9a2d8cb4d4007871478c6ad47c7704da4d1e02e5
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52         int p_inc_lo, p_inc_hi;
53 };
54
55 #define PLLS_I8xx 0
56 #define PLLS_I9xx 1
57 #define PLLS_MAX 2
58
59 struct pll_min_max plls[PLLS_MAX] = {
60         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62 };
63
64 int
65 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66 {
67         u32 tmp;
68         if (!pdev || !dinfo)
69                 return 1;
70
71         switch (pdev->device) {
72         case PCI_DEVICE_ID_INTEL_830M:
73                 dinfo->name = "Intel(R) 830M";
74                 dinfo->chipset = INTEL_830M;
75                 dinfo->mobile = 1;
76                 dinfo->pll_index = PLLS_I8xx;
77                 return 0;
78         case PCI_DEVICE_ID_INTEL_845G:
79                 dinfo->name = "Intel(R) 845G";
80                 dinfo->chipset = INTEL_845G;
81                 dinfo->mobile = 0;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_85XGM:
85                 tmp = 0;
86                 dinfo->mobile = 1;
87                 dinfo->pll_index = PLLS_I8xx;
88                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90                         INTEL_85X_VARIANT_MASK) {
91                 case INTEL_VAR_855GME:
92                         dinfo->name = "Intel(R) 855GME";
93                         dinfo->chipset = INTEL_855GME;
94                         return 0;
95                 case INTEL_VAR_855GM:
96                         dinfo->name = "Intel(R) 855GM";
97                         dinfo->chipset = INTEL_855GM;
98                         return 0;
99                 case INTEL_VAR_852GME:
100                         dinfo->name = "Intel(R) 852GME";
101                         dinfo->chipset = INTEL_852GME;
102                         return 0;
103                 case INTEL_VAR_852GM:
104                         dinfo->name = "Intel(R) 852GM";
105                         dinfo->chipset = INTEL_852GM;
106                         return 0;
107                 default:
108                         dinfo->name = "Intel(R) 852GM/855GM";
109                         dinfo->chipset = INTEL_85XGM;
110                         return 0;
111                 }
112                 break;
113         case PCI_DEVICE_ID_INTEL_865G:
114                 dinfo->name = "Intel(R) 865G";
115                 dinfo->chipset = INTEL_865G;
116                 dinfo->mobile = 0;
117                 dinfo->pll_index = PLLS_I8xx;
118                 return 0;
119         case PCI_DEVICE_ID_INTEL_915G:
120                 dinfo->name = "Intel(R) 915G";
121                 dinfo->chipset = INTEL_915G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I9xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915GM:
126                 dinfo->name = "Intel(R) 915GM";
127                 dinfo->chipset = INTEL_915GM;
128                 dinfo->mobile = 1;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         default:
132                 return 1;
133         }
134 }
135
136 int
137 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
138                      int *stolen_size)
139 {
140         struct pci_dev *bridge_dev;
141         u16 tmp;
142
143         if (!pdev || !aperture_size || !stolen_size)
144                 return 1;
145
146         /* Find the bridge device.  It is always 0:0.0 */
147         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
148                 ERR_MSG("cannot find bridge device\n");
149                 return 1;
150         }
151
152         /* Get the fb aperture size and "stolen" memory amount. */
153         tmp = 0;
154         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
155         switch (pdev->device) {
156         case PCI_DEVICE_ID_INTEL_830M:
157         case PCI_DEVICE_ID_INTEL_845G:
158                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
159                         *aperture_size = MB(64);
160                 else
161                         *aperture_size = MB(128);
162                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
163                 case INTEL_830_GMCH_GMS_STOLEN_512:
164                         *stolen_size = KB(512) - KB(132);
165                         return 0;
166                 case INTEL_830_GMCH_GMS_STOLEN_1024:
167                         *stolen_size = MB(1) - KB(132);
168                         return 0;
169                 case INTEL_830_GMCH_GMS_STOLEN_8192:
170                         *stolen_size = MB(8) - KB(132);
171                         return 0;
172                 case INTEL_830_GMCH_GMS_LOCAL:
173                         ERR_MSG("only local memory found\n");
174                         return 1;
175                 case INTEL_830_GMCH_GMS_DISABLED:
176                         ERR_MSG("video memory is disabled\n");
177                         return 1;
178                 default:
179                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
180                                 tmp & INTEL_830_GMCH_GMS_MASK);
181                         return 1;
182                 }
183                 break;
184         default:
185                 *aperture_size = MB(128);
186                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
187                 case INTEL_855_GMCH_GMS_STOLEN_1M:
188                         *stolen_size = MB(1) - KB(132);
189                         return 0;
190                 case INTEL_855_GMCH_GMS_STOLEN_4M:
191                         *stolen_size = MB(4) - KB(132);
192                         return 0;
193                 case INTEL_855_GMCH_GMS_STOLEN_8M:
194                         *stolen_size = MB(8) - KB(132);
195                         return 0;
196                 case INTEL_855_GMCH_GMS_STOLEN_16M:
197                         *stolen_size = MB(16) - KB(132);
198                         return 0;
199                 case INTEL_855_GMCH_GMS_STOLEN_32M:
200                         *stolen_size = MB(32) - KB(132);
201                         return 0;
202                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
203                         *stolen_size = MB(48) - KB(132);
204                         return 0;
205                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
206                         *stolen_size = MB(64) - KB(132);
207                         return 0;
208                 case INTEL_855_GMCH_GMS_DISABLED:
209                         ERR_MSG("video memory is disabled\n");
210                         return 0;
211                 default:
212                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
213                                 tmp & INTEL_855_GMCH_GMS_MASK);
214                         return 1;
215                 }
216         }
217 }
218
219 int
220 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
221 {
222         int dvo = 0;
223
224         if (INREG(LVDS) & PORT_ENABLE)
225                 dvo |= LVDS_PORT;
226         if (INREG(DVOA) & PORT_ENABLE)
227                 dvo |= DVOA_PORT;
228         if (INREG(DVOB) & PORT_ENABLE)
229                 dvo |= DVOB_PORT;
230         if (INREG(DVOC) & PORT_ENABLE)
231                 dvo |= DVOC_PORT;
232
233         return dvo;
234 }
235
236 const char *
237 intelfbhw_dvo_to_string(int dvo)
238 {
239         if (dvo & DVOA_PORT)
240                 return "DVO port A";
241         else if (dvo & DVOB_PORT)
242                 return "DVO port B";
243         else if (dvo & DVOC_PORT)
244                 return "DVO port C";
245         else if (dvo & LVDS_PORT)
246                 return "LVDS port";
247         else
248                 return NULL;
249 }
250
251
252 int
253 intelfbhw_validate_mode(struct intelfb_info *dinfo,
254                         struct fb_var_screeninfo *var)
255 {
256         int bytes_per_pixel;
257         int tmp;
258
259 #if VERBOSE > 0
260         DBG_MSG("intelfbhw_validate_mode\n");
261 #endif
262
263         bytes_per_pixel = var->bits_per_pixel / 8;
264         if (bytes_per_pixel == 3)
265                 bytes_per_pixel = 4;
266
267         /* Check if enough video memory. */
268         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
269         if (tmp > dinfo->fb.size) {
270                 WRN_MSG("Not enough video ram for mode "
271                         "(%d KByte vs %d KByte).\n",
272                         BtoKB(tmp), BtoKB(dinfo->fb.size));
273                 return 1;
274         }
275
276         /* Check if x/y limits are OK. */
277         if (var->xres - 1 > HACTIVE_MASK) {
