intelfb: change splitm to be brute force
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52 };
53
54 #define PLLS_I8xx 0
55 #define PLLS_I9xx 1
56 #define PLLS_MAX 2
57
58 struct pll_min_max plls[PLLS_MAX] = {
59         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000 }, //I8xx
60         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000 }  //I9xx
61 };
62
63 int
64 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
65 {
66         u32 tmp;
67         if (!pdev || !dinfo)
68                 return 1;
69
70         switch (pdev->device) {
71         case PCI_DEVICE_ID_INTEL_830M:
72                 dinfo->name = "Intel(R) 830M";
73                 dinfo->chipset = INTEL_830M;
74                 dinfo->mobile = 1;
75                 dinfo->pll_index = PLLS_I8xx;
76                 return 0;
77         case PCI_DEVICE_ID_INTEL_845G:
78                 dinfo->name = "Intel(R) 845G";
79                 dinfo->chipset = INTEL_845G;
80                 dinfo->mobile = 0;
81                 dinfo->pll_index = PLLS_I8xx;
82                 return 0;
83         case PCI_DEVICE_ID_INTEL_85XGM:
84                 tmp = 0;
85                 dinfo->mobile = 1;
86                 dinfo->pll_index = PLLS_I8xx;
87                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
88                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
89                         INTEL_85X_VARIANT_MASK) {
90                 case INTEL_VAR_855GME:
91                         dinfo->name = "Intel(R) 855GME";
92                         dinfo->chipset = INTEL_855GME;
93                         return 0;
94                 case INTEL_VAR_855GM:
95                         dinfo->name = "Intel(R) 855GM";
96                         dinfo->chipset = INTEL_855GM;
97                         return 0;
98                 case INTEL_VAR_852GME:
99                         dinfo->name = "Intel(R) 852GME";
100                         dinfo->chipset = INTEL_852GME;
101                         return 0;
102                 case INTEL_VAR_852GM:
103                         dinfo->name = "Intel(R) 852GM";
104                         dinfo->chipset = INTEL_852GM;
105                         return 0;
106                 default:
107                         dinfo->name = "Intel(R) 852GM/855GM";
108                         dinfo->chipset = INTEL_85XGM;
109                         return 0;
110                 }
111                 break;
112         case PCI_DEVICE_ID_INTEL_865G:
113                 dinfo->name = "Intel(R) 865G";
114                 dinfo->chipset = INTEL_865G;
115                 dinfo->mobile = 0;
116                 dinfo->pll_index = PLLS_I8xx;
117                 return 0;
118         case PCI_DEVICE_ID_INTEL_915G:
119                 dinfo->name = "Intel(R) 915G";
120                 dinfo->chipset = INTEL_915G;
121                 dinfo->mobile = 0;
122                 dinfo->pll_index = PLLS_I9xx;
123                 return 0;
124         case PCI_DEVICE_ID_INTEL_915GM:
125                 dinfo->name = "Intel(R) 915GM";
126                 dinfo->chipset = INTEL_915GM;
127                 dinfo->mobile = 1;
128                 dinfo->pll_index = PLLS_I9xx;
129                 return 0;
130         default:
131                 return 1;
132         }
133 }
134
135 int
136 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
137                      int *stolen_size)
138 {
139         struct pci_dev *bridge_dev;
140         u16 tmp;
141
142         if (!pdev || !aperture_size || !stolen_size)
143                 return 1;
144
145         /* Find the bridge device.  It is always 0:0.0 */
146         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
147                 ERR_MSG("cannot find bridge device\n");
148                 return 1;
149         }
150
151         /* Get the fb aperture size and "stolen" memory amount. */
152         tmp = 0;
153         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
154         switch (pdev->device) {
155         case PCI_DEVICE_ID_INTEL_830M:
156         case PCI_DEVICE_ID_INTEL_845G:
157                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
158                         *aperture_size = MB(64);
159                 else
160                         *aperture_size = MB(128);
161                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
162                 case INTEL_830_GMCH_GMS_STOLEN_512:
163                         *stolen_size = KB(512) - KB(132);
164                         return 0;
165                 case INTEL_830_GMCH_GMS_STOLEN_1024:
166                         *stolen_size = MB(1) - KB(132);
167                         return 0;
168                 case INTEL_830_GMCH_GMS_STOLEN_8192:
169                         *stolen_size = MB(8) - KB(132);
170                         return 0;
171                 case INTEL_830_GMCH_GMS_LOCAL:
172                         ERR_MSG("only local memory found\n");
173                         return 1;
174                 case INTEL_830_GMCH_GMS_DISABLED:
175                         ERR_MSG("video memory is disabled\n");
176                         return 1;
177                 default:
178                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
179                                 tmp & INTEL_830_GMCH_GMS_MASK);
180                         return 1;
181                 }
182                 break;
183         default:
184                 *aperture_size = MB(128);
185                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
186                 case INTEL_855_GMCH_GMS_STOLEN_1M:
187                         *stolen_size = MB(1) - KB(132);
188                         return 0;
189                 case INTEL_855_GMCH_GMS_STOLEN_4M:
190                         *stolen_size = MB(4) - KB(132);
191                         return 0;
192                 case INTEL_855_GMCH_GMS_STOLEN_8M:
193                         *stolen_size = MB(8) - KB(132);
194                         return 0;
195                 case INTEL_855_GMCH_GMS_STOLEN_16M:
196                         *stolen_size = MB(16) - KB(132);
197                         return 0;
198                 case INTEL_855_GMCH_GMS_STOLEN_32M:
199                         *stolen_size = MB(32) - KB(132);
200                         return 0;
201                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
202                         *stolen_size = MB(48) - KB(132);
203                         return 0;
204                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
205                         *stolen_size = MB(64) - KB(132);
206                         return 0;
207                 case INTEL_855_GMCH_GMS_DISABLED:
208                         ERR_MSG("video memory is disabled\n");
209                         return 0;
210                 default:
211                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
212                                 tmp & INTEL_855_GMCH_GMS_MASK);
213                         return 1;
214                 }
215         }
216 }
217
218 int
219 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
220 {
221         int dvo = 0;
222
223         if (INREG(LVDS) & PORT_ENABLE)
224                 dvo |= LVDS_PORT;
225         if (INREG(DVOA) & PORT_ENABLE)
226                 dvo |= DVOA_PORT;
227         if (INREG(DVOB) & PORT_ENABLE)
228                 dvo |= DVOB_PORT;
229         if (INREG(DVOC) & PORT_ENABLE)
230                 dvo |= DVOC_PORT;
231
232         return dvo;
233 }
234
235 const char *
236 intelfbhw_dvo_to_string(int dvo)
237 {
238         if (dvo & DVOA_PORT)
239                 return "DVO port A";
240         else if (dvo & DVOB_PORT)
241                 return "DVO port B";
242         else if (dvo & DVOC_PORT)
243                 return "DVO port C";
244         else if (dvo & LVDS_PORT)
245                 return "LVDS port";
246         else
247                 return NULL;
248 }
249
250
251 int
252 intelfbhw_validate_mode(struct intelfb_info *dinfo,
253                         struct fb_var_screeninfo *var)
254 {
255         int bytes_per_pixel;
256         int tmp;
257
258 #if VERBOSE > 0
259         DBG_MSG("intelfbhw_validate_mode\n");
260 #endif
261
262         bytes_per_pixel = var->bits_per_pixel / 8;
263         if (bytes_per_pixel == 3)
264                 bytes_per_pixel = 4;
265
266         /* Check if enough video memory. */
267         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
268         if (tmp > dinfo->fb.size) {
269                 WRN_MSG("Not enough video ram for mode "
