intelfb: fixup whitespace..
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52         int p_inc_lo, p_inc_hi;
53 };
54
55 #define PLLS_I8xx 0
56 #define PLLS_I9xx 1
57 #define PLLS_MAX 2
58
59 struct pll_min_max plls[PLLS_MAX] = {
60         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62 };
63
64 int
65 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66 {
67         u32 tmp;
68         if (!pdev || !dinfo)
69                 return 1;
70
71         switch (pdev->device) {
72         case PCI_DEVICE_ID_INTEL_830M:
73                 dinfo->name = "Intel(R) 830M";
74                 dinfo->chipset = INTEL_830M;
75                 dinfo->mobile = 1;
76                 dinfo->pll_index = PLLS_I8xx;
77                 return 0;
78         case PCI_DEVICE_ID_INTEL_845G:
79                 dinfo->name = "Intel(R) 845G";
80                 dinfo->chipset = INTEL_845G;
81                 dinfo->mobile = 0;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_85XGM:
85                 tmp = 0;
86                 dinfo->mobile = 1;
87                 dinfo->pll_index = PLLS_I8xx;
88                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90                         INTEL_85X_VARIANT_MASK) {
91                 case INTEL_VAR_855GME:
92                         dinfo->name = "Intel(R) 855GME";
93                         dinfo->chipset = INTEL_855GME;
94                         return 0;
95                 case INTEL_VAR_855GM:
96                         dinfo->name = "Intel(R) 855GM";
97                         dinfo->chipset = INTEL_855GM;
98                         return 0;
99                 case INTEL_VAR_852GME:
100                         dinfo->name = "Intel(R) 852GME";
101                         dinfo->chipset = INTEL_852GME;
102                         return 0;
103                 case INTEL_VAR_852GM:
104                         dinfo->name = "Intel(R) 852GM";
105                         dinfo->chipset = INTEL_852GM;
106                         return 0;
107                 default:
108                         dinfo->name = "Intel(R) 852GM/855GM";
109                         dinfo->chipset = INTEL_85XGM;
110                         return 0;
111                 }
112                 break;
113         case PCI_DEVICE_ID_INTEL_865G:
114                 dinfo->name = "Intel(R) 865G";
115                 dinfo->chipset = INTEL_865G;
116                 dinfo->mobile = 0;
117                 dinfo->pll_index = PLLS_I8xx;
118                 return 0;
119         case PCI_DEVICE_ID_INTEL_915G:
120                 dinfo->name = "Intel(R) 915G";
121                 dinfo->chipset = INTEL_915G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I9xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915GM:
126                 dinfo->name = "Intel(R) 915GM";
127                 dinfo->chipset = INTEL_915GM;
128                 dinfo->mobile = 1;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         case PCI_DEVICE_ID_INTEL_945G:
132                 dinfo->name = "Intel(R) 945G";
133                 dinfo->chipset = INTEL_945G;
134                 dinfo->mobile = 0;
135                 dinfo->pll_index = PLLS_I9xx;
136                 return 0;
137         default:
138                 return 1;
139         }
140 }
141
142 int
143 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
144                      int *stolen_size)
145 {
146         struct pci_dev *bridge_dev;
147         u16 tmp;
148
149         if (!pdev || !aperture_size || !stolen_size)
150                 return 1;
151
152         /* Find the bridge device.  It is always 0:0.0 */
153         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
154                 ERR_MSG("cannot find bridge device\n");
155                 return 1;
156         }
157
158         /* Get the fb aperture size and "stolen" memory amount. */
159         tmp = 0;
160         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
161         switch (pdev->device) {
162         case PCI_DEVICE_ID_INTEL_830M:
163         case PCI_DEVICE_ID_INTEL_845G:
164                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
165                         *aperture_size = MB(64);
166                 else
167                         *aperture_size = MB(128);
168                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
169                 case INTEL_830_GMCH_GMS_STOLEN_512:
170                         *stolen_size = KB(512) - KB(132);
171                         return 0;
172                 case INTEL_830_GMCH_GMS_STOLEN_1024:
173                         *stolen_size = MB(1) - KB(132);
174                         return 0;
175                 case INTEL_830_GMCH_GMS_STOLEN_8192:
176                         *stolen_size = MB(8) - KB(132);
177                         return 0;
178                 case INTEL_830_GMCH_GMS_LOCAL:
179                         ERR_MSG("only local memory found\n");
180                         return 1;
181                 case INTEL_830_GMCH_GMS_DISABLED:
182                         ERR_MSG("video memory is disabled\n");
183                         return 1;
184                 default:
185                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
186                                 tmp & INTEL_830_GMCH_GMS_MASK);
187                         return 1;
188                 }
189                 break;
190         default:
191                 *aperture_size = MB(128);
192                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
193                 case INTEL_855_GMCH_GMS_STOLEN_1M:
194                         *stolen_size = MB(1) - KB(132);
195                         return 0;
196                 case INTEL_855_GMCH_GMS_STOLEN_4M:
197                         *stolen_size = MB(4) - KB(132);
198                         return 0;
199                 case INTEL_855_GMCH_GMS_STOLEN_8M:
200                         *stolen_size = MB(8) - KB(132);
201                         return 0;
202                 case INTEL_855_GMCH_GMS_STOLEN_16M:
203                         *stolen_size = MB(16) - KB(132);
204                         return 0;
205                 case INTEL_855_GMCH_GMS_STOLEN_32M:
206                         *stolen_size = MB(32) - KB(132);
207                         return 0;
208                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
209                         *stolen_size = MB(48) - KB(132);
210                         return 0;
211                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
212                         *stolen_size = MB(64) - KB(132);
213                         return 0;
214                 case INTEL_855_GMCH_GMS_DISABLED:
215                         ERR_MSG("video memory is disabled\n");
216                         return 0;
217                 default:
218                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
219                                 tmp & INTEL_855_GMCH_GMS_MASK);
220                         return 1;
221                 }
222         }
223 }
224
225 int
226 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
227 {
228         int dvo = 0;
229
230         if (INREG(LVDS) & PORT_ENABLE)
231                 dvo |= LVDS_PORT;
232         if (INREG(DVOA) & PORT_ENABLE)
233                 dvo |= DVOA_PORT;
234         if (INREG(DVOB) & PORT_ENABLE)
235                 dvo |= DVOB_PORT;
236         if (INREG(DVOC) & PORT_ENABLE)
237                 dvo |= DVOC_PORT;
238
239         return dvo;
240 }
241
242 const char *
243 intelfbhw_dvo_to_string(int dvo)
244 {
245         if (dvo & DVOA_PORT)
246                 return "DVO port A";
247         else if (dvo & DVOB_PORT)
248                 return "DVO port B";
249         else if (dvo & DVOC_PORT)
250                 return "DVO port C";
251         else if (dvo & LVDS_PORT)
252                 return "LVDS port";
253         else
254                 return NULL;
255 }
256
257
258 int
259 intelfbhw_validate_mode(struct intelfb_info *dinfo,
260                         struct fb_var_screeninfo *var)
261 {
262         int bytes_per_pixel;
263         int tmp;
264
265 #if VERBOSE > 0
266         DBG_MSG("intelfbhw_validate_mode\n");
267 #endif
268
269         bytes_per_pixel = var->bits_per_pixel / 8;
270         if (bytes_per_pixel == 3)
271                 bytes_per_pixel = 4;
272
273         /* Check if enough video memory. */
274         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
275         if (tmp > dinfo->fb.size) {
276                 WRN_MSG("Not enough video ram for mode "
277                         "(%d KByte vs %d KByte).\n",
278                         BtoKB(tmp), BtoKB(dinfo->fb.size));
279                 return 1;
280         }
281
282         /* Check if x/y limits are OK. */
283         if (var->xres - 1 > HACTIVE_MASK) {
284                 WRN_MSG("X resolution too large (%d vs %d).\n",
285                         var->xres, HACTIVE_MASK + 1);
286                 return 1;
287         }
