tree-wide: fix assorted typos all over the place
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int network_mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param_named(mode, network_mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enough memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_delayed_work(priv->workqueue, &priv->reset_work,
684                                            0);
685
686                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687                         priv->reset_backoff++;
688
689                 wake_up_interruptible(&priv->wait_command_queue);
690         } else
691                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692                                priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698                                    struct host_command *cmd)
699 {
700         struct list_head *element;
701         struct ipw2100_tx_packet *packet;
702         unsigned long flags;
703         int err = 0;
704
705         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706                      command_types[cmd->host_command], cmd->host_command,
707                      cmd->host_command_length);
708         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709                    cmd->host_command_length);
710
711         spin_lock_irqsave(&priv->low_lock, flags);
712
713         if (priv->fatal_error) {
714                 IPW_DEBUG_INFO
715                     ("Attempt to send command while hardware in fatal error condition.\n");
716                 err = -EIO;
717                 goto fail_unlock;
718         }
719
720         if (!(priv->status & STATUS_RUNNING)) {
721                 IPW_DEBUG_INFO
722                     ("Attempt to send command while hardware is not running.\n");
723                 err = -EIO;
724                 goto fail_unlock;
725         }
726
727         if (priv->status & STATUS_CMD_ACTIVE) {
728                 IPW_DEBUG_INFO
729                     ("Attempt to send command while another command is pending.\n");
730                 err = -EBUSY;
731                 goto fail_unlock;
732         }
733
734         if (list_empty(&priv->msg_free_list)) {
735                 IPW_DEBUG_INFO("no available msg buffers\n");
736                 goto fail_unlock;
737         }
738
739         priv->status |= STATUS_CMD_ACTIVE;
740         priv->messages_sent++;
741
742         element = priv->msg_free_list.next;
743
744         packet = list_entry(element, struct ipw2100_tx_packet, list);
745         packet->jiffy_start = jiffies;
746
747         /* initialize the firmware command packet */
748         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750         packet->info.c_struct.cmd->host_command_len_reg =
751             cmd->host_command_length;
752         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755                cmd->host_command_parameters,
756                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758         list_del(element);
759         DEC_STAT(&priv->msg_free_stat);
760
761         list_add_tail(element, &priv->msg_pend_list);
762         INC_STAT(&priv->msg_pend_stat);
763
764         ipw2100_tx_send_commands(priv);
765         ipw2100_tx_send_data(priv);
766
767         spin_unlock_irqrestore(&priv->low_lock, flags);
768
769         /*
770          * We must wait for this command to complete before another
771          * command can be sent...  but if we wait more than 3 seconds
772          * then there is a problem.
773          */
774
775         err =
776             wait_event_interruptible_timeout(priv->wait_command_queue,
777                                              !(priv->
778                                                status & STATUS_CMD_ACTIVE),
779                                              HOST_COMPLETE_TIMEOUT);
780
781         if (err == 0) {
782                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785                 priv->status &= ~STATUS_CMD_ACTIVE;
786                 schedule_reset(priv);
787                 return -EIO;
788         }
789
790         if (priv->fatal_error) {
791                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792                        priv->net_dev->name);
793                 return -EIO;
794         }
795
796         /* !!!!! HACK TEST !!!!!
797          * When lots of debug trace statements are enabled, the driver
798          * doesn't seem to have as many firmware restart cycles...
799          *
800          * As a test, we're sticking in a 1/100s delay here */
801         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803         return 0;
804
805       fail_unlock:
806         spin_unlock_irqrestore(&priv->low_lock, flags);
807
808         return err;
809 }
810
811 /*
812  * Verify the values and data access of the hardware
813  * No locks needed or used.  No functions called.
