05aded669cdb134b1469a66db89a87318191149d
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m, min_m1, max_m1;
45         int min_m2, max_m2, min_n, max_n;
46         int min_p, max_p, min_p1, max_p1;
47         int min_vco, max_vco, p_transition_clk, ref_clk;
48         int p_inc_lo, p_inc_hi;
49 };
50
51 #define PLLS_I8xx 0
52 #define PLLS_I9xx 1
53 #define PLLS_MAX 2
54
55 static struct pll_min_max plls[PLLS_MAX] = {
56         { 108, 140, 18, 26,
57           6, 16, 3, 16,
58           4, 128, 0, 31,
59           930000, 1400000, 165000, 48000,
60           4, 2 }, //I8xx
61
62         { 75, 120, 10, 20,
63           5, 9, 4, 7,
64           5, 80, 1, 8,
65           1400000, 2800000, 200000, 96000,
66           10, 5 }  //I9xx
67 };
68
69 int
70 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
71 {
72         u32 tmp;
73         if (!pdev || !dinfo)
74                 return 1;
75
76         switch (pdev->device) {
77         case PCI_DEVICE_ID_INTEL_830M:
78                 dinfo->name = "Intel(R) 830M";
79                 dinfo->chipset = INTEL_830M;
80                 dinfo->mobile = 1;
81                 dinfo->pll_index = PLLS_I8xx;
82                 return 0;
83         case PCI_DEVICE_ID_INTEL_845G:
84                 dinfo->name = "Intel(R) 845G";
85                 dinfo->chipset = INTEL_845G;
86                 dinfo->mobile = 0;
87                 dinfo->pll_index = PLLS_I8xx;
88                 return 0;
89         case PCI_DEVICE_ID_INTEL_85XGM:
90                 tmp = 0;
91                 dinfo->mobile = 1;
92                 dinfo->pll_index = PLLS_I8xx;
93                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
94                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
95                         INTEL_85X_VARIANT_MASK) {
96                 case INTEL_VAR_855GME:
97                         dinfo->name = "Intel(R) 855GME";
98                         dinfo->chipset = INTEL_855GME;
99                         return 0;
100                 case INTEL_VAR_855GM:
101                         dinfo->name = "Intel(R) 855GM";
102                         dinfo->chipset = INTEL_855GM;
103                         return 0;
104                 case INTEL_VAR_852GME:
105                         dinfo->name = "Intel(R) 852GME";
106                         dinfo->chipset = INTEL_852GME;
107                         return 0;
108                 case INTEL_VAR_852GM:
109                         dinfo->name = "Intel(R) 852GM";
110                         dinfo->chipset = INTEL_852GM;
111                         return 0;
112                 default:
113                         dinfo->name = "Intel(R) 852GM/855GM";
114                         dinfo->chipset = INTEL_85XGM;
115                         return 0;
116                 }
117                 break;
118         case PCI_DEVICE_ID_INTEL_865G:
119                 dinfo->name = "Intel(R) 865G";
120                 dinfo->chipset = INTEL_865G;
121                 dinfo->mobile = 0;
122                 dinfo->pll_index = PLLS_I8xx;
123                 return 0;
124         case PCI_DEVICE_ID_INTEL_915G:
125                 dinfo->name = "Intel(R) 915G";
126                 dinfo->chipset = INTEL_915G;
127                 dinfo->mobile = 0;
128                 dinfo->pll_index = PLLS_I9xx;
129                 return 0;
130         case PCI_DEVICE_ID_INTEL_915GM:
131                 dinfo->name = "Intel(R) 915GM";
132                 dinfo->chipset = INTEL_915GM;
133                 dinfo->mobile = 1;
134                 dinfo->pll_index = PLLS_I9xx;
135                 return 0;
136         case PCI_DEVICE_ID_INTEL_945G:
137                 dinfo->name = "Intel(R) 945G";
138                 dinfo->chipset = INTEL_945G;
139                 dinfo->mobile = 0;
140                 dinfo->pll_index = PLLS_I9xx;
141                 return 0;
142         case PCI_DEVICE_ID_INTEL_945GM:
143                 dinfo->name = "Intel(R) 945GM";
144                 dinfo->chipset = INTEL_945GM;
145                 dinfo->mobile = 1;
146                 dinfo->pll_index = PLLS_I9xx;
147                 return 0;
148         default:
149                 return 1;
150         }
151 }
152
153 int
154 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
155                      int *stolen_size)
156 {
157         struct pci_dev *bridge_dev;
158         u16 tmp;
159         int stolen_overhead;
160
161         if (!pdev || !aperture_size || !stolen_size)
162                 return 1;
163
164         /* Find the bridge device.  It is always 0:0.0 */
165         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
166                 ERR_MSG("cannot find bridge device\n");
167                 return 1;
168         }
169
170         /* Get the fb aperture size and "stolen" memory amount. */
171         tmp = 0;
172         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
173         switch (pdev->device) {
174         case PCI_DEVICE_ID_INTEL_915G:
175         case PCI_DEVICE_ID_INTEL_915GM:
176         case PCI_DEVICE_ID_INTEL_945G:
177         case PCI_DEVICE_ID_INTEL_945GM:
178                 /* 915 and 945 chipsets support a 256MB aperture.
179                    Aperture size is determined by inspected the
180                    base address of the aperture. */
181                 if (pci_resource_start(pdev, 2) & 0x08000000)
182                         *aperture_size = MB(128);
183                 else
184                         *aperture_size = MB(256);
185                 break;
186         default:
187                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
188                         *aperture_size = MB(64);
189                 else
190                         *aperture_size = MB(128);
191                 break;
192         }
193
194         /* Stolen memory size is reduced by the GTT and the popup.