278                 WRN_MSG("X resolution too large (%d vs %d).\n",
279                         var->xres, HACTIVE_MASK + 1);
280                 return 1;
281         }
282         if (var->yres - 1 > VACTIVE_MASK) {
283                 WRN_MSG("Y resolution too large (%d vs %d).\n",
284                         var->yres, VACTIVE_MASK + 1);
285                 return 1;
286         }
287
288         /* Check for interlaced/doublescan modes. */
289         if (var->vmode & FB_VMODE_INTERLACED) {
290                 WRN_MSG("Mode is interlaced.\n");
291                 return 1;
292         }
293         if (var->vmode & FB_VMODE_DOUBLE) {
294                 WRN_MSG("Mode is double-scan.\n");
295                 return 1;
296         }
297
298         /* Check if clock is OK. */
299         tmp = 1000000000 / var->pixclock;
300         if (tmp < MIN_CLOCK) {
301                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
302                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
303                 return 1;
304         }
305         if (tmp > MAX_CLOCK) {
306                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
307                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
308                 return 1;
309         }
310
311         return 0;
312 }
313
314 int
315 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
316 {
317         struct intelfb_info *dinfo = GET_DINFO(info);
318         u32 offset, xoffset, yoffset;
319
320 #if VERBOSE > 0
321         DBG_MSG("intelfbhw_pan_display\n");
322 #endif
323
324         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
325         yoffset = var->yoffset;
326
327         if ((xoffset + var->xres > var->xres_virtual) ||
328             (yoffset + var->yres > var->yres_virtual))
329                 return -EINVAL;
330
331         offset = (yoffset * dinfo->pitch) +
332                  (xoffset * var->bits_per_pixel) / 8;
333
334         offset += dinfo->fb.offset << 12;
335
336         OUTREG(DSPABASE, offset);
337
338         return 0;
339 }
340
341 /* Blank the screen. */
342 void
343 intelfbhw_do_blank(int blank, struct fb_info *info)
344 {
345         struct intelfb_info *dinfo = GET_DINFO(info);
346         u32 tmp;
347
348 #if VERBOSE > 0
349         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
350 #endif
351
352         /* Turn plane A on or off */
353         tmp = INREG(DSPACNTR);
354         if (blank)
355                 tmp &= ~DISPPLANE_PLANE_ENABLE;
356         else
357                 tmp |= DISPPLANE_PLANE_ENABLE;
358         OUTREG(DSPACNTR, tmp);
359         /* Flush */
360         tmp = INREG(DSPABASE);
361         OUTREG(DSPABASE, tmp);
362
363         /* Turn off/on the HW cursor */
364 #if VERBOSE > 0
365         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
366 #endif
367         if (dinfo->cursor_on) {
368                 if (blank) {
369                         intelfbhw_cursor_hide(dinfo);
370                 } else {
371                         intelfbhw_cursor_show(dinfo);
372                 }
373                 dinfo->cursor_on = 1;
374         }
375         dinfo->cursor_blanked = blank;
376
377         /* Set DPMS level */
378         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
379         switch (blank) {
380         case FB_BLANK_UNBLANK:
381         case FB_BLANK_NORMAL:
382                 tmp |= ADPA_DPMS_D0;
383                 break;
384         case FB_BLANK_VSYNC_SUSPEND:
385                 tmp |= ADPA_DPMS_D1;
386                 break;
387         case FB_BLANK_HSYNC_SUSPEND:
388                 tmp |= ADPA_DPMS_D2;
389                 break;
390         case FB_BLANK_POWERDOWN:
391                 tmp |= ADPA_DPMS_D3;
392                 break;
393         }
394         OUTREG(ADPA, tmp);
395
396         return;
397 }
398
399
400 void
401 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
402                     unsigned red, unsigned green, unsigned blue,
403                     unsigned transp)
404 {
405 #if VERBOSE > 0
406         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
407                 regno, red, green, blue);
408 #endif
409
410         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
411                           PALETTE_A : PALETTE_B;
412
413         OUTREG(palette_reg + (regno << 2),
414                (red << PALETTE_8_RED_SHIFT) |
415                (green << PALETTE_8_GREEN_SHIFT) |
416                (blue << PALETTE_8_BLUE_SHIFT));
417 }
418
419
420 int
421 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
422                         int flag)
423 {
424         int i;
425
426 #if VERBOSE > 0
427         DBG_MSG("intelfbhw_read_hw_state\n");
428 #endif
429
430         if (!hw || !dinfo)
431                 return -1;
432
433         /* Read in as much of the HW state as possible. */
434         hw->vga0_divisor = INREG(VGA0_DIVISOR);
435         hw->vga1_divisor = INREG(VGA1_DIVISOR);
436         hw->vga_pd = INREG(VGAPD);
437         hw->dpll_a = INREG(DPLL_A);
438         hw->dpll_b = INREG(DPLL_B);
439         hw->fpa0 = INREG(FPA0);
440         hw->fpa1 = INREG(FPA1);
441         hw->fpb0 = INREG(FPB0);
442         hw->fpb1 = INREG(FPB1);
443
444         if (flag == 1)
445                 return flag;
446
447 #if 0
448         /* This seems to be a problem with the 852GM/855GM */
449         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
450                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
451                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
452         }
453 #endif
454
455         if (flag == 2)
456                 return flag;
457
458         hw->htotal_a = INREG(HTOTAL_A);
459         hw->hblank_a = INREG(HBLANK_A);
460         hw->hsync_a = INREG(HSYNC_A);
461         hw->vtotal_a = INREG(VTOTAL_A);
462         hw->vblank_a = INREG(VBLANK_A);
463         hw->vsync_a = INREG(VSYNC_A);
464         hw->src_size_a = INREG(SRC_SIZE_A);
465         hw->bclrpat_a = INREG(BCLRPAT_A);
466         hw->htotal_b = INREG(HTOTAL_B);
467         hw->hblank_b = INREG(HBLANK_B);
468         hw->hsync_b = INREG(HSYNC_B);
469         hw->vtotal_b = INREG(VTOTAL_B);
470         hw->vblank_b = INREG(VBLANK_B);
471         hw->vsync_b = INREG(VSYNC_B);
472         hw->src_size_b = INREG(SRC_SIZE_B);
473         hw->bclrpat_b = INREG(BCLRPAT_B);
474
475         if (flag == 3)
476                 return flag;
477
478         hw->adpa = INREG(ADPA);
479         hw->dvoa = INREG(DVOA);
480         hw->dvob = INREG(DVOB);
481         hw->dvoc = INREG(DVOC);
482         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
483         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
484         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
485         hw->lvds = INREG(LVDS);
486
487         if (flag == 4)
488                 return flag;
489
490         hw->pipe_a_conf = INREG(PIPEACONF);
491         hw->pipe_b_conf = INREG(PIPEBCONF);
492         hw->disp_arb = INREG(DISPARB);
493
494         if (flag == 5)
495                 return flag;
496
497         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
498         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
499         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
500         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
501
502         if (flag == 6)
503                 return flag;
504
505         for (i = 0; i < 4; i++) {
506                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
507                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
508         }
509
510         if (flag == 7)
511                 return flag;
512
513         hw->cursor_size = INREG(CURSOR_SIZE);
514
515         if (flag == 8)
516                 return flag;
517
518         hw->disp_a_ctrl = INREG(DSPACNTR);
519         hw->disp_b_ctrl = INREG(DSPBCNTR);
520         hw->disp_a_base = INREG(DSPABASE);
521         hw->disp_b_base = INREG(DSPBBASE);
522         hw->disp_a_stride = INREG(DSPASTRIDE);
523         hw->disp_b_stride = INREG(DSPBSTRIDE);
524
525         if (flag == 9)
526                 return flag;
527
528         hw->vgacntrl = INREG(VGACNTRL);
529
530         if (flag == 10)
531                 return flag;
532
533         hw->add_id = INREG(ADD_ID);
534
535         if (flag == 11)
536                 return flag;
537
538         for (i = 0; i < 7; i++) {
539                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
540                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