814  */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817         u32 data1, data2;
818         u32 address;
819
820         u32 val1 = 0x76543210;
821         u32 val2 = 0xFEDCBA98;
822
823         /* Domain 0 check - all values should be DOA_DEBUG */
824         for (address = IPW_REG_DOA_DEBUG_AREA_START;
825              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826                 read_register(priv->net_dev, address, &data1);
827                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828                         return -EIO;
829         }
830
831         /* Domain 1 check - use arbitrary read/write compare  */
832         for (address = 0; address < 5; address++) {
833                 /* The memory area is not used now */
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835                                val1);
836                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837                                val2);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839                               &data1);
840                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841                               &data2);
842                 if (val1 == data1 && val2 == data2)
843                         return 0;
844         }
845
846         return -EIO;
847 }
848
849 /*
850  *
851  * Loop until the CARD_DISABLED bit is the same value as the
852  * supplied parameter
853  *
854  * TODO: See if it would be more efficient to do a wait/wake
855  *       cycle and have the completion event trigger the wakeup
856  *
857  */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861         int i;
862         u32 card_state;
863         u32 len = sizeof(card_state);
864         int err;
865
866         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868                                           &card_state, &len);
869                 if (err) {
870                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871                                        "failed.\n");
872                         return 0;
873                 }
874
875                 /* We'll break out if either the HW state says it is
876                  * in the state we want, or if HOST_COMPLETE command
877                  * finishes */
878                 if ((card_state == state) ||
879                     ((priv->status & STATUS_ENABLED) ?
880                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881                         if (state == IPW_HW_STATE_ENABLED)
882                                 priv->status |= STATUS_ENABLED;
883                         else
884                                 priv->status &= ~STATUS_ENABLED;
885
886                         return 0;
887                 }
888
889                 udelay(50);
890         }
891
892         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893                        state ? "DISABLED" : "ENABLED");
894         return -EIO;
895 }
896
897 /*********************************************************************
898     Procedure   :   sw_reset_and_clock
899     Purpose     :   Asserts s/w reset, asserts clock initialization
900                     and waits for clock stabilization
901  ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904         int i;
905         u32 r;
906
907         // assert s/w reset
908         write_register(priv->net_dev, IPW_REG_RESET_REG,
909                        IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911         // wait for clock stabilization
912         for (i = 0; i < 1000; i++) {
913                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915                 // check clock ready bit
916                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918                         break;
919         }
920
921         if (i == 1000)
922                 return -EIO;    // TODO: better error value
923
924         /* set "initialization complete" bit to move adapter to
925          * D0 state */
926         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929         /* wait for clock stabilization */
930         for (i = 0; i < 10000; i++) {
931                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933                 /* check clock ready bit */
934                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936                         break;
937         }
938
939         if (i == 10000)
940                 return -EIO;    /* TODO: better error value */
941
942         /* set D0 standby bit */
943         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947         return 0;
948 }
949
950 /*********************************************************************
951     Procedure   :   ipw2100_download_firmware
952     Purpose     :   Initiaze adapter after power on.
953                     The sequence is:
954                     1. assert s/w reset first!
955                     2. awake clocks & wait for clock stabilization
956                     3. hold ARC (don't ask me why...)
957                     4. load Dino ucode and reset/clock init again
958                     5. zero-out shared mem
959                     6. download f/w
960  *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963         u32 address;
964         int err;
965
966 #ifndef CONFIG_PM
967         /* Fetch the firmware and microcode */
968         struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971         if (priv->fatal_error) {
972                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973                                 "fatal error %d.  Interface must be brought down.\n",
974                                 priv->net_dev->name, priv->fatal_error);
975                 return -EINVAL;
976         }
977 #ifdef CONFIG_PM
978         if (!ipw2100_firmware.version) {
979                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980                 if (err) {
981                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982                                         priv->net_dev->name, err);
983                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
984                         goto fail;
985                 }
986         }
987 #else
988         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989         if (err) {
990                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991                                 priv->net_dev->name, err);