195            GTT is 1K per MB of aperture size, and popup is 4K. */
196         stolen_overhead = (*aperture_size / MB(1)) + 4;
197         switch(pdev->device) {
198         case PCI_DEVICE_ID_INTEL_830M:
199         case PCI_DEVICE_ID_INTEL_845G:
200                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
201                 case INTEL_830_GMCH_GMS_STOLEN_512:
202                         *stolen_size = KB(512) - KB(stolen_overhead);
203                         return 0;
204                 case INTEL_830_GMCH_GMS_STOLEN_1024:
205                         *stolen_size = MB(1) - KB(stolen_overhead);
206                         return 0;
207                 case INTEL_830_GMCH_GMS_STOLEN_8192:
208                         *stolen_size = MB(8) - KB(stolen_overhead);
209                         return 0;
210                 case INTEL_830_GMCH_GMS_LOCAL:
211                         ERR_MSG("only local memory found\n");
212                         return 1;
213                 case INTEL_830_GMCH_GMS_DISABLED:
214                         ERR_MSG("video memory is disabled\n");
215                         return 1;
216                 default:
217                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
218                                 tmp & INTEL_830_GMCH_GMS_MASK);
219                         return 1;
220                 }
221                 break;
222         default:
223                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
224                 case INTEL_855_GMCH_GMS_STOLEN_1M:
225                         *stolen_size = MB(1) - KB(stolen_overhead);
226                         return 0;
227                 case INTEL_855_GMCH_GMS_STOLEN_4M:
228                         *stolen_size = MB(4) - KB(stolen_overhead);
229                         return 0;
230                 case INTEL_855_GMCH_GMS_STOLEN_8M:
231                         *stolen_size = MB(8) - KB(stolen_overhead);
232                         return 0;
233                 case INTEL_855_GMCH_GMS_STOLEN_16M:
234                         *stolen_size = MB(16) - KB(stolen_overhead);
235                         return 0;
236                 case INTEL_855_GMCH_GMS_STOLEN_32M:
237                         *stolen_size = MB(32) - KB(stolen_overhead);
238                         return 0;
239                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
240                         *stolen_size = MB(48) - KB(stolen_overhead);
241                         return 0;
242                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
243                         *stolen_size = MB(64) - KB(stolen_overhead);
244                         return 0;
245                 case INTEL_855_GMCH_GMS_DISABLED:
246                         ERR_MSG("video memory is disabled\n");
247                         return 0;
248                 default:
249                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
250                                 tmp & INTEL_855_GMCH_GMS_MASK);
251                         return 1;
252                 }
253         }
254 }
255
256 int
257 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
258 {
259         int dvo = 0;
260
261         if (INREG(LVDS) & PORT_ENABLE)
262                 dvo |= LVDS_PORT;
263         if (INREG(DVOA) & PORT_ENABLE)
264                 dvo |= DVOA_PORT;
265         if (INREG(DVOB) & PORT_ENABLE)
266                 dvo |= DVOB_PORT;
267         if (INREG(DVOC) & PORT_ENABLE)
268                 dvo |= DVOC_PORT;
269
270         return dvo;
271 }
272
273 const char *
274 intelfbhw_dvo_to_string(int dvo)
275 {
276         if (dvo & DVOA_PORT)
277                 return "DVO port A";
278         else if (dvo & DVOB_PORT)
279                 return "DVO port B";
280         else if (dvo & DVOC_PORT)
281                 return "DVO port C";
282         else if (dvo & LVDS_PORT)
283                 return "LVDS port";
284         else
285                 return NULL;
286 }
287
288
289 int
290 intelfbhw_validate_mode(struct intelfb_info *dinfo,
291                         struct fb_var_screeninfo *var)
292 {
293         int bytes_per_pixel;
294         int tmp;
295
296 #if VERBOSE > 0
297         DBG_MSG("intelfbhw_validate_mode\n");
298 #endif
299
300         bytes_per_pixel = var->bits_per_pixel / 8;
301         if (bytes_per_pixel == 3)
302                 bytes_per_pixel = 4;
303
304         /* Check if enough video memory. */
305         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
306         if (tmp > dinfo->fb.size) {
307                 WRN_MSG("Not enough video ram for mode "
308                         "(%d KByte vs %d KByte).\n",
309                         BtoKB(tmp), BtoKB(dinfo->fb.size));
310                 return 1;
311         }
312
313         /* Check if x/y limits are OK. */
314         if (var->xres - 1 > HACTIVE_MASK) {
315                 WRN_MSG("X resolution too large (%d vs %d).\n",
316                         var->xres, HACTIVE_MASK + 1);
317                 return 1;
318         }
319         if (var->yres - 1 > VACTIVE_MASK) {
320                 WRN_MSG("Y resolution too large (%d vs %d).\n",
321                         var->yres, VACTIVE_MASK + 1);
322                 return 1;
323         }
324
325         /* Check for interlaced/doublescan modes. */
326         if (var->vmode & FB_VMODE_INTERLACED) {
327                 WRN_MSG("Mode is interlaced.\n");
328                 return 1;
329         }
330         if (var->vmode & FB_VMODE_DOUBLE) {
331                 WRN_MSG("Mode is double-scan.\n");
332                 return 1;
333         }
334
335         /* Check if clock is OK. */
336         tmp = 1000000000 / var->pixclock;
337         if (tmp < MIN_CLOCK) {
338                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
339                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
340                 return 1;
341         }
342         if (tmp > MAX_CLOCK) {
343                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
344                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
345                 return 1;
346         }
347
348         return 0;
349 }
350
351 int
352 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
353 {
354         struct intelfb_info *dinfo = GET_DINFO(info);
355         u32 offset, xoffset, yoffset;
356
357 #if VERBOSE > 0
358         DBG_MSG("intelfbhw_pan_display\n");
359 #endif
360
361         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
362         yoffset = var->yoffset;
363
364         if ((xoffset + var->xres > var->xres_virtual) ||
365             (yoffset + var->yres > var->yres_virtual))
366                 return -EINVAL;
367
368         offset = (yoffset * dinfo->pitch) +
369                  (xoffset * var->bits_per_pixel) / 8;
370
371         offset += dinfo->fb.offset << 12;
372
373         OUTREG(DSPABASE, offset);
374
375         return 0;
376 }
377
378 /* Blank the screen. */
379 void
380 intelfbhw_do_blank(int blank, struct fb_info *info)
381 {
382         struct intelfb_info *dinfo = GET_DINFO(info);
383         u32 tmp;
384
385 #if VERBOSE > 0
386         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
387 #endif
388
389         /* Turn plane A on or off */
390         tmp = INREG(DSPACNTR);
391         if (blank)
392                 tmp &= ~DISPPLANE_PLANE_ENABLE;
393         else
394                 tmp |= DISPPLANE_PLANE_ENABLE;
395         OUTREG(DSPACNTR, tmp);
396         /* Flush */
397         tmp = INREG(DSPABASE);
398         OUTREG(DSPABASE, tmp);
399
400         /* Turn off/on the HW cursor */
401 #if VERBOSE > 0
402         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
403 #endif
404         if (dinfo->cursor_on) {
405                 if (blank) {
406                         intelfbhw_cursor_hide(dinfo);
407                 } else {
408                         intelfbhw_cursor_show(dinfo);
409                 }
410                 dinfo->cursor_on = 1;
411         }
412         dinfo->cursor_blanked = blank;
413
414         /* Set DPMS level */
415         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
416         switch (blank) {
417         case FB_BLANK_UNBLANK:
418         case FB_BLANK_NORMAL:
419                 tmp |= ADPA_DPMS_D0;
420                 break;
421         case FB_BLANK_VSYNC_SUSPEND:
422                 tmp |= ADPA_DPMS_D1;
423                 break;
424         case FB_BLANK_HSYNC_SUSPEND:
425                 tmp |= ADPA_DPMS_D2;
426                 break;
427         case FB_BLANK_POWERDOWN:
428                 tmp |= ADPA_DPMS_D3;
429                 break;
430         }
431         OUTREG(ADPA, tmp);
432
433         return;
434 }
435
436
437 void
438 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
439                     unsigned red, unsigned green, unsigned blue,
440                     unsigned transp)
441 {
442 #if VERBOSE > 0
443         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
444                 regno, red, green, blue);
445 #endif
446
447         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
448                           PALETTE_A : PALETTE_B;
449
450         OUTREG(palette_reg + (regno << 2),
451                (red << PALETTE_8_RED_SHIFT) |
452                (green << PALETTE_8_GREEN_SHIFT) |
453                (blue << PALETTE_8_BLUE_SHIFT));
454 }
455
456
457 int
458 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
459                         int flag)
460 {
461         int i;
462
463 #if VERBOSE > 0
464         DBG_MSG("intelfbhw_read_hw_state\n");
465 #endif
466
467         if (!hw || !dinfo)
468                 return -1;
469
470         /* Read in as much of the HW state as possible. */
471         hw->vga0_divisor = INREG(VGA0_DIVISOR);
472         hw->vga1_divisor = INREG(VGA1_DIVISOR);
473         hw->vga_pd = INREG(VGAPD);
474         hw->dpll_a = INREG(DPLL_A);
