This patch makes a needlessly global struct static.
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52         int p_inc_lo, p_inc_hi;
53 };
54
55 #define PLLS_I8xx 0
56 #define PLLS_I9xx 1
57 #define PLLS_MAX 2
58
59 static struct pll_min_max plls[PLLS_MAX] = {
60         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62 };
63
64 int
65 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66 {
67         u32 tmp;
68         if (!pdev || !dinfo)
69                 return 1;
70
71         switch (pdev->device) {
72         case PCI_DEVICE_ID_INTEL_830M:
73                 dinfo->name = "Intel(R) 830M";
74                 dinfo->chipset = INTEL_830M;
75                 dinfo->mobile = 1;
76                 dinfo->pll_index = PLLS_I8xx;
77                 return 0;
78         case PCI_DEVICE_ID_INTEL_845G:
79                 dinfo->name = "Intel(R) 845G";
80                 dinfo->chipset = INTEL_845G;
81                 dinfo->mobile = 0;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_85XGM:
85                 tmp = 0;
86                 dinfo->mobile = 1;
87                 dinfo->pll_index = PLLS_I8xx;
88                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90                         INTEL_85X_VARIANT_MASK) {
91                 case INTEL_VAR_855GME:
92                         dinfo->name = "Intel(R) 855GME";
93                         dinfo->chipset = INTEL_855GME;
94                         return 0;
95                 case INTEL_VAR_855GM:
96                         dinfo->name = "Intel(R) 855GM";
97                         dinfo->chipset = INTEL_855GM;
98                         return 0;
99                 case INTEL_VAR_852GME:
100                         dinfo->name = "Intel(R) 852GME";
101                         dinfo->chipset = INTEL_852GME;
102                         return 0;
103                 case INTEL_VAR_852GM:
104                         dinfo->name = "Intel(R) 852GM";
105                         dinfo->chipset = INTEL_852GM;
106                         return 0;
107                 default:
108                         dinfo->name = "Intel(R) 852GM/855GM";
109                         dinfo->chipset = INTEL_85XGM;
110                         return 0;
111                 }
112                 break;
113         case PCI_DEVICE_ID_INTEL_865G:
114                 dinfo->name = "Intel(R) 865G";
115                 dinfo->chipset = INTEL_865G;
116                 dinfo->mobile = 0;
117                 dinfo->pll_index = PLLS_I8xx;
118                 return 0;
119         case PCI_DEVICE_ID_INTEL_915G:
120                 dinfo->name = "Intel(R) 915G";
121                 dinfo->chipset = INTEL_915G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I9xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915GM:
126                 dinfo->name = "Intel(R) 915GM";
127                 dinfo->chipset = INTEL_915GM;
128                 dinfo->mobile = 1;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         case PCI_DEVICE_ID_INTEL_945G:
132                 dinfo->name = "Intel(R) 945G";
133                 dinfo->chipset = INTEL_945G;
134                 dinfo->mobile = 0;
135                 dinfo->pll_index = PLLS_I9xx;
136                 return 0;
137         case PCI_DEVICE_ID_INTEL_945GM:
138                 dinfo->name = "Intel(R) 945GM";
139                 dinfo->chipset = INTEL_945GM;
140                 dinfo->mobile = 1;
141                 dinfo->pll_index = PLLS_I9xx;
142                 return 0;
143         default:
144                 return 1;
145         }
146 }
147
148 int
149 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
150                      int *stolen_size)
151 {
152         struct pci_dev *bridge_dev;
153         u16 tmp;
154
155         if (!pdev || !aperture_size || !stolen_size)
156                 return 1;
157
158         /* Find the bridge device.  It is always 0:0.0 */
159         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
160                 ERR_MSG("cannot find bridge device\n");
161                 return 1;
162         }
163
164         /* Get the fb aperture size and "stolen" memory amount. */
165         tmp = 0;
166         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
167         switch (pdev->device) {
168         case PCI_DEVICE_ID_INTEL_830M:
169         case PCI_DEVICE_ID_INTEL_845G:
170                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
171                         *aperture_size = MB(64);
172                 else
173                         *aperture_size = MB(128);
174                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
175                 case INTEL_830_GMCH_GMS_STOLEN_512:
176                         *stolen_size = KB(512) - KB(132);
177                         return 0;
178                 case INTEL_830_GMCH_GMS_STOLEN_1024:
179                         *stolen_size = MB(1) - KB(132);
180                         return 0;
181                 case INTEL_830_GMCH_GMS_STOLEN_8192:
182                         *stolen_size = MB(8) - KB(132);
183                         return 0;
184                 case INTEL_830_GMCH_GMS_LOCAL:
185                         ERR_MSG("only local memory found\n");
186                         return 1;
187                 case INTEL_830_GMCH_GMS_DISABLED:
188                         ERR_MSG("video memory is disabled\n");
189                         return 1;
190                 default:
191                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
192                                 tmp & INTEL_830_GMCH_GMS_MASK);
193                         return 1;
194                 }
195                 break;
196         default:
197                 *aperture_size = MB(128);
198                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
199                 case INTEL_855_GMCH_GMS_STOLEN_1M:
200                         *stolen_size = MB(1) - KB(132);
201                         return 0;
202                 case INTEL_855_GMCH_GMS_STOLEN_4M:
203                         *stolen_size = MB(4) - KB(132);
204                         return 0;
205                 case INTEL_855_GMCH_GMS_STOLEN_8M:
206                         *stolen_size = MB(8) - KB(132);
207                         return 0;
208                 case INTEL_855_GMCH_GMS_STOLEN_16M:
209                         *stolen_size = MB(16) - KB(132);
210                         return 0;
211                 case INTEL_855_GMCH_GMS_STOLEN_32M:
212                         *stolen_size = MB(32) - KB(132);
213                         return 0;
214                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
215                         *stolen_size = MB(48) - KB(132);
216                         return 0;
217                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
218                         *stolen_size = MB(64) - KB(132);
219                         return 0;
220                 case INTEL_855_GMCH_GMS_DISABLED:
221                         ERR_MSG("video memory is disabled\n");
222                         return 0;
223                 default:
224                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
225                                 tmp & INTEL_855_GMCH_GMS_MASK);
226                         return 1;
227                 }
228         }
229 }
230
231 int
232 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
233 {
234         int dvo = 0;
235
236         if (INREG(LVDS) & PORT_ENABLE)
237                 dvo |= LVDS_PORT;
238         if (INREG(DVOA) & PORT_ENABLE)
239                 dvo |= DVOA_PORT;
240         if (INREG(DVOB) & PORT_ENABLE)
241                 dvo |= DVOB_PORT;
242         if (INREG(DVOC) & PORT_ENABLE)
243                 dvo |= DVOC_PORT;
244
245         return dvo;
246 }
247
248 const char *
249 intelfbhw_dvo_to_string(int dvo)
250 {
251         if (dvo & DVOA_PORT)
252                 return "DVO port A";
253         else if (dvo & DVOB_PORT)
254                 return "DVO port B";
255         else if (dvo & DVOC_PORT)
256                 return "DVO port C";
257         else if (dvo & LVDS_PORT)
258                 return "LVDS port";
259         else
260                 return NULL;
261 }
262
263
264 int
265 intelfbhw_validate_mode(struct intelfb_info *dinfo,
266                         struct fb_var_screeninfo *var)
267 {
268         int bytes_per_pixel;
269         int tmp;
270
271 #if VERBOSE > 0
272         DBG_MSG("intelfbhw_validate_mode\n");
273 #endif
274
275         bytes_per_pixel = var->bits_per_pixel / 8;
276         if (bytes_per_pixel == 3)
277                 bytes_per_pixel = 4;
278
279         /* Check if enough video memory. */
280         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
281         if (tmp > dinfo->fb.size) {
282                 WRN_MSG("Not enough video ram for mode "
283                         "(%d KByte vs %d KByte).\n",
284                         BtoKB(tmp), BtoKB(dinfo->fb.size));
285                 return 1;
286         }
287
288         /* Check if x/y limits are OK. */