270                         "(%d KByte vs %d KByte).\n",
271                         BtoKB(tmp), BtoKB(dinfo->fb.size));
272                 return 1;
273         }
274
275         /* Check if x/y limits are OK. */
276         if (var->xres - 1 > HACTIVE_MASK) {
277                 WRN_MSG("X resolution too large (%d vs %d).\n",
278                         var->xres, HACTIVE_MASK + 1);
279                 return 1;
280         }
281         if (var->yres - 1 > VACTIVE_MASK) {
282                 WRN_MSG("Y resolution too large (%d vs %d).\n",
283                         var->yres, VACTIVE_MASK + 1);
284                 return 1;
285         }
286
287         /* Check for interlaced/doublescan modes. */
288         if (var->vmode & FB_VMODE_INTERLACED) {
289                 WRN_MSG("Mode is interlaced.\n");
290                 return 1;
291         }
292         if (var->vmode & FB_VMODE_DOUBLE) {
293                 WRN_MSG("Mode is double-scan.\n");
294                 return 1;
295         }
296
297         /* Check if clock is OK. */
298         tmp = 1000000000 / var->pixclock;
299         if (tmp < MIN_CLOCK) {
300                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
301                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
302                 return 1;
303         }
304         if (tmp > MAX_CLOCK) {
305                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
306                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
307                 return 1;
308         }
309
310         return 0;
311 }
312
313 int
314 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
315 {
316         struct intelfb_info *dinfo = GET_DINFO(info);
317         u32 offset, xoffset, yoffset;
318
319 #if VERBOSE > 0
320         DBG_MSG("intelfbhw_pan_display\n");
321 #endif
322
323         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
324         yoffset = var->yoffset;
325
326         if ((xoffset + var->xres > var->xres_virtual) ||
327             (yoffset + var->yres > var->yres_virtual))
328                 return -EINVAL;
329
330         offset = (yoffset * dinfo->pitch) +
331                  (xoffset * var->bits_per_pixel) / 8;
332
333         offset += dinfo->fb.offset << 12;
334
335         OUTREG(DSPABASE, offset);
336
337         return 0;
338 }
339
340 /* Blank the screen. */
341 void
342 intelfbhw_do_blank(int blank, struct fb_info *info)
343 {
344         struct intelfb_info *dinfo = GET_DINFO(info);
345         u32 tmp;
346
347 #if VERBOSE > 0
348         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
349 #endif
350
351         /* Turn plane A on or off */
352         tmp = INREG(DSPACNTR);
353         if (blank)
354                 tmp &= ~DISPPLANE_PLANE_ENABLE;
355         else
356                 tmp |= DISPPLANE_PLANE_ENABLE;
357         OUTREG(DSPACNTR, tmp);
358         /* Flush */
359         tmp = INREG(DSPABASE);
360         OUTREG(DSPABASE, tmp);
361
362         /* Turn off/on the HW cursor */
363 #if VERBOSE > 0
364         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
365 #endif
366         if (dinfo->cursor_on) {
367                 if (blank) {
368                         intelfbhw_cursor_hide(dinfo);
369                 } else {
370                         intelfbhw_cursor_show(dinfo);
371                 }
372                 dinfo->cursor_on = 1;
373         }
374         dinfo->cursor_blanked = blank;
375
376         /* Set DPMS level */
377         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
378         switch (blank) {
379         case FB_BLANK_UNBLANK:
380         case FB_BLANK_NORMAL:
381                 tmp |= ADPA_DPMS_D0;
382                 break;
383         case FB_BLANK_VSYNC_SUSPEND:
384                 tmp |= ADPA_DPMS_D1;
385                 break;
386         case FB_BLANK_HSYNC_SUSPEND:
387                 tmp |= ADPA_DPMS_D2;
388                 break;
389         case FB_BLANK_POWERDOWN:
390                 tmp |= ADPA_DPMS_D3;
391                 break;
392         }
393         OUTREG(ADPA, tmp);
394
395         return;
396 }
397
398
399 void
400 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
401                     unsigned red, unsigned green, unsigned blue,
402                     unsigned transp)
403 {
404 #if VERBOSE > 0
405         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
406                 regno, red, green, blue);
407 #endif
408
409         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
410                           PALETTE_A : PALETTE_B;
411
412         OUTREG(palette_reg + (regno << 2),
413                (red << PALETTE_8_RED_SHIFT) |
414                (green << PALETTE_8_GREEN_SHIFT) |
415                (blue << PALETTE_8_BLUE_SHIFT));
416 }
417
418
419 int
420 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
421                         int flag)
422 {
423         int i;
424
425 #if VERBOSE > 0
426         DBG_MSG("intelfbhw_read_hw_state\n");
427 #endif
428
429         if (!hw || !dinfo)
430                 return -1;
431
432         /* Read in as much of the HW state as possible. */
433         hw->vga0_divisor = INREG(VGA0_DIVISOR);
434         hw->vga1_divisor = INREG(VGA1_DIVISOR);
435         hw->vga_pd = INREG(VGAPD);
436         hw->dpll_a = INREG(DPLL_A);
437         hw->dpll_b = INREG(DPLL_B);
438         hw->fpa0 = INREG(FPA0);
439         hw->fpa1 = INREG(FPA1);
440         hw->fpb0 = INREG(FPB0);
441         hw->fpb1 = INREG(FPB1);
442
443         if (flag == 1)
444                 return flag;
445
446 #if 0
447         /* This seems to be a problem with the 852GM/855GM */
448         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
449                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
450                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
451         }
452 #endif
453
454         if (flag == 2)
455                 return flag;
456
457         hw->htotal_a = INREG(HTOTAL_A);
458         hw->hblank_a = INREG(HBLANK_A);
459         hw->hsync_a = INREG(HSYNC_A);
460         hw->vtotal_a = INREG(VTOTAL_A);
461         hw->vblank_a = INREG(VBLANK_A);
462         hw->vsync_a = INREG(VSYNC_A);
463         hw->src_size_a = INREG(SRC_SIZE_A);
464         hw->bclrpat_a = INREG(BCLRPAT_A);
465         hw->htotal_b = INREG(HTOTAL_B);
466         hw->hblank_b = INREG(HBLANK_B);
467         hw->hsync_b = INREG(HSYNC_B);
468         hw->vtotal_b = INREG(VTOTAL_B);
469         hw->vblank_b = INREG(VBLANK_B);
470         hw->vsync_b = INREG(VSYNC_B);
471         hw->src_size_b = INREG(SRC_SIZE_B);
472         hw->bclrpat_b = INREG(BCLRPAT_B);
473
474         if (flag == 3)
475                 return flag;
476
477         hw->adpa = INREG(ADPA);
478         hw->dvoa = INREG(DVOA);
479         hw->dvob = INREG(DVOB);
480         hw->dvoc = INREG(DVOC);
481         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
482         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
483         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
484         hw->lvds = INREG(LVDS);
485
486         if (flag == 4)
487                 return flag;
488
489         hw->pipe_a_conf = INREG(PIPEACONF);
490         hw->pipe_b_conf = INREG(PIPEBCONF);
491         hw->disp_arb = INREG(DISPARB);
492
493         if (flag == 5)
494                 return flag;
495
496         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
497         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
498         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
499         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
500
501         if (flag == 6)
502                 return flag;
503
504         for (i = 0; i < 4; i++) {
505                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
506                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
507         }
508
509         if (flag == 7)
510                 return flag;
511
512         hw->cursor_size = INREG(CURSOR_SIZE);
513
514         if (flag == 8)
515                 return flag;
516
517         hw->disp_a_ctrl = INREG(DSPACNTR);
518         hw->disp_b_ctrl = INREG(DSPBCNTR);
519         hw->disp_a_base = INREG(DSPABASE);
520         hw->disp_b_base = INREG(DSPBBASE);
521         hw->disp_a_stride = INREG(DSPASTRIDE);
522         hw->disp_b_stride = INREG(DSPBSTRIDE);
523
524         if (flag == 9)
525                 return flag;
526
527         hw->vgacntrl = INREG(VGACNTRL);
528
529         if (flag == 10)
530                 return flag;
531
532         hw->add_id = INREG(ADD_ID);
533
534         if (flag == 11)