475         hw->dpll_b = INREG(DPLL_B);
476         hw->fpa0 = INREG(FPA0);
477         hw->fpa1 = INREG(FPA1);
478         hw->fpb0 = INREG(FPB0);
479         hw->fpb1 = INREG(FPB1);
480
481         if (flag == 1)
482                 return flag;
483
484 #if 0
485         /* This seems to be a problem with the 852GM/855GM */
486         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
487                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
488                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
489         }
490 #endif
491
492         if (flag == 2)
493                 return flag;
494
495         hw->htotal_a = INREG(HTOTAL_A);
496         hw->hblank_a = INREG(HBLANK_A);
497         hw->hsync_a = INREG(HSYNC_A);
498         hw->vtotal_a = INREG(VTOTAL_A);
499         hw->vblank_a = INREG(VBLANK_A);
500         hw->vsync_a = INREG(VSYNC_A);
501         hw->src_size_a = INREG(SRC_SIZE_A);
502         hw->bclrpat_a = INREG(BCLRPAT_A);
503         hw->htotal_b = INREG(HTOTAL_B);
504         hw->hblank_b = INREG(HBLANK_B);
505         hw->hsync_b = INREG(HSYNC_B);
506         hw->vtotal_b = INREG(VTOTAL_B);
507         hw->vblank_b = INREG(VBLANK_B);
508         hw->vsync_b = INREG(VSYNC_B);
509         hw->src_size_b = INREG(SRC_SIZE_B);
510         hw->bclrpat_b = INREG(BCLRPAT_B);
511
512         if (flag == 3)
513                 return flag;
514
515         hw->adpa = INREG(ADPA);
516         hw->dvoa = INREG(DVOA);
517         hw->dvob = INREG(DVOB);
518         hw->dvoc = INREG(DVOC);
519         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
520         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
521         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
522         hw->lvds = INREG(LVDS);
523
524         if (flag == 4)
525                 return flag;
526
527         hw->pipe_a_conf = INREG(PIPEACONF);
528         hw->pipe_b_conf = INREG(PIPEBCONF);
529         hw->disp_arb = INREG(DISPARB);
530
531         if (flag == 5)
532                 return flag;
533
534         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
535         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
536         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
537         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
538
539         if (flag == 6)
540                 return flag;
541
542         for (i = 0; i < 4; i++) {
543                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
544                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
545         }
546
547         if (flag == 7)
548                 return flag;
549
550         hw->cursor_size = INREG(CURSOR_SIZE);
551
552         if (flag == 8)
553                 return flag;
554
555         hw->disp_a_ctrl = INREG(DSPACNTR);
556         hw->disp_b_ctrl = INREG(DSPBCNTR);
557         hw->disp_a_base = INREG(DSPABASE);
558         hw->disp_b_base = INREG(DSPBBASE);
559         hw->disp_a_stride = INREG(DSPASTRIDE);
560         hw->disp_b_stride = INREG(DSPBSTRIDE);
561
562         if (flag == 9)
563                 return flag;
564
565         hw->vgacntrl = INREG(VGACNTRL);
566
567         if (flag == 10)
568                 return flag;
569
570         hw->add_id = INREG(ADD_ID);
571
572         if (flag == 11)
573                 return flag;
574
575         for (i = 0; i < 7; i++) {
576                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
577                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
578                 if (i < 3)
579                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
580         }
581
582         for (i = 0; i < 8; i++)
583                 hw->fence[i] = INREG(FENCE + (i << 2));
584
585         hw->instpm = INREG(INSTPM);
586         hw->mem_mode = INREG(MEM_MODE);
587         hw->fw_blc_0 = INREG(FW_BLC_0);
588         hw->fw_blc_1 = INREG(FW_BLC_1);
589
590         hw->hwstam = INREG16(HWSTAM);
591         hw->ier = INREG16(IER);
592         hw->iir = INREG16(IIR);
593         hw->imr = INREG16(IMR);
594
595         return 0;
596 }
597
598
599 static int calc_vclock3(int index, int m, int n, int p)
600 {
601         if (p == 0 || n == 0)
602                 return 0;
603         return plls[index].ref_clk * m / n / p;
604 }
605
606 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
607 {
608         struct pll_min_max *pll = &plls[index];
609         u32 m, vco, p;
610
611         m = (5 * (m1 + 2)) + (m2 + 2);
612         n += 2;
613         vco = pll->ref_clk * m / n;
614
615         if (index == PLLS_I8xx) {
616                 p = ((p1 + 2) * (1 << (p2 + 1)));
617         } else {
618                 p = ((p1) * (p2 ? 5 : 10));
619         }
620         return vco / p;
621 }
622
623 static void
624 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
625 {
626         int p1, p2;
627
628         if (IS_I9XX(dinfo)) {
629                 if (dpll & DPLL_P1_FORCE_DIV2)
630                         p1 = 1;
631                 else
632                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
633                 
634                 p1 = ffs(p1);
635
636                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
637         } else {
638                 if (dpll & DPLL_P1_FORCE_DIV2)
639                         p1 = 0;
640                 else
641                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
642                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
643         }
644
645         *o_p1 = p1;
646         *o_p2 = p2;
647 }
648
649
650 void
651 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
652 {
653 #if REGDUMP
654         int i, m1, m2, n, p1, p2;
655         int index = dinfo->pll_index;
656         DBG_MSG("intelfbhw_print_hw_state\n");
657
658         if (!hw || !dinfo)
659                 return;
660         /* Read in as much of the HW state as possible. */
661         printk("hw state dump start\n");
662         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
663         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
664         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
665         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
666         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
667         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
668
669         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
670
671         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
672                m1, m2, n, p1, p2);
673         printk("        VGA0: clock is %d\n",
674                calc_vclock(index, m1, m2, n, p1, p2, 0));
675
676         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
677         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
678         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
679
680         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
681         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
682                m1, m2, n, p1, p2);
683         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
684
685         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
686         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
687         printk("        FPA0:                   0x%08x\n", hw->fpa0);
688         printk("        FPA1:                   0x%08x\n", hw->fpa1);
689         printk("        FPB0:                   0x%08x\n", hw->fpb0);
690         printk("        FPB1:                   0x%08x\n", hw->fpb1);
691
692         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
693         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
694         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
695
696         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
697
698         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
699                m1, m2, n, p1, p2);
700         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
701
702         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
703         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
704         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
705
706         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
707
708         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
709                m1, m2, n, p1, p2);
710         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
711
712 #if 0
713         printk("        PALETTE_A:\n");
714         for (i = 0; i < PALETTE_8_ENTRIES)
715                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
716         printk("        PALETTE_B:\n");
717         for (i = 0; i < PALETTE_8_ENTRIES)
718                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
719 #endif
720
721         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
722         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
723         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
724         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
725         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
726         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
727         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
728         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
729         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
730         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
731         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
732         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
733         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
734         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
735         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
736         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
737
738         printk("        ADPA:                   0x%08x\n", hw->adpa);