288         if (var->yres - 1 > VACTIVE_MASK) {
289                 WRN_MSG("Y resolution too large (%d vs %d).\n",
290                         var->yres, VACTIVE_MASK + 1);
291                 return 1;
292         }
293
294         /* Check for interlaced/doublescan modes. */
295         if (var->vmode & FB_VMODE_INTERLACED) {
296                 WRN_MSG("Mode is interlaced.\n");
297                 return 1;
298         }
299         if (var->vmode & FB_VMODE_DOUBLE) {
300                 WRN_MSG("Mode is double-scan.\n");
301                 return 1;
302         }
303
304         /* Check if clock is OK. */
305         tmp = 1000000000 / var->pixclock;
306         if (tmp < MIN_CLOCK) {
307                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
308                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
309                 return 1;
310         }
311         if (tmp > MAX_CLOCK) {
312                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
313                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
314                 return 1;
315         }
316
317         return 0;
318 }
319
320 int
321 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
322 {
323         struct intelfb_info *dinfo = GET_DINFO(info);
324         u32 offset, xoffset, yoffset;
325
326 #if VERBOSE > 0
327         DBG_MSG("intelfbhw_pan_display\n");
328 #endif
329
330         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
331         yoffset = var->yoffset;
332
333         if ((xoffset + var->xres > var->xres_virtual) ||
334             (yoffset + var->yres > var->yres_virtual))
335                 return -EINVAL;
336
337         offset = (yoffset * dinfo->pitch) +
338                  (xoffset * var->bits_per_pixel) / 8;
339
340         offset += dinfo->fb.offset << 12;
341
342         OUTREG(DSPABASE, offset);
343
344         return 0;
345 }
346
347 /* Blank the screen. */
348 void
349 intelfbhw_do_blank(int blank, struct fb_info *info)
350 {
351         struct intelfb_info *dinfo = GET_DINFO(info);
352         u32 tmp;
353
354 #if VERBOSE > 0
355         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
356 #endif
357
358         /* Turn plane A on or off */
359         tmp = INREG(DSPACNTR);
360         if (blank)
361                 tmp &= ~DISPPLANE_PLANE_ENABLE;
362         else
363                 tmp |= DISPPLANE_PLANE_ENABLE;
364         OUTREG(DSPACNTR, tmp);
365         /* Flush */
366         tmp = INREG(DSPABASE);
367         OUTREG(DSPABASE, tmp);
368
369         /* Turn off/on the HW cursor */
370 #if VERBOSE > 0
371         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
372 #endif
373         if (dinfo->cursor_on) {
374                 if (blank) {
375                         intelfbhw_cursor_hide(dinfo);
376                 } else {
377                         intelfbhw_cursor_show(dinfo);
378                 }
379                 dinfo->cursor_on = 1;
380         }
381         dinfo->cursor_blanked = blank;
382
383         /* Set DPMS level */
384         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
385         switch (blank) {
386         case FB_BLANK_UNBLANK:
387         case FB_BLANK_NORMAL:
388                 tmp |= ADPA_DPMS_D0;
389                 break;
390         case FB_BLANK_VSYNC_SUSPEND:
391                 tmp |= ADPA_DPMS_D1;
392                 break;
393         case FB_BLANK_HSYNC_SUSPEND:
394                 tmp |= ADPA_DPMS_D2;
395                 break;
396         case FB_BLANK_POWERDOWN:
397                 tmp |= ADPA_DPMS_D3;
398                 break;
399         }
400         OUTREG(ADPA, tmp);
401
402         return;
403 }
404
405
406 void
407 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
408                     unsigned red, unsigned green, unsigned blue,
409                     unsigned transp)
410 {
411 #if VERBOSE > 0
412         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
413                 regno, red, green, blue);
414 #endif
415
416         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
417                           PALETTE_A : PALETTE_B;
418
419         OUTREG(palette_reg + (regno << 2),
420                (red << PALETTE_8_RED_SHIFT) |
421                (green << PALETTE_8_GREEN_SHIFT) |
422                (blue << PALETTE_8_BLUE_SHIFT));
423 }
424
425
426 int
427 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
428                         int flag)
429 {
430         int i;
431
432 #if VERBOSE > 0
433         DBG_MSG("intelfbhw_read_hw_state\n");
434 #endif
435
436         if (!hw || !dinfo)
437                 return -1;
438
439         /* Read in as much of the HW state as possible. */
440         hw->vga0_divisor = INREG(VGA0_DIVISOR);
441         hw->vga1_divisor = INREG(VGA1_DIVISOR);
442         hw->vga_pd = INREG(VGAPD);
443         hw->dpll_a = INREG(DPLL_A);
444         hw->dpll_b = INREG(DPLL_B);
445         hw->fpa0 = INREG(FPA0);
446         hw->fpa1 = INREG(FPA1);
447         hw->fpb0 = INREG(FPB0);
448         hw->fpb1 = INREG(FPB1);
449
450         if (flag == 1)
451                 return flag;
452
453 #if 0
454         /* This seems to be a problem with the 852GM/855GM */
455         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
456                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
457                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
458         }
459 #endif
460
461         if (flag == 2)
462                 return flag;
463
464         hw->htotal_a = INREG(HTOTAL_A);
465         hw->hblank_a = INREG(HBLANK_A);
466         hw->hsync_a = INREG(HSYNC_A);
467         hw->vtotal_a = INREG(VTOTAL_A);
468         hw->vblank_a = INREG(VBLANK_A);
469         hw->vsync_a = INREG(VSYNC_A);
470         hw->src_size_a = INREG(SRC_SIZE_A);
471         hw->bclrpat_a = INREG(BCLRPAT_A);
472         hw->htotal_b = INREG(HTOTAL_B);
473         hw->hblank_b = INREG(HBLANK_B);
474         hw->hsync_b = INREG(HSYNC_B);
475         hw->vtotal_b = INREG(VTOTAL_B);
476         hw->vblank_b = INREG(VBLANK_B);
477         hw->vsync_b = INREG(VSYNC_B);
478         hw->src_size_b = INREG(SRC_SIZE_B);
479         hw->bclrpat_b = INREG(BCLRPAT_B);
480
481         if (flag == 3)
482                 return flag;
483
484         hw->adpa = INREG(ADPA);
485         hw->dvoa = INREG(DVOA);
486         hw->dvob = INREG(DVOB);
487         hw->dvoc = INREG(DVOC);
488         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
489         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
490         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
491         hw->lvds = INREG(LVDS);
492
493         if (flag == 4)
494                 return flag;
495
496         hw->pipe_a_conf = INREG(PIPEACONF);
497         hw->pipe_b_conf = INREG(PIPEBCONF);
498         hw->disp_arb = INREG(DISPARB);
499
500         if (flag == 5)
501                 return flag;
502
503         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
504         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
505         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
506         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
507
508         if (flag == 6)
509                 return flag;
510
511         for (i = 0; i < 4; i++) {
512                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
513                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
514         }
515
516         if (flag == 7)
517                 return flag;
518
519         hw->cursor_size = INREG(CURSOR_SIZE);
520
521         if (flag == 8)
522                 return flag;
523
524         hw->disp_a_ctrl = INREG(DSPACNTR);
525         hw->disp_b_ctrl = INREG(DSPBCNTR);
526         hw->disp_a_base = INREG(DSPABASE);
527         hw->disp_b_base = INREG(DSPBBASE);
528         hw->disp_a_stride = INREG(DSPASTRIDE);
529         hw->disp_b_stride = INREG(DSPBSTRIDE);
530
531         if (flag == 9)
532                 return flag;
533
534         hw->vgacntrl = INREG(VGACNTRL);
535
536         if (flag == 10)
537                 return flag;
538
539         hw->add_id = INREG(ADD_ID);
540
541         if (flag == 11)
542                 return flag;
543
544         for (i = 0; i < 7; i++) {
545                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
546                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
547                 if (i < 3)
548                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
549         }
550
551         for (i = 0; i < 8; i++)
552                 hw->fence[i] = INREG(FENCE + (i << 2));
553
554         hw->instpm = INREG(INSTPM);
555         hw->mem_mode = INREG(MEM_MODE);
556         hw->fw_blc_0 = INREG(FW_BLC_0);
557         hw->fw_blc_1 = INREG(FW_BLC_1);
558
559         return 0;
560 }
561
562
563 static int calc_vclock3(int index, int m, int n, int p)
564 {
565         if (p == 0 || n == 0)
566                 return 0;