541                 if (i < 3)
542                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
543         }
544
545         for (i = 0; i < 8; i++)
546                 hw->fence[i] = INREG(FENCE + (i << 2));
547
548         hw->instpm = INREG(INSTPM);
549         hw->mem_mode = INREG(MEM_MODE);
550         hw->fw_blc_0 = INREG(FW_BLC_0);
551         hw->fw_blc_1 = INREG(FW_BLC_1);
552
553         return 0;
554 }
555
556
557 static int calc_vclock3(int index, int m, int n, int p)
558 {
559         return PLL_REFCLK * m / n / p;
560 }
561                        
562 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
563 {
564         switch(index)
565         {
566         case PLLS_I9xx:
567                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
568                          ((p1)) * (p2 ? 10 : 5)));
569         case PLLS_I8xx:
570         default:
571                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / 
572                          ((p1+2) * (1 << (p2 + 1)))));
573         }
574 }
575
576 void
577 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
578 {
579 #if REGDUMP
580         int i, m1, m2, n, p1, p2;
581         int index = dinfo->pll_index;
582         DBG_MSG("intelfbhw_print_hw_state\n");
583         
584         if (!hw || !dinfo)
585                 return;
586         /* Read in as much of the HW state as possible. */
587         printk("hw state dump start\n");
588         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
589         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
590         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
591         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
592         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
593         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
594         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
595                 p1 = 0;
596         else
597                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
598         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
599         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
600                m1, m2, n, p1, p2);
601         printk("        VGA0: clock is %d\n", 
602                calc_vclock(index, m1, m2, n, p1, p2));
603         
604         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
605         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
606         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
607         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
608                 p1 = 0;
609         else
610                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
611         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
612         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
613                m1, m2, n, p1, p2);
614         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
615         
616         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
617         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
618         printk("        FPA0:                   0x%08x\n", hw->fpa0);
619         printk("        FPA1:                   0x%08x\n", hw->fpa1);
620         printk("        FPB0:                   0x%08x\n", hw->fpb0);
621         printk("        FPB1:                   0x%08x\n", hw->fpb1);
622         
623         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
624         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
625         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
626         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
627                 p1 = 0;
628         else
629                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
630         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
631         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
632                m1, m2, n, p1, p2);
633         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
634         
635         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
637         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
638         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
639                 p1 = 0;
640         else
641                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
642         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
643         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
644                m1, m2, n, p1, p2);
645         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
646         
647 #if 0
648         printk("        PALETTE_A:\n");
649         for (i = 0; i < PALETTE_8_ENTRIES)
650                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
651         printk("        PALETTE_B:\n");
652         for (i = 0; i < PALETTE_8_ENTRIES)
653                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
654 #endif
655
656         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
657         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
658         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
659         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
660         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
661         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
662         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
663         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
664         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
665         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
666         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
667         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
668         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
669         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
670         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
671         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
672
673         printk("        ADPA:                   0x%08x\n", hw->adpa);
674         printk("        DVOA:                   0x%08x\n", hw->dvoa);
675         printk("        DVOB:                   0x%08x\n", hw->dvob);
676         printk("        DVOC:                   0x%08x\n", hw->dvoc);
677         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
678         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
679         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
680         printk("        LVDS:                   0x%08x\n", hw->lvds);
681
682         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
683         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
684         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
685
686         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
687         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
688         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
689         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
690
691         printk("        CURSOR_A_PALETTE:       ");
692         for (i = 0; i < 4; i++) {
693                 printk("0x%08x", hw->cursor_a_palette[i]);
694                 if (i < 3)
695                         printk(", ");
696         }
697         printk("\n");
698         printk("        CURSOR_B_PALETTE:       ");
699         for (i = 0; i < 4; i++) {
700                 printk("0x%08x", hw->cursor_b_palette[i]);
701                 if (i < 3)
702                         printk(", ");
703         }
704         printk("\n");
705
706         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
707
708         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
709         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
710         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
711         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
712         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
713         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
714
715         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
716         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
717
718         for (i = 0; i < 7; i++) {
719                 printk("        SWF0%d                  0x%08x\n", i,
720                         hw->swf0x[i]);
721         }
722         for (i = 0; i < 7; i++) {
723                 printk("        SWF1%d                  0x%08x\n", i,
724                         hw->swf1x[i]);
725         }
726         for (i = 0; i < 3; i++) {