739         printk("        DVOA:                   0x%08x\n", hw->dvoa);
740         printk("        DVOB:                   0x%08x\n", hw->dvob);
741         printk("        DVOC:                   0x%08x\n", hw->dvoc);
742         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
743         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
744         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
745         printk("        LVDS:                   0x%08x\n", hw->lvds);
746
747         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
748         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
749         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
750
751         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
752         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
753         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
754         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
755
756         printk("        CURSOR_A_PALETTE:       ");
757         for (i = 0; i < 4; i++) {
758                 printk("0x%08x", hw->cursor_a_palette[i]);
759                 if (i < 3)
760                         printk(", ");
761         }
762         printk("\n");
763         printk("        CURSOR_B_PALETTE:       ");
764         for (i = 0; i < 4; i++) {
765                 printk("0x%08x", hw->cursor_b_palette[i]);
766                 if (i < 3)
767                         printk(", ");
768         }
769         printk("\n");
770
771         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
772
773         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
774         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
775         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
776         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
777         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
778         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
779
780         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
781         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
782
783         for (i = 0; i < 7; i++) {
784                 printk("        SWF0%d                  0x%08x\n", i,
785                         hw->swf0x[i]);
786         }
787         for (i = 0; i < 7; i++) {
788                 printk("        SWF1%d                  0x%08x\n", i,
789                         hw->swf1x[i]);
790         }
791         for (i = 0; i < 3; i++) {
792                 printk("        SWF3%d                  0x%08x\n", i,
793                        hw->swf3x[i]);
794         }
795         for (i = 0; i < 8; i++)
796                 printk("        FENCE%d                 0x%08x\n", i,
797                        hw->fence[i]);
798
799         printk("        INSTPM                  0x%08x\n", hw->instpm);
800         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
801         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
802         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
803
804         printk("        HWSTAM                  0x%04x\n", hw->hwstam);
805         printk("        IER                     0x%04x\n", hw->ier);
806         printk("        IIR                     0x%04x\n", hw->iir);
807         printk("        IMR                     0x%04x\n", hw->imr);
808         printk("hw state dump end\n");
809 #endif
810 }
811
812
813
814 /* Split the M parameter into M1 and M2. */
815 static int
816 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
817 {
818         int m1, m2;
819         int testm;
820         struct pll_min_max *pll = &plls[index];
821
822         /* no point optimising too much - brute force m */
823         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
824                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
825                         testm = (5 * (m1 + 2)) + (m2 + 2);
826                         if (testm == m) {
827                                 *retm1 = (unsigned int)m1;
828                                 *retm2 = (unsigned int)m2;
829                                 return 0;
830                         }
831                 }
832         }
833         return 1;
834 }
835
836 /* Split the P parameter into P1 and P2. */
837 static int
838 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
839 {
840         int p1, p2;
841         struct pll_min_max *pll = &plls[index];
842
843         if (index == PLLS_I9xx) {
844                 p2 = (p % 10) ? 1 : 0;
845
846                 p1 = p / (p2 ? 5 : 10);
847
848                 *retp1 = (unsigned int)p1;
849                 *retp2 = (unsigned int)p2;
850                 return 0;
851         }
852
853         if (p % 4 == 0)
854                 p2 = 1;
855         else
856                 p2 = 0;
857         p1 = (p / (1 << (p2 + 1))) - 2;
858         if (p % 4 == 0 && p1 < pll->min_p1) {
859                 p2 = 0;
860                 p1 = (p / (1 << (p2 + 1))) - 2;
861         }
862         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
863             (p1 + 2) * (1 << (p2 + 1)) != p) {
864                 return 1;
865         } else {
866                 *retp1 = (unsigned int)p1;
867                 *retp2 = (unsigned int)p2;
868                 return 0;
869         }
870 }
871
872 static int
873 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
874                 u32 *retp2, u32 *retclock)
875 {
876         u32 m1, m2, n, p1, p2, n1, testm;
877         u32 f_vco, p, p_best = 0, m, f_out = 0;
878         u32 err_max, err_target, err_best = 10000000;
879         u32 n_best = 0, m_best = 0, f_best, f_err;
880         u32 p_min, p_max, p_inc, div_max;
881         struct pll_min_max *pll = &plls[index];
882
883         /* Accept 0.5% difference, but aim for 0.1% */
884         err_max = 5 * clock / 1000;
885         err_target = clock / 1000;
886
887         DBG_MSG("Clock is %d\n", clock);
888
889         div_max = pll->max_vco / clock;
890
891         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
892         p_min = p_inc;
893         p_max = ROUND_DOWN_TO(div_max, p_inc);
894         if (p_min < pll->min_p)
895                 p_min = pll->min_p;
896         if (p_max > pll->max_p)
897                 p_max = pll->max_p;
898
899         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
900
901         p = p_min;
902         do {
903                 if (splitp(index, p, &p1, &p2)) {
904                         WRN_MSG("cannot split p = %d\n", p);
905                         p += p_inc;
906                         continue;
907                 }
908                 n = pll->min_n;
909                 f_vco = clock * p;
910
911                 do {
912                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
913                         if (m < pll->min_m)
914                                 m = pll->min_m + 1;
915                         if (m > pll->max_m)
916                                 m = pll->max_m - 1;
917                         for (testm = m - 1; testm <= m; testm++) {
918                                 f_out = calc_vclock3(index, m, n, p);
919                                 if (splitm(index, testm, &m1, &m2)) {
920                                         WRN_MSG("cannot split m = %d\n", m);
921                                         n++;
922                                         continue;
923                                 }
924                                 if (clock > f_out)
925                                         f_err = clock - f_out;
926                                 else/* slightly bias the error for bigger clocks */
927                                         f_err = f_out - clock + 1;
928
929                                 if (f_err < err_best) {
930                                         m_best = testm;
931                                         n_best = n;
932                                         p_best = p;
933                                         f_best = f_out;
934                                         err_best = f_err;
935                                 }
936                         }
937                         n++;
938                 } while ((n <= pll->max_n) && (f_out >= clock));
939                 p += p_inc;
940         } while ((p <= p_max));
941
942         if (!m_best) {
943                 WRN_MSG("cannot find parameters for clock %d\n", clock);
944                 return 1;
945         }
946         m = m_best;
947         n = n_best;
948         p = p_best;
949         splitm(index, m, &m1, &m2);
950         splitp(index, p, &p1, &p2);
951         n1 = n - 2;
952
953         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
954                 "f: %d (%d), VCO: %d\n",
955                 m, m1, m2, n, n1, p, p1, p2,
956                 calc_vclock3(index, m, n, p),
957                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
958                 calc_vclock3(index, m, n, p) * p);
959         *retm1 = m1;
960         *retm2 = m2;
961         *retn = n1;
962         *retp1 = p1;
963         *retp2 = p2;
964         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
965
966         return 0;
967 }
968
969 static __inline__ int
970 check_overflow(u32 value, u32 limit, const char *description)
971 {
972         if (value > limit) {
973                 WRN_MSG("%s value %d exceeds limit %d\n",
974                         description, value, limit);
975                 return 1;
976         }
977         return 0;
978 }
979
980 /* It is assumed that hw is filled in with the initial state information. */
981 int
982 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
983                      struct fb_var_screeninfo *var)
984 {
985         int pipe = PIPE_A;
986         u32 *dpll, *fp0, *fp1;
987         u32 m1, m2, n, p1, p2, clock_target, clock;
988         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
989         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