992                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993                 goto fail;
994         }
995 #endif
996         priv->firmware_version = ipw2100_firmware.version;
997
998         /* s/w reset and clock stabilization */
999         err = sw_reset_and_clock(priv);
1000         if (err) {
1001                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002                                 priv->net_dev->name, err);
1003                 goto fail;
1004         }
1005
1006         err = ipw2100_verify(priv);
1007         if (err) {
1008                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009                                 priv->net_dev->name, err);
1010                 goto fail;
1011         }
1012
1013         /* Hold ARC */
1014         write_nic_dword(priv->net_dev,
1015                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017         /* allow ARC to run */
1018         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020         /* load microcode */
1021         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022         if (err) {
1023                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024                        priv->net_dev->name, err);
1025                 goto fail;
1026         }
1027
1028         /* release ARC */
1029         write_nic_dword(priv->net_dev,
1030                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032         /* s/w reset and clock stabilization (again!!!) */
1033         err = sw_reset_and_clock(priv);
1034         if (err) {
1035                 printk(KERN_ERR DRV_NAME
1036                        ": %s: sw_reset_and_clock failed: %d\n",
1037                        priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* load f/w */
1042         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045                                 priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048 #ifndef CONFIG_PM
1049         /*
1050          * When the .resume method of the driver is called, the other
1051          * part of the system, i.e. the ide driver could still stay in
1052          * the suspend stage. This prevents us from loading the firmware
1053          * from the disk.  --YZ
1054          */
1055
1056         /* free any storage allocated for firmware image */
1057         ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060         /* zero out Domain 1 area indirectly (Si requirement) */
1061         for (address = IPW_HOST_FW_SHARED_AREA0;
1062              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063                 write_nic_dword(priv->net_dev, address, 0);
1064         for (address = IPW_HOST_FW_SHARED_AREA1;
1065              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066                 write_nic_dword(priv->net_dev, address, 0);
1067         for (address = IPW_HOST_FW_SHARED_AREA2;
1068              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069                 write_nic_dword(priv->net_dev, address, 0);
1070         for (address = IPW_HOST_FW_SHARED_AREA3;
1071              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072                 write_nic_dword(priv->net_dev, address, 0);
1073         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075                 write_nic_dword(priv->net_dev, address, 0);
1076
1077         return 0;
1078
1079       fail:
1080         ipw2100_release_firmware(priv, &ipw2100_firmware);
1081         return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086         if (priv->status & STATUS_INT_ENABLED)
1087                 return;
1088         priv->status |= STATUS_INT_ENABLED;
1089         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094         if (!(priv->status & STATUS_INT_ENABLED))
1095                 return;
1096         priv->status &= ~STATUS_INT_ENABLED;
1097         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102         struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104         IPW_DEBUG_INFO("enter\n");
1105
1106         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107                       &ord->table1_addr);
1108
1109         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110                       &ord->table2_addr);
1111
1112         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115         ord->table2_size &= 0x0000FFFF;
1116
1117         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119         IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124         u32 reg = 0;
1125         /*
1126          * Set GPIO 3 writable by FW; GPIO 1 writable
1127          * by driver and enable clock
1128          */
1129         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130                IPW_BIT_GPIO_LED_OFF);
1131         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139         unsigned short value = 0;
1140         u32 reg = 0;
1141         int i;
1142
1143         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144                 priv->status &= ~STATUS_RF_KILL_HW;
1145                 return 0;
1146         }
1147
1148         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149                 udelay(RF_KILL_CHECK_DELAY);
1150                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152         }
1153
1154         if (value == 0)
1155                 priv->status |= STATUS_RF_KILL_HW;
1156         else
1157                 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159         return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164         u32 addr, len;
1165         u32 val;
1166
1167         /*
1168          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169          */
1170         len = sizeof(addr);
1171         if (ipw2100_get_ordinal
1172             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174                                __LINE__);
1175                 return -EIO;
1176         }
1177
1178         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180         /*
1181          * EEPROM version is the byte at offset 0xfd in firmware
1182          * We read 4 bytes, then shift out the byte we actually want */
1183         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184         priv->eeprom_version = (val >> 24) & 0xFF;
1185         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187         /*
1188          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189          *
1190          *  notice that the EEPROM bit is reverse polarity, i.e.