727                 printk("        SWF3%d                  0x%08x\n", i,
728                        hw->swf3x[i]);
729         }
730         for (i = 0; i < 8; i++)
731                 printk("        FENCE%d                 0x%08x\n", i,
732                        hw->fence[i]);
733                        
734         printk("        INSTPM                  0x%08x\n", hw->instpm);
735         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
736         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
737         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
738
739         printk("hw state dump end\n");
740 #endif
741 }
742
743                
744
745 /* Split the M parameter into M1 and M2. */
746 static int
747 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
748 {
749         int m1, m2;
750         int testm;
751         /* no point optimising too much - brute force m */
752         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
753         {
754           for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
755           {
756             testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
757             if (testm == m)
758             {
759                 *retm1 = (unsigned int)m1;
760                 *retm2 = (unsigned int)m2;            
761                 return 0;
762             }
763           }
764         }
765         return 1;
766 }
767
768 /* Split the P parameter into P1 and P2. */
769 static int
770 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
771 {
772         int p1, p2;
773
774         if (index == PLLS_I9xx)
775         {
776                 p1 = (p / 10) + 1;
777                 p2 = 0;
778                 
779                 *retp1 = (unsigned int)p1;
780                 *retp2 = (unsigned int)p2;
781                 return 0;
782         }
783
784         if (index == PLLS_I8xx)
785         {
786                 if (p % 4 == 0)
787                         p2 = 1;
788                 else
789                         p2 = 0;
790                 p1 = (p / (1 << (p2 + 1))) - 2;
791                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
792                         p2 = 0;
793                         p1 = (p / (1 << (p2 + 1))) - 2;
794                 }
795                 if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
796                         return 1;
797                 } else {
798                         *retp1 = (unsigned int)p1;
799                         *retp2 = (unsigned int)p2;
800                         return 0;
801                 }
802         }
803         return 1;
804 }
805
806 static int
807 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
808                 u32 *retp2, u32 *retclock)
809 {
810         u32 m1, m2, n, p1, p2, n1;
811         u32 f_vco, p, p_best = 0, m, f_out;
812         u32 err_max, err_target, err_best = 10000000;
813         u32 n_best = 0, m_best = 0, f_best, f_err;
814         u32 p_min, p_max, p_inc, div_min, div_max;
815
816         /* Accept 0.5% difference, but aim for 0.1% */
817         err_max = 5 * clock / 1000;
818         err_target = clock / 1000;
819
820         DBG_MSG("Clock is %d\n", clock);
821
822         div_max = plls[index].max_vco_freq / clock;
823         div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
824
825         if (clock <= plls[index].p_transition_clock)
826                 p_inc = plls[index].p_inc_lo;
827         else
828                 p_inc = plls[index].p_inc_hi;
829         p_min = ROUND_UP_TO(div_min, p_inc);
830         p_max = ROUND_DOWN_TO(div_max, p_inc);
831         if (p_min < plls[index].min_p)
832                 p_min = plls[index].min_p;
833         if (p_max > plls[index].max_p)
834                 p_max = plls[index].max_p;
835
836         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
837
838         p = p_min;
839         do {
840                 if (splitp(index, p, &p1, &p2)) {
841                         WRN_MSG("cannot split p = %d\n", p);
842                         p += p_inc;
843                         continue;
844                 }
845                 n = plls[index].min_n;
846                 f_vco = clock * p;
847
848                 do {
849                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
850                         if (m < plls[index].min_m)
851                                 m = plls[index].min_m;
852                         if (m > plls[index].max_m)
853                                 m = plls[index].max_m;
854                         f_out = calc_vclock3(index, m, n, p);
855                         if (splitm(index, m, &m1, &m2)) {
856                                 WRN_MSG("cannot split m = %d\n", m);
857                                 n++;
858                                 continue;
859                         }
860                         if (clock > f_out)
861                                 f_err = clock - f_out;
862                         else
863                                 f_err = f_out - clock;
864
865                         if (f_err < err_best) {
866                                 m_best = m;
867                                 n_best = n;
868                                 p_best = p;
869                                 f_best = f_out;
870                                 err_best = f_err;
871                         }
872                         n++;
873                 } while ((n <= plls[index].max_n) && (f_out >= clock));
874                 p += p_inc;
875         } while ((p <= p_max));
876
877         if (!m_best) {
878                 WRN_MSG("cannot find parameters for clock %d\n", clock);
879                 return 1;
880         }
881         m = m_best;
882         n = n_best;
883         p = p_best;
884         splitm(index, m, &m1, &m2);
885         splitp(index, p, &p1, &p2);
886         n1 = n - 2;
887
888         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
889                 "f: %d (%d), VCO: %d\n",
890                 m, m1, m2, n, n1, p, p1, p2,
891                 calc_vclock3(index, m, n, p), 
892                 calc_vclock(index, m1, m2, n1, p1, p2),
893                 calc_vclock3(index, m, n, p) * p);
894         *retm1 = m1;
895         *retm2 = m2;
896         *retn = n1;
897         *retp1 = p1;
898         *retp2 = p2;
899         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
900
901         return 0;
902 }
903
904 static __inline__ int
905 check_overflow(u32 value, u32 limit, const char *description)
906 {
907         if (value > limit) {
908                 WRN_MSG("%s value %d exceeds limit %d\n",
909                         description, value, limit);
910                 return 1;
911         }
912         return 0;
913 }
914
915 /* It is assumed that hw is filled in with the initial state information. */
916 int
917 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
918                      struct fb_var_screeninfo *var)
919 {
920         int pipe = PIPE_A;
921         u32 *dpll, *fp0, *fp1;
922         u32 m1, m2, n, p1, p2, clock_target, clock;
923         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
924         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
925         u32 vsync_pol, hsync_pol;
926         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
927
928         DBG_MSG("intelfbhw_mode_to_hw\n");
929
930         /* Disable VGA */
931         hw->vgacntrl |= VGA_DISABLE;
932
933         /* Check whether pipe A or pipe B is enabled. */
934         if (hw->pipe_a_conf & PIPECONF_ENABLE)
935                 pipe = PIPE_A;
936         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
937                 pipe = PIPE_B;
938
939         /* Set which pipe's registers will be set. */
940         if (pipe == PIPE_B) {
941                 dpll = &hw->dpll_b;
942                 fp0 = &hw->fpb0;
943                 fp1 = &hw->fpb1;
944                 hs = &hw->hsync_b;
945                 hb = &hw->hblank_b;
946                 ht = &hw->htotal_b;
947                 vs = &hw->vsync_b;
948                 vb = &hw->vblank_b;
949                 vt = &hw->vtotal_b;
950                 ss = &hw->src_size_b;
951                 pipe_conf = &hw->pipe_b_conf;
952         } else {
953                 dpll = &hw->dpll_a;
954                 fp0 = &hw->fpa0;
955                 fp1 = &hw->fpa1;
956                 hs = &hw->hsync_a;
957                 hb = &hw->hblank_a;
958                 ht = &hw->htotal_a;
959                 vs = &hw->vsync_a;
960                 vb = &hw->vblank_a;
961                 vt = &hw->vtotal_a;