535                 return flag;
536
537         for (i = 0; i < 7; i++) {
538                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
539                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
540                 if (i < 3)
541                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
542         }
543
544         for (i = 0; i < 8; i++)
545                 hw->fence[i] = INREG(FENCE + (i << 2));
546
547         hw->instpm = INREG(INSTPM);
548         hw->mem_mode = INREG(MEM_MODE);
549         hw->fw_blc_0 = INREG(FW_BLC_0);
550         hw->fw_blc_1 = INREG(FW_BLC_1);
551
552         return 0;
553 }
554
555
556 static int calc_vclock3(int index, int m, int n, int p)
557 {
558         return PLL_REFCLK * m / n / p;
559 }
560                        
561 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
562 {
563         switch(index)
564         {
565         case PLLS_I9xx:
566                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
567                          ((p1)) * (p2 ? 10 : 5)));
568         case PLLS_I8xx:
569         default:
570                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / 
571                          ((p1+2) * (1 << (p2 + 1)))));
572         }
573 }
574
575 void
576 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
577 {
578 #if REGDUMP
579         int i, m1, m2, n, p1, p2;
580         int index = dinfo->pll_index;
581         DBG_MSG("intelfbhw_print_hw_state\n");
582         
583         if (!hw || !dinfo)
584                 return;
585         /* Read in as much of the HW state as possible. */
586         printk("hw state dump start\n");
587         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
588         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
589         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
590         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
591         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
592         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
593         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
594                 p1 = 0;
595         else
596                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
597         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
598         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
599                m1, m2, n, p1, p2);
600         printk("        VGA0: clock is %d\n", 
601                calc_vclock(index, m1, m2, n, p1, p2));
602         
603         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
604         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
605         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
606         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
607                 p1 = 0;
608         else
609                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
610         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
611         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
612                m1, m2, n, p1, p2);
613         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
614         
615         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
616         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
617         printk("        FPA0:                   0x%08x\n", hw->fpa0);
618         printk("        FPA1:                   0x%08x\n", hw->fpa1);
619         printk("        FPB0:                   0x%08x\n", hw->fpb0);
620         printk("        FPB1:                   0x%08x\n", hw->fpb1);
621         
622         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
623         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
624         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
625         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
626                 p1 = 0;
627         else
628                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
629         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
630         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
631                m1, m2, n, p1, p2);
632         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
633         
634         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
635         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
637         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
638                 p1 = 0;
639         else
640                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
641         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
642         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
643                m1, m2, n, p1, p2);
644         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
645         
646 #if 0
647         printk("        PALETTE_A:\n");
648         for (i = 0; i < PALETTE_8_ENTRIES)
649                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
650         printk("        PALETTE_B:\n");
651         for (i = 0; i < PALETTE_8_ENTRIES)
652                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
653 #endif
654
655         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
656         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
657         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
658         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
659         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
660         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
661         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
662         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
663         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
664         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
665         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
666         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
667         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
668         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
669         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
670         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
671
672         printk("        ADPA:                   0x%08x\n", hw->adpa);
673         printk("        DVOA:                   0x%08x\n", hw->dvoa);
674         printk("        DVOB:                   0x%08x\n", hw->dvob);
675         printk("        DVOC:                   0x%08x\n", hw->dvoc);
676         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
677         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
678         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
679         printk("        LVDS:                   0x%08x\n", hw->lvds);
680
681         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
682         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
683         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
684
685         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
686         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
687         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
688         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
689
690         printk("        CURSOR_A_PALETTE:       ");
691         for (i = 0; i < 4; i++) {
692                 printk("0x%08x", hw->cursor_a_palette[i]);
693                 if (i < 3)
694                         printk(", ");
695         }
696         printk("\n");
697         printk("        CURSOR_B_PALETTE:       ");
698         for (i = 0; i < 4; i++) {
699                 printk("0x%08x", hw->cursor_b_palette[i]);
700                 if (i < 3)
701                         printk(", ");
702         }
703         printk("\n");
704
705         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
706
707         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
708         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
709         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
710         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
711         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
712         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
713
714         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
715         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
716
717         for (i = 0; i < 7; i++) {
718                 printk("        SWF0%d                  0x%08x\n", i,
719                         hw->swf0x[i]);
720         }
721         for (i = 0; i < 7; i++) {