1191          *     bit = 0  signifies HW RF kill switch is supported
1192          *     bit = 1  signifies HW RF kill switch is NOT supported
1193          */
1194         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195         if (!((val >> 24) & 0x01))
1196                 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * Start firmware execution after power on and intialization
1206  * The sequence is:
1207  *  1. Release ARC
1208  *  2. Wait for f/w initialization completes;
1209  */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212         int i;
1213         u32 inta, inta_mask, gpio;
1214
1215         IPW_DEBUG_INFO("enter\n");
1216
1217         if (priv->status & STATUS_RUNNING)
1218                 return 0;
1219
1220         /*
1221          * Initialize the hw - drive adapter to DO state by setting
1222          * init_done bit. Wait for clk_ready bit and Download
1223          * fw & dino ucode
1224          */
1225         if (ipw2100_download_firmware(priv)) {
1226                 printk(KERN_ERR DRV_NAME
1227                        ": %s: Failed to power on the adapter.\n",
1228                        priv->net_dev->name);
1229                 return -EIO;
1230         }
1231
1232         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233          * in the firmware RBD and TBD ring queue */
1234         ipw2100_queues_initialize(priv);
1235
1236         ipw2100_hw_set_gpio(priv);
1237
1238         /* TODO -- Look at disabling interrupts here to make sure none
1239          * get fired during FW initialization */
1240
1241         /* Release ARC - clear reset bit */
1242         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244         /* wait for f/w intialization complete */
1245         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246         i = 5000;
1247         do {
1248                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249                 /* Todo... wait for sync command ... */
1250
1251                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253                 /* check "init done" bit */
1254                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255                         /* reset "init done" bit */
1256                         write_register(priv->net_dev, IPW_REG_INTA,
1257                                        IPW2100_INTA_FW_INIT_DONE);
1258                         break;
1259                 }
1260
1261                 /* check error conditions : we check these after the firmware
1262                  * check so that if there is an error, the interrupt handler
1263                  * will see it and the adapter will be reset */
1264                 if (inta &
1265                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266                         /* clear error conditions */
1267                         write_register(priv->net_dev, IPW_REG_INTA,
1268                                        IPW2100_INTA_FATAL_ERROR |
1269                                        IPW2100_INTA_PARITY_ERROR);
1270                 }
1271         } while (--i);
1272
1273         /* Clear out any pending INTAs since we aren't supposed to have
1274          * interrupts enabled at this point... */
1275         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277         inta &= IPW_INTERRUPT_MASK;
1278         /* Clear out any pending interrupts */
1279         if (inta & inta_mask)
1280                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283                      i ? "SUCCESS" : "FAILED");
1284
1285         if (!i) {
1286                 printk(KERN_WARNING DRV_NAME
1287                        ": %s: Firmware did not initialize.\n",
1288                        priv->net_dev->name);
1289                 return -EIO;
1290         }
1291
1292         /* allow firmware to write to GPIO1 & GPIO3 */
1293         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299         /* Ready to receive commands */
1300         priv->status |= STATUS_RUNNING;
1301
1302         /* The adapter has been reset; we are not associated */
1303         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305         IPW_DEBUG_INFO("exit\n");
1306
1307         return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312         if (!priv->fatal_error)
1313                 return;
1314
1315         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317         priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323         u32 reg;
1324         int i;
1325
1326         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328         ipw2100_hw_set_gpio(priv);
1329
1330         /* Step 1. Stop Master Assert */
1331         write_register(priv->net_dev, IPW_REG_RESET_REG,
1332                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334         /* Step 2. Wait for stop Master Assert
1335          *         (not more than 50us, otherwise ret error */
1336         i = 5;
1337         do {
1338                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342                         break;
1343         } while (--i);
1344
1345         priv->status &= ~STATUS_RESET_PENDING;
1346
1347         if (!i) {
1348                 IPW_DEBUG_INFO
1349                     ("exit - waited too long for master assert stop\n");
1350                 return -EIO;
1351         }
1352
1353         write_register(priv->net_dev, IPW_REG_RESET_REG,
1354                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356         /* Reset any fatal_error conditions */
1357         ipw2100_reset_fatalerror(priv);
1358
1359         /* At this point, the adapter is now stopped and disabled */
1360         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361                           STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363         return 0;
1364 }
1365
1366 /*
1367  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368  *
1369  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370  *
1371  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372  * if STATUS_ASSN_LOST is sent.