289         if (var->xres - 1 > HACTIVE_MASK) {
290                 WRN_MSG("X resolution too large (%d vs %d).\n",
291                         var->xres, HACTIVE_MASK + 1);
292                 return 1;
293         }
294         if (var->yres - 1 > VACTIVE_MASK) {
295                 WRN_MSG("Y resolution too large (%d vs %d).\n",
296                         var->yres, VACTIVE_MASK + 1);
297                 return 1;
298         }
299
300         /* Check for interlaced/doublescan modes. */
301         if (var->vmode & FB_VMODE_INTERLACED) {
302                 WRN_MSG("Mode is interlaced.\n");
303                 return 1;
304         }
305         if (var->vmode & FB_VMODE_DOUBLE) {
306                 WRN_MSG("Mode is double-scan.\n");
307                 return 1;
308         }
309
310         /* Check if clock is OK. */
311         tmp = 1000000000 / var->pixclock;
312         if (tmp < MIN_CLOCK) {
313                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
314                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
315                 return 1;
316         }
317         if (tmp > MAX_CLOCK) {
318                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
319                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
320                 return 1;
321         }
322
323         return 0;
324 }
325
326 int
327 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
328 {
329         struct intelfb_info *dinfo = GET_DINFO(info);
330         u32 offset, xoffset, yoffset;
331
332 #if VERBOSE > 0
333         DBG_MSG("intelfbhw_pan_display\n");
334 #endif
335
336         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
337         yoffset = var->yoffset;
338
339         if ((xoffset + var->xres > var->xres_virtual) ||
340             (yoffset + var->yres > var->yres_virtual))
341                 return -EINVAL;
342
343         offset = (yoffset * dinfo->pitch) +
344                  (xoffset * var->bits_per_pixel) / 8;
345
346         offset += dinfo->fb.offset << 12;
347
348         OUTREG(DSPABASE, offset);
349
350         return 0;
351 }
352
353 /* Blank the screen. */
354 void
355 intelfbhw_do_blank(int blank, struct fb_info *info)
356 {
357         struct intelfb_info *dinfo = GET_DINFO(info);
358         u32 tmp;
359
360 #if VERBOSE > 0
361         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
362 #endif
363
364         /* Turn plane A on or off */
365         tmp = INREG(DSPACNTR);
366         if (blank)
367                 tmp &= ~DISPPLANE_PLANE_ENABLE;
368         else
369                 tmp |= DISPPLANE_PLANE_ENABLE;
370         OUTREG(DSPACNTR, tmp);
371         /* Flush */
372         tmp = INREG(DSPABASE);
373         OUTREG(DSPABASE, tmp);
374
375         /* Turn off/on the HW cursor */
376 #if VERBOSE > 0
377         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
378 #endif
379         if (dinfo->cursor_on) {
380                 if (blank) {
381                         intelfbhw_cursor_hide(dinfo);
382                 } else {
383                         intelfbhw_cursor_show(dinfo);
384                 }
385                 dinfo->cursor_on = 1;
386         }
387         dinfo->cursor_blanked = blank;
388
389         /* Set DPMS level */
390         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
391         switch (blank) {
392         case FB_BLANK_UNBLANK:
393         case FB_BLANK_NORMAL:
394                 tmp |= ADPA_DPMS_D0;
395                 break;
396         case FB_BLANK_VSYNC_SUSPEND:
397                 tmp |= ADPA_DPMS_D1;
398                 break;
399         case FB_BLANK_HSYNC_SUSPEND:
400                 tmp |= ADPA_DPMS_D2;
401                 break;
402         case FB_BLANK_POWERDOWN:
403                 tmp |= ADPA_DPMS_D3;
404                 break;
405         }
406         OUTREG(ADPA, tmp);
407
408         return;
409 }
410
411
412 void
413 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
414                     unsigned red, unsigned green, unsigned blue,
415                     unsigned transp)
416 {
417 #if VERBOSE > 0
418         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
419                 regno, red, green, blue);
420 #endif
421
422         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
423                           PALETTE_A : PALETTE_B;
424
425         OUTREG(palette_reg + (regno << 2),
426                (red << PALETTE_8_RED_SHIFT) |
427                (green << PALETTE_8_GREEN_SHIFT) |
428                (blue << PALETTE_8_BLUE_SHIFT));
429 }
430
431
432 int
433 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
434                         int flag)
435 {
436         int i;
437
438 #if VERBOSE > 0
439         DBG_MSG("intelfbhw_read_hw_state\n");
440 #endif
441
442         if (!hw || !dinfo)
443                 return -1;
444
445         /* Read in as much of the HW state as possible. */
446         hw->vga0_divisor = INREG(VGA0_DIVISOR);
447         hw->vga1_divisor = INREG(VGA1_DIVISOR);
448         hw->vga_pd = INREG(VGAPD);
449         hw->dpll_a = INREG(DPLL_A);
450         hw->dpll_b = INREG(DPLL_B);
451         hw->fpa0 = INREG(FPA0);
452         hw->fpa1 = INREG(FPA1);
453         hw->fpb0 = INREG(FPB0);
454         hw->fpb1 = INREG(FPB1);
455
456         if (flag == 1)
457                 return flag;
458
459 #if 0
460         /* This seems to be a problem with the 852GM/855GM */
461         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
462                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
463                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
464         }
465 #endif
466
467         if (flag == 2)
468                 return flag;
469
470         hw->htotal_a = INREG(HTOTAL_A);
471         hw->hblank_a = INREG(HBLANK_A);
472         hw->hsync_a = INREG(HSYNC_A);
473         hw->vtotal_a = INREG(VTOTAL_A);
474         hw->vblank_a = INREG(VBLANK_A);
475         hw->vsync_a = INREG(VSYNC_A);
476         hw->src_size_a = INREG(SRC_SIZE_A);
477         hw->bclrpat_a = INREG(BCLRPAT_A);
478         hw->htotal_b = INREG(HTOTAL_B);
479         hw->hblank_b = INREG(HBLANK_B);
480         hw->hsync_b = INREG(HSYNC_B);
481         hw->vtotal_b = INREG(VTOTAL_B);
482         hw->vblank_b = INREG(VBLANK_B);
483         hw->vsync_b = INREG(VSYNC_B);
484         hw->src_size_b = INREG(SRC_SIZE_B);
485         hw->bclrpat_b = INREG(BCLRPAT_B);
486
487         if (flag == 3)
488                 return flag;
489
490         hw->adpa = INREG(ADPA);
491         hw->dvoa = INREG(DVOA);
492         hw->dvob = INREG(DVOB);
493         hw->dvoc = INREG(DVOC);
494         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
495         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
496         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
497         hw->lvds = INREG(LVDS);
498
499         if (flag == 4)
500                 return flag;
501
502         hw->pipe_a_conf = INREG(PIPEACONF);
503         hw->pipe_b_conf = INREG(PIPEBCONF);
504         hw->disp_arb = INREG(DISPARB);
505
506         if (flag == 5)
507                 return flag;
508
509         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
510         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
511         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
512         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
513
514         if (flag == 6)
515                 return flag;
516
517         for (i = 0; i < 4; i++) {
518                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
519                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
520         }
521
522         if (flag == 7)
523                 return flag;
524
525         hw->cursor_size = INREG(CURSOR_SIZE);
526
527         if (flag == 8)
528                 return flag;
529
530         hw->disp_a_ctrl = INREG(DSPACNTR);
531         hw->disp_b_ctrl = INREG(DSPBCNTR);
532         hw->disp_a_base = INREG(DSPABASE);
533         hw->disp_b_base = INREG(DSPBBASE);
534         hw->disp_a_stride = INREG(DSPASTRIDE);
535         hw->disp_b_stride = INREG(DSPBSTRIDE);
536
537         if (flag == 9)
538                 return flag;
539
540         hw->vgacntrl = INREG(VGACNTRL);
541
542         if (flag == 10)
543                 return flag;
544
545         hw->add_id = INREG(ADD_ID);
546
547         if (flag == 11)
548                 return flag;
549
550         for (i = 0; i < 7; i++) {
551                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
552                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
553                 if (i < 3)
554                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
555         }
556
557         for (i = 0; i < 8; i++)
558                 hw->fence[i] = INREG(FENCE + (i << 2));
559
560         hw->instpm = INREG(INSTPM);
561         hw->mem_mode = INREG(MEM_MODE);
562         hw->fw_blc_0 = INREG(FW_BLC_0);
563         hw->fw_blc_1 = INREG(FW_BLC_1);
564
565         return 0;