962                 ss = &hw->src_size_a;
963                 pipe_conf = &hw->pipe_a_conf;
964         }
965
966         /* Use ADPA register for sync control. */
967         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
968
969         /* sync polarity */
970         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
971                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
972         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
973                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
974         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
975                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
976         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
977                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
978
979         /* Connect correct pipe to the analog port DAC */
980         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
981         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
982
983         /* Set DPMS state to D0 (on) */
984         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
985         hw->adpa |= ADPA_DPMS_D0;
986
987         hw->adpa |= ADPA_DAC_ENABLE;
988
989         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
990         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
991         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
992
993         /* Desired clock in kHz */
994         clock_target = 1000000000 / var->pixclock;
995
996         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
997                 WRN_MSG("calc_pll_params failed\n");
998                 return 1;
999         }
1000
1001         /* Check for overflow. */
1002         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1003                 return 1;
1004         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1005                 return 1;
1006         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1007                 return 1;
1008         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1009                 return 1;
1010         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1011                 return 1;
1012
1013         *dpll &= ~DPLL_P1_FORCE_DIV2;
1014         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1015                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1016         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1017         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1018                (m1 << FP_M1_DIVISOR_SHIFT) |
1019                (m2 << FP_M2_DIVISOR_SHIFT);
1020         *fp1 = *fp0;
1021
1022         hw->dvob &= ~PORT_ENABLE;
1023         hw->dvoc &= ~PORT_ENABLE;
1024
1025         /* Use display plane A. */
1026         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1027         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1028         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1029         switch (intelfb_var_to_depth(var)) {
1030         case 8:
1031                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1032                 break;
1033         case 15:
1034                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1035                 break;
1036         case 16:
1037                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1038                 break;
1039         case 24:
1040                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1041                 break;
1042         }
1043         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1044         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1045
1046         /* Set CRTC registers. */
1047         hactive = var->xres;
1048         hsync_start = hactive + var->right_margin;
1049         hsync_end = hsync_start + var->hsync_len;
1050         htotal = hsync_end + var->left_margin;
1051         hblank_start = hactive;
1052         hblank_end = htotal;
1053
1054         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1055                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1056                 hblank_end);
1057
1058         vactive = var->yres;
1059         vsync_start = vactive + var->lower_margin;
1060         vsync_end = vsync_start + var->vsync_len;
1061         vtotal = vsync_end + var->upper_margin;
1062         vblank_start = vactive;
1063         vblank_end = vtotal;
1064         vblank_end = vsync_end + 1;
1065
1066         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1067                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1068                 vblank_end);
1069
1070         /* Adjust for register values, and check for overflow. */
1071         hactive--;
1072         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1073                 return 1;
1074         hsync_start--;
1075         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1076                 return 1;
1077         hsync_end--;
1078         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1079                 return 1;
1080         htotal--;
1081         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1082                 return 1;
1083         hblank_start--;
1084         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1085                 return 1;
1086         hblank_end--;
1087         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1088                 return 1;
1089
1090         vactive--;
1091         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1092                 return 1;
1093         vsync_start--;
1094         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1095                 return 1;
1096         vsync_end--;
1097         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1098                 return 1;
1099         vtotal--;
1100         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1101                 return 1;
1102         vblank_start--;
1103         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1104                 return 1;
1105         vblank_end--;
1106         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1107                 return 1;
1108
1109         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1110         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1111               (hblank_end << HSYNCEND_SHIFT);
1112         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1113
1114         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1115         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1116               (vblank_end << VSYNCEND_SHIFT);
1117         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1118         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1119               (vactive << SRC_SIZE_VERT_SHIFT);
1120
1121         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1122         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1123
1124         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1125                           var->xoffset * var->bits_per_pixel / 8;
1126
1127         hw->disp_a_base += dinfo->fb.offset << 12;
1128
1129         /* Check stride alignment. */
1130         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1131                 WRN_MSG("display stride %d has bad alignment %d\n",
1132                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1133                 return 1;
1134         }
1135
1136         /* Set the palette to 8-bit mode. */
1137         *pipe_conf &= ~PIPECONF_GAMMA;
1138         return 0;
1139 }
1140
1141 /* Program a (non-VGA) video mode. */
1142 int
1143 intelfbhw_program_mode(struct intelfb_info *dinfo,
1144                      const struct intelfb_hwstate *hw, int blank)
1145 {
1146         int pipe = PIPE_A;
1147         u32 tmp;
1148         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1149         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1150         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1151         u32 hsync_reg, htotal_reg, hblank_reg;
1152         u32 vsync_reg, vtotal_reg, vblank_reg;
1153         u32 src_size_reg;
1154
1155         /* Assume single pipe, display plane A, analog CRT. */
1156
1157 #if VERBOSE > 0
1158         DBG_MSG("intelfbhw_program_mode\n");
1159 #endif
1160
1161         /* Disable VGA */
1162         tmp = INREG(VGACNTRL);
1163         tmp |= VGA_DISABLE;
1164         OUTREG(VGACNTRL, tmp);
1165
1166         /* Check whether pipe A or pipe B is enabled. */