1373  */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379         struct host_command cmd = {
1380                 .host_command = CARD_DISABLE_PHY_OFF,
1381                 .host_command_sequence = 0,
1382                 .host_command_length = 0,
1383         };
1384         int err, i;
1385         u32 val1, val2;
1386
1387         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389         /* Turn off the radio */
1390         err = ipw2100_hw_send_command(priv, &cmd);
1391         if (err)
1392                 return err;
1393
1394         for (i = 0; i < 2500; i++) {
1395                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399                     (val2 & IPW2100_COMMAND_PHY_OFF))
1400                         return 0;
1401
1402                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403         }
1404
1405         return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410         struct host_command cmd = {
1411                 .host_command = HOST_COMPLETE,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0
1414         };
1415         int err = 0;
1416
1417         IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419         if (priv->status & STATUS_ENABLED)
1420                 return 0;
1421
1422         mutex_lock(&priv->adapter_mutex);
1423
1424         if (rf_kill_active(priv)) {
1425                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426                 goto fail_up;
1427         }
1428
1429         err = ipw2100_hw_send_command(priv, &cmd);
1430         if (err) {
1431                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432                 goto fail_up;
1433         }
1434
1435         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436         if (err) {
1437                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438                                priv->net_dev->name);
1439                 goto fail_up;
1440         }
1441
1442         if (priv->stop_hang_check) {
1443                 priv->stop_hang_check = 0;
1444                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445         }
1446
1447       fail_up:
1448         mutex_unlock(&priv->adapter_mutex);
1449         return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456         struct host_command cmd = {
1457                 .host_command = HOST_PRE_POWER_DOWN,
1458                 .host_command_sequence = 0,
1459                 .host_command_length = 0,
1460         };
1461         int err, i;
1462         u32 reg;
1463
1464         if (!(priv->status & STATUS_RUNNING))
1465                 return 0;
1466
1467         priv->status |= STATUS_STOPPING;
1468
1469         /* We can only shut down the card if the firmware is operational.  So,
1470          * if we haven't reset since a fatal_error, then we can not send the
1471          * shutdown commands. */
1472         if (!priv->fatal_error) {
1473                 /* First, make sure the adapter is enabled so that the PHY_OFF
1474                  * command can shut it down */
1475                 ipw2100_enable_adapter(priv);
1476
1477                 err = ipw2100_hw_phy_off(priv);
1478                 if (err)
1479                         printk(KERN_WARNING DRV_NAME
1480                                ": Error disabling radio %d\n", err);
1481
1482                 /*
1483                  * If in D0-standby mode going directly to D3 may cause a
1484                  * PCI bus violation.  Therefore we must change out of the D0
1485                  * state.
1486                  *
1487                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488                  * hardware from going into standby mode and will transition
1489                  * out of D0-standby if it is already in that state.
1490                  *
1491                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492                  * driver upon completion.  Once received, the driver can
1493                  * proceed to the D3 state.
1494                  *
1495                  * Prepare for power down command to fw.  This command would
1496                  * take HW out of D0-standby and prepare it for D3 state.
1497                  *
1498                  * Currently FW does not support event notification for this
1499                  * event. Therefore, skip waiting for it.  Just wait a fixed
1500                  * 100ms
1501                  */
1502                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504                 err = ipw2100_hw_send_command(priv, &cmd);
1505                 if (err)
1506                         printk(KERN_WARNING DRV_NAME ": "
1507                                "%s: Power down command failed: Error %d\n",
1508                                priv->net_dev->name, err);
1509                 else
1510                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511         }
1512
1513         priv->status &= ~STATUS_ENABLED;
1514
1515         /*
1516          * Set GPIO 3 writable by FW; GPIO 1 writable
1517          * by driver and enable clock
1518          */
1519         ipw2100_hw_set_gpio(priv);
1520
1521         /*
1522          * Power down adapter.  Sequence:
1523          * 1. Stop master assert (RESET_REG[9]=1)
1524          * 2. Wait for stop master (RESET_REG[8]==1)
1525          * 3. S/w reset assert (RESET_REG[7] = 1)
1526          */
1527
1528         /* Stop master assert */
1529         write_register(priv->net_dev, IPW_REG_RESET_REG,
1530                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532         /* wait stop master not more than 50 usec.