566 }
567
568
569 static int calc_vclock3(int index, int m, int n, int p)
570 {
571         if (p == 0 || n == 0)
572                 return 0;
573         return PLL_REFCLK * m / n / p;
574 }
575
576 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
577 {
578         switch(index)
579         {
580         case PLLS_I9xx:
581                 if (p1 == 0)
582                         return 0;
583                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
584                          ((p1)) * (p2 ? 10 : 5)));
585         case PLLS_I8xx:
586         default:
587                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
588                          ((p1+2) * (1 << (p2 + 1)))));
589         }
590 }
591
592 void
593 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
594 {
595 #if REGDUMP
596         int i, m1, m2, n, p1, p2;
597         int index = dinfo->pll_index;
598         DBG_MSG("intelfbhw_print_hw_state\n");
599         
600         if (!hw || !dinfo)
601                 return;
602         /* Read in as much of the HW state as possible. */
603         printk("hw state dump start\n");
604         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
605         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
606         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
607         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
608         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
609         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
610         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
611                 p1 = 0;
612         else
613                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
614         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
615         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
616                m1, m2, n, p1, p2);
617         printk("        VGA0: clock is %d\n",
618                calc_vclock(index, m1, m2, n, p1, p2));
619         
620         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
621         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
622         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
623         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
624                 p1 = 0;
625         else
626                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
627         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
628         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
629                m1, m2, n, p1, p2);
630         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
631         
632         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
633         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
634         printk("        FPA0:                   0x%08x\n", hw->fpa0);
635         printk("        FPA1:                   0x%08x\n", hw->fpa1);
636         printk("        FPB0:                   0x%08x\n", hw->fpb0);
637         printk("        FPB1:                   0x%08x\n", hw->fpb1);
638         
639         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
640         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
641         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
642         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
643                 p1 = 0;
644         else
645                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
646         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
647         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
648                m1, m2, n, p1, p2);
649         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
650         
651         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
652         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
653         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
654         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
655                 p1 = 0;
656         else
657                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
658         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
659         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
660                m1, m2, n, p1, p2);
661         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
662         
663 #if 0
664         printk("        PALETTE_A:\n");
665         for (i = 0; i < PALETTE_8_ENTRIES)
666                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
667         printk("        PALETTE_B:\n");
668         for (i = 0; i < PALETTE_8_ENTRIES)
669                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
670 #endif
671
672         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
673         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
674         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
675         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
676         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
677         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
678         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
679         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
680         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
681         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
682         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
683         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
684         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
685         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
686         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
687         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
688
689         printk("        ADPA:                   0x%08x\n", hw->adpa);
690         printk("        DVOA:                   0x%08x\n", hw->dvoa);
691         printk("        DVOB:                   0x%08x\n", hw->dvob);
692         printk("        DVOC:                   0x%08x\n", hw->dvoc);
693         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
694         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
695         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
696         printk("        LVDS:                   0x%08x\n", hw->lvds);
697
698         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
699         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
700         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
701
702         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
703         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
704         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
705         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
706
707         printk("        CURSOR_A_PALETTE:       ");
708         for (i = 0; i < 4; i++) {
709                 printk("0x%08x", hw->cursor_a_palette[i]);
710                 if (i < 3)
711                         printk(", ");
712         }
713         printk("\n");
714         printk("        CURSOR_B_PALETTE:       ");
715         for (i = 0; i < 4; i++) {
716                 printk("0x%08x", hw->cursor_b_palette[i]);
717                 if (i < 3)
718                         printk(", ");
719         }
720         printk("\n");
721
722         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
723
724         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
725         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
726         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
727         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
728         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
729         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
730
731         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
732         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
733
734         for (i = 0; i < 7; i++) {
735                 printk("        SWF0%d                  0x%08x\n", i,
736                         hw->swf0x[i]);
737         }
738         for (i = 0; i < 7; i++) {
739                 printk("        SWF1%d                  0x%08x\n", i,
740                         hw->swf1x[i]);
741         }
742         for (i = 0; i < 3; i++) {
743                 printk("        SWF3%d                  0x%08x\n", i,
744                        hw->swf3x[i]);
745         }
746         for (i = 0; i < 8; i++)
747                 printk("        FENCE%d                 0x%08x\n", i,
748                        hw->fence[i]);
749
750         printk("        INSTPM                  0x%08x\n", hw->instpm);
751         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
752         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
753         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
754
755         printk("hw state dump end\n");
756 #endif
757 }
758
759
760
761 /* Split the M parameter into M1 and M2. */
762 static int
763 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