567         return PLL_REFCLK * m / n / p;
568 }
569
570 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
571 {
572         switch(index)
573         {
574         case PLLS_I9xx:
575                 if (p1 == 0)
576                         return 0;
577                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
578                          ((p1)) * (p2 ? 10 : 5)));
579         case PLLS_I8xx:
580         default:
581                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
582                          ((p1+2) * (1 << (p2 + 1)))));
583         }
584 }
585
586 void
587 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
588 {
589 #if REGDUMP
590         int i, m1, m2, n, p1, p2;
591         int index = dinfo->pll_index;
592         DBG_MSG("intelfbhw_print_hw_state\n");
593         
594         if (!hw || !dinfo)
595                 return;
596         /* Read in as much of the HW state as possible. */
597         printk("hw state dump start\n");
598         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
599         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
600         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
601         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
602         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
603         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
604         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
605                 p1 = 0;
606         else
607                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
608         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
609         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
610                m1, m2, n, p1, p2);
611         printk("        VGA0: clock is %d\n",
612                calc_vclock(index, m1, m2, n, p1, p2));
613         
614         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
615         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
616         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
617         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
618                 p1 = 0;
619         else
620                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
621         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
622         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
623                m1, m2, n, p1, p2);
624         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
625         
626         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
627         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
628         printk("        FPA0:                   0x%08x\n", hw->fpa0);
629         printk("        FPA1:                   0x%08x\n", hw->fpa1);
630         printk("        FPB0:                   0x%08x\n", hw->fpb0);
631         printk("        FPB1:                   0x%08x\n", hw->fpb1);
632         
633         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
634         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
635         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
637                 p1 = 0;
638         else
639                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
640         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
641         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
642                m1, m2, n, p1, p2);
643         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
644         
645         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
646         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
647         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
648         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
649                 p1 = 0;
650         else
651                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
652         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
653         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
654                m1, m2, n, p1, p2);
655         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
656         
657 #if 0
658         printk("        PALETTE_A:\n");
659         for (i = 0; i < PALETTE_8_ENTRIES)
660                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
661         printk("        PALETTE_B:\n");
662         for (i = 0; i < PALETTE_8_ENTRIES)
663                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
664 #endif
665
666         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
667         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
668         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
669         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
670         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
671         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
672         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
673         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
674         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
675         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
676         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
677         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
678         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
679         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
680         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
681         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
682
683         printk("        ADPA:                   0x%08x\n", hw->adpa);
684         printk("        DVOA:                   0x%08x\n", hw->dvoa);
685         printk("        DVOB:                   0x%08x\n", hw->dvob);
686         printk("        DVOC:                   0x%08x\n", hw->dvoc);
687         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
688         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
689         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
690         printk("        LVDS:                   0x%08x\n", hw->lvds);
691
692         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
693         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
694         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
695
696         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
697         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
698         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
699         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
700
701         printk("        CURSOR_A_PALETTE:       ");
702         for (i = 0; i < 4; i++) {
703                 printk("0x%08x", hw->cursor_a_palette[i]);
704                 if (i < 3)
705                         printk(", ");
706         }
707         printk("\n");
708         printk("        CURSOR_B_PALETTE:       ");
709         for (i = 0; i < 4; i++) {
710                 printk("0x%08x", hw->cursor_b_palette[i]);
711                 if (i < 3)
712                         printk(", ");
713         }
714         printk("\n");
715
716         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
717
718         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
719         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
720         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
721         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
722         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
723         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
724
725         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
726         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
727
728         for (i = 0; i < 7; i++) {
729                 printk("        SWF0%d                  0x%08x\n", i,
730                         hw->swf0x[i]);
731         }
732         for (i = 0; i < 7; i++) {
733                 printk("        SWF1%d                  0x%08x\n", i,
734                         hw->swf1x[i]);
735         }
736         for (i = 0; i < 3; i++) {
737                 printk("        SWF3%d                  0x%08x\n", i,
738                        hw->swf3x[i]);
739         }
740         for (i = 0; i < 8; i++)
741                 printk("        FENCE%d                 0x%08x\n", i,
742                        hw->fence[i]);
743
744         printk("        INSTPM                  0x%08x\n", hw->instpm);
745         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
746         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
747         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
748
749         printk("hw state dump end\n");
750 #endif
751 }
752
753
754
755 /* Split the M parameter into M1 and M2. */
756 static int
757 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
758 {
759         int m1, m2;
760         int testm;
761         /* no point optimising too much - brute force m */
762         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++) {