1167         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1168                 pipe = PIPE_A;
1169         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1170                 pipe = PIPE_B;
1171
1172         dinfo->pipe = pipe;
1173
1174         if (pipe == PIPE_B) {
1175                 dpll = &hw->dpll_b;
1176                 fp0 = &hw->fpb0;
1177                 fp1 = &hw->fpb1;
1178                 pipe_conf = &hw->pipe_b_conf;
1179                 hs = &hw->hsync_b;
1180                 hb = &hw->hblank_b;
1181                 ht = &hw->htotal_b;
1182                 vs = &hw->vsync_b;
1183                 vb = &hw->vblank_b;
1184                 vt = &hw->vtotal_b;
1185                 ss = &hw->src_size_b;
1186                 dpll_reg = DPLL_B;
1187                 fp0_reg = FPB0;
1188                 fp1_reg = FPB1;
1189                 pipe_conf_reg = PIPEBCONF;
1190                 hsync_reg = HSYNC_B;
1191                 htotal_reg = HTOTAL_B;
1192                 hblank_reg = HBLANK_B;
1193                 vsync_reg = VSYNC_B;
1194                 vtotal_reg = VTOTAL_B;
1195                 vblank_reg = VBLANK_B;
1196                 src_size_reg = SRC_SIZE_B;
1197         } else {
1198                 dpll = &hw->dpll_a;
1199                 fp0 = &hw->fpa0;
1200                 fp1 = &hw->fpa1;
1201                 pipe_conf = &hw->pipe_a_conf;
1202                 hs = &hw->hsync_a;
1203                 hb = &hw->hblank_a;
1204                 ht = &hw->htotal_a;
1205                 vs = &hw->vsync_a;
1206                 vb = &hw->vblank_a;
1207                 vt = &hw->vtotal_a;
1208                 ss = &hw->src_size_a;
1209                 dpll_reg = DPLL_A;
1210                 fp0_reg = FPA0;
1211                 fp1_reg = FPA1;
1212                 pipe_conf_reg = PIPEACONF;
1213                 hsync_reg = HSYNC_A;
1214                 htotal_reg = HTOTAL_A;
1215                 hblank_reg = HBLANK_A;
1216                 vsync_reg = VSYNC_A;
1217                 vtotal_reg = VTOTAL_A;
1218                 vblank_reg = VBLANK_A;
1219                 src_size_reg = SRC_SIZE_A;
1220         }
1221
1222         /* Disable planes A and B. */
1223         tmp = INREG(DSPACNTR);
1224         tmp &= ~DISPPLANE_PLANE_ENABLE;
1225         OUTREG(DSPACNTR, tmp);
1226         tmp = INREG(DSPBCNTR);
1227         tmp &= ~DISPPLANE_PLANE_ENABLE;
1228         OUTREG(DSPBCNTR, tmp);
1229
1230         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1231         mdelay(20);
1232
1233         /* Disable Sync */
1234         tmp = INREG(ADPA);
1235         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1236         tmp |= ADPA_DPMS_D3;
1237         OUTREG(ADPA, tmp);
1238
1239         /* turn off pipe */
1240         tmp = INREG(pipe_conf_reg);
1241         tmp &= ~PIPECONF_ENABLE;
1242         OUTREG(pipe_conf_reg, tmp);
1243
1244         /* turn off PLL */
1245         tmp = INREG(dpll_reg);
1246         dpll_reg &= ~DPLL_VCO_ENABLE;
1247         OUTREG(dpll_reg, tmp);
1248
1249         /* Set PLL parameters */
1250         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1251         OUTREG(fp0_reg, *fp0);
1252         OUTREG(fp1_reg, *fp1);
1253
1254         /* Set pipe parameters */
1255         OUTREG(hsync_reg, *hs);
1256         OUTREG(hblank_reg, *hb);
1257         OUTREG(htotal_reg, *ht);
1258         OUTREG(vsync_reg, *vs);
1259         OUTREG(vblank_reg, *vb);
1260         OUTREG(vtotal_reg, *vt);
1261         OUTREG(src_size_reg, *ss);
1262
1263         /* Set DVOs B/C */
1264         OUTREG(DVOB, hw->dvob);
1265         OUTREG(DVOC, hw->dvoc);
1266
1267         /* Set ADPA */
1268         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1269
1270         /* Enable PLL */
1271         tmp = INREG(dpll_reg);
1272         tmp |= DPLL_VCO_ENABLE;
1273         OUTREG(dpll_reg, tmp);
1274
1275         /* Enable pipe */
1276         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1277
1278         /* Enable sync */
1279         tmp = INREG(ADPA);
1280         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1281         tmp |= ADPA_DPMS_D0;
1282         OUTREG(ADPA, tmp);
1283
1284         /* setup display plane */
1285         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1286                 /*
1287                  *      i830M errata: the display plane must be enabled
1288                  *      to allow writes to the other bits in the plane
1289                  *      control register.
1290                  */
1291                 tmp = INREG(DSPACNTR);
1292                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1293                         tmp |= DISPPLANE_PLANE_ENABLE;
1294                         OUTREG(DSPACNTR, tmp);
1295                         OUTREG(DSPACNTR,
1296                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1297                         mdelay(1);
1298               }
1299         }
1300
1301         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1302         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1303         OUTREG(DSPABASE, hw->disp_a_base);
1304
1305         /* Enable plane */
1306         if (!blank) {
1307                 tmp = INREG(DSPACNTR);
1308                 tmp |= DISPPLANE_PLANE_ENABLE;
1309                 OUTREG(DSPACNTR, tmp);
1310                 OUTREG(DSPABASE, hw->disp_a_base);
1311         }
1312
1313         return 0;
1314 }
1315
1316 /* forward declarations */
1317 static void refresh_ring(struct intelfb_info *dinfo);
1318 static void reset_state(struct intelfb_info *dinfo);
1319 static void do_flush(struct intelfb_info *dinfo);
1320
1321 static int
1322 wait_ring(struct intelfb_info *dinfo, int n)
1323 {
1324         int i = 0;
1325         unsigned long end;
1326         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1327
1328 #if VERBOSE > 0
1329         DBG_MSG("wait_ring: %d\n", n);
1330 #endif
1331
1332         end = jiffies + (HZ * 3);
1333         while (dinfo->ring_space < n) {
1334                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1335                                                    RING_HEAD_MASK);
1336                 if (dinfo->ring_tail + RING_MIN_FREE <
1337                     (u32 __iomem) dinfo->ring_head)
1338                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1339                                 - (dinfo->ring_tail + RING_MIN_FREE);
1340                 else
1341                         dinfo->ring_space = (dinfo->ring.size +
1342                                              (u32 __iomem) dinfo->ring_head)
1343                                 - (dinfo->ring_tail + RING_MIN_FREE);
1344                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1345                         end = jiffies + (HZ * 3);
1346                         last_head = (u32 __iomem) dinfo->ring_head;
1347                 }
1348                 i++;
1349                 if (time_before(end, jiffies)) {
1350                         if (!i) {
1351                                 /* Try again */
1352                                 reset_state(dinfo);
1353                                 refresh_ring(dinfo);
1354                                 do_flush(dinfo);
1355                                 end = jiffies + (HZ * 3);
1356                                 i = 1;
1357                         } else {
1358                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1359                                         dinfo->ring_space, n);
1360                                 WRN_MSG("lockup - turning off hardware "
1361                                         "acceleration\n");
1362                                 dinfo->ring_lockup = 1;
1363                                 break;
1364                         }
1365                 }
1366                 udelay(1);
1367         }
1368         return i;
1369 }
1370
1371 static void
1372 do_flush(struct intelfb_info *dinfo) {
1373         START_RING(2);
1374         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1375         OUT_RING(MI_NOOP);
1376         ADVANCE_RING();
1377 }
1378
1379 void
1380 intelfbhw_do_sync(struct intelfb_info *dinfo)
1381 {
1382 #if VERBOSE > 0
1383         DBG_MSG("intelfbhw_do_sync\n");
1384 #endif
1385
1386         if (!dinfo->accel)
1387                 return;
1388
1389         /*
1390          * Send a flush, then wait until the ring is empty.  This is what
1391          * the XFree86 driver does, and actually it doesn't seem a lot worse
1392          * than the recommended method (both have problems).