764 {
765         int m1, m2;
766         int testm;
767         /* no point optimising too much - brute force m */
768         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++) {
769                 for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++) {
770                         testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
771                         if (testm == m) {
772                                 *retm1 = (unsigned int)m1;
773                                 *retm2 = (unsigned int)m2;
774                                 return 0;
775                         }
776                 }
777         }
778         return 1;
779 }
780
781 /* Split the P parameter into P1 and P2. */
782 static int
783 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
784 {
785         int p1, p2;
786
787         if (index == PLLS_I9xx) {
788                 switch (p) {
789                 case 10:
790                         p1 = 2;
791                         p2 = 0;
792                         break;
793                 case 20:
794                         p1 = 1;
795                         p2 = 0;
796                         break;
797                 default:
798                         p1 = (p / 10) + 1;
799                         p2 = 0;
800                         break;
801                 }
802                 
803                 *retp1 = (unsigned int)p1;
804                 *retp2 = (unsigned int)p2;
805                 return 0;
806         }
807
808         if (index == PLLS_I8xx) {
809                 if (p % 4 == 0)
810                         p2 = 1;
811                 else
812                         p2 = 0;
813                 p1 = (p / (1 << (p2 + 1))) - 2;
814                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
815                         p2 = 0;
816                         p1 = (p / (1 << (p2 + 1))) - 2;
817                 }
818                 if (p1 < plls[index].min_p1 ||
819                     p1 > plls[index].max_p1 ||
820                     (p1 + 2) * (1 << (p2 + 1)) != p) {
821                         return 1;
822                 } else {
823                         *retp1 = (unsigned int)p1;
824                         *retp2 = (unsigned int)p2;
825                         return 0;
826                 }
827         }
828         return 1;
829 }
830
831 static int
832 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
833                 u32 *retp2, u32 *retclock)
834 {
835         u32 m1, m2, n, p1, p2, n1, testm;
836         u32 f_vco, p, p_best = 0, m, f_out = 0;
837         u32 err_max, err_target, err_best = 10000000;
838         u32 n_best = 0, m_best = 0, f_best, f_err;
839         u32 p_min, p_max, p_inc, div_min, div_max;
840
841         /* Accept 0.5% difference, but aim for 0.1% */
842         err_max = 5 * clock / 1000;
843         err_target = clock / 1000;
844
845         DBG_MSG("Clock is %d\n", clock);
846
847         div_max = plls[index].max_vco_freq / clock;
848         if (index == PLLS_I9xx)
849                 div_min = 5;
850         else
851                 div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
852
853         if (clock <= plls[index].p_transition_clock)
854                 p_inc = plls[index].p_inc_lo;
855         else
856                 p_inc = plls[index].p_inc_hi;
857         p_min = ROUND_UP_TO(div_min, p_inc);
858         p_max = ROUND_DOWN_TO(div_max, p_inc);
859         if (p_min < plls[index].min_p)
860                 p_min = plls[index].min_p;
861         if (p_max > plls[index].max_p)
862                 p_max = plls[index].max_p;
863
864         if (clock < PLL_REFCLK && index == PLLS_I9xx) {
865                 p_min = 10;
866                 p_max = 20;
867                 /* this makes 640x480 work it really shouldn't
868                    - SOMEONE WITHOUT DOCS WOZ HERE */
869                 if (clock < 30000)
870                         clock *= 4;
871         }
872
873         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
874
875         p = p_min;
876         do {
877                 if (splitp(index, p, &p1, &p2)) {
878                         WRN_MSG("cannot split p = %d\n", p);
879                         p += p_inc;
880                         continue;
881                 }
882                 n = plls[index].min_n;
883                 f_vco = clock * p;
884
885                 do {
886                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
887                         if (m < plls[index].min_m)
888                                 m = plls[index].min_m + 1;
889                         if (m > plls[index].max_m)
890                                 m = plls[index].max_m - 1;
891                         for (testm = m - 1; testm <= m; testm++) {
892                                 f_out = calc_vclock3(index, m, n, p);
893                                 if (splitm(index, m, &m1, &m2)) {
894                                         WRN_MSG("cannot split m = %d\n", m);
895                                         n++;
896                                         continue;
897                                 }
898                                 if (clock > f_out)
899                                         f_err = clock - f_out;
900                                 else/* slightly bias the error for bigger clocks */
901                                         f_err = f_out - clock + 1;
902                                 
903                                 if (f_err < err_best) {
904                                         m_best = m;
905                                         n_best = n;
906                                         p_best = p;
907                                         f_best = f_out;
908                                         err_best = f_err;
909                                 }
910                         }
911                         n++;
912                 } while ((n <= plls[index].max_n) && (f_out >= clock));
913                 p += p_inc;
914         } while ((p <= p_max));
915
916         if (!m_best) {
917                 WRN_MSG("cannot find parameters for clock %d\n", clock);
918                 return 1;
919         }
920         m = m_best;
921         n = n_best;
922         p = p_best;
923         splitm(index, m, &m1, &m2);
924         splitp(index, p, &p1, &p2);
925         n1 = n - 2;
926
927         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
928                 "f: %d (%d), VCO: %d\n",
929                 m, m1, m2, n, n1, p, p1, p2,
930                 calc_vclock3(index, m, n, p),
931                 calc_vclock(index, m1, m2, n1, p1, p2),
932                 calc_vclock3(index, m, n, p) * p);
933         *retm1 = m1;
934         *retm2 = m2;
935         *retn = n1;
936         *retp1 = p1;
937         *retp2 = p2;
938         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
939
940         return 0;
941 }
942
943 static __inline__ int
944 check_overflow(u32 value, u32 limit, const char *description)
945 {
946         if (value > limit) {
947                 WRN_MSG("%s value %d exceeds limit %d\n",
948                         description, value, limit);
949                 return 1;
950         }
951         return 0;
952 }
953
954 /* It is assumed that hw is filled in with the initial state information. */
955 int
956 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
957                      struct fb_var_screeninfo *var)
958 {
959         int pipe = PIPE_A;
960         u32 *dpll, *fp0, *fp1;
961         u32 m1, m2, n, p1, p2, clock_target, clock;
962         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
963         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
964         u32 vsync_pol, hsync_pol;
965         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
966
967         DBG_MSG("intelfbhw_mode_to_hw\n");
968
969         /* Disable VGA */
970         hw->vgacntrl |= VGA_DISABLE;
971
972         /* Check whether pipe A or pipe B is enabled. */
973         if (hw->pipe_a_conf & PIPECONF_ENABLE)
974                 pipe = PIPE_A;
975         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
976                 pipe = PIPE_B;
977
978         /* Set which pipe's registers will be set. */
979         if (pipe == PIPE_B) {
980                 dpll = &hw->dpll_b;
981                 fp0 = &hw->fpb0;
982                 fp1 = &hw->fpb1;
983                 hs = &hw->hsync_b;
984                 hb = &hw->hblank_b;
985                 ht = &hw->htotal_b;
986                 vs = &hw->vsync_b;
987                 vb = &hw->vblank_b;
988                 vt = &hw->vtotal_b;
989                 ss = &hw->src_size_b;
990                 pipe_conf = &hw->pipe_b_conf;
991         } else {
992                 dpll = &hw->dpll_a;
993                 fp0 = &hw->fpa0;
994                 fp1 = &hw->fpa1;
995                 hs = &hw->hsync_a;
996                 hb = &hw->hblank_a;
997                 ht = &hw->htotal_a;
998                 vs = &hw->vsync_a;
999                 vb = &hw->vblank_a;