1533          * Otherwise return error. */
1534         for (i = 5; i > 0; i--) {
1535                 udelay(10);
1536
1537                 /* Check master stop bit */
1538                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541                         break;
1542         }
1543
1544         if (i == 0)
1545                 printk(KERN_WARNING DRV_NAME
1546                        ": %s: Could now power down adapter.\n",
1547                        priv->net_dev->name);
1548
1549         /* assert s/w reset */
1550         write_register(priv->net_dev, IPW_REG_RESET_REG,
1551                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555         return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560         struct host_command cmd = {
1561                 .host_command = CARD_DISABLE,
1562                 .host_command_sequence = 0,
1563                 .host_command_length = 0
1564         };
1565         int err = 0;
1566
1567         IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569         if (!(priv->status & STATUS_ENABLED))
1570                 return 0;
1571
1572         /* Make sure we clear the associated state */
1573         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575         if (!priv->stop_hang_check) {
1576                 priv->stop_hang_check = 1;
1577                 cancel_delayed_work(&priv->hang_check);
1578         }
1579
1580         mutex_lock(&priv->adapter_mutex);
1581
1582         err = ipw2100_hw_send_command(priv, &cmd);
1583         if (err) {
1584                 printk(KERN_WARNING DRV_NAME
1585                        ": exit - failed to send CARD_DISABLE command\n");
1586                 goto fail_up;
1587         }
1588
1589         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590         if (err) {
1591                 printk(KERN_WARNING DRV_NAME
1592                        ": exit - card failed to change to DISABLED\n");
1593                 goto fail_up;
1594         }
1595
1596         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598       fail_up:
1599         mutex_unlock(&priv->adapter_mutex);
1600         return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605         struct host_command cmd = {
1606                 .host_command = SET_SCAN_OPTIONS,
1607                 .host_command_sequence = 0,
1608                 .host_command_length = 8
1609         };
1610         int err;
1611
1612         IPW_DEBUG_INFO("enter\n");
1613
1614         IPW_DEBUG_SCAN("setting scan options\n");
1615
1616         cmd.host_command_parameters[0] = 0;
1617
1618         if (!(priv->config & CFG_ASSOCIATE))
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622         if (priv->config & CFG_PASSIVE_SCAN)
1623                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625         cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627         err = ipw2100_hw_send_command(priv, &cmd);
1628
1629         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630                      cmd.host_command_parameters[0]);
1631
1632         return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = BROADCAST_SCAN,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 4
1641         };
1642         int err;
1643
1644         IPW_DEBUG_HC("START_SCAN\n");
1645
1646         cmd.host_command_parameters[0] = 0;
1647
1648         /* No scanning if in monitor mode */
1649         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650                 return 1;
1651
1652         if (priv->status & STATUS_SCANNING) {
1653                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654                 return 0;
1655         }
1656
1657         IPW_DEBUG_INFO("enter\n");
1658
1659         /* Not clearing here; doing so makes iwlist always return nothing...
1660          *
1661          * We should modify the table logic to use aging tables vs. clearing
1662          * the table on each scan start.