1393          */
1394         do_flush(dinfo);
1395         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1396         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1397 }
1398
1399 static void
1400 refresh_ring(struct intelfb_info *dinfo)
1401 {
1402 #if VERBOSE > 0
1403         DBG_MSG("refresh_ring\n");
1404 #endif
1405
1406         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1407                                            RING_HEAD_MASK);
1408         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1409         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1410                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1411                         - (dinfo->ring_tail + RING_MIN_FREE);
1412         else
1413                 dinfo->ring_space = (dinfo->ring.size +
1414                                      (u32 __iomem) dinfo->ring_head)
1415                         - (dinfo->ring_tail + RING_MIN_FREE);
1416 }
1417
1418 static void
1419 reset_state(struct intelfb_info *dinfo)
1420 {
1421         int i;
1422         u32 tmp;
1423
1424 #if VERBOSE > 0
1425         DBG_MSG("reset_state\n");
1426 #endif
1427
1428         for (i = 0; i < FENCE_NUM; i++)
1429                 OUTREG(FENCE + (i << 2), 0);
1430
1431         /* Flush the ring buffer if it's enabled. */
1432         tmp = INREG(PRI_RING_LENGTH);
1433         if (tmp & RING_ENABLE) {
1434 #if VERBOSE > 0
1435                 DBG_MSG("reset_state: ring was enabled\n");
1436 #endif
1437                 refresh_ring(dinfo);
1438                 intelfbhw_do_sync(dinfo);
1439                 DO_RING_IDLE();
1440         }
1441
1442         OUTREG(PRI_RING_LENGTH, 0);
1443         OUTREG(PRI_RING_HEAD, 0);
1444         OUTREG(PRI_RING_TAIL, 0);
1445         OUTREG(PRI_RING_START, 0);
1446 }
1447
1448 /* Stop the 2D engine, and turn off the ring buffer. */
1449 void
1450 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1451 {
1452 #if VERBOSE > 0
1453         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1454                 dinfo->ring_active);
1455 #endif
1456
1457         if (!dinfo->accel)
1458                 return;
1459
1460         dinfo->ring_active = 0;
1461         reset_state(dinfo);
1462 }
1463
1464 /*
1465  * Enable the ring buffer, and initialise the 2D engine.
1466  * It is assumed that the graphics engine has been stopped by previously
1467  * calling intelfb_2d_stop().
1468  */
1469 void
1470 intelfbhw_2d_start(struct intelfb_info *dinfo)
1471 {
1472 #if VERBOSE > 0
1473         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1474                 dinfo->accel, dinfo->ring_active);
1475 #endif
1476
1477         if (!dinfo->accel)
1478                 return;
1479
1480         /* Initialise the primary ring buffer. */
1481         OUTREG(PRI_RING_LENGTH, 0);
1482         OUTREG(PRI_RING_TAIL, 0);
1483         OUTREG(PRI_RING_HEAD, 0);
1484
1485         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1486         OUTREG(PRI_RING_LENGTH,
1487                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1488                 RING_NO_REPORT | RING_ENABLE);
1489         refresh_ring(dinfo);
1490         dinfo->ring_active = 1;
1491 }
1492
1493 /* 2D fillrect (solid fill or invert) */
1494 void
1495 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1496                       u32 color, u32 pitch, u32 bpp, u32 rop)
1497 {
1498         u32 br00, br09, br13, br14, br16;
1499
1500 #if VERBOSE > 0
1501         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1502                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1503 #endif
1504
1505         br00 = COLOR_BLT_CMD;
1506         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1507         br13 = (rop << ROP_SHIFT) | pitch;
1508         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1509         br16 = color;
1510
1511         switch (bpp) {
1512         case 8:
1513                 br13 |= COLOR_DEPTH_8;
1514                 break;
1515         case 16:
1516                 br13 |= COLOR_DEPTH_16;
1517                 break;
1518         case 32:
1519                 br13 |= COLOR_DEPTH_32;
1520                 br00 |= WRITE_ALPHA | WRITE_RGB;
1521                 break;
1522         }
1523
1524         START_RING(6);
1525         OUT_RING(br00);
1526         OUT_RING(br13);
1527         OUT_RING(br14);
1528         OUT_RING(br09);
1529         OUT_RING(br16);
1530         OUT_RING(MI_NOOP);
1531         ADVANCE_RING();
1532
1533 #if VERBOSE > 0
1534         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1535                 dinfo->ring_tail, dinfo->ring_space);
1536 #endif
1537 }
1538
1539 void
1540 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1541                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1542 {
1543         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1544
1545 #if VERBOSE > 0
1546         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1547                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1548 #endif
1549
1550         br00 = XY_SRC_COPY_BLT_CMD;
1551         br09 = dinfo->fb_start;
1552         br11 = (pitch << PITCH_SHIFT);
1553         br12 = dinfo->fb_start;
1554         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1555         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1556         br23 = ((dstx + w) << WIDTH_SHIFT) |
1557                ((dsty + h) << HEIGHT_SHIFT);
1558         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1559
1560         switch (bpp) {
1561         case 8:
1562                 br13 |= COLOR_DEPTH_8;
1563                 break;
1564         case 16:
1565                 br13 |= COLOR_DEPTH_16;
1566                 break;
1567         case 32:
1568                 br13 |= COLOR_DEPTH_32;
1569                 br00 |= WRITE_ALPHA | WRITE_RGB;
1570                 break;
1571         }
1572
1573         START_RING(8);
1574         OUT_RING(br00);
1575         OUT_RING(br13);
1576         OUT_RING(br22);
1577         OUT_RING(br23);
1578         OUT_RING(br09);
1579         OUT_RING(br26);
1580         OUT_RING(br11);
1581         OUT_RING(br12);
1582         ADVANCE_RING();
1583 }
1584
1585 int
1586 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1587                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1588 {
1589         int nbytes, ndwords, pad, tmp;
1590         u32 br00, br09, br13, br18, br19, br22, br23;
1591         int dat, ix, iy, iw;
1592         int i, j;
1593
1594 #if VERBOSE > 0
1595         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1596 #endif
1597
1598         /* size in bytes of a padded scanline */
1599         nbytes = ROUND_UP_TO(w, 16) / 8;
1600
1601         /* Total bytes of padded scanline data to write out. */
1602         nbytes = nbytes * h;
1603
1604         /*
1605          * Check if the glyph data exceeds the immediate mode limit.
1606          * It would take a large font (1K pixels) to hit this limit.