1000                 vt = &hw->vtotal_a;
1001                 ss = &hw->src_size_a;
1002                 pipe_conf = &hw->pipe_a_conf;
1003         }
1004
1005         /* Use ADPA register for sync control. */
1006         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1007
1008         /* sync polarity */
1009         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1010                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1011         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1012                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1013         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1014                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1015         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1016                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1017
1018         /* Connect correct pipe to the analog port DAC */
1019         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1020         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1021
1022         /* Set DPMS state to D0 (on) */
1023         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1024         hw->adpa |= ADPA_DPMS_D0;
1025
1026         hw->adpa |= ADPA_DAC_ENABLE;
1027
1028         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1029         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1030         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1031
1032         /* Desired clock in kHz */
1033         clock_target = 1000000000 / var->pixclock;
1034
1035         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, 
1036                             &n, &p1, &p2, &clock)) {
1037                 WRN_MSG("calc_pll_params failed\n");
1038                 return 1;
1039         }
1040
1041         /* Check for overflow. */
1042         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1043                 return 1;
1044         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1045                 return 1;
1046         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1047                 return 1;
1048         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1049                 return 1;
1050         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1051                 return 1;
1052
1053         *dpll &= ~DPLL_P1_FORCE_DIV2;
1054         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1055                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1056         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1057         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1058                (m1 << FP_M1_DIVISOR_SHIFT) |
1059                (m2 << FP_M2_DIVISOR_SHIFT);
1060         *fp1 = *fp0;
1061
1062         hw->dvob &= ~PORT_ENABLE;
1063         hw->dvoc &= ~PORT_ENABLE;
1064
1065         /* Use display plane A. */
1066         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1067         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1068         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1069         switch (intelfb_var_to_depth(var)) {
1070         case 8:
1071                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1072                 break;
1073         case 15:
1074                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1075                 break;
1076         case 16:
1077                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1078                 break;
1079         case 24:
1080                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1081                 break;
1082         }
1083         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1084         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1085
1086         /* Set CRTC registers. */
1087         hactive = var->xres;
1088         hsync_start = hactive + var->right_margin;
1089         hsync_end = hsync_start + var->hsync_len;
1090         htotal = hsync_end + var->left_margin;
1091         hblank_start = hactive;
1092         hblank_end = htotal;
1093
1094         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1095                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1096                 hblank_end);
1097
1098         vactive = var->yres;
1099         vsync_start = vactive + var->lower_margin;
1100         vsync_end = vsync_start + var->vsync_len;
1101         vtotal = vsync_end + var->upper_margin;
1102         vblank_start = vactive;
1103         vblank_end = vtotal;
1104         vblank_end = vsync_end + 1;
1105
1106         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1107                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1108                 vblank_end);
1109
1110         /* Adjust for register values, and check for overflow. */
1111         hactive--;
1112         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1113                 return 1;
1114         hsync_start--;
1115         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1116                 return 1;
1117         hsync_end--;
1118         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1119                 return 1;
1120         htotal--;
1121         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1122                 return 1;
1123         hblank_start--;
1124         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1125                 return 1;
1126         hblank_end--;
1127         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1128                 return 1;
1129
1130         vactive--;
1131         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1132                 return 1;
1133         vsync_start--;
1134         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1135                 return 1;
1136         vsync_end--;
1137         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1138                 return 1;
1139         vtotal--;
1140         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1141                 return 1;
1142         vblank_start--;
1143         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1144                 return 1;
1145         vblank_end--;
1146         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1147                 return 1;
1148
1149         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1150         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1151               (hblank_end << HSYNCEND_SHIFT);
1152         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1153
1154         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1155         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1156               (vblank_end << VSYNCEND_SHIFT);
1157         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1158         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1159               (vactive << SRC_SIZE_VERT_SHIFT);
1160
1161         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1162         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1163
1164         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1165                           var->xoffset * var->bits_per_pixel / 8;
1166
1167         hw->disp_a_base += dinfo->fb.offset << 12;
1168
1169         /* Check stride alignment. */
1170         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1171                 WRN_MSG("display stride %d has bad alignment %d\n",
1172                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1173                 return 1;
1174         }
1175
1176         /* Set the palette to 8-bit mode. */
1177         *pipe_conf &= ~PIPECONF_GAMMA;
1178         return 0;
1179 }
1180
1181 /* Program a (non-VGA) video mode. */
1182 int
1183 intelfbhw_program_mode(struct intelfb_info *dinfo,
1184                      const struct intelfb_hwstate *hw, int blank)
1185 {
1186         int pipe = PIPE_A;
1187         u32 tmp;
1188         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1189         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1190         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1191         u32 hsync_reg, htotal_reg, hblank_reg;
1192         u32 vsync_reg, vtotal_reg, vblank_reg;
1193         u32 src_size_reg;
1194         u32 count, tmp_val[3];
1195
1196         /* Assume single pipe, display plane A, analog CRT. */
1197
1198 #if VERBOSE > 0
1199         DBG_MSG("intelfbhw_program_mode\n");
1200 #endif
1201
1202         /* Disable VGA */
1203         tmp = INREG(VGACNTRL);
1204         tmp |= VGA_DISABLE;
1205         OUTREG(VGACNTRL, tmp);
1206
1207         /* Check whether pipe A or pipe B is enabled. */
1208         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1209                 pipe = PIPE_A;
1210         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1211                 pipe = PIPE_B;
1212
1213         dinfo->pipe = pipe;
1214
1215         if (pipe == PIPE_B) {
1216                 dpll = &hw->dpll_b;
1217                 fp0 = &hw->fpb0;