722                 printk("        SWF1%d                  0x%08x\n", i,
723                         hw->swf1x[i]);
724         }
725         for (i = 0; i < 3; i++) {
726                 printk("        SWF3%d                  0x%08x\n", i,
727                        hw->swf3x[i]);
728         }
729         for (i = 0; i < 8; i++)
730                 printk("        FENCE%d                 0x%08x\n", i,
731                        hw->fence[i]);
732                        
733         printk("        INSTPM                  0x%08x\n", hw->instpm);
734         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
735         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
736         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
737
738         printk("hw state dump end\n");
739 #endif
740 }
741
742                
743
744 /* Split the M parameter into M1 and M2. */
745 static int
746 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
747 {
748         int m1, m2;
749         int testm;
750         /* no point optimising too much - brute force m */
751         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
752         {
753           for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
754           {
755             testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
756             if (testm == m)
757             {
758                 *retm1 = (unsigned int)m1;
759                 *retm2 = (unsigned int)m2;            
760                 return 0;
761             }
762           }
763         }
764         return 1;
765 }
766
767 /* Split the P parameter into P1 and P2. */
768 static int
769 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
770 {
771         int p1, p2;
772
773         if (index == PLLS_I9xx)
774         {
775                 p1 = (p / 10) + 1;
776                 p2 = 0;
777                 
778                 *retp1 = (unsigned int)p1;
779                 *retp2 = (unsigned int)p2;
780                 return 0;
781         }
782
783         if (index == PLLS_I8xx)
784         {
785                 if (p % 4 == 0)
786                         p2 = 1;
787                 else
788                         p2 = 0;
789                 p1 = (p / (1 << (p2 + 1))) - 2;
790                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
791                         p2 = 0;
792                         p1 = (p / (1 << (p2 + 1))) - 2;
793                 }
794                 if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
795                         return 1;
796                 } else {
797                         *retp1 = (unsigned int)p1;
798                         *retp2 = (unsigned int)p2;
799                         return 0;
800                 }
801         }
802         return 1;
803 }
804
805 static int
806 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
807                 u32 *retp2, u32 *retclock)
808 {
809         u32 m1, m2, n, p1, p2, n1;
810         u32 f_vco, p, p_best = 0, m, f_out;
811         u32 err_max, err_target, err_best = 10000000;
812         u32 n_best = 0, m_best = 0, f_best, f_err;
813         u32 p_min, p_max, p_inc, div_min, div_max;
814
815         /* Accept 0.5% difference, but aim for 0.1% */
816         err_max = 5 * clock / 1000;
817         err_target = clock / 1000;
818
819         DBG_MSG("Clock is %d\n", clock);
820
821         div_max = plls[index].max_vco_freq / clock;
822         div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
823
824         if (clock <= plls[index].p_transition_clock)
825                 p_inc = 4;
826         else
827                 p_inc = 2;
828         p_min = ROUND_UP_TO(div_min, p_inc);
829         p_max = ROUND_DOWN_TO(div_max, p_inc);
830         if (p_min < plls[index].min_p)
831                 p_min = 4;
832         if (p_max > plls[index].max_p)
833                 p_max = 128;
834
835         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
836
837         p = p_min;
838         do {
839                 if (splitp(index, p, &p1, &p2)) {
840                         WRN_MSG("cannot split p = %d\n", p);
841                         p += p_inc;
842                         continue;
843                 }
844                 n = plls[index].min_n;
845                 f_vco = clock * p;
846
847                 do {
848                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
849                         if (m < plls[index].min_m)
850                                 m = plls[index].min_m;
851                         if (m > plls[index].max_m)
852                                 m = plls[index].max_m;
853                         f_out = calc_vclock3(index, m, n, p);
854                         if (splitm(index, m, &m1, &m2)) {
855                                 WRN_MSG("cannot split m = %d\n", m);
856                                 n++;
857                                 continue;
858                         }
859                         if (clock > f_out)
860                                 f_err = clock - f_out;
861                         else
862                                 f_err = f_out - clock;
863
864                         if (f_err < err_best) {
865                                 m_best = m;
866                                 n_best = n;
867                                 p_best = p;
868                                 f_best = f_out;
869                                 err_best = f_err;
870                         }
871                         n++;
872                 } while ((n <= plls[index].max_n) && (f_out >= clock));
873                 p += p_inc;
874         } while ((p <= p_max));
875
876         if (!m_best) {
877                 WRN_MSG("cannot find parameters for clock %d\n", clock);
878                 return 1;
879         }
880         m = m_best;
881         n = n_best;
882         p = p_best;
883         splitm(index, m, &m1, &m2);
884         splitp(index, p, &p1, &p2);
885         n1 = n - 2;
886
887         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
888                 "f: %d (%d), VCO: %d\n",
889                 m, m1, m2, n, n1, p, p1, p2,
890                 calc_vclock3(index, m, n, p), 
891                 calc_vclock(index, m1, m2, n1, p1, p2),
892                 calc_vclock3(index, m, n, p) * p);
893         *retm1 = m1;
894         *retm2 = m2;
895         *retn = n1;
896         *retp1 = p1;
897         *retp2 = p2;
898         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
899
900         return 0;
901 }
902
903 static __inline__ int
904 check_overflow(u32 value, u32 limit, const char *description)
905 {
906         if (value > limit) {
907                 WRN_MSG("%s value %d exceeds limit %d\n",
908                         description, value, limit);
909                 return 1;
910         }
911         return 0;
912 }
913
914 /* It is assumed that hw is filled in with the initial state information. */
915 int
916 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
917                      struct fb_var_screeninfo *var)
918 {
919         int pipe = PIPE_A;
920         u32 *dpll, *fp0, *fp1;
921         u32 m1, m2, n, p1, p2, clock_target, clock;
922         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
923         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
924         u32 vsync_pol, hsync_pol;
925         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
926
927         DBG_MSG("intelfbhw_mode_to_hw\n");
928
929         /* Disable VGA */
930         hw->vgacntrl |= VGA_DISABLE;
931
932         /* Check whether pipe A or pipe B is enabled. */
933         if (hw->pipe_a_conf & PIPECONF_ENABLE)
934                 pipe = PIPE_A;
935         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
936                 pipe = PIPE_B;
937
938         /* Set which pipe's registers will be set. */
939         if (pipe == PIPE_B) {
940                 dpll = &hw->dpll_b;
941                 fp0 = &hw->fpb0;
942                 fp1 = &hw->fpb1;
943                 hs = &hw->hsync_b;
944                 hb = &hw->hblank_b;
945                 ht = &hw->htotal_b;
946                 vs = &hw->vsync_b;
947                 vb = &hw->vblank_b;
948                 vt = &hw->vtotal_b;
949                 ss = &hw->src_size_b;
950                 pipe_conf = &hw->pipe_b_conf;
951         } else {
952                 dpll = &hw->dpll_a;
953                 fp0 = &hw->fpa0;
954                 fp1 = &hw->fpa1;
955                 hs = &hw->hsync_a;
956                 hb = &hw->hblank_a;
957                 ht = &hw->htotal_a;
958                 vs = &hw->vsync_a;
