(MI_NOOP);
1438         ADVANCE_RING();
1439 }
1440
1441 void
1442 intelfbhw_do_sync(struct intelfb_info *dinfo)
1443 {
1444 #if VERBOSE > 0
1445         DBG_MSG("intelfbhw_do_sync\n");
1446 #endif
1447
1448         if (!dinfo->accel)
1449                 return;
1450
1451         /*
1452          * Send a flush, then wait until the ring is empty.  This is what
1453          * the XFree86 driver does, and actually it doesn't seem a lot worse
1454          * than the recommended method (both have problems).
1455          */
1456         do_flush(dinfo);
1457         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1458         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1459 }
1460
1461 static void
1462 refresh_ring(struct intelfb_info *dinfo)
1463 {
1464 #if VERBOSE > 0
1465         DBG_MSG("refresh_ring\n");
1466 #endif
1467
1468         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1469                                            RING_HEAD_MASK);
1470         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1471         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1472                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1473                         - (dinfo->ring_tail + RING_MIN_FREE);
1474         else
1475                 dinfo->ring_space = (dinfo->ring.size +
1476                                      (u32 __iomem) dinfo->ring_head)
1477                         - (dinfo->ring_tail + RING_MIN_FREE);
1478 }
1479
1480 static void
1481 reset_state(struct intelfb_info *dinfo)
1482 {
1483         int i;
1484         u32 tmp;
1485
1486 #if VERBOSE > 0
1487         DBG_MSG("reset_state\n");
1488 #endif
1489
1490         for (i = 0; i < FENCE_NUM; i++)
1491                 OUTREG(FENCE + (i << 2), 0);
1492
1493         /* Flush the ring buffer if it's enabled. */
1494         tmp = INREG(PRI_RING_LENGTH);
1495         if (tmp & RING_ENABLE) {
1496 #if VERBOSE > 0
1497                 DBG_MSG("reset_state: ring was enabled\n");
1498 #endif
1499                 refresh_ring(dinfo);
1500                 intelfbhw_do_sync(dinfo);
1501                 DO_RING_IDLE();
1502         }
1503
1504         OUTREG(PRI_RING_LENGTH, 0);
1505         OUTREG(PRI_RING_HEAD, 0);
1506         OUTREG(PRI_RING_TAIL, 0);
1507         OUTREG(PRI_RING_START, 0);
1508 }
1509
1510 /* Stop the 2D engine, and turn off the ring buffer. */
1511 void
1512 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1513 {
1514 #if VERBOSE > 0
1515         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1516                 dinfo->ring_active);
1517 #endif
1518
1519         if (!dinfo->accel)
1520                 return;
1521
1522         dinfo->ring_active = 0;
1523         reset_state(dinfo);
1524 }
1525
1526 /*
1527  * Enable the ring buffer, and initialise the 2D engine.
1528  * It is assumed that the graphics engine has been stopped by previously
1529  * calling intelfb_2d_stop().
1530  */
1531 void
1532 intelfbhw_2d_start(struct intelfb_info *dinfo)
1533 {
1534 #if VERBOSE > 0
1535         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1536                 dinfo->accel, dinfo->ring_active);
1537 #endif
1538
1539         if (!dinfo->accel)
1540                 return;
1541
1542         /* Initialise the primary ring buffer. */
1543         OUTREG(PRI_RING_LENGTH, 0);
1544         OUTREG(PRI_RING_TAIL, 0);
1545         OUTREG(PRI_RING_HEAD, 0);
1546
1547         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1548         OUTREG(PRI_RING_LENGTH,
1549                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1550                 RING_NO_REPORT | RING_ENABLE);
1551         refresh_ring(dinfo);
1552         dinfo->ring_active = 1;
1553 }
1554
1555 /* 2D fillrect (solid fill or invert) */
1556 void
1557 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1558                       u32 color, u32 pitch, u32 bpp, u32 rop)
1559 {
1560         u32 br00, br09, br13, br14, br16;
1561
1562 #if VERBOSE > 0
1563         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1564                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1565 #endif
1566
1567         br00 = COLOR_BLT_CMD;
1568         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1569         br13 = (rop << ROP_SHIFT) | pitch;
1570         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1571         br16 = color;
1572
1573         switch (bpp) {
1574         case 8:
1575                 br13 |= COLOR_DEPTH_8;
1576                 break;
1577         case 16:
1578                 br13 |= COLOR_DEPTH_16;
1579                 break;
1580         case 32:
1581                 br13 |= COLOR_DEPTH_32;
1582                 br00 |= WRITE_ALPHA | WRITE_RGB;
1583                 break;
1584         }
1585
1586         START_RING(6);
1587         OUT_RING(br00);
1588         OUT_RING(br13);
1589         OUT_RING(br14);
1590         OUT_RING(br09);
1591         OUT_RING(br16);
1592         OUT_RING(MI_NOOP);
1593         ADVANCE_RING();
1594
1595 #if VERBOSE > 0
1596         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1597                 dinfo->ring_tail, dinfo->ring_space);
1598 #endif
1599 }
1600
1601 void