1218                 fp1 = &hw->fpb1;
1219                 pipe_conf = &hw->pipe_b_conf;
1220                 hs = &hw->hsync_b;
1221                 hb = &hw->hblank_b;
1222                 ht = &hw->htotal_b;
1223                 vs = &hw->vsync_b;
1224                 vb = &hw->vblank_b;
1225                 vt = &hw->vtotal_b;
1226                 ss = &hw->src_size_b;
1227                 dpll_reg = DPLL_B;
1228                 fp0_reg = FPB0;
1229                 fp1_reg = FPB1;
1230                 pipe_conf_reg = PIPEBCONF;
1231                 hsync_reg = HSYNC_B;
1232                 htotal_reg = HTOTAL_B;
1233                 hblank_reg = HBLANK_B;
1234                 vsync_reg = VSYNC_B;
1235                 vtotal_reg = VTOTAL_B;
1236                 vblank_reg = VBLANK_B;
1237                 src_size_reg = SRC_SIZE_B;
1238         } else {
1239                 dpll = &hw->dpll_a;
1240                 fp0 = &hw->fpa0;
1241                 fp1 = &hw->fpa1;
1242                 pipe_conf = &hw->pipe_a_conf;
1243                 hs = &hw->hsync_a;
1244                 hb = &hw->hblank_a;
1245                 ht = &hw->htotal_a;
1246                 vs = &hw->vsync_a;
1247                 vb = &hw->vblank_a;
1248                 vt = &hw->vtotal_a;
1249                 ss = &hw->src_size_a;
1250                 dpll_reg = DPLL_A;
1251                 fp0_reg = FPA0;
1252                 fp1_reg = FPA1;
1253                 pipe_conf_reg = PIPEACONF;
1254                 hsync_reg = HSYNC_A;
1255                 htotal_reg = HTOTAL_A;
1256                 hblank_reg = HBLANK_A;
1257                 vsync_reg = VSYNC_A;
1258                 vtotal_reg = VTOTAL_A;
1259                 vblank_reg = VBLANK_A;
1260                 src_size_reg = SRC_SIZE_A;
1261         }
1262
1263         /* turn off pipe */
1264         tmp = INREG(pipe_conf_reg);
1265         tmp &= ~PIPECONF_ENABLE;
1266         OUTREG(pipe_conf_reg, tmp);
1267         
1268         count = 0;
1269         do {
1270           tmp_val[count%3] = INREG(0x70000);
1271           if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1272             break;
1273           count++;
1274           udelay(1);
1275           if (count % 200 == 0) {
1276             tmp = INREG(pipe_conf_reg);
1277             tmp &= ~PIPECONF_ENABLE;
1278             OUTREG(pipe_conf_reg, tmp);
1279           }
1280         } while(count < 2000);
1281
1282         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1283
1284         /* Disable planes A and B. */
1285         tmp = INREG(DSPACNTR);
1286         tmp &= ~DISPPLANE_PLANE_ENABLE;
1287         OUTREG(DSPACNTR, tmp);
1288         tmp = INREG(DSPBCNTR);
1289         tmp &= ~DISPPLANE_PLANE_ENABLE;
1290         OUTREG(DSPBCNTR, tmp);
1291
1292         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1293         mdelay(20);
1294
1295         /* Disable Sync */
1296         tmp = INREG(ADPA);
1297         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1298         tmp |= ADPA_DPMS_D3;
1299         OUTREG(ADPA, tmp);
1300
1301         /* do some funky magic - xyzzy */
1302         OUTREG(0x61204, 0xabcd0000);
1303
1304         /* turn off PLL */
1305         tmp = INREG(dpll_reg);
1306         dpll_reg &= ~DPLL_VCO_ENABLE;
1307         OUTREG(dpll_reg, tmp);
1308
1309         /* Set PLL parameters */
1310         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1311         OUTREG(fp0_reg, *fp0);
1312         OUTREG(fp1_reg, *fp1);
1313
1314         /* Enable PLL */
1315         tmp = INREG(dpll_reg);
1316         tmp |= DPLL_VCO_ENABLE;
1317         OUTREG(dpll_reg, tmp);
1318
1319         /* Set DVOs B/C */
1320         OUTREG(DVOB, hw->dvob);
1321         OUTREG(DVOC, hw->dvoc);
1322
1323         /* undo funky magic */
1324         OUTREG(0x61204, 0x00000000);
1325
1326         /* Set ADPA */
1327         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1328         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1329
1330         /* Set pipe parameters */
1331         OUTREG(hsync_reg, *hs);
1332         OUTREG(hblank_reg, *hb);
1333         OUTREG(htotal_reg, *ht);
1334         OUTREG(vsync_reg, *vs);
1335         OUTREG(vblank_reg, *vb);
1336         OUTREG(vtotal_reg, *vt);
1337         OUTREG(src_size_reg, *ss);
1338
1339         /* Enable pipe */
1340         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1341
1342         /* Enable sync */
1343         tmp = INREG(ADPA);
1344         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1345         tmp |= ADPA_DPMS_D0;
1346         OUTREG(ADPA, tmp);
1347
1348         /* setup display plane */
1349         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1350                 /*
1351                  *      i830M errata: the display plane must be enabled
1352                  *      to allow writes to the other bits in the plane
1353                  *      control register.
1354                  */
1355                 tmp = INREG(DSPACNTR);
1356                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1357                         tmp |= DISPPLANE_PLANE_ENABLE;
1358                         OUTREG(DSPACNTR, tmp);
1359                         OUTREG(DSPACNTR,
1360                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1361                         mdelay(1);
1362               }
1363         }
1364
1365         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1366         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1367         OUTREG(DSPABASE, hw->disp_a_base);
1368
1369         /* Enable plane */
1370         if (!blank) {
1371                 tmp = INREG(DSPACNTR);
1372                 tmp |= DISPPLANE_PLANE_ENABLE;
1373                 OUTREG(DSPACNTR, tmp);
1374                 OUTREG(DSPABASE, hw->disp_a_base);
1375         }
1376
1377         return 0;
1378 }
1379
1380 /* forward declarations */
1381 static void refresh_ring(struct intelfb_info *dinfo);
1382 static void reset_state(struct intelfb_info *dinfo);
1383 static void do_flush(struct intelfb_info *dinfo);
1384
1385 static int
1386 wait_ring(struct intelfb_info *dinfo, int n)
1387 {
1388         int i = 0;
1389         unsigned long end;
1390         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1391
1392 #if VERBOSE > 0
1393         DBG_MSG("wait_ring: %d\n", n);
1394 #endif
1395
1396         end = jiffies + (HZ * 3);
1397         while (dinfo->ring_space < n) {
1398                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1399                                                    RING_HEAD_MASK);
1400                 if (dinfo->ring_tail + RING_MIN_FREE <
1401                     (u32 __iomem) dinfo->ring_head)
1402                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1403                                 - (dinfo->ring_tail + RING_MIN_FREE);
1404                 else
1405                         dinfo->ring_space = (dinfo->ring.size +
1406                                              (u32 __iomem) dinfo->ring_head)
1407                                 - (dinfo->ring_tail + RING_MIN_FREE);
1408                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1409                         end = jiffies + (HZ * 3);
1410                         last_head = (u32 __iomem) dinfo->ring_head;
1411                 }
1412                 i++;
1413                 if (time_before(end, jiffies)) {
1414                         if (!i) {
1415                                 /* Try again */
1416                                 reset_state(dinfo);
1417                                 refresh_ring(dinfo);
1418                                 do_flush(dinfo);
1419                                 end = jiffies + (HZ * 3);
1420                                 i = 1;
1421                         } else {
1422                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1423                                         dinfo->ring_space, n);
1424                                 WRN_MSG("lockup - turning off hardware "
1425                                         "acceleration\n");
1426                                 dinfo->ring_lockup = 1;
1427                                 break;
1428                         }
1429                 }
1430                 udelay(1);
1431         }
1432         return i;
1433 }
1434
1435 static void
1436 do_flush(struct intelfb_info *dinfo) {
1437         START_RING(2);
1438         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1439         OUT_RING(MI_NOOP);
1440         ADVANCE_RING();
1441 }
1442
1443 void
1444 intelfbhw_do_sync(struct intelfb_info *dinfo)
1445 {
1446 #if VERBOSE > 0
1447         DBG_MSG("intelfbhw_do_sync\n");
1448 #endif
1449
1450         if (!dinfo->accel)
1451                 return;
1452
1453         /*
1454          * Send a flush, then wait until the ring is empty.  This is what
1455          * the XFree86 driver does, and actually it doesn't seem a lot worse
1456          * than the recommended method (both have problems).