1663          */
1664         IPW_DEBUG_SCAN("starting scan\n");
1665
1666         priv->status |= STATUS_SCANNING;
1667         err = ipw2100_hw_send_command(priv, &cmd);
1668         if (err)
1669                 priv->status &= ~STATUS_SCANNING;
1670
1671         IPW_DEBUG_INFO("exit\n");
1672
1673         return err;
1674 }
1675
1676 static const struct libipw_geo ipw_geos[] = {
1677         {                       /* Restricted */
1678          "---",
1679          .bg_channels = 14,
1680          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681                 {2427, 4}, {2432, 5}, {2437, 6},
1682                 {2442, 7}, {2447, 8}, {2452, 9},
1683                 {2457, 10}, {2462, 11}, {2467, 12},
1684                 {2472, 13}, {2484, 14}},
1685          },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690         unsigned long flags;
1691         int rc = 0;
1692         u32 lock;
1693         u32 ord_len = sizeof(lock);
1694
1695         /* Age scan list entries found before suspend */
1696         if (priv->suspend_time) {
1697                 libipw_networks_age(priv->ieee, priv->suspend_time);
1698                 priv->suspend_time = 0;
1699         }
1700
1701         /* Quiet if manually disabled. */
1702         if (priv->status & STATUS_RF_KILL_SW) {
1703                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1704                                "switch\n", priv->net_dev->name);
1705                 return 0;
1706         }
1707
1708         /* the ipw2100 hardware really doesn't want power management delays
1709          * longer than 175usec
1710          */
1711         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1712
1713         /* If the interrupt is enabled, turn it off... */
1714         spin_lock_irqsave(&priv->low_lock, flags);
1715         ipw2100_disable_interrupts(priv);
1716
1717         /* Reset any fatal_error conditions */
1718         ipw2100_reset_fatalerror(priv);
1719         spin_unlock_irqrestore(&priv->low_lock, flags);
1720
1721         if (priv->status & STATUS_POWERED ||
1722             (priv->status & STATUS_RESET_PENDING)) {
1723                 /* Power cycle the card ... */
1724                 if (ipw2100_power_cycle_adapter(priv)) {
1725                         printk(KERN_WARNING DRV_NAME
1726                                ": %s: Could not cycle adapter.\n",
1727                                priv->net_dev->name);
1728                         rc = 1;
1729                         goto exit;
1730                 }
1731         } else
1732                 priv->status |= STATUS_POWERED;
1733
1734         /* Load the firmware, start the clocks, etc. */
1735         if (ipw2100_start_adapter(priv)) {
1736                 printk(KERN_ERR DRV_NAME
1737                        ": %s: Failed to start the firmware.\n",
1738                        priv->net_dev->name);
1739                 rc = 1;
1740                 goto exit;
1741         }
1742
1743         ipw2100_initialize_ordinals(priv);
1744
1745         /* Determine capabilities of this particular HW configuration */
1746         if (ipw2100_get_hw_features(priv)) {
1747                 printk(KERN_ERR DRV_NAME
1748                        ": %s: Failed to determine HW features.\n",
1749                        priv->net_dev->name);
1750                 rc = 1;
1751                 goto exit;
1752         }
1753
1754         /* Initialize the geo */
1755         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1756                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1757                 return 0;
1758         }
1759         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1760
1761         lock = LOCK_NONE;
1762         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1763                 printk(KERN_ERR DRV_NAME
1764                        ": %s: Failed to clear ordinal lock.\n",
1765                        priv->net_dev->name);
1766                 rc = 1;
1767                 goto exit;
1768         }
1769
1770         priv->status &= ~STATUS_SCANNING;
1771
1772         if (rf_kill_active(priv)) {
1773                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1774                        priv->net_dev->name);
1775
1776                 if (priv->stop_rf_kill) {
1777                         priv->stop_rf_kill = 0;
1778                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1779                                            round_jiffies_relative(HZ));
1780                 }
1781
1782                 deferred = 1;
1783         }
1784
1785         /* Turn on the interrupt so that commands can be processed */
1786         ipw2100_enable_interrupts(priv);
1787
1788         /* Send all of the commands that must be sent prior to
1789          * HOST_COMPLETE */
1790         if (ipw2100_adapter_setup(priv)) {
1791                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1792                        priv->net_dev->name);
1793                 rc = 1;
1794                 goto exit;
1795         }
1796
1797         if (!deferred) {
1798                 /* Enable the adapter - sends HOST_COMPLETE */
1799                 if (ipw2100_enable_adapter(priv)) {
1800                         printk(KERN_ERR DRV_NAME ": "
1801                                "%s: failed in call to enable adapter.\n",
1802                                priv->net_dev->name);
1803                         ipw2100_hw_stop_adapter(priv);
1804                         rc = 1;
1805                         goto exit;
1806                 }
1807
1808                 /* Start a scan . . . */
1809                 ipw2100_set_scan_options(priv);