990         u32 vsync_pol, hsync_pol;
991         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
992         u32 stride_alignment;
993
994         DBG_MSG("intelfbhw_mode_to_hw\n");
995
996         /* Disable VGA */
997         hw->vgacntrl |= VGA_DISABLE;
998
999         /* Check whether pipe A or pipe B is enabled. */
1000         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1001                 pipe = PIPE_A;
1002         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1003                 pipe = PIPE_B;
1004
1005         /* Set which pipe's registers will be set. */
1006         if (pipe == PIPE_B) {
1007                 dpll = &hw->dpll_b;
1008                 fp0 = &hw->fpb0;
1009                 fp1 = &hw->fpb1;
1010                 hs = &hw->hsync_b;
1011                 hb = &hw->hblank_b;
1012                 ht = &hw->htotal_b;
1013                 vs = &hw->vsync_b;
1014                 vb = &hw->vblank_b;
1015                 vt = &hw->vtotal_b;
1016                 ss = &hw->src_size_b;
1017                 pipe_conf = &hw->pipe_b_conf;
1018         } else {
1019                 dpll = &hw->dpll_a;
1020                 fp0 = &hw->fpa0;
1021                 fp1 = &hw->fpa1;
1022                 hs = &hw->hsync_a;
1023                 hb = &hw->hblank_a;
1024                 ht = &hw->htotal_a;
1025                 vs = &hw->vsync_a;
1026                 vb = &hw->vblank_a;
1027                 vt = &hw->vtotal_a;
1028                 ss = &hw->src_size_a;
1029                 pipe_conf = &hw->pipe_a_conf;
1030         }
1031
1032         /* Use ADPA register for sync control. */
1033         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1034
1035         /* sync polarity */
1036         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1037                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1038         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1039                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1040         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1041                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1042         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1043                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1044
1045         /* Connect correct pipe to the analog port DAC */
1046         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1047         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1048
1049         /* Set DPMS state to D0 (on) */
1050         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1051         hw->adpa |= ADPA_DPMS_D0;
1052
1053         hw->adpa |= ADPA_DAC_ENABLE;
1054
1055         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1056         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1057         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1058
1059         /* Desired clock in kHz */
1060         clock_target = 1000000000 / var->pixclock;
1061
1062         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1063                             &n, &p1, &p2, &clock)) {
1064                 WRN_MSG("calc_pll_params failed\n");
1065                 return 1;
1066         }
1067
1068         /* Check for overflow. */
1069         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1070                 return 1;
1071         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1072                 return 1;
1073         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1074                 return 1;
1075         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1076                 return 1;
1077         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1078                 return 1;
1079
1080         *dpll &= ~DPLL_P1_FORCE_DIV2;
1081         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1082                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1083
1084         if (IS_I9XX(dinfo)) {
1085                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1086                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1087         } else {
1088                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1089         }
1090
1091         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1092                (m1 << FP_M1_DIVISOR_SHIFT) |
1093                (m2 << FP_M2_DIVISOR_SHIFT);
1094         *fp1 = *fp0;
1095
1096         hw->dvob &= ~PORT_ENABLE;
1097         hw->dvoc &= ~PORT_ENABLE;
1098
1099         /* Use display plane A. */
1100         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1101         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1102         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1103         switch (intelfb_var_to_depth(var)) {
1104         case 8:
1105                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1106                 break;
1107         case 15:
1108                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1109                 break;
1110         case 16:
1111                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1112                 break;
1113         case 24:
1114                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1115                 break;
1116         }
1117         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1118         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1119
1120         /* Set CRTC registers. */
1121         hactive = var->xres;
1122         hsync_start = hactive + var->right_margin;
1123         hsync_end = hsync_start + var->hsync_len;
1124         htotal = hsync_end + var->left_margin;
1125         hblank_start = hactive;
1126         hblank_end = htotal;
1127
1128         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1129                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1130                 hblank_end);
1131
1132         vactive = var->yres;
1133         vsync_start = vactive + var->lower_margin;
1134         vsync_end = vsync_start + var->vsync_len;
1135         vtotal = vsync_end + var->upper_margin;
1136         vblank_start = vactive;
1137         vblank_end = vtotal;
1138         vblank_end = vsync_end + 1;
1139
1140         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1141                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1142                 vblank_end);
1143
1144         /* Adjust for register values, and check for overflow. */
1145         hactive--;
1146         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1147                 return 1;
1148         hsync_start--;
1149         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1150                 return 1;
1151         hsync_end--;
1152         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1153                 return 1;
1154         htotal--;
1155         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1156                 return 1;
1157         hblank_start--;
1158         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1159                 return 1;
1160         hblank_end--;
1161         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1162                 return 1;
1163
1164         vactive--;
1165         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1166                 return 1;
1167         vsync_start--;
1168         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1169                 return 1;
1170         vsync_end--;
1171         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1172                 return 1;
1173         vtotal--;
1174         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1175                 return 1;
1176         vblank_start--;
1177         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1178                 return 1;
1179         vblank_end--;
1180         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1181                 return 1;
1182
1183         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1184         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1185               (hblank_end << HSYNCEND_SHIFT);
1186         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1187
1188         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1189         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1190               (vblank_end << VSYNCEND_SHIFT);
1191         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1192         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1193               (vactive << SRC_SIZE_VERT_SHIFT);
1194
1195         hw->disp_a_stride = dinfo->pitch;
1196         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1197
1198         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1199                           var->xoffset * var->bits_per_pixel / 8;
1200
1201         hw->disp_a_base += dinfo->fb.offset << 12;
1202
1203         /* Check stride alignment. */
1204         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1205                                             STRIDE_ALIGNMENT;
1206         if (hw->disp_a_stride % stride_alignment != 0) {
1207                 WRN_MSG("display stride %d has bad alignment %d\n",
1208                         hw->disp_a_stride, stride_alignment);
1209                 return 1;
1210         }
1211
1212         /* Set the palette to 8-bit mode. */
1213         *pipe_conf &= ~PIPECONF_GAMMA;
1214         return 0;
1215 }
1216
1217 /* Program a (non-VGA) video mode. */
1218 int
1219 intelfbhw_program_mode(struct intelfb_info *dinfo,
1220                      const struct intelfb_hwstate *hw, int blank)
1221 {
1222         int pipe = PIPE_A;
1223         u32 tmp;
1224         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1225         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1226         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1227         u32 hsync_reg, htotal_reg, hblank_reg;