1457          */
1458         do_flush(dinfo);
1459         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1460         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1461 }
1462
1463 static void
1464 refresh_ring(struct intelfb_info *dinfo)
1465 {
1466 #if VERBOSE > 0
1467         DBG_MSG("refresh_ring\n");
1468 #endif
1469
1470         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1471                                            RING_HEAD_MASK);
1472         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1473         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1474                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1475                         - (dinfo->ring_tail + RING_MIN_FREE);
1476         else
1477                 dinfo->ring_space = (dinfo->ring.size +
1478                                      (u32 __iomem) dinfo->ring_head)
1479                         - (dinfo->ring_tail + RING_MIN_FREE);
1480 }
1481
1482 static void
1483 reset_state(struct intelfb_info *dinfo)
1484 {
1485         int i;
1486         u32 tmp;
1487
1488 #if VERBOSE > 0
1489         DBG_MSG("reset_state\n");
1490 #endif
1491
1492         for (i = 0; i < FENCE_NUM; i++)
1493                 OUTREG(FENCE + (i << 2), 0);
1494
1495         /* Flush the ring buffer if it's enabled. */
1496         tmp = INREG(PRI_RING_LENGTH);
1497         if (tmp & RING_ENABLE) {
1498 #if VERBOSE > 0
1499                 DBG_MSG("reset_state: ring was enabled\n");
1500 #endif
1501                 refresh_ring(dinfo);
1502                 intelfbhw_do_sync(dinfo);
1503                 DO_RING_IDLE();
1504         }
1505
1506         OUTREG(PRI_RING_LENGTH, 0);
1507         OUTREG(PRI_RING_HEAD, 0);
1508         OUTREG(PRI_RING_TAIL, 0);
1509         OUTREG(PRI_RING_START, 0);
1510 }
1511
1512 /* Stop the 2D engine, and turn off the ring buffer. */
1513 void
1514 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1515 {
1516 #if VERBOSE > 0
1517         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1518                 dinfo->ring_active);
1519 #endif
1520
1521         if (!dinfo->accel)
1522                 return;
1523
1524         dinfo->ring_active = 0;
1525         reset_state(dinfo);
1526 }
1527
1528 /*
1529  * Enable the ring buffer, and initialise the 2D engine.
1530  * It is assumed that the graphics engine has been stopped by previously
1531  * calling intelfb_2d_stop().
1532  */
1533 void
1534 intelfbhw_2d_start(struct intelfb_info *dinfo)
1535 {
1536 #if VERBOSE > 0
1537         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1538                 dinfo->accel, dinfo->ring_active);
1539 #endif
1540
1541         if (!dinfo->accel)
1542                 return;
1543
1544         /* Initialise the primary ring buffer. */
1545         OUTREG(PRI_RING_LENGTH, 0);
1546         OUTREG(PRI_RING_TAIL, 0);
1547         OUTREG(PRI_RING_HEAD, 0);
1548
1549         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1550         OUTREG(PRI_RING_LENGTH,
1551                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1552                 RING_NO_REPORT | RING_ENABLE);
1553         refresh_ring(dinfo);
1554         dinfo->ring_active = 1;
1555 }
1556
1557 /* 2D fillrect (solid fill or invert) */
1558 void
1559 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1560                       u32 color, u32 pitch, u32 bpp, u32 rop)
1561 {
1562         u32 br00, br09, br13, br14, br16;
1563
1564 #if VERBOSE > 0
1565         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1566                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1567 #endif
1568
1569         br00 = COLOR_BLT_CMD;
1570         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1571         br13 = (rop << ROP_SHIFT) | pitch;
1572         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1573         br16 = color;
1574
1575         switch (bpp) {
1576         case 8:
1577                 br13 |= COLOR_DEPTH_8;
1578                 break;
1579         case 16:
1580                 br13 |= COLOR_DEPTH_16;
1581                 break;
1582         case 32:
1583                 br13 |= COLOR_DEPTH_32;
1584                 br00 |= WRITE_ALPHA | WRITE_RGB;
1585                 break;
1586         }
1587
1588         START_RING(6);
1589         OUT_RING(br00);
1590         OUT_RING(br13);
1591         OUT_RING(br14);
1592         OUT_RING(br09);
1593         OUT_RING(br16);
1594         OUT_RING(MI_NOOP);
1595         ADVANCE_RING();
1596
1597 #if VERBOSE > 0
1598         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1599                 dinfo->ring_tail, dinfo->ring_space);
1600 #endif
1601 }
1602
1603 void
1604 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1605                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1606 {
1607         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1608
1609 #if VERBOSE > 0
1610         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1611                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1612 #endif
1613
1614         br00 = XY_SRC_COPY_BLT_CMD;
1615         br09 = dinfo->fb_start;
1616         br11 = (pitch << PITCH_SHIFT);
1617         br12 = dinfo->fb_start;
1618         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1619         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1620         br23 = ((dstx + w) << WIDTH_SHIFT) |
1621                ((dsty + h) << HEIGHT_SHIFT);
1622         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1623
1624         switch (bpp) {
1625         case 8:
1626                 br13 |= COLOR_DEPTH_8;
1627                 break;
1628         case 16:
1629                 br13 |= COLOR_DEPTH_16;
1630                 break;
1631         case 32:
1632                 br13 |= COLOR_DEPTH_32;
1633                 br00 |= WRITE_ALPHA | WRITE_RGB;
1634                 break;
1635         }
1636
1637         START_RING(8);
1638         OUT_RING(br00);
1639         OUT_RING(br13);
1640         OUT_RING(br22);
1641         OUT_RING(br23);
1642         OUT_RING(br09);
1643         OUT_RING(br26);
1644         OUT_RING(br11);
1645         OUT_RING(br12);
1646         ADVANCE_RING();
1647 }
1648
1649 int
1650 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1651                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1652 {
1653         int nbytes, ndwords, pad, tmp;
1654         u32 br00, br09, br13, br18, br19, br22, br23;
1655         int dat, ix, iy, iw;
1656         int i, j;
1657
1658 #if VERBOSE > 0
1659         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1660 #endif
1661
1662         /* size in bytes of a padded scanline */
1663         nbytes = ROUND_UP_TO(w, 16) / 8;
1664
1665         /* Total bytes of padded scanline data to write out. */
1666         nbytes = nbytes * h;
1667
1668         /*
1669          * Check if the glyph data exceeds the immediate mode limit.
1670          * It would take a large font (1K pixels) to hit this limit.