1810                 ipw2100_start_scan(priv);
1811         }
1812
1813       exit:
1814         return rc;
1815 }
1816
1817 /* Called by register_netdev() */
1818 static int ipw2100_net_init(struct net_device *dev)
1819 {
1820         struct ipw2100_priv *priv = libipw_priv(dev);
1821         return ipw2100_up(priv, 1);
1822 }
1823
1824 static void ipw2100_down(struct ipw2100_priv *priv)
1825 {
1826         unsigned long flags;
1827         union iwreq_data wrqu = {
1828                 .ap_addr = {
1829                             .sa_family = ARPHRD_ETHER}
1830         };
1831         int associated = priv->status & STATUS_ASSOCIATED;
1832
1833         /* Kill the RF switch timer */
1834         if (!priv->stop_rf_kill) {
1835                 priv->stop_rf_kill = 1;
1836                 cancel_delayed_work(&priv->rf_kill);
1837         }
1838
1839         /* Kill the firmware hang check timer */
1840         if (!priv->stop_hang_check) {
1841                 priv->stop_hang_check = 1;
1842                 cancel_delayed_work(&priv->hang_check);
1843         }
1844
1845         /* Kill any pending resets */
1846         if (priv->status & STATUS_RESET_PENDING)
1847                 cancel_delayed_work(&priv->reset_work);
1848
1849         /* Make sure the interrupt is on so that FW commands will be
1850          * processed correctly */
1851         spin_lock_irqsave(&priv->low_lock, flags);
1852         ipw2100_enable_interrupts(priv);
1853         spin_unlock_irqrestore(&priv->low_lock, flags);
1854
1855         if (ipw2100_hw_stop_adapter(priv))
1856                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1857                        priv->net_dev->name);
1858
1859         /* Do not disable the interrupt until _after_ we disable
1860          * the adaptor.  Otherwise the CARD_DISABLE command will never
1861          * be ack'd by the firmware */
1862         spin_lock_irqsave(&priv->low_lock, flags);
1863         ipw2100_disable_interrupts(priv);
1864         spin_unlock_irqrestore(&priv->low_lock, flags);
1865
1866         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1867                         PM_QOS_DEFAULT_VALUE);
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret;
1920         unsigned int len, essid_len;
1921         char essid[IW_ESSID_MAX_SIZE];
1922         u32 txrate;
1923         u32 chan;
1924         char *txratename;
1925         u8 bssid[ETH_ALEN];
1926         DECLARE_SSID_BUF(ssid);
1927
1928         /*
1929          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1930          *      an actual MAC of the AP. Seems like FW sets this
1931          *      address too late. Read it later and expose through
1932          *      /proc or schedule a later task to query and update
1933          */
1934
1935         essid_len = IW_ESSID_MAX_SIZE;
1936         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1937                                   essid, &essid_len);
1938         if (ret) {
1939                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1940                                __LINE__);
1941                 return;
1942         }
1943
1944         len = sizeof(u32);
1945         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1946         if (ret) {
1947                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1948                                __LINE__);
1949                 return;
1950         }
1951
1952         len = sizeof(u32);
1953         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1954         if (ret) {
1955                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956                                __LINE__);
1957                 return;
1958         }
1959         len = ETH_ALEN;
1960         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1961         if (ret) {
1962                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1963                                __LINE__);
1964                 return;
1965         }
1966         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1967
1968         switch (txrate) {
1969         case TX_RATE_1_MBIT:
1970                 txratename = "1Mbps";
1971                 break;
1972         case TX_RATE_2_MBIT:
1973                 txratename = "2Mbsp";
1974                 break;
1975         case TX_RATE_5_5_MBIT:
1976                 txratename = "5.5Mbps";
1977                 break;
1978         case TX_RATE_11_MBIT:
1979                 txratename = "11Mbps";
1980                 break;
1981         default:
1982                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1983                 txratename = "unknown rate";
1984                 break;
1985         }
1986
1987         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1988                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1989                        txratename, chan, bssid);
1990
1991         /* now we copy read ssid into dev */
1992         if (!(priv->config & CFG_STATIC_ESSID)) {
1993                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994                 memcpy(priv->essid, essid, priv->essid_len);
1995         }
1996         priv->channel = chan;
1997         memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999         priv->status |= STATUS_ASSOCIATING;
2000         priv->connect_start = get_seconds();
2001
2002         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006                              int length, int batch_mode)
2007 {
2008         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009         struct host_command cmd = {
2010                 .host_command = SSID,
2011