763                 for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++) {
764                         testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
765                         if (testm == m) {
766                                 *retm1 = (unsigned int)m1;
767                                 *retm2 = (unsigned int)m2;
768                                 return 0;
769                         }
770                 }
771         }
772         return 1;
773 }
774
775 /* Split the P parameter into P1 and P2. */
776 static int
777 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
778 {
779         int p1, p2;
780
781         if (index == PLLS_I9xx) {
782                 switch (p) {
783                 case 10:
784                         p1 = 2;
785                         p2 = 0;
786                         break;
787                 case 20:
788                         p1 = 1;
789                         p2 = 0;
790                         break;
791                 default:
792                         p1 = (p / 10) + 1;
793                         p2 = 0;
794                         break;
795                 }
796                 
797                 *retp1 = (unsigned int)p1;
798                 *retp2 = (unsigned int)p2;
799                 return 0;
800         }
801
802         if (index == PLLS_I8xx) {
803                 if (p % 4 == 0)
804                         p2 = 1;
805                 else
806                         p2 = 0;
807                 p1 = (p / (1 << (p2 + 1))) - 2;
808                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
809                         p2 = 0;
810                         p1 = (p / (1 << (p2 + 1))) - 2;
811                 }
812                 if (p1 < plls[index].min_p1 ||
813                     p1 > plls[index].max_p1 ||
814                     (p1 + 2) * (1 << (p2 + 1)) != p) {
815                         return 1;
816                 } else {
817                         *retp1 = (unsigned int)p1;
818                         *retp2 = (unsigned int)p2;
819                         return 0;
820                 }
821         }
822         return 1;
823 }
824
825 static int
826 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
827                 u32 *retp2, u32 *retclock)
828 {
829         u32 m1, m2, n, p1, p2, n1, testm;
830         u32 f_vco, p, p_best = 0, m, f_out = 0;
831         u32 err_max, err_target, err_best = 10000000;
832         u32 n_best = 0, m_best = 0, f_best, f_err;
833         u32 p_min, p_max, p_inc, div_min, div_max;
834
835         /* Accept 0.5% difference, but aim for 0.1% */
836         err_max = 5 * clock / 1000;
837         err_target = clock / 1000;
838
839         DBG_MSG("Clock is %d\n", clock);
840
841         div_max = plls[index].max_vco_freq / clock;
842         if (index == PLLS_I9xx)
843                 div_min = 5;
844         else
845                 div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
846
847         if (clock <= plls[index].p_transition_clock)
848                 p_inc = plls[index].p_inc_lo;
849         else
850                 p_inc = plls[index].p_inc_hi;
851         p_min = ROUND_UP_TO(div_min, p_inc);
852         p_max = ROUND_DOWN_TO(div_max, p_inc);
853         if (p_min < plls[index].min_p)
854                 p_min = plls[index].min_p;
855         if (p_max > plls[index].max_p)
856                 p_max = plls[index].max_p;
857
858         if (clock < PLL_REFCLK && index == PLLS_I9xx) {
859                 p_min = 10;
860                 p_max = 20;
861                 /* this makes 640x480 work it really shouldn't
862                    - SOMEONE WITHOUT DOCS WOZ HERE */
863                 if (clock < 30000)
864                         clock *= 4;
865         }
866
867         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
868
869         p = p_min;
870         do {
871                 if (splitp(index, p, &p1, &p2)) {
872                         WRN_MSG("cannot split p = %d\n", p);
873                         p += p_inc;
874                         continue;
875                 }
876                 n = plls[index].min_n;
877                 f_vco = clock * p;
878
879                 do {
880                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
881                         if (m < plls[index].min_m)
882                                 m = plls[index].min_m + 1;
883                         if (m > plls[index].max_m)
884                                 m = plls[index].max_m - 1;
885                         for (testm = m - 1; testm <= m; testm++) {
886                                 f_out = calc_vclock3(index, m, n, p);
887                                 if (splitm(index, m, &m1, &m2)) {
888                                         WRN_MSG("cannot split m = %d\n", m);
889                                         n++;
890                                         continue;
891                                 }
892                                 if (clock > f_out)
893                                         f_err = clock - f_out;
894                                 else/* slightly bias the error for bigger clocks */
895                                         f_err = f_out - clock + 1;
896                                 
897                                 if (f_err < err_best) {
898                                         m_best = m;
899                                         n_best = n;
900                                         p_best = p;
901                                         f_best = f_out;
902                                         err_best = f_err;
903                                 }
904                         }
905                         n++;
906                 } while ((n <= plls[index].max_n) && (f_out >= clock));
907                 p += p_inc;
908         } while ((p <= p_max));
909
910         if (!m_best) {
911                 WRN_MSG("cannot find parameters for clock %d\n", clock);
912                 return 1;
913         }
914         m = m_best;
915         n = n_best;
916         p = p_best;
917         splitm(index, m, &m1, &m2);
918         splitp(index, p, &p1, &p2);
919         n1 = n - 2;
920
921         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
922                 "f: %d (%d), VCO: %d\n",
923                 m, m1, m2, n, n1, p, p1, p2,
924                 calc_vclock3(index, m, n, p),
925                 calc_vclock(index, m1, m2, n1, p1, p2),
926                 calc_vclock3(index, m, n, p) * p);
927         *retm1 = m1;
928         *retm2 = m2;
929         *retn = n1;
930         *retp1 = p1;
931         *retp2 = p2;
932         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
933
934         return 0;
935 }
936
937 static __inline__ int
938 check_overflow(u32 value, u32 limit, const char *description)
939 {
940         if (value > limit) {
941                 WRN_MSG("%s value %d exceeds limit %d\n",
942                         description, value, limit);
943                 return 1;
944         }
945         return 0;
946 }
947
948 /* It is assumed that hw is filled in with the initial state information. */
949 int
950 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
951                      struct fb_var_screeninfo *var)
952 {
953         int pipe = PIPE_A;
954         u32 *dpll, *fp0, *fp1;
955         u32 m1, m2, n, p1, p2, clock_target, clock;
956         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
957         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
958         u32 vsync_pol, hsync_pol;
959         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
960
961         DBG_MSG("intelfbhw_mode_to_hw\n");
962
963         /* Disable VGA */
964         hw->vgacntrl |= VGA_DISABLE;
965
966         /* Check whether pipe A or pipe B is enabled. */
967         if (hw->pipe_a_conf & PIPECONF_ENABLE)
968                 pipe = PIPE_A;
969         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
970                 pipe = PIPE_B;
971
972         /* Set which pipe's registers will be set. */
973         if (pipe == PIPE_B) {
974                 dpll = &hw->dpll_b;
975                 fp0 = &hw->fpb0;
976                 fp1 = &hw->fpb1;
977                 hs = &hw->hsync_b;
978                 hb = &hw->hblank_b;
979                 ht = &hw->htotal_b;
980                 vs = &hw->vsync_b;
981                 vb = &hw->vblank_b;
982                 vt = &hw->vtotal_b;
983                 ss = &hw->src_size_b;
984                 pipe_conf = &hw->pipe_b_conf;
985         } else {
986                 dpll = &hw->dpll_a;
987                 fp0 = &hw->fpa0;
988                 fp1 = &hw->fpa1;
989                 hs = &hw->hsync_a;
990                 hb = &hw->hblank_a;
991                 ht = &hw->htotal_a;
992                 vs = &hw->vsync_a;
993                 vb = &hw->vblank_a;
994                 vt = &hw->vtotal_a;
995                 ss = &hw->src_size_a;