1671          */
1672         if (nbytes > MAX_MONO_IMM_SIZE)
1673                 return 0;
1674
1675         /* Src data is packaged a dword (32-bit) at a time. */
1676         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1677
1678         /*
1679          * Ring has to be padded to a quad word. But because the command starts
1680            with 7 bytes, pad only if there is an even number of ndwords
1681          */
1682         pad = !(ndwords % 2);
1683
1684         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1685         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1686         br09 = dinfo->fb_start;
1687         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1688         br18 = bg;
1689         br19 = fg;
1690         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1691         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1692
1693         switch (bpp) {
1694         case 8:
1695                 br13 |= COLOR_DEPTH_8;
1696                 break;
1697         case 16:
1698                 br13 |= COLOR_DEPTH_16;
1699                 break;
1700         case 32:
1701                 br13 |= COLOR_DEPTH_32;
1702                 br00 |= WRITE_ALPHA | WRITE_RGB;
1703                 break;
1704         }
1705
1706         START_RING(8 + ndwords);
1707         OUT_RING(br00);
1708         OUT_RING(br13);
1709         OUT_RING(br22);
1710         OUT_RING(br23);
1711         OUT_RING(br09);
1712         OUT_RING(br18);
1713         OUT_RING(br19);
1714         ix = iy = 0;
1715         iw = ROUND_UP_TO(w, 8) / 8;
1716         while (ndwords--) {
1717                 dat = 0;
1718                 for (j = 0; j < 2; ++j) {
1719                         for (i = 0; i < 2; ++i) {
1720                                 if (ix != iw || i == 0)
1721                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1722                         }
1723                         if (ix == iw && iy != (h-1)) {
1724                                 ix = 0;
1725                                 ++iy;
1726                         }
1727                 }
1728                 OUT_RING(dat);
1729         }
1730         if (pad)
1731                 OUT_RING(MI_NOOP);
1732         ADVANCE_RING();
1733
1734         return 1;
1735 }
1736
1737 /* HW cursor functions. */
1738 void
1739 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1740 {
1741         u32 tmp;
1742
1743 #if VERBOSE > 0
1744         DBG_MSG("intelfbhw_cursor_init\n");
1745 #endif
1746
1747         if (dinfo->mobile || IS_I9xx(dinfo)) {
1748                 if (!dinfo->cursor.physical)
1749                         return;
1750                 tmp = INREG(CURSOR_A_CONTROL);
1751                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1752                          CURSOR_MEM_TYPE_LOCAL |
1753                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1754                 tmp |= CURSOR_MODE_DISABLE;
1755                 OUTREG(CURSOR_A_CONTROL, tmp);
1756                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1757         } else {
1758                 tmp = INREG(CURSOR_CONTROL);
1759                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1760                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1761                 tmp = CURSOR_FORMAT_3C;
1762                 OUTREG(CURSOR_CONTROL, tmp);
1763                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1764                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1765                       (64 << CURSOR_SIZE_V_SHIFT);
1766                 OUTREG(CURSOR_SIZE, tmp);
1767         }
1768 }
1769
1770 void
1771 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1772 {
1773         u32 tmp;
1774
1775 #if VERBOSE > 0
1776         DBG_MSG("intelfbhw_cursor_hide\n");
1777 #endif
1778
1779         dinfo->cursor_on = 0;
1780         if (dinfo->mobile || IS_I9xx(dinfo)) {
1781                 if (!dinfo->cursor.physical)
1782                         return;
1783                 tmp = INREG(CURSOR_A_CONTROL);
1784                 tmp &= ~CURSOR_MODE_MASK;
1785                 tmp |= CURSOR_MODE_DISABLE;
1786                 OUTREG(CURSOR_A_CONTROL, tmp);
1787                 /* Flush changes */
1788                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1789         } else {
1790                 tmp = INREG(CURSOR_CONTROL);
1791                 tmp &= ~CURSOR_ENABLE;
1792                 OUTREG(CURSOR_CONTROL, tmp);
1793         }
1794 }
1795
1796 void
1797 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1798 {
1799         u32 tmp;
1800
1801 #if VERBOSE > 0
1802         DBG_MSG("intelfbhw_cursor_show\n");
1803 #endif
1804
1805         dinfo->cursor_on = 1;
1806
1807         if (dinfo->cursor_blanked)
1808                 return;
1809
1810         if (dinfo->mobile || IS_I9xx(dinfo)) {
1811                 if (!dinfo->cursor.physical)
1812                         return;
1813                 tmp = INREG(CURSOR_A_CONTROL);
1814                 tmp &= ~CURSOR_MODE_MASK;
1815                 tmp |= CURSOR_MODE_64_4C_AX;
1816                 OUTREG(CURSOR_A_CONTROL, tmp);
1817                 /* Flush changes */
1818                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1819         } else {
1820                 tmp = INREG(CURSOR_CONTROL);
1821                 tmp |= CURSOR_ENABLE;
1822                 OUTREG(CURSOR_CONTROL, tmp);
1823         }
1824 }
1825
1826 void
1827 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1828 {
1829         u32 tmp;
1830
1831 #if VERBOSE > 0
1832         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1833 #endif
1834
1835         /*
1836          * Sets the position.  The coordinates are assumed to already
1837          * have any offset adjusted.  Assume that the cursor is never
1838          * completely off-screen, and that x, y are always >= 0.
1839          */
1840
1841         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1842               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1843         OUTREG(CURSOR_A_POSITION, tmp);
1844
1845         if (IS_I9xx(dinfo)) {
1846                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1847         }
1848 }
1849
1850 void
1851 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1852 {
1853 #if VERBOSE > 0
1854         DBG_MSG("intelfbhw_cursor_setcolor\n");
1855 #endif
1856
1857         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1858         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1859         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1860         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1861 }
1862
1863 void
1864 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1865                       u8 *data)
1866 {
1867         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1868         int i, j, w = width / 8;
1869         int mod = width % 8, t_mask, d_mask;
1870
1871 #if VERBOSE > 0
1872         DBG_MSG("intelfbhw_cursor_load\n");
1873 #endif
1874
1875         if (!dinfo->cursor.virtual)
1876                 return;
1877
1878         t_mask = 0xff >> mod;
1879         d_mask = ~(0xff >> mod);
1880         for (i = height; i--; ) {
1881                 for (j = 0; j < w; j++) {
1882                         writeb(0x00, addr + j);
1883                         writeb(*(data++), addr + j+8);
1884                 }
1885                 if (mod) {
1886                         writeb(t_mask, addr + j);
1887                         writeb(*(data++) & d_mask, addr + j+8);
1888                 }
1889                 addr += 16;
1890         }
1891 }
1892
1893 void
1894 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1895         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1896         int i, j;
1897
1898 #if VERBOSE > 0
1899         DBG_MSG("intelfbhw_cursor_reset\n");
1900 #endif
1901
1902         if (!dinfo->cursor.virtual)
1903                 return;
1904
1905         for (i = 64; i--; ) {
1906                 for (j = 0; j < 8; j++) {
1907                         writeb(0xff, addr + j+0);
1908                         writeb(0x00, addr + j+8);
1909                 }
1910                 addr += 16;
1911         }
1912 }