959                 vb = &hw->vblank_a;
960                 vt = &hw->vtotal_a;
961                 ss = &hw->src_size_a;
962                 pipe_conf = &hw->pipe_a_conf;
963         }
964
965         /* Use ADPA register for sync control. */
966         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
967
968         /* sync polarity */
969         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
970                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
971         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
972                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
973         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
974                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
975         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
976                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
977
978         /* Connect correct pipe to the analog port DAC */
979         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
980         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
981
982         /* Set DPMS state to D0 (on) */
983         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
984         hw->adpa |= ADPA_DPMS_D0;
985
986         hw->adpa |= ADPA_DAC_ENABLE;
987
988         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
989         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
990         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
991
992         /* Desired clock in kHz */
993         clock_target = 1000000000 / var->pixclock;
994
995         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
996                 WRN_MSG("calc_pll_params failed\n");
997                 return 1;
998         }
999
1000         /* Check for overflow. */
1001         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1002                 return 1;
1003         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1004                 return 1;
1005         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1006                 return 1;
1007         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1008                 return 1;
1009         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1010                 return 1;
1011
1012         *dpll &= ~DPLL_P1_FORCE_DIV2;
1013         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1014                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1015         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1016         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1017                (m1 << FP_M1_DIVISOR_SHIFT) |
1018                (m2 << FP_M2_DIVISOR_SHIFT);
1019         *fp1 = *fp0;
1020
1021         hw->dvob &= ~PORT_ENABLE;
1022         hw->dvoc &= ~PORT_ENABLE;
1023
1024         /* Use display plane A. */
1025         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1026         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1027         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1028         switch (intelfb_var_to_depth(var)) {
1029         case 8:
1030                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1031                 break;
1032         case 15:
1033                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1034                 break;
1035         case 16:
1036                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1037                 break;
1038         case 24:
1039                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1040                 break;
1041         }
1042         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1043         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1044
1045         /* Set CRTC registers. */
1046         hactive = var->xres;
1047         hsync_start = hactive + var->right_margin;
1048         hsync_end = hsync_start + var->hsync_len;
1049         htotal = hsync_end + var->left_margin;
1050         hblank_start = hactive;
1051         hblank_end = htotal;
1052
1053         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1054                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1055                 hblank_end);
1056
1057         vactive = var->yres;
1058         vsync_start = vactive + var->lower_margin;
1059         vsync_end = vsync_start + var->vsync_len;
1060         vtotal = vsync_end + var->upper_margin;
1061         vblank_start = vactive;
1062         vblank_end = vtotal;
1063         vblank_end = vsync_end + 1;
1064
1065         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1066                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1067                 vblank_end);
1068
1069         /* Adjust for register values, and check for overflow. */
1070         hactive--;
1071         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1072                 return 1;
1073         hsync_start--;
1074         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1075                 return 1;
1076         hsync_end--;
1077         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1078                 return 1;
1079         htotal--;
1080         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1081                 return 1;
1082         hblank_start--;
1083         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1084                 return 1;
1085         hblank_end--;
1086         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1087                 return 1;
1088
1089         vactive--;
1090         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1091                 return 1;
1092         vsync_start--;
1093         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1094                 return 1;
1095         vsync_end--;
1096         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1097                 return 1;
1098         vtotal--;
1099         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1100                 return 1;
1101         vblank_start--;
1102         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1103                 return 1;
1104         vblank_end--;
1105         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1106                 return 1;
1107
1108         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1109         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1110               (hblank_end << HSYNCEND_SHIFT);
1111         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1112
1113         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1114         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1115               (vblank_end << VSYNCEND_SHIFT);
1116         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1117         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1118               (vactive << SRC_SIZE_VERT_SHIFT);
1119
1120         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1121         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1122
1123         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1124                           var->xoffset * var->bits_per_pixel / 8;
1125
1126         hw->disp_a_base += dinfo->fb.offset << 12;
1127
1128         /* Check stride alignment. */
1129         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1130                 WRN_MSG("display stride %d has bad alignment %d\n",
1131                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1132                 return 1;
1133         }
1134
1135         /* Set the palette to 8-bit mode. */
1136         *pipe_conf &= ~PIPECONF_GAMMA;
1137         return 0;
1138 }
1139
1140 /* Program a (non-VGA) video mode. */
1141 int
1142 intelfbhw_program_mode(struct intelfb_info *dinfo,
1143                      const struct intelfb_hwstate *hw, int blank)
1144 {
1145         int pipe = PIPE_A;
1146         u32 tmp;
1147         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1148         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1149         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1150         u32 hsync_reg, htotal_reg, hblank_reg;
1151         u32 vsync_reg, vtotal_reg, vblank_reg;
1152         u32 src_size_reg;
1153
1154         /* Assume single pipe, display plane A, analog CRT. */
1155
1156 #if VERBOSE > 0
1157         DBG_MSG("intelfbhw_program_mode\n");
1158 #endif
1159
1160         /* Disable VGA */
1161         tmp = INREG(VGACNTRL);
1162         tmp |= VGA_DISABLE;
1163         OUTREG(VGACNTRL, tmp);
1164
1165         /* Check whether pipe A or pipe B is enabled. */