1228         u32 vsync_reg, vtotal_reg, vblank_reg;
1229         u32 src_size_reg;
1230         u32 count, tmp_val[3];
1231
1232         /* Assume single pipe, display plane A, analog CRT. */
1233
1234 #if VERBOSE > 0
1235         DBG_MSG("intelfbhw_program_mode\n");
1236 #endif
1237
1238         /* Disable VGA */
1239         tmp = INREG(VGACNTRL);
1240         tmp |= VGA_DISABLE;
1241         OUTREG(VGACNTRL, tmp);
1242
1243         /* Check whether pipe A or pipe B is enabled. */
1244         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1245                 pipe = PIPE_A;
1246         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1247                 pipe = PIPE_B;
1248
1249         dinfo->pipe = pipe;
1250
1251         if (pipe == PIPE_B) {
1252                 dpll = &hw->dpll_b;
1253                 fp0 = &hw->fpb0;
1254                 fp1 = &hw->fpb1;
1255                 pipe_conf = &hw->pipe_b_conf;
1256                 hs = &hw->hsync_b;
1257                 hb = &hw->hblank_b;
1258                 ht = &hw->htotal_b;
1259                 vs = &hw->vsync_b;
1260                 vb = &hw->vblank_b;
1261                 vt = &hw->vtotal_b;
1262                 ss = &hw->src_size_b;
1263                 dpll_reg = DPLL_B;
1264                 fp0_reg = FPB0;
1265                 fp1_reg = FPB1;
1266                 pipe_conf_reg = PIPEBCONF;
1267                 hsync_reg = HSYNC_B;
1268                 htotal_reg = HTOTAL_B;
1269                 hblank_reg = HBLANK_B;
1270                 vsync_reg = VSYNC_B;
1271                 vtotal_reg = VTOTAL_B;
1272                 vblank_reg = VBLANK_B;
1273                 src_size_reg = SRC_SIZE_B;
1274         } else {
1275                 dpll = &hw->dpll_a;
1276                 fp0 = &hw->fpa0;
1277                 fp1 = &hw->fpa1;
1278                 pipe_conf = &hw->pipe_a_conf;
1279                 hs = &hw->hsync_a;
1280                 hb = &hw->hblank_a;
1281                 ht = &hw->htotal_a;
1282                 vs = &hw->vsync_a;
1283                 vb = &hw->vblank_a;
1284                 vt = &hw->vtotal_a;
1285                 ss = &hw->src_size_a;
1286                 dpll_reg = DPLL_A;
1287                 fp0_reg = FPA0;
1288                 fp1_reg = FPA1;
1289                 pipe_conf_reg = PIPEACONF;
1290                 hsync_reg = HSYNC_A;
1291                 htotal_reg = HTOTAL_A;
1292                 hblank_reg = HBLANK_A;
1293                 vsync_reg = VSYNC_A;
1294                 vtotal_reg = VTOTAL_A;
1295                 vblank_reg = VBLANK_A;
1296                 src_size_reg = SRC_SIZE_A;
1297         }
1298
1299         /* turn off pipe */
1300         tmp = INREG(pipe_conf_reg);
1301         tmp &= ~PIPECONF_ENABLE;
1302         OUTREG(pipe_conf_reg, tmp);
1303
1304         count = 0;
1305         do {
1306                 tmp_val[count%3] = INREG(0x70000);
1307                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1308                         break;
1309                 count++;
1310                 udelay(1);
1311                 if (count % 200 == 0) {
1312                         tmp = INREG(pipe_conf_reg);
1313                         tmp &= ~PIPECONF_ENABLE;
1314                         OUTREG(pipe_conf_reg, tmp);
1315                 }
1316         } while(count < 2000);
1317
1318         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1319
1320         /* Disable planes A and B. */
1321         tmp = INREG(DSPACNTR);
1322         tmp &= ~DISPPLANE_PLANE_ENABLE;
1323         OUTREG(DSPACNTR, tmp);
1324         tmp = INREG(DSPBCNTR);
1325         tmp &= ~DISPPLANE_PLANE_ENABLE;
1326         OUTREG(DSPBCNTR, tmp);
1327
1328         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1329         mdelay(20);
1330
1331         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1332         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1333         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1334
1335         /* Disable Sync */
1336         tmp = INREG(ADPA);
1337         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1338         tmp |= ADPA_DPMS_D3;
1339         OUTREG(ADPA, tmp);
1340
1341         /* do some funky magic - xyzzy */
1342         OUTREG(0x61204, 0xabcd0000);
1343
1344         /* turn off PLL */
1345         tmp = INREG(dpll_reg);
1346         dpll_reg &= ~DPLL_VCO_ENABLE;
1347         OUTREG(dpll_reg, tmp);
1348
1349         /* Set PLL parameters */
1350         OUTREG(fp0_reg, *fp0);
1351         OUTREG(fp1_reg, *fp1);
1352
1353         /* Enable PLL */
1354         OUTREG(dpll_reg, *dpll);
1355
1356         /* Set DVOs B/C */
1357         OUTREG(DVOB, hw->dvob);
1358         OUTREG(DVOC, hw->dvoc);
1359
1360         /* undo funky magic */
1361         OUTREG(0x61204, 0x00000000);
1362
1363         /* Set ADPA */
1364         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1365         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1366
1367         /* Set pipe parameters */
1368         OUTREG(hsync_reg, *hs);
1369         OUTREG(hblank_reg, *hb);
1370         OUTREG(htotal_reg, *ht);
1371         OUTREG(vsync_reg, *vs);
1372         OUTREG(vblank_reg, *vb);
1373         OUTREG(vtotal_reg, *vt);
1374         OUTREG(src_size_reg, *ss);
1375
1376         /* Enable pipe */
1377         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1378
1379         /* Enable sync */
1380         tmp = INREG(ADPA);
1381         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1382         tmp |= ADPA_DPMS_D0;
1383         OUTREG(ADPA, tmp);
1384
1385         /* setup display plane */
1386         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1387                 /*
1388                  *      i830M errata: the display plane must be enabled
1389                  *      to allow writes to the other bits in the plane
1390                  *      control register.
1391                  */
1392                 tmp = INREG(DSPACNTR);
1393                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1394                         tmp |= DISPPLANE_PLANE_ENABLE;
1395                         OUTREG(DSPACNTR, tmp);
1396                         OUTREG(DSPACNTR,
1397                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1398                         mdelay(1);
1399                 }
1400         }
1401
1402         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1403         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1404         OUTREG(DSPABASE, hw->disp_a_base);
1405
1406         /* Enable plane */
1407         if (!blank) {
1408                 tmp = INREG(DSPACNTR);
1409                 tmp |= DISPPLANE_PLANE_ENABLE;
1410                 OUTREG(DSPACNTR, tmp);
1411                 OUTREG(DSPABASE, hw->disp_a_base);
1412         }
1413
1414         return 0;
1415 }
1416
1417 /* forward declarations */
1418 static void refresh_ring(struct intelfb_info *dinfo);
1419 static void reset_state(struct intelfb_info *dinfo);
1420 static void do_flush(struct intelfb_info *dinfo);
1421
1422 static int
1423 wait_ring(struct intelfb_info *dinfo, int n)
1424 {
1425         int i = 0;
1426         unsigned long end;
1427         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1428
1429 #if VERBOSE > 0
1430         DBG_MSG("wait_ring: %d\n", n);
1431 #endif
1432
1433         end = jiffies + (HZ * 3);
1434         while (dinfo->ring_space < n) {
1435                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1436                 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1437                         dinfo->ring_space = dinfo->ring_head
1438                                 - (dinfo->ring_tail + RING_MIN_FREE);
1439                 else
1440                         dinfo->ring_space = (dinfo->ring.size +
1441                                              dinfo->ring_head)
1442                                 - (dinfo->ring_tail + RING_MIN_FREE);
1443                 if (dinfo->ring_head != last_head) {
1444                         end = jiffies + (HZ * 3);
1445                         last_head = dinfo->ring_head;
1446                 }
1447                 i++;
1448                 if (time_before(end, jiffies)) {
1449                         if (!i) {
1450                                 /* Try again */
1451                                 reset_state(dinfo);
1452                                 refresh_ring(dinfo);
1453                                 do_flush(dinfo);
1454                                 end = jiffies + (HZ * 3);
1455                                 i = 1;
1456                         } else {
1457                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1458                                         dinfo->ring_space, n);
1459                                 WRN_MSG("lockup - turning off hardware "
1460                                         "acceleration\n");
1461                                 dinfo->ring_lockup = 1;
1462                                 break;
1463                         }
1464                 }
1465                 udelay(1);
1466         }
1467         return i;
1468 }
1469
1470 static void
1471 do_flush(struct intelfb_info *dinfo) {
1472         START_RING(2);
1473         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1474         OUT_RING(MI_NOOP);
1475         ADVANCE_RING();
1476 }
1477
1478 void
1479 intelfbhw_do_sync(struct intelfb_info *dinfo)
1480 {
1481 #if VERBOSE > 0
1482         DBG_MSG("intelfbhw_do_sync\n");
1483 #endif
1484
1485         if (!dinfo->accel)
1486                 return;
1487
1488         /*
1489          * Send a flush, then wait until the ring is empty.  This is what
1490          * the XFree86 driver does, and actually it doesn't seem a lot worse
1491          * than the recommended method (both have problems).