1602 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1603                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1604 {
1605         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1606
1607 #if VERBOSE > 0
1608         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1609                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1610 #endif
1611
1612         br00 = XY_SRC_COPY_BLT_CMD;
1613         br09 = dinfo->fb_start;
1614         br11 = (pitch << PITCH_SHIFT);
1615         br12 = dinfo->fb_start;
1616         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1617         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1618         br23 = ((dstx + w) << WIDTH_SHIFT) |
1619                ((dsty + h) << HEIGHT_SHIFT);
1620         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1621
1622         switch (bpp) {
1623         case 8:
1624                 br13 |= COLOR_DEPTH_8;
1625                 break;
1626         case 16:
1627                 br13 |= COLOR_DEPTH_16;
1628                 break;
1629         case 32:
1630                 br13 |= COLOR_DEPTH_32;
1631                 br00 |= WRITE_ALPHA | WRITE_RGB;
1632                 break;
1633         }
1634
1635         START_RING(8);
1636         OUT_RING(br00);
1637         OUT_RING(br13);
1638         OUT_RING(br22);
1639         OUT_RING(br23);
1640         OUT_RING(br09);
1641         OUT_RING(br26);
1642         OUT_RING(br11);
1643         OUT_RING(br12);
1644         ADVANCE_RING();
1645 }
1646
1647 int
1648 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1649                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1650 {
1651         int nbytes, ndwords, pad, tmp;
1652         u32 br00, br09, br13, br18, br19, br22, br23;
1653         int dat, ix, iy, iw;
1654         int i, j;
1655
1656 #if VERBOSE > 0
1657         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1658 #endif
1659
1660         /* size in bytes of a padded scanline */
1661         nbytes = ROUND_UP_TO(w, 16) / 8;
1662
1663         /* Total bytes of padded scanline data to write out. */
1664         nbytes = nbytes * h;
1665
1666         /*
1667          * Check if the glyph data exceeds the immediate mode limit.
1668          * It would take a large font (1K pixels) to hit this limit.
1669          */
1670         if (nbytes > MAX_MONO_IMM_SIZE)
1671                 return 0;
1672
1673         /* Src data is packaged a dword (32-bit) at a time. */
1674         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1675
1676         /*
1677          * Ring has to be padded to a quad word. But because the command starts
1678            with 7 bytes, pad only if there is an even number of ndwords
1679          */
1680         pad = !(ndwords % 2);
1681
1682         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1683         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1684         br09 = dinfo->fb_start;
1685         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1686         br18 = bg;
1687         br19 = fg;
1688         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1689         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1690
1691         switch (bpp) {
1692         case 8:
1693                 br13 |= COLOR_DEPTH_8;
1694                 break;
1695         case 16:
1696                 br13 |= COLOR_DEPTH_16;
1697                 break;
1698         case 32:
1699                 br13 |= COLOR_DEPTH_32;
1700                 br00 |= WRITE_ALPHA | WRITE_RGB;
1701                 break;
1702         }
1703
1704         START_RING(8 + ndwords);
1705         OUT_RING(br00);
1706         OUT_RING(br13);
1707         OUT_RING(br22);
1708         OUT_RING(br23);
1709         OUT_RING(br09);
1710         OUT_RING(br18);
1711         OUT_RING(br19);
1712         ix = iy = 0;
1713         iw = ROUND_UP_TO(w, 8) / 8;
1714         while (ndwords--) {
1715                 dat = 0;
1716                 for (j = 0; j < 2; ++j) {
1717                         for (i = 0; i < 2; ++i) {
1718                                 if (ix != iw || i == 0)
1719                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1720                         }
1721                         if (ix == iw && iy != (h-1)) {
1722                                 ix = 0;
1723                                 ++iy;
1724                         }
1725                 }
1726                 OUT_RING(dat);
1727         }
1728         if (pad)
1729                 OUT_RING(MI_NOOP);
1730         ADVANCE_RING();
1731
1732         return 1;
1733 }
1734
1735 /* HW cursor functions. */
1736 void
1737 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1738 {
1739         u32 tmp;
1740
1741 #if VERBOSE > 0
1742         DBG_MSG("intelfbhw_cursor_init\n");
1743 #endif
1744
1745         if (dinfo->mobile || IS_I9xx(dinfo)) {
1746                 if (!dinfo->cursor.physical)
1747                         return;
1748                 tmp = INREG(CURSOR_A_CONTROL);
1749                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1750                          CURSOR_MEM_TYPE_LOCAL |
1751                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1752                 tmp |= CURSOR_MODE_DISABLE;
1753                 OUTREG(CURSOR_A_CONTROL, tmp);