1166         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1167                 pipe = PIPE_A;
1168         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1169                 pipe = PIPE_B;
1170
1171         dinfo->pipe = pipe;
1172
1173         if (pipe == PIPE_B) {
1174                 dpll = &hw->dpll_b;
1175                 fp0 = &hw->fpb0;
1176                 fp1 = &hw->fpb1;
1177                 pipe_conf = &hw->pipe_b_conf;
1178                 hs = &hw->hsync_b;
1179                 hb = &hw->hblank_b;
1180                 ht = &hw->htotal_b;
1181                 vs = &hw->vsync_b;
1182                 vb = &hw->vblank_b;
1183                 vt = &hw->vtotal_b;
1184                 ss = &hw->src_size_b;
1185                 dpll_reg = DPLL_B;
1186                 fp0_reg = FPB0;
1187                 fp1_reg = FPB1;
1188                 pipe_conf_reg = PIPEBCONF;
1189                 hsync_reg = HSYNC_B;
1190                 htotal_reg = HTOTAL_B;
1191                 hblank_reg = HBLANK_B;
1192                 vsync_reg = VSYNC_B;
1193                 vtotal_reg = VTOTAL_B;
1194                 vblank_reg = VBLANK_B;
1195                 src_size_reg = SRC_SIZE_B;
1196         } else {
1197                 dpll = &hw->dpll_a;
1198                 fp0 = &hw->fpa0;
1199                 fp1 = &hw->fpa1;
1200                 pipe_conf = &hw->pipe_a_conf;
1201                 hs = &hw->hsync_a;
1202                 hb = &hw->hblank_a;
1203                 ht = &hw->htotal_a;
1204                 vs = &hw->vsync_a;
1205                 vb = &hw->vblank_a;
1206                 vt = &hw->vtotal_a;
1207                 ss = &hw->src_size_a;
1208                 dpll_reg = DPLL_A;
1209                 fp0_reg = FPA0;
1210                 fp1_reg = FPA1;
1211                 pipe_conf_reg = PIPEACONF;
1212                 hsync_reg = HSYNC_A;
1213                 htotal_reg = HTOTAL_A;
1214                 hblank_reg = HBLANK_A;
1215                 vsync_reg = VSYNC_A;
1216                 vtotal_reg = VTOTAL_A;
1217                 vblank_reg = VBLANK_A;
1218                 src_size_reg = SRC_SIZE_A;
1219         }
1220
1221         /* Disable planes A and B. */
1222         tmp = INREG(DSPACNTR);
1223         tmp &= ~DISPPLANE_PLANE_ENABLE;
1224         OUTREG(DSPACNTR, tmp);
1225         tmp = INREG(DSPBCNTR);
1226         tmp &= ~DISPPLANE_PLANE_ENABLE;
1227         OUTREG(DSPBCNTR, tmp);
1228
1229         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1230         mdelay(20);
1231
1232         /* Disable Sync */
1233         tmp = INREG(ADPA);
1234         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1235         tmp |= ADPA_DPMS_D3;
1236         OUTREG(ADPA, tmp);
1237
1238         /* turn off pipe */
1239         tmp = INREG(pipe_conf_reg);
1240         tmp &= ~PIPECONF_ENABLE;
1241         OUTREG(pipe_conf_reg, tmp);
1242
1243         /* turn off PLL */
1244         tmp = INREG(dpll_reg);
1245         dpll_reg &= ~DPLL_VCO_ENABLE;
1246         OUTREG(dpll_reg, tmp);
1247
1248         /* Set PLL parameters */
1249         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1250         OUTREG(fp0_reg, *fp0);
1251         OUTREG(fp1_reg, *fp1);
1252
1253         /* Set pipe parameters */
1254         OUTREG(hsync_reg, *hs);
1255         OUTREG(hblank_reg, *hb);
1256         OUTREG(htotal_reg, *ht);
1257         OUTREG(vsync_reg, *vs);
1258         OUTREG(vblank_reg, *vb);
1259         OUTREG(vtotal_reg, *vt);
1260         OUTREG(src_size_reg, *ss);
1261
1262         /* Set DVOs B/C */
1263         OUTREG(DVOB, hw->dvob);
1264         OUTREG(DVOC, hw->dvoc);
1265
1266         /* Set ADPA */
1267         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1268
1269         /* Enable PLL */
1270         tmp = INREG(dpll_reg);
1271         tmp |= DPLL_VCO_ENABLE;
1272         OUTREG(dpll_reg, tmp);
1273
1274         /* Enable pipe */
1275         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1276
1277         /* Enable sync */
1278         tmp = INREG(ADPA);
1279         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1280         tmp |= ADPA_DPMS_D0;
1281         OUTREG(ADPA, tmp);
1282
1283         /* setup display plane */
1284         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1285                 /*
1286                  *      i830M errata: the display plane must be enabled
1287                  *      to allow writes to the other bits in the plane
1288                  *      control register.
1289                  */
1290                 tmp = INREG(DSPACNTR);
1291                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1292                         tmp |= DISPPLANE_PLANE_ENABLE;
1293                         OUTREG(DSPACNTR, tmp);
1294                         OUTREG(DSPACNTR,
1295                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1296                         mdelay(1);
1297               }
1298         }
1299
1300         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1301         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1302         OUTREG(DSPABASE, hw->disp_a_base);
1303
1304         /* Enable plane */
1305         if (!blank) {
1306                 tmp = INREG(DSPACNTR);
1307                 tmp |= DISPPLANE_PLANE_ENABLE;
1308                 OUTREG(DSPACNTR, tmp);
1309                 OUTREG(DSPABASE, hw->disp_a_base);
1310         }
1311
1312         return 0;
1313 }
1314
1315 /* forward declarations */
1316 static void refresh_ring(struct intelfb_info *dinfo);
1317 static void reset_state(struct intelfb_info *dinfo);
1318 static void do_flush(struct intelfb_info *dinfo);
1319
1320 static int
1321 wait_ring(struct intelfb_info *dinfo, int n)
1322 {
1323         int i = 0;
1324         unsigned long end;
1325         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1326
1327 #if VERBOSE > 0
1328         DBG_MSG("wait_ring: %d\n", n);
1329 #endif
1330
1331         end = jiffies + (HZ * 3);
1332         while (dinfo->ring_space < n) {
1333                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1334                                                    RING_HEAD_MASK);
1335                 if (dinfo->ring_tail + RING_MIN_FREE <
1336                     (u32 __iomem) dinfo->ring_head)
1337                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1338                                 - (dinfo->ring_tail + RING_MIN_FREE);
1339                 else
1340                         dinfo->ring_space = (dinfo->ring.size +
1341                                              (u32 __iomem) dinfo->ring_head)
1342                                 - (dinfo->ring_tail + RING_MIN_FREE);
1343                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1344                         end = jiffies + (HZ * 3);
1345                         last_head = (u32 __iomem) dinfo->ring_head;
1346                 }
1347                 i++;
1348                 if (time_before(end, jiffies)) {
1349                         if (!i) {
1350                                 /* Try again */
1351                                 reset_state(dinfo);
1352                                 refresh_ring(dinfo);
1353                                 do_flush(dinfo);
1354                                 end = jiffies + (HZ * 3);
1355                                 i = 1;
1356                         } else {
1357                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1358                                         dinfo->ring_space, n);
1359                                 WRN_MSG("lockup - turning off hardware "
1360                                         "acceleration\n");
1361                                 dinfo->ring_lockup = 1;
1362                                 break;
1363                         }
1364                 }
1365                 udelay(1);
1366         }
1367         return i;
1368 }
1369
1370 static void
1371 do_flush(struct intelfb_info *dinfo) {
1372         START_RING(2);
1373         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1374         OUT_RING(MI_NOOP);
1375         ADVANCE_RING();
1376 }
1377
1378 void
1379 intelfbhw_do_sync(struct intelfb_info *dinfo)
1380 {
1381 #if VERBOSE > 0
1382         DBG_MSG("intelfbhw_do_sync\n");
1383 #endif
1384
1385         if (!dinfo->accel)
1386                 return;
1387
1388         /*
1389          * Send a flush, then wait until the ring is empty.  This is what
1390          * the XFree86 driver does, and actually it doesn't seem a lot worse
1391          * than the recommended method (both have problems).