996                 pipe_conf = &hw->pipe_a_conf;
997         }
998
999         /* Use ADPA register for sync control. */
1000         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1001
1002         /* sync polarity */
1003         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1004                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1005         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1006                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1007         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1008                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1009         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1010                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1011
1012         /* Connect correct pipe to the analog port DAC */
1013         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1014         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1015
1016         /* Set DPMS state to D0 (on) */
1017         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1018         hw->adpa |= ADPA_DPMS_D0;
1019
1020         hw->adpa |= ADPA_DAC_ENABLE;
1021
1022         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1023         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1024         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1025
1026         /* Desired clock in kHz */
1027         clock_target = 1000000000 / var->pixclock;
1028
1029         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, 
1030                             &n, &p1, &p2, &clock)) {
1031                 WRN_MSG("calc_pll_params failed\n");
1032                 return 1;
1033         }
1034
1035         /* Check for overflow. */
1036         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1037                 return 1;
1038         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1039                 return 1;
1040         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1041                 return 1;
1042         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1043                 return 1;
1044         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1045                 return 1;
1046
1047         *dpll &= ~DPLL_P1_FORCE_DIV2;
1048         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1049                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1050         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1051         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1052                (m1 << FP_M1_DIVISOR_SHIFT) |
1053                (m2 << FP_M2_DIVISOR_SHIFT);
1054         *fp1 = *fp0;
1055
1056         hw->dvob &= ~PORT_ENABLE;
1057         hw->dvoc &= ~PORT_ENABLE;
1058
1059         /* Use display plane A. */
1060         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1061         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1062         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1063         switch (intelfb_var_to_depth(var)) {
1064         case 8:
1065                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1066                 break;
1067         case 15:
1068                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1069                 break;
1070         case 16:
1071                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1072                 break;
1073         case 24:
1074                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1075                 break;
1076         }
1077         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1078         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1079
1080         /* Set CRTC registers. */
1081         hactive = var->xres;
1082         hsync_start = hactive + var->right_margin;
1083         hsync_end = hsync_start + var->hsync_len;
1084         htotal = hsync_end + var->left_margin;
1085         hblank_start = hactive;
1086         hblank_end = htotal;
1087
1088         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1089                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1090                 hblank_end);
1091
1092         vactive = var->yres;
1093         vsync_start = vactive + var->lower_margin;
1094         vsync_end = vsync_start + var->vsync_len;
1095         vtotal = vsync_end + var->upper_margin;
1096         vblank_start = vactive;
1097         vblank_end = vtotal;
1098         vblank_end = vsync_end + 1;
1099
1100         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1101                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1102                 vblank_end);
1103
1104         /* Adjust for register values, and check for overflow. */
1105         hactive--;
1106         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1107                 return 1;
1108         hsync_start--;
1109         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1110                 return 1;
1111         hsync_end--;
1112         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1113                 return 1;
1114         htotal--;
1115         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1116                 return 1;
1117         hblank_start--;
1118         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1119                 return 1;
1120         hblank_end--;
1121         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1122                 return 1;
1123
1124         vactive--;
1125         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1126                 return 1;
1127         vsync_start--;
1128         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1129                 return 1;
1130         vsync_end--;
1131         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1132                 return 1;
1133         vtotal--;
1134         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1135                 return 1;
1136         vblank_start--;
1137         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1138                 return 1;
1139         vblank_end--;
1140         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1141                 return 1;
1142
1143         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1144         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1145               (hblank_end << HSYNCEND_SHIFT);
1146         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1147
1148         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1149         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1150               (vblank_end << VSYNCEND_SHIFT);
1151         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1152         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1153               (vactive << SRC_SIZE_VERT_SHIFT);
1154
1155         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1156         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1157
1158         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1159                           var->xoffset * var->bits_per_pixel / 8;
1160
1161         hw->disp_a_base += dinfo->fb.offset << 12;
1162
1163         /* Check stride alignment. */
1164         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1165                 WRN_MSG("display stride %d has bad alignment %d\n",
1166                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1167                 return 1;
1168         }
1169
1170         /* Set the palette to 8-bit mode. */
1171         *pipe_conf &= ~PIPECONF_GAMMA;
1172         return 0;
1173 }
1174
1175 /* Program a (non-VGA) video mode. */
1176 int
1177 intelfbhw_program_mode(struct intelfb_info *dinfo,
1178                      const struct intelfb_hwstate *hw, int blank)
1179 {
1180         int pipe = PIPE_A;
1181         u32 tmp;
1182         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1183         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1184         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1185         u32 hsync_reg, htotal_reg, hblank_reg;
1186         u32 vsync_reg, vtotal_reg, vblank_reg;
1187         u32 src_size_reg;
1188         u32 count, tmp_val[3];
1189
1190         /* Assume single pipe, display plane A, analog CRT. */
1191
1192 #if VERBOSE > 0
1193         DBG_MSG("intelfbhw_program_mode\n");
1194 #endif
1195
1196         /* Disable VGA */
1197         tmp = INREG(VGACNTRL);
1198         tmp |= VGA_DISABLE;
1199         OUTREG(VGACNTRL, tmp);
1200
1201         /* Check whether pipe A or pipe B is enabled. */
1202         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1203                 pipe = PIPE_A;
1204         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1205                 pipe = PIPE_B;
1206
1207         dinfo->pipe = pipe;
1208
1209         if (pipe == PIPE_B) {
1210                 dpll = &hw->dpll_b;
1211                 fp0 = &hw->fpb0;
1212                 fp1 = &hw->fpb1;