1754                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1755         } else {
1756                 tmp = INREG(CURSOR_CONTROL);
1757                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1758                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1759                 tmp = CURSOR_FORMAT_3C;
1760                 OUTREG(CURSOR_CONTROL, tmp);
1761                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1762                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1763                       (64 << CURSOR_SIZE_V_SHIFT);
1764                 OUTREG(CURSOR_SIZE, tmp);
1765         }
1766 }
1767
1768 void
1769 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1770 {
1771         u32 tmp;
1772
1773 #if VERBOSE > 0
1774         DBG_MSG("intelfbhw_cursor_hide\n");
1775 #endif
1776
1777         dinfo->cursor_on = 0;
1778         if (dinfo->mobile || IS_I9xx(dinfo)) {
1779                 if (!dinfo->cursor.physical)
1780                         return;
1781                 tmp = INREG(CURSOR_A_CONTROL);
1782                 tmp &= ~CURSOR_MODE_MASK;
1783                 tmp |= CURSOR_MODE_DISABLE;
1784                 OUTREG(CURSOR_A_CONTROL, tmp);
1785                 /* Flush changes */
1786                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1787         } else {
1788                 tmp = INREG(CURSOR_CONTROL);
1789                 tmp &= ~CURSOR_ENABLE;
1790                 OUTREG(CURSOR_CONTROL, tmp);
1791         }
1792 }
1793
1794 void
1795 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1796 {
1797         u32 tmp;
1798
1799 #if VERBOSE > 0
1800         DBG_MSG("intelfbhw_cursor_show\n");
1801 #endif
1802
1803         dinfo->cursor_on = 1;
1804
1805         if (dinfo->cursor_blanked)
1806                 return;
1807
1808         if (dinfo->mobile || IS_I9xx(dinfo)) {
1809                 if (!dinfo->cursor.physical)
1810                         return;
1811                 tmp = INREG(CURSOR_A_CONTROL);
1812                 tmp &= ~CURSOR_MODE_MASK;
1813                 tmp |= CURSOR_MODE_64_4C_AX;
1814                 OUTREG(CURSOR_A_CONTROL, tmp);
1815                 /* Flush changes */
1816                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1817         } else {
1818                 tmp = INREG(CURSOR_CONTROL);
1819                 tmp |= CURSOR_ENABLE;
1820                 OUTREG(CURSOR_CONTROL, tmp);
1821         }
1822 }
1823
1824 void
1825 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1826 {
1827         u32 tmp;
1828
1829 #if VERBOSE > 0
1830         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1831 #endif
1832
1833         /*
1834          * Sets the position.  The coordinates are assumed to already
1835          * have any offset adjusted.  Assume that the cursor is never
1836          * completely off-screen, and that x, y are always >= 0.
1837          */
1838
1839         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1840               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1841         OUTREG(CURSOR_A_POSITION, tmp);
1842
1843         if (IS_I9xx(dinfo)) {
1844                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1845         }
1846 }
1847
1848 void
1849 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1850 {
1851 #if VERBOSE > 0
1852         DBG_MSG("intelfbhw_cursor_setcolor\n");
1853 #endif
1854
1855         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1856         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1857         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1858         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1859 }
1860
1861 void
1862 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1863                       u8 *data)
1864 {
1865         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1866         int i, j, w = width / 8;
1867         int mod = width % 8, t_mask, d_mask;
1868
1869 #if VERBOSE > 0
1870         DBG_MSG("intelfbhw_cursor_load\n");
1871 #endif
1872
1873         if (!dinfo->cursor.virtual)
1874                 return;
1875
1876         t_mask = 0xff >> mod;
1877         d_mask = ~(0xff >> mod);
1878         for (i = height; i--; ) {
1879                 for (j = 0; j < w; j++) {
1880                         writeb(0x00, addr + j);
1881                         writeb(*(data++), addr + j+8);
1882                 }
1883                 if (mod) {
1884                         writeb(t_mask, addr + j);
1885                         writeb(*(data++) & d_mask, addr + j+8);
1886                 }
1887                 addr += 16;
1888         }
1889 }
1890
1891 void
1892 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1893         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1894         int i, j;
1895
1896 #if VERBOSE > 0
1897         DBG_MSG("intelfbhw_cursor_reset\n");
1898 #endif
1899
1900         if (!dinfo->cursor.virtual)
1901                 return;
1902
1903         for (i = 64; i--; ) {
1904                 for (j = 0; j < 8; j++) {
1905                         writeb(0xff, addr + j+0);
1906                         writeb(0x00, addr + j+8);
1907                 }
1908                 addr += 16;
1909         }
1910 }