1492          */
1493         do_flush(dinfo);
1494         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1495         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1496 }
1497
1498 static void
1499 refresh_ring(struct intelfb_info *dinfo)
1500 {
1501 #if VERBOSE > 0
1502         DBG_MSG("refresh_ring\n");
1503 #endif
1504
1505         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1506         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1507         if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1508                 dinfo->ring_space = dinfo->ring_head
1509                         - (dinfo->ring_tail + RING_MIN_FREE);
1510         else
1511                 dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
1512                         - (dinfo->ring_tail + RING_MIN_FREE);
1513 }
1514
1515 static void
1516 reset_state(struct intelfb_info *dinfo)
1517 {
1518         int i;
1519         u32 tmp;
1520
1521 #if VERBOSE > 0
1522         DBG_MSG("reset_state\n");
1523 #endif
1524
1525         for (i = 0; i < FENCE_NUM; i++)
1526                 OUTREG(FENCE + (i << 2), 0);
1527
1528         /* Flush the ring buffer if it's enabled. */
1529         tmp = INREG(PRI_RING_LENGTH);
1530         if (tmp & RING_ENABLE) {
1531 #if VERBOSE > 0
1532                 DBG_MSG("reset_state: ring was enabled\n");
1533 #endif
1534                 refresh_ring(dinfo);
1535                 intelfbhw_do_sync(dinfo);
1536                 DO_RING_IDLE();
1537         }
1538
1539         OUTREG(PRI_RING_LENGTH, 0);
1540         OUTREG(PRI_RING_HEAD, 0);
1541         OUTREG(PRI_RING_TAIL, 0);
1542         OUTREG(PRI_RING_START, 0);
1543 }
1544
1545 /* Stop the 2D engine, and turn off the ring buffer. */
1546 void
1547 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1548 {
1549 #if VERBOSE > 0
1550         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1551                 dinfo->ring_active);
1552 #endif
1553
1554         if (!dinfo->accel)
1555                 return;
1556
1557         dinfo->ring_active = 0;
1558         reset_state(dinfo);
1559 }
1560
1561 /*
1562  * Enable the ring buffer, and initialise the 2D engine.
1563  * It is assumed that the graphics engine has been stopped by previously
1564  * calling intelfb_2d_stop().
1565  */
1566 void
1567 intelfbhw_2d_start(struct intelfb_info *dinfo)
1568 {
1569 #if VERBOSE > 0
1570         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1571                 dinfo->accel, dinfo->ring_active);
1572 #endif
1573
1574         if (!dinfo->accel)
1575                 return;
1576
1577         /* Initialise the primary ring buffer. */
1578         OUTREG(PRI_RING_LENGTH, 0);
1579         OUTREG(PRI_RING_TAIL, 0);
1580         OUTREG(PRI_RING_HEAD, 0);
1581
1582         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1583         OUTREG(PRI_RING_LENGTH,
1584                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1585                 RING_NO_REPORT | RING_ENABLE);
1586         refresh_ring(dinfo);
1587         dinfo->ring_active = 1;
1588 }
1589
1590 /* 2D fillrect (solid fill or invert) */
1591 void
1592 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1593                       u32 color, u32 pitch, u32 bpp, u32 rop)
1594 {
1595         u32 br00, br09, br13, br14, br16;
1596
1597 #if VERBOSE > 0
1598         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1599                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1600 #endif
1601
1602         br00 = COLOR_BLT_CMD;
1603         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1604         br13 = (rop << ROP_SHIFT) | pitch;
1605         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1606         br16 = color;
1607
1608         switch (bpp) {
1609         case 8:
1610                 br13 |= COLOR_DEPTH_8;
1611                 break;
1612         case 16:
1613                 br13 |= COLOR_DEPTH_16;
1614                 break;
1615         case 32:
1616                 br13 |= COLOR_DEPTH_32;
1617                 br00 |= WRITE_ALPHA | WRITE_RGB;
1618                 break;
1619         }
1620
1621         START_RING(6);
1622         OUT_RING(br00);
1623         OUT_RING(br13);
1624         OUT_RING(br14);
1625         OUT_RING(br09);
1626         OUT_RING(br16);
1627         OUT_RING(MI_NOOP);
1628         ADVANCE_RING();
1629
1630 #if VERBOSE > 0
1631         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1632                 dinfo->ring_tail, dinfo->ring_space);
1633 #endif
1634 }
1635
1636 void
1637 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1638                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1639 {
1640         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1641
1642 #if VERBOSE > 0
1643         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1644                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1645 #endif
1646
1647         br00 = XY_SRC_COPY_BLT_CMD;
1648         br09 = dinfo->fb_start;
1649         br11 = (pitch << PITCH_SHIFT);
1650         br12 = dinfo->fb_start;
1651         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1652         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1653         br23 = ((dstx + w) << WIDTH_SHIFT) |
1654                ((dsty + h) << HEIGHT_SHIFT);
1655         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1656
1657         switch (bpp) {
1658         case 8:
1659                 br13 |= COLOR_DEPTH_8;
1660                 break;
1661         case 16:
1662                 br13 |= COLOR_DEPTH_16;
1663                 break;
1664         case 32:
1665                 br13 |= COLOR_DEPTH_32;
1666                 br00 |= WRITE_ALPHA | WRITE_RGB;
1667                 break;
1668         }
1669
1670         START_RING(8);
1671         OUT_RING(br00);
1672         OUT_RING(br13);
1673         OUT_RING(br22);
1674         OUT_RING(br23);
1675         OUT_RING(br09);
1676         OUT_RING(br26);
1677         OUT_RING(br11);
1678         OUT_RING(br12);
1679         ADVANCE_RING();
1680 }
1681
1682 int
1683 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1684                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1685 {
1686         int nbytes, ndwords, pad, tmp;
1687         u32 br00, br09, br13, br18, br19, br22, br23;
1688         int dat, ix, iy, iw;
1689         int i, j;
1690
1691 #if VERBOSE > 0
1692         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1693 #endif
1694
1695         /* size in bytes of a padded scanline */
1696         nbytes = ROUND_UP_TO(w, 16) / 8;
1697
1698         /* Total bytes of padded scanline data to write out. */
1699         nbytes = nbytes * h;
1700
1701         /*
1702          * Check if the glyph data exceeds the immediate mode limit.