1213                 pipe_conf = &hw->pipe_b_conf;
1214                 hs = &hw->hsync_b;
1215                 hb = &hw->hblank_b;
1216                 ht = &hw->htotal_b;
1217                 vs = &hw->vsync_b;
1218                 vb = &hw->vblank_b;
1219                 vt = &hw->vtotal_b;
1220                 ss = &hw->src_size_b;
1221                 dpll_reg = DPLL_B;
1222                 fp0_reg = FPB0;
1223                 fp1_reg = FPB1;
1224                 pipe_conf_reg = PIPEBCONF;
1225                 hsync_reg = HSYNC_B;
1226                 htotal_reg = HTOTAL_B;
1227                 hblank_reg = HBLANK_B;
1228                 vsync_reg = VSYNC_B;
1229                 vtotal_reg = VTOTAL_B;
1230                 vblank_reg = VBLANK_B;
1231                 src_size_reg = SRC_SIZE_B;
1232         } else {
1233                 dpll = &hw->dpll_a;
1234                 fp0 = &hw->fpa0;
1235                 fp1 = &hw->fpa1;
1236                 pipe_conf = &hw->pipe_a_conf;
1237                 hs = &hw->hsync_a;
1238                 hb = &hw->hblank_a;
1239                 ht = &hw->htotal_a;
1240                 vs = &hw->vsync_a;
1241                 vb = &hw->vblank_a;
1242                 vt = &hw->vtotal_a;
1243                 ss = &hw->src_size_a;
1244                 dpll_reg = DPLL_A;
1245                 fp0_reg = FPA0;
1246                 fp1_reg = FPA1;
1247                 pipe_conf_reg = PIPEACONF;
1248                 hsync_reg = HSYNC_A;
1249                 htotal_reg = HTOTAL_A;
1250                 hblank_reg = HBLANK_A;
1251                 vsync_reg = VSYNC_A;
1252                 vtotal_reg = VTOTAL_A;
1253                 vblank_reg = VBLANK_A;
1254                 src_size_reg = SRC_SIZE_A;
1255         }
1256
1257         /* turn off pipe */
1258         tmp = INREG(pipe_conf_reg);
1259         tmp &= ~PIPECONF_ENABLE;
1260         OUTREG(pipe_conf_reg, tmp);
1261         
1262         count = 0;
1263         do {
1264           tmp_val[count%3] = INREG(0x70000);
1265           if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1266             break;
1267           count++;
1268           udelay(1);
1269           if (count % 200 == 0) {
1270             tmp = INREG(pipe_conf_reg);
1271             tmp &= ~PIPECONF_ENABLE;
1272             OUTREG(pipe_conf_reg, tmp);
1273           }
1274         } while(count < 2000);
1275
1276         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1277
1278         /* Disable planes A and B. */
1279         tmp = INREG(DSPACNTR);
1280         tmp &= ~DISPPLANE_PLANE_ENABLE;
1281         OUTREG(DSPACNTR, tmp);
1282         tmp = INREG(DSPBCNTR);
1283         tmp &= ~DISPPLANE_PLANE_ENABLE;
1284         OUTREG(DSPBCNTR, tmp);
1285
1286         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1287         mdelay(20);
1288
1289         /* Disable Sync */
1290         tmp = INREG(ADPA);
1291         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1292         tmp |= ADPA_DPMS_D3;
1293         OUTREG(ADPA, tmp);
1294
1295         /* do some funky magic - xyzzy */
1296         OUTREG(0x61204, 0xabcd0000);
1297
1298         /* turn off PLL */
1299         tmp = INREG(dpll_reg);
1300         dpll_reg &= ~DPLL_VCO_ENABLE;
1301         OUTREG(dpll_reg, tmp);
1302
1303         /* Set PLL parameters */
1304         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1305         OUTREG(fp0_reg, *fp0);
1306         OUTREG(fp1_reg, *fp1);
1307
1308         /* Enable PLL */
1309         tmp = INREG(dpll_reg);
1310         tmp |= DPLL_VCO_ENABLE;
1311         OUTREG(dpll_reg, tmp);
1312
1313         /* Set DVOs B/C */
1314         OUTREG(DVOB, hw->dvob);
1315         OUTREG(DVOC, hw->dvoc);
1316
1317         /* undo funky magic */
1318         OUTREG(0x61204, 0x00000000);
1319
1320         /* Set ADPA */
1321         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1322         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1323
1324         /* Set pipe parameters */
1325         OUTREG(hsync_reg, *hs);
1326         OUTREG(hblank_reg, *hb);
1327         OUTREG(htotal_reg, *ht);
1328         OUTREG(vsync_reg, *vs);
1329         OUTREG(vblank_reg, *vb);
1330         OUTREG(vtotal_reg, *vt);
1331         OUTREG(src_size_reg, *ss);
1332
1333         /* Enable pipe */
1334         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1335
1336         /* Enable sync */
1337         tmp = INREG(ADPA);
1338         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1339         tmp |= ADPA_DPMS_D0;
1340         OUTREG(ADPA, tmp);
1341
1342         /* setup display plane */
1343         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1344                 /*
1345                  *      i830M errata: the display plane must be enabled
1346                  *      to allow writes to the other bits in the plane
1347                  *      control register.
1348                  */
1349                 tmp = INREG(DSPACNTR);
1350                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1351                         tmp |= DISPPLANE_PLANE_ENABLE;
1352                         OUTREG(DSPACNTR, tmp);
1353                         OUTREG(DSPACNTR,
1354                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1355                         mdelay(1);
1356               }
1357         }
1358
1359         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1360         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1361         OUTREG(DSPABASE, hw->disp_a_base);
1362
1363         /* Enable plane */
1364         if (!blank) {
1365                 tmp = INREG(DSPACNTR);
1366                 tmp |= DISPPLANE_PLANE_ENABLE;
1367                 OUTREG(DSPACNTR, tmp);
1368                 OUTREG(DSPABASE, hw->disp_a_base);
1369         }
1370
1371         return 0;
1372 }
1373
1374 /* forward declarations */
1375 static void refresh_ring(struct intelfb_info *dinfo);
1376 static void reset_state(struct intelfb_info *dinfo);
1377 static void do_flush(struct intelfb_info *dinfo);
1378
1379 static int
1380 wait_ring(struct intelfb_info *dinfo, int n)
1381 {
1382         int i = 0;
1383         unsigned long end;
1384         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1385
1386 #if VERBOSE > 0
1387         DBG_MSG("wait_ring: %d\n", n);
1388 #endif
1389
1390         end = jiffies + (HZ * 3);
1391         while (dinfo->ring_space < n) {
1392                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1393                                                    RING_HEAD_MASK);
1394                 if (dinfo->ring_tail + RING_MIN_FREE <
1395                     (u32 __iomem) dinfo->ring_head)
1396                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1397                                 - (dinfo->ring_tail + RING_MIN_FREE);
1398                 else
1399                         dinfo->ring_space = (dinfo->ring.size +
1400                                              (u32 __iomem) dinfo->ring_head)
1401                                 - (dinfo->ring_tail + RING_MIN_FREE);
1402                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1403                         end = jiffies + (HZ * 3);
1404                         last_head = (u32 __iomem) dinfo->ring_head;
1405                 }
1406                 i++;
1407                 if (time_before(end, jiffies)) {
1408                         if (!i) {
1409                                 /* Try again */
1410                                 reset_state(dinfo);
1411                                 refresh_ring(dinfo);
1412                                 do_flush(dinfo);
1413                                 end = jiffies + (HZ * 3);
1414                                 i = 1;
1415                         } else {
1416                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1417                                         dinfo->ring_space, n);
1418                                 WRN_MSG("lockup - turning off hardware "
1419                                         "acceleration\n");
1420                                 dinfo->ring_lockup = 1;
1421                                 break;
1422                         }
1423                 }
1424                 udelay(1);
1425         }
1426         return i;
1427 }
1428
1429 static void
1430 do_flush(struct intelfb_info *dinfo) {
1431         START_RING(2);
1432         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1433         OUT_RING(MI_NOOP);
1434         ADVANCE_RING();
1435 }
1436
1437 void
1438 intelfbhw_do_sync(struct intelfb_info *dinfo)
1439 {
1440 #if VERBOSE > 0
1441         DBG_MSG("intelfbhw_do_sync\n");
1442 #endif
1443
1444         if (!dinfo->accel)
1445                 return;
1446
1447         /*
1448          * Send a flush, then wait until the ring is empty.  This is what
1449          * the XFree86 driver does, and actually it doesn't seem a lot worse
1450          * than the recommended method (both have problems).