1607          */
1608         if (nbytes > MAX_MONO_IMM_SIZE)
1609                 return 0;
1610
1611         /* Src data is packaged a dword (32-bit) at a time. */
1612         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1613
1614         /*
1615          * Ring has to be padded to a quad word. But because the command starts
1616            with 7 bytes, pad only if there is an even number of ndwords
1617          */
1618         pad = !(ndwords % 2);
1619
1620         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1621         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1622         br09 = dinfo->fb_start;
1623         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1624         br18 = bg;
1625         br19 = fg;
1626         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1627         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1628
1629         switch (bpp) {
1630         case 8:
1631                 br13 |= COLOR_DEPTH_8;
1632                 break;
1633         case 16:
1634                 br13 |= COLOR_DEPTH_16;
1635                 break;
1636         case 32:
1637                 br13 |= COLOR_DEPTH_32;
1638                 br00 |= WRITE_ALPHA | WRITE_RGB;
1639                 break;
1640         }
1641
1642         START_RING(8 + ndwords);
1643         OUT_RING(br00);
1644         OUT_RING(br13);
1645         OUT_RING(br22);
1646         OUT_RING(br23);
1647         OUT_RING(br09);
1648         OUT_RING(br18);
1649         OUT_RING(br19);
1650         ix = iy = 0;
1651         iw = ROUND_UP_TO(w, 8) / 8;
1652         while (ndwords--) {
1653                 dat = 0;
1654                 for (j = 0; j < 2; ++j) {
1655                         for (i = 0; i < 2; ++i) {
1656                                 if (ix != iw || i == 0)
1657                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1658                         }
1659                         if (ix == iw && iy != (h-1)) {
1660                                 ix = 0;
1661                                 ++iy;
1662                         }
1663                 }
1664                 OUT_RING(dat);
1665         }
1666         if (pad)
1667                 OUT_RING(MI_NOOP);
1668         ADVANCE_RING();
1669
1670         return 1;
1671 }
1672
1673 /* HW cursor functions. */
1674 void
1675 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1676 {
1677         u32 tmp;
1678
1679 #if VERBOSE > 0
1680         DBG_MSG("intelfbhw_cursor_init\n");
1681 #endif
1682
1683         if (dinfo->mobile) {
1684                 if (!dinfo->cursor.physical)
1685                         return;
1686                 tmp = INREG(CURSOR_A_CONTROL);
1687                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1688                          CURSOR_MEM_TYPE_LOCAL |
1689                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1690                 tmp |= CURSOR_MODE_DISABLE;
1691                 OUTREG(CURSOR_A_CONTROL, tmp);
1692                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1693         } else {
1694                 tmp = INREG(CURSOR_CONTROL);
1695                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1696                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1697                 tmp = CURSOR_FORMAT_3C;
1698                 OUTREG(CURSOR_CONTROL, tmp);
1699                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1700                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1701                       (64 << CURSOR_SIZE_V_SHIFT);
1702                 OUTREG(CURSOR_SIZE, tmp);
1703         }
1704 }
1705
1706 void
1707 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1708 {
1709         u32 tmp;
1710
1711 #if VERBOSE > 0
1712         DBG_MSG("intelfbhw_cursor_hide\n");
1713 #endif
1714
1715         dinfo->cursor_on = 0;
1716         if (dinfo->mobile) {
1717                 if (!dinfo->cursor.physical)
1718                         return;
1719                 tmp = INREG(CURSOR_A_CONTROL);
1720                 tmp &= ~CURSOR_MODE_MASK;
1721                 tmp |= CURSOR_MODE_DISABLE;
1722                 OUTREG(CURSOR_A_CONTROL, tmp);
1723                 /* Flush changes */
1724                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1725         } else {
1726                 tmp = INREG(CURSOR_CONTROL);
1727                 tmp &= ~CURSOR_ENABLE;
1728                 OUTREG(CURSOR_CONTROL, tmp);
1729         }
1730 }
1731
1732 void
1733 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1734 {
1735         u32 tmp;
1736
1737 #if VERBOSE > 0
1738         DBG_MSG("intelfbhw_cursor_show\n");
1739 #endif
1740
1741         dinfo->cursor_on = 1;
1742
1743         if (dinfo->cursor_blanked)
1744                 return;
1745
1746         if (dinfo->mobile) {
1747                 if (!dinfo->cursor.physical)
1748                         return;
1749                 tmp = INREG(CURSOR_A_CONTROL);
1750                 tmp &= ~CURSOR_MODE_MASK;
1751                 tmp |= CURSOR_MODE_64_4C_AX;
1752                 OUTREG(CURSOR_A_CONTROL, tmp);
1753                 /* Flush changes */
1754                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1755         } else {
1756                 tmp = INREG(CURSOR_CONTROL);
1757                 tmp |= CURSOR_ENABLE;
1758                 OUTREG(CURSOR_CONTROL, tmp);
1759         }
1760 }
1761
1762 void
1763 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1764 {
1765         u32 tmp;
1766
1767 #if VERBOSE > 0
1768         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1769 #endif
1770
1771         /*
1772          * Sets the position.  The coordinates are assumed to already
1773          * have any offset adjusted.  Assume that the cursor is never
1774          * completely off-screen, and that x, y are always >= 0.
1775          */
1776
1777         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1778               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1779         OUTREG(CURSOR_A_POSITION, tmp);
1780 }
1781
1782 void
1783 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1784 {
1785 #if VERBOSE > 0
1786         DBG_MSG("intelfbhw_cursor_setcolor\n");
1787 #endif
1788
1789         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1790         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1791         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1792         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1793 }
1794
1795 void
1796 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1797                       u8 *data)
1798 {
1799         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1800         int i, j, w = width / 8;
1801         int mod = width % 8, t_mask, d_mask;
1802
1803 #if VERBOSE > 0
1804         DBG_MSG("intelfbhw_cursor_load\n");
1805 #endif
1806
1807         if (!dinfo->cursor.virtual)
1808                 return;
1809
1810         t_mask = 0xff >> mod;
1811         d_mask = ~(0xff >> mod);
1812         for (i = height; i--; ) {
1813                 for (j = 0; j < w; j++) {
1814                         writeb(0x00, addr + j);
1815                         writeb(*(data++), addr + j+8);
1816                 }
1817                 if (mod) {
1818                         writeb(t_mask, addr + j);
1819                         writeb(*(data++) & d_mask, addr + j+8);
1820                 }
1821                 addr += 16;
1822         }
1823 }
1824
1825 void
1826 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1827         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1828         int i, j;
1829
1830 #if VERBOSE > 0
1831         DBG_MSG("intelfbhw_cursor_reset\n");
1832 #endif
1833
1834         if (!dinfo->cursor.virtual)
1835                 return;
1836
1837         for (i = 64; i--; ) {
1838                 for (j = 0; j < 8; j++) {
1839                         writeb(0xff, addr + j+0);
1840                         writeb(0x00, addr + j+8);
1841                 }
1842                 addr += 16;
1843         }
1844 }