1703          * It would take a large font (1K pixels) to hit this limit.
1704          */
1705         if (nbytes > MAX_MONO_IMM_SIZE)
1706                 return 0;
1707
1708         /* Src data is packaged a dword (32-bit) at a time. */
1709         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1710
1711         /*
1712          * Ring has to be padded to a quad word. But because the command starts
1713            with 7 bytes, pad only if there is an even number of ndwords
1714          */
1715         pad = !(ndwords % 2);
1716
1717         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1718         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1719         br09 = dinfo->fb_start;
1720         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1721         br18 = bg;
1722         br19 = fg;
1723         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1724         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1725
1726         switch (bpp) {
1727         case 8:
1728                 br13 |= COLOR_DEPTH_8;
1729                 break;
1730         case 16:
1731                 br13 |= COLOR_DEPTH_16;
1732                 break;
1733         case 32:
1734                 br13 |= COLOR_DEPTH_32;
1735                 br00 |= WRITE_ALPHA | WRITE_RGB;
1736                 break;
1737         }
1738
1739         START_RING(8 + ndwords);
1740         OUT_RING(br00);
1741         OUT_RING(br13);
1742         OUT_RING(br22);
1743         OUT_RING(br23);
1744         OUT_RING(br09);
1745         OUT_RING(br18);
1746         OUT_RING(br19);
1747         ix = iy = 0;
1748         iw = ROUND_UP_TO(w, 8) / 8;
1749         while (ndwords--) {
1750                 dat = 0;
1751                 for (j = 0; j < 2; ++j) {
1752                         for (i = 0; i < 2; ++i) {
1753                                 if (ix != iw || i == 0)
1754                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1755                         }
1756                         if (ix == iw && iy != (h-1)) {
1757                                 ix = 0;
1758                                 ++iy;
1759                         }
1760                 }
1761                 OUT_RING(dat);
1762         }
1763         if (pad)
1764                 OUT_RING(MI_NOOP);
1765         ADVANCE_RING();
1766
1767         return 1;
1768 }
1769
1770 /* HW cursor functions. */
1771 void
1772 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1773 {
1774         u32 tmp;
1775
1776 #if VERBOSE > 0
1777         DBG_MSG("intelfbhw_cursor_init\n");
1778 #endif
1779
1780         if (dinfo->mobile || IS_I9XX(dinfo)) {
1781                 if (!dinfo->cursor.physical)
1782                         return;
1783                 tmp = INREG(CURSOR_A_CONTROL);
1784                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1785                          CURSOR_MEM_TYPE_LOCAL |
1786                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1787                 tmp |= CURSOR_MODE_DISABLE;
1788                 OUTREG(CURSOR_A_CONTROL, tmp);
1789                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1790         } else {
1791                 tmp = INREG(CURSOR_CONTROL);
1792                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1793                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1794                 tmp = CURSOR_FORMAT_3C;
1795                 OUTREG(CURSOR_CONTROL, tmp);
1796                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1797                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1798                       (64 << CURSOR_SIZE_V_SHIFT);
1799                 OUTREG(CURSOR_SIZE, tmp);
1800         }
1801 }
1802
1803 void
1804 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1805 {
1806         u32 tmp;
1807
1808 #if VERBOSE > 0
1809         DBG_MSG("intelfbhw_cursor_hide\n");
1810 #endif
1811
1812         dinfo->cursor_on = 0;
1813         if (dinfo->mobile || IS_I9XX(dinfo)) {
1814                 if (!dinfo->cursor.physical)
1815                         return;
1816                 tmp = INREG(CURSOR_A_CONTROL);
1817                 tmp &= ~CURSOR_MODE_MASK;
1818                 tmp |= CURSOR_MODE_DISABLE;
1819                 OUTREG(CURSOR_A_CONTROL, tmp);
1820                 /* Flush changes */
1821                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1822         } else {
1823                 tmp = INREG(CURSOR_CONTROL);
1824                 tmp &= ~CURSOR_ENABLE;
1825                 OUTREG(CURSOR_CONTROL, tmp);
1826         }
1827 }
1828
1829 void
1830 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1831 {
1832         u32 tmp;
1833
1834 #if VERBOSE > 0
1835         DBG_MSG("intelfbhw_cursor_show\n");
1836 #endif
1837
1838         dinfo->cursor_on = 1;
1839
1840         if (dinfo->cursor_blanked)
1841                 return;
1842
1843         if (dinfo->mobile || IS_I9XX(dinfo)) {
1844                 if (!dinfo->cursor.physical)
1845                         return;
1846                 tmp = INREG(CURSOR_A_CONTROL);
1847                 tmp &= ~CURSOR_MODE_MASK;
1848                 tmp |= CURSOR_MODE_64_4C_AX;
1849                 OUTREG(CURSOR_A_CONTROL, tmp);
1850                 /* Flush changes */
1851                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1852         } else {
1853                 tmp = INREG(CURSOR_CONTROL);
1854                 tmp |= CURSOR_ENABLE;
1855                 OUTREG(CURSOR_CONTROL, tmp);
1856         }
1857 }
1858
1859 void
1860 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1861 {
1862         u32 tmp;
1863
1864 #if VERBOSE > 0
1865         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1866 #endif
1867
1868         /*
1869          * Sets the position. The coordinates are assumed to already
1870          * have any offset adjusted. Assume that the cursor is never
1871          * completely off-screen, and that x, y are always >= 0.
1872          */
1873
1874         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1875               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1876         OUTREG(CURSOR_A_POSITION, tmp);
1877
1878         if (IS_I9XX(dinfo)) {
1879                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1880         }
1881 }
1882
1883 void
1884 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1885 {
1886 #if VERBOSE > 0
1887         DBG_MSG("intelfbhw_cursor_setcolor\n");
1888 #endif
1889
1890         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1891         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1892         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1893         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1894 }
1895
1896 void
1897 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1898                       u8 *data)
1899 {
1900         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1901         int i, j, w = width / 8;
1902         int mod = width % 8, t_mask, d_mask;
1903
1904 #if VERBOSE > 0
1905         DBG_MSG("intelfbhw_cursor_load\n");
1906 #endif
1907
1908         if (!dinfo->cursor.virtual)
1909                 return;
1910
1911         t_mask = 0xff >> mod;
1912         d_mask = ~(0xff >> mod);
1913         for (i = height; i--; ) {
1914                 for (j = 0; j < w; j++) {
1915                         writeb(0x00, addr + j);
1916                         writeb(*(data++), addr + j+8);
1917                 }
1918                 if (mod) {
1919                         writeb(t_mask, addr + j);
1920                         writeb(*(data++) & d_mask, addr + j+8);
1921                 }
1922                 addr += 16;
1923         }
1924 }
1925
1926 void
1927 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1928         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1929         int i, j;
1930
1931 #if VERBOSE > 0
1932         DBG_MSG("intelfbhw_cursor_reset\n");
1933 #endif
1934
1935         if (!dinfo->cursor.virtual)
1936                 return;
1937
1938         for (i = 64; i--; ) {
1939                 for (j = 0; j < 8; j++) {
1940                         writeb(0xff, addr + j+0);
1941                         writeb(0x00, addr + j+8);
1942                 }
1943                 addr += 16;
1944         }
1945 }