1392          */
1393         do_flush(dinfo);
1394         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1395         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1396 }
1397
1398 static void
1399 refresh_ring(struct intelfb_info *dinfo)
1400 {
1401 #if VERBOSE > 0
1402         DBG_MSG("refresh_ring\n");
1403 #endif
1404
1405         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1406                                            RING_HEAD_MASK);
1407         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1408         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1409                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1410                         - (dinfo->ring_tail + RING_MIN_FREE);
1411         else
1412                 dinfo->ring_space = (dinfo->ring.size +
1413                                      (u32 __iomem) dinfo->ring_head)
1414                         - (dinfo->ring_tail + RING_MIN_FREE);
1415 }
1416
1417 static void
1418 reset_state(struct intelfb_info *dinfo)
1419 {
1420         int i;
1421         u32 tmp;
1422
1423 #if VERBOSE > 0
1424         DBG_MSG("reset_state\n");
1425 #endif
1426
1427         for (i = 0; i < FENCE_NUM; i++)
1428                 OUTREG(FENCE + (i << 2), 0);
1429
1430         /* Flush the ring buffer if it's enabled. */
1431         tmp = INREG(PRI_RING_LENGTH);
1432         if (tmp & RING_ENABLE) {
1433 #if VERBOSE > 0
1434                 DBG_MSG("reset_state: ring was enabled\n");
1435 #endif
1436                 refresh_ring(dinfo);
1437                 intelfbhw_do_sync(dinfo);
1438                 DO_RING_IDLE();
1439         }
1440
1441         OUTREG(PRI_RING_LENGTH, 0);
1442         OUTREG(PRI_RING_HEAD, 0);
1443         OUTREG(PRI_RING_TAIL, 0);
1444         OUTREG(PRI_RING_START, 0);
1445 }
1446
1447 /* Stop the 2D engine, and turn off the ring buffer. */
1448 void
1449 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1450 {
1451 #if VERBOSE > 0
1452         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1453                 dinfo->ring_active);
1454 #endif
1455
1456         if (!dinfo->accel)
1457                 return;
1458
1459         dinfo->ring_active = 0;
1460         reset_state(dinfo);
1461 }
1462
1463 /*
1464  * Enable the ring buffer, and initialise the 2D engine.
1465  * It is assumed that the graphics engine has been stopped by previously
1466  * calling intelfb_2d_stop().
1467  */
1468 void
1469 intelfbhw_2d_start(struct intelfb_info *dinfo)
1470 {
1471 #if VERBOSE > 0
1472         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1473                 dinfo->accel, dinfo->ring_active);
1474 #endif
1475
1476         if (!dinfo->accel)
1477                 return;
1478
1479         /* Initialise the primary ring buffer. */
1480         OUTREG(PRI_RING_LENGTH, 0);
1481         OUTREG(PRI_RING_TAIL, 0);
1482         OUTREG(PRI_RING_HEAD, 0);
1483
1484         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1485         OUTREG(PRI_RING_LENGTH,
1486                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1487                 RING_NO_REPORT | RING_ENABLE);
1488         refresh_ring(dinfo);
1489         dinfo->ring_active = 1;
1490 }
1491
1492 /* 2D fillrect (solid fill or invert) */
1493 void
1494 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1495                       u32 color, u32 pitch, u32 bpp, u32 rop)
1496 {
1497         u32 br00, br09, br13, br14, br16;
1498
1499 #if VERBOSE > 0
1500         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1501                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1502 #endif
1503
1504         br00 = COLOR_BLT_CMD;
1505         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1506         br13 = (rop << ROP_SHIFT) | pitch;
1507         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1508         br16 = color;
1509
1510         switch (bpp) {
1511         case 8:
1512                 br13 |= COLOR_DEPTH_8;
1513                 break;
1514         case 16:
1515                 br13 |= COLOR_DEPTH_16;
1516                 break;
1517         case 32:
1518                 br13 |= COLOR_DEPTH_32;
1519                 br00 |= WRITE_ALPHA | WRITE_RGB;
1520                 break;
1521         }
1522
1523         START_RING(6);
1524         OUT_RING(br00);
1525         OUT_RING(br13);
1526         OUT_RING(br14);
1527         OUT_RING(br09);
1528         OUT_RING(br16);
1529         OUT_RING(MI_NOOP);
1530         ADVANCE_RING();
1531
1532 #if VERBOSE > 0
1533         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1534                 dinfo->ring_tail, dinfo->ring_space);
1535 #endif
1536 }
1537
1538 void
1539 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1540                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1541 {
1542         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1543
1544 #if VERBOSE > 0
1545         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1546                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1547 #endif
1548
1549         br00 = XY_SRC_COPY_BLT_CMD;
1550         br09 = dinfo->fb_start;
1551         br11 = (pitch << PITCH_SHIFT);
1552         br12 = dinfo->fb_start;
1553         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1554         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1555         br23 = ((dstx + w) << WIDTH_SHIFT) |
1556                ((dsty + h) << HEIGHT_SHIFT);
1557         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1558
1559         switch (bpp) {
1560         case 8:
1561                 br13 |= COLOR_DEPTH_8;
1562                 break;
1563         case 16:
1564                 br13 |= COLOR_DEPTH_16;
1565                 break;
1566         case 32:
1567                 br13 |= COLOR_DEPTH_32;
1568                 br00 |= WRITE_ALPHA | WRITE_RGB;
1569                 break;
1570         }
1571
1572         START_RING(8);
1573         OUT_RING(br00);
1574         OUT_RING(br13);
1575         OUT_RING(br22);
1576         OUT_RING(br23);
1577         OUT_RING(br09);
1578         OUT_RING(br26);
1579         OUT_RING(br11);
1580         OUT_RING(br12);
1581         ADVANCE_RING();
1582 }
1583
1584 int
1585 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1586                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1587 {
1588         int nbytes, ndwords, pad, tmp;
1589         u32 br00, br09, br13, br18, br19, br22, br23;
1590         int dat, ix, iy, iw;
1591         int i, j;
1592
1593 #if VERBOSE > 0
1594         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1595 #endif
1596
1597         /* size in bytes of a padded scanline */
1598         nbytes = ROUND_UP_TO(w, 16) / 8;
1599
1600         /* Total bytes of padded scanline data to write out. */
1601         nbytes = nbytes * h;
1602
1603         /*
1604          * Check if the glyph data exceeds the immediate mode limit.
1605          * It would take a large font (1K pixels) to hit this limit.