1451          */
1452         do_flush(dinfo);
1453         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1454         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1455 }
1456
1457 static void
1458 refresh_ring(struct intelfb_info *dinfo)
1459 {
1460 #if VERBOSE > 0
1461         DBG_MSG("refresh_ring\n");
1462 #endif
1463
1464         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1465                                            RING_HEAD_MASK);
1466         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1467         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1468                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1469                         - (dinfo->ring_tail + RING_MIN_FREE);
1470         else
1471                 dinfo->ring_space = (dinfo->ring.size +
1472                                      (u32 __iomem) dinfo->ring_head)
1473                         - (dinfo->ring_tail + RING_MIN_FREE);
1474 }
1475
1476 static void
1477 reset_state(struct intelfb_info *dinfo)
1478 {
1479         int i;
1480         u32 tmp;
1481
1482 #if VERBOSE > 0
1483         DBG_MSG("reset_state\n");
1484 #endif
1485
1486         for (i = 0; i < FENCE_NUM; i++)
1487                 OUTREG(FENCE + (i << 2), 0);
1488
1489         /* Flush the ring buffer if it's enabled. */
1490         tmp = INREG(PRI_RING_LENGTH);
1491         if (tmp & RING_ENABLE) {
1492 #if VERBOSE > 0
1493                 DBG_MSG("reset_state: ring was enabled\n");
1494 #endif
1495                 refresh_ring(dinfo);
1496                 intelfbhw_do_sync(dinfo);
1497                 DO_RING_IDLE();
1498         }
1499
1500         OUTREG(PRI_RING_LENGTH, 0);
1501         OUTREG(PRI_RING_HEAD, 0);
1502         OUTREG(PRI_RING_TAIL, 0);
1503         OUTREG(PRI_RING_START, 0);
1504 }
1505
1506 /* Stop the 2D engine, and turn off the ring buffer. */
1507 void
1508 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1509 {
1510 #if VERBOSE > 0
1511         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1512                 dinfo->ring_active);
1513 #endif
1514
1515         if (!dinfo->accel)
1516                 return;
1517
1518         dinfo->ring_active = 0;
1519         reset_state(dinfo);
1520 }
1521
1522 /*
1523  * Enable the ring buffer, and initialise the 2D engine.
1524  * It is assumed that the graphics engine has been stopped by previously
1525  * calling intelfb_2d_stop().
1526  */
1527 void
1528 intelfbhw_2d_start(struct intelfb_info *dinfo)
1529 {
1530 #if VERBOSE > 0
1531         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1532                 dinfo->accel, dinfo->ring_active);
1533 #endif
1534
1535         if (!dinfo->accel)
1536                 return;
1537
1538         /* Initialise the primary ring buffer. */
1539         OUTREG(PRI_RING_LENGTH, 0);
1540         OUTREG(PRI_RING_TAIL, 0);
1541         OUTREG(PRI_RING_HEAD, 0);
1542
1543         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1544         OUTREG(PRI_RING_LENGTH,
1545                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1546                 RING_NO_REPORT | RING_ENABLE);
1547         refresh_ring(dinfo);
1548         dinfo->ring_active = 1;
1549 }
1550
1551 /* 2D fillrect (solid fill or invert) */
1552 void
1553 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1554                       u32 color, u32 pitch, u32 bpp, u32 rop)
1555 {
1556         u32 br00, br09, br13, br14, br16;
1557
1558 #if VERBOSE > 0
1559         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1560                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1561 #endif
1562
1563         br00 = COLOR_BLT_CMD;
1564         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1565         br13 = (rop << ROP_SHIFT) | pitch;
1566         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1567         br16 = color;
1568
1569         switch (bpp) {
1570         case 8:
1571                 br13 |= COLOR_DEPTH_8;
1572                 break;
1573         case 16:
1574                 br13 |= COLOR_DEPTH_16;
1575                 break;
1576         case 32:
1577                 br13 |= COLOR_DEPTH_32;
1578                 br00 |= WRITE_ALPHA | WRITE_RGB;
1579                 break;
1580         }
1581
1582         START_RING(6);
1583         OUT_RING(br00);
1584         OUT_RING(br13);
1585         OUT_RING(br14);
1586         OUT_RING(br09);
1587         OUT_RING(br16);
1588         OUT_RING(MI_NOOP);
1589         ADVANCE_RING();
1590
1591 #if VERBOSE > 0
1592         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1593                 dinfo->ring_tail, dinfo->ring_space);
1594 #endif
1595 }
1596
1597 void
1598 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1599                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1600 {
1601         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1602
1603 #if VERBOSE > 0
1604         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1605                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1606 #endif
1607
1608         br00 = XY_SRC_COPY_BLT_CMD;
1609         br09 = dinfo->fb_start;
1610         br11 = (pitch << PITCH_SHIFT);
1611         br12 = dinfo->fb_start;
1612         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1613         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1614         br23 = ((dstx + w) << WIDTH_SHIFT) |
1615                ((dsty + h) << HEIGHT_SHIFT);
1616         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1617
1618         switch (bpp) {
1619         case 8:
1620                 br13 |= COLOR_DEPTH_8;
1621                 break;
1622         case 16:
1623                 br13 |= COLOR_DEPTH_16;
1624                 break;
1625         case 32:
1626                 br13 |= COLOR_DEPTH_32;
1627                 br00 |= WRITE_ALPHA | WRITE_RGB;
1628                 break;
1629         }
1630
1631         START_RING(8);
1632         OUT_RING(br00);
1633         OUT_RING(br13);
1634         OUT_RING(br22);
1635         OUT_RING(br23);
1636         OUT_RING(br09);
1637         OUT_RING(br26);
1638         OUT_RING(br11);
1639         OUT_RING(br12);
1640         ADVANCE_RING();
1641 }
1642
1643 int
1644 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1645                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1646 {
1647         int nbytes, ndwords, pad, tmp;
1648         u32 br00, br09, br13, br18, br19, br22, br23;
1649         int dat, ix, iy, iw;
1650         int i, j;
1651
1652 #if VERBOSE > 0
1653         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1654 #endif
1655
1656         /* size in bytes of a padded scanline */
1657         nbytes = ROUND_UP_TO(w, 16) / 8;
1658
1659         /* Total bytes of padded scanline data to write out. */
1660         nbytes = nbytes * h;
1661
1662         /*
1663          * Check if the glyph data exceeds the immediate mode limit.
1664          * It would take a large font (1K pixels) to hit this limit.