1606          */
1607         if (nbytes > MAX_MONO_IMM_SIZE)
1608                 return 0;
1609
1610         /* Src data is packaged a dword (32-bit) at a time. */
1611         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1612
1613         /*
1614          * Ring has to be padded to a quad word. But because the command starts
1615            with 7 bytes, pad only if there is an even number of ndwords
1616          */
1617         pad = !(ndwords % 2);
1618
1619         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1620         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1621         br09 = dinfo->fb_start;
1622         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1623         br18 = bg;
1624         br19 = fg;
1625         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1626         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1627
1628         switch (bpp) {
1629         case 8:
1630                 br13 |= COLOR_DEPTH_8;
1631                 break;
1632         case 16:
1633                 br13 |= COLOR_DEPTH_16;
1634                 break;
1635         case 32:
1636                 br13 |= COLOR_DEPTH_32;
1637                 br00 |= WRITE_ALPHA | WRITE_RGB;
1638                 break;
1639         }
1640
1641         START_RING(8 + ndwords);
1642         OUT_RING(br00);
1643         OUT_RING(br13);
1644         OUT_RING(br22);
1645         OUT_RING(br23);
1646         OUT_RING(br09);
1647         OUT_RING(br18);
1648         OUT_RING(br19);
1649         ix = iy = 0;
1650         iw = ROUND_UP_TO(w, 8) / 8;
1651         while (ndwords--) {
1652                 dat = 0;
1653                 for (j = 0; j < 2; ++j) {
1654                         for (i = 0; i < 2; ++i) {
1655                                 if (ix != iw || i == 0)
1656                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1657                         }
1658                         if (ix == iw && iy != (h-1)) {
1659                                 ix = 0;
1660                                 ++iy;
1661                         }
1662                 }
1663                 OUT_RING(dat);
1664         }
1665         if (pad)
1666                 OUT_RING(MI_NOOP);
1667         ADVANCE_RING();
1668
1669         return 1;
1670 }
1671
1672 /* HW cursor functions. */
1673 void
1674 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1675 {
1676         u32 tmp;
1677
1678 #if VERBOSE > 0
1679         DBG_MSG("intelfbhw_cursor_init\n");
1680 #endif
1681
1682         if (dinfo->mobile) {
1683                 if (!dinfo->cursor.physical)
1684                         return;
1685                 tmp = INREG(CURSOR_A_CONTROL);
1686                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1687                          CURSOR_MEM_TYPE_LOCAL |
1688                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1689                 tmp |= CURSOR_MODE_DISABLE;
1690                 OUTREG(CURSOR_A_CONTROL, tmp);
1691                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1692         } else {
1693                 tmp = INREG(CURSOR_CONTROL);
1694                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1695                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1696                 tmp = CURSOR_FORMAT_3C;
1697                 OUTREG(CURSOR_CONTROL, tmp);
1698                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1699                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1700                       (64 << CURSOR_SIZE_V_SHIFT);
1701                 OUTREG(CURSOR_SIZE, tmp);
1702         }
1703 }
1704
1705 void
1706 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1707 {
1708         u32 tmp;
1709
1710 #if VERBOSE > 0
1711         DBG_MSG("intelfbhw_cursor_hide\n");
1712 #endif
1713
1714         dinfo->cursor_on = 0;
1715         if (dinfo->mobile) {
1716                 if (!dinfo->cursor.physical)
1717                         return;
1718                 tmp = INREG(CURSOR_A_CONTROL);
1719                 tmp &= ~CURSOR_MODE_MASK;
1720                 tmp |= CURSOR_MODE_DISABLE;
1721                 OUTREG(CURSOR_A_CONTROL, tmp);
1722                 /* Flush changes */
1723                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1724         } else {
1725                 tmp = INREG(CURSOR_CONTROL);
1726                 tmp &= ~CURSOR_ENABLE;
1727                 OUTREG(CURSOR_CONTROL, tmp);
1728         }
1729 }
1730
1731 void
1732 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1733 {
1734         u32 tmp;
1735
1736 #if VERBOSE > 0
1737         DBG_MSG("intelfbhw_cursor_show\n");
1738 #endif
1739
1740         dinfo->cursor_on = 1;
1741
1742         if (dinfo->cursor_blanked)
1743                 return;
1744
1745         if (dinfo->mobile) {
1746                 if (!dinfo->cursor.physical)
1747                         return;
1748                 tmp = INREG(CURSOR_A_CONTROL);
1749                 tmp &= ~CURSOR_MODE_MASK;
1750                 tmp |= CURSOR_MODE_64_4C_AX;
1751                 OUTREG(CURSOR_A_CONTROL, tmp);
1752                 /* Flush changes */
1753                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1754         } else {
1755                 tmp = INREG(CURSOR_CONTROL);
1756                 tmp |= CURSOR_ENABLE;
1757                 OUTREG(CURSOR_CONTROL, tmp);
1758         }
1759 }
1760
1761 void
1762 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1763 {
1764         u32 tmp;
1765
1766 #if VERBOSE > 0
1767         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1768 #endif
1769
1770         /*
1771          * Sets the position.  The coordinates are assumed to already
1772          * have any offset adjusted.  Assume that the cursor is never
1773          * completely off-screen, and that x, y are always >= 0.
1774          */
1775
1776         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1777               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1778         OUTREG(CURSOR_A_POSITION, tmp);
1779 }
1780
1781 void
1782 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1783 {
1784 #if VERBOSE > 0
1785         DBG_MSG("intelfbhw_cursor_setcolor\n");
1786 #endif
1787
1788         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1789         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1790         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1791         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1792 }
1793
1794 void
1795 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1796                       u8 *data)
1797 {
1798         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1799         int i, j, w = width / 8;
1800         int mod = width % 8, t_mask, d_mask;
1801
1802 #if VERBOSE > 0
1803         DBG_MSG("intelfbhw_cursor_load\n");
1804 #endif
1805
1806         if (!dinfo->cursor.virtual)
1807                 return;
1808
1809         t_mask = 0xff >> mod;
1810         d_mask = ~(0xff >> mod);
1811         for (i = height; i--; ) {
1812                 for (j = 0; j < w; j++) {
1813                         writeb(0x00, addr + j);
1814                         writeb(*(data++), addr + j+8);
1815                 }
1816                 if (mod) {
1817                         writeb(t_mask, addr + j);
1818                         writeb(*(data++) & d_mask, addr + j+8);
1819                 }
1820                 addr += 16;
1821         }
1822 }
1823
1824 void
1825 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1826         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1827         int i, j;
1828
1829 #if VERBOSE > 0
1830         DBG_MSG("intelfbhw_cursor_reset\n");
1831 #endif
1832
1833         if (!dinfo->cursor.virtual)
1834                 return;
1835
1836         for (i = 64; i--; ) {
1837                 for (j = 0; j < 8; j++) {
1838                         writeb(0xff, addr + j+0);
1839                         writeb(0x00, addr + j+8);
1840                 }
1841                 addr += 16;
1842         }
1843 }