1665          */
1666         if (nbytes > MAX_MONO_IMM_SIZE)
1667                 return 0;
1668
1669         /* Src data is packaged a dword (32-bit) at a time. */
1670         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1671
1672         /*
1673          * Ring has to be padded to a quad word. But because the command starts
1674            with 7 bytes, pad only if there is an even number of ndwords
1675          */
1676         pad = !(ndwords % 2);
1677
1678         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1679         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1680         br09 = dinfo->fb_start;
1681         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1682         br18 = bg;
1683         br19 = fg;
1684         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1685         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1686
1687         switch (bpp) {
1688         case 8:
1689                 br13 |= COLOR_DEPTH_8;
1690                 break;
1691         case 16:
1692                 br13 |= COLOR_DEPTH_16;
1693                 break;
1694         case 32:
1695                 br13 |= COLOR_DEPTH_32;
1696                 br00 |= WRITE_ALPHA | WRITE_RGB;
1697                 break;
1698         }
1699
1700         START_RING(8 + ndwords);
1701         OUT_RING(br00);
1702         OUT_RING(br13);
1703         OUT_RING(br22);
1704         OUT_RING(br23);
1705         OUT_RING(br09);
1706         OUT_RING(br18);
1707         OUT_RING(br19);
1708         ix = iy = 0;
1709         iw = ROUND_UP_TO(w, 8) / 8;
1710         while (ndwords--) {
1711                 dat = 0;
1712                 for (j = 0; j < 2; ++j) {
1713                         for (i = 0; i < 2; ++i) {
1714                                 if (ix != iw || i == 0)
1715                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1716                         }
1717                         if (ix == iw && iy != (h-1)) {
1718                                 ix = 0;
1719                                 ++iy;
1720                         }
1721                 }
1722                 OUT_RING(dat);
1723         }
1724         if (pad)
1725                 OUT_RING(MI_NOOP);
1726         ADVANCE_RING();
1727
1728         return 1;
1729 }
1730
1731 /* HW cursor functions. */
1732 void
1733 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1734 {
1735         u32 tmp;
1736
1737 #if VERBOSE > 0
1738         DBG_MSG("intelfbhw_cursor_init\n");
1739 #endif
1740
1741         if (dinfo->mobile || IS_I9xx(dinfo)) {
1742                 if (!dinfo->cursor.physical)
1743                         return;
1744                 tmp = INREG(CURSOR_A_CONTROL);
1745                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1746                          CURSOR_MEM_TYPE_LOCAL |
1747                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1748                 tmp |= CURSOR_MODE_DISABLE;
1749                 OUTREG(CURSOR_A_CONTROL, tmp);
1750                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1751         } else {
1752                 tmp = INREG(CURSOR_CONTROL);
1753                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1754                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1755                 tmp = CURSOR_FORMAT_3C;
1756                 OUTREG(CURSOR_CONTROL, tmp);
1757                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1758                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1759                       (64 << CURSOR_SIZE_V_SHIFT);
1760                 OUTREG(CURSOR_SIZE, tmp);
1761         }
1762 }
1763
1764 void
1765 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1766 {
1767         u32 tmp;
1768
1769 #if VERBOSE > 0
1770         DBG_MSG("intelfbhw_cursor_hide\n");
1771 #endif
1772
1773         dinfo->cursor_on = 0;
1774         if (dinfo->mobile || IS_I9xx(dinfo)) {
1775                 if (!dinfo->cursor.physical)
1776                         return;
1777                 tmp = INREG(CURSOR_A_CONTROL);
1778                 tmp &= ~CURSOR_MODE_MASK;
1779                 tmp |= CURSOR_MODE_DISABLE;
1780                 OUTREG(CURSOR_A_CONTROL, tmp);
1781                 /* Flush changes */
1782                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1783         } else {
1784                 tmp = INREG(CURSOR_CONTROL);
1785                 tmp &= ~CURSOR_ENABLE;
1786                 OUTREG(CURSOR_CONTROL, tmp);
1787         }
1788 }
1789
1790 void
1791 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1792 {
1793         u32 tmp;
1794
1795 #if VERBOSE > 0
1796         DBG_MSG("intelfbhw_cursor_show\n");
1797 #endif
1798
1799         dinfo->cursor_on = 1;
1800
1801         if (dinfo->cursor_blanked)
1802                 return;
1803
1804         if (dinfo->mobile || IS_I9xx(dinfo)) {
1805                 if (!dinfo->cursor.physical)
1806                         return;
1807                 tmp = INREG(CURSOR_A_CONTROL);
1808                 tmp &= ~CURSOR_MODE_MASK;
1809                 tmp |= CURSOR_MODE_64_4C_AX;
1810                 OUTREG(CURSOR_A_CONTROL, tmp);
1811                 /* Flush changes */
1812                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1813         } else {
1814                 tmp = INREG(CURSOR_CONTROL);
1815                 tmp |= CURSOR_ENABLE;
1816                 OUTREG(CURSOR_CONTROL, tmp);
1817         }
1818 }
1819
1820 void
1821 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1822 {
1823         u32 tmp;
1824
1825 #if VERBOSE > 0
1826         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1827 #endif
1828
1829         /*
1830          * Sets the position.  The coordinates are assumed to already
1831          * have any offset adjusted.  Assume that the cursor is never
1832          * completely off-screen, and that x, y are always >= 0.
1833          */
1834
1835         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1836               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1837         OUTREG(CURSOR_A_POSITION, tmp);
1838
1839         if (IS_I9xx(dinfo)) {
1840                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1841         }
1842 }
1843
1844 void
1845 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1846 {
1847 #if VERBOSE > 0
1848         DBG_MSG("intelfbhw_cursor_setcolor\n");
1849 #endif
1850
1851         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1852         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1853         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1854         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1855 }
1856
1857 void
1858 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1859                       u8 *data)
1860 {
1861         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1862         int i, j, w = width / 8;
1863         int mod = width % 8, t_mask, d_mask;
1864
1865 #if VERBOSE > 0
1866         DBG_MSG("intelfbhw_cursor_load\n");
1867 #endif
1868
1869         if (!dinfo->cursor.virtual)
1870                 return;
1871
1872         t_mask = 0xff >> mod;
1873         d_mask = ~(0xff >> mod);
1874         for (i = height; i--; ) {
1875                 for (j = 0; j < w; j++) {
1876                         writeb(0x00, addr + j);
1877                         writeb(*(data++), addr + j+8);
1878                 }
1879                 if (mod) {
1880                         writeb(t_mask, addr + j);
1881                         writeb(*(data++) & d_mask, addr + j+8);
1882                 }
1883                 addr += 16;
1884         }
1885 }
1886
1887 void
1888 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1889         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1890         int i, j;
1891
1892 #if VERBOSE > 0
1893         DBG_MSG("intelfbhw_cursor_reset\n");
1894 #endif
1895
1896         if (!dinfo->cursor.virtual)
1897                 return;
1898
1899         for (i = 64; i--; ) {
1900                 for (j = 0; j < 8; j++) {
1901                         writeb(0xff, addr + j+0);
1902                         writeb(0x00, addr + j+8);
1903                 }
1904                 addr += 16;
1905         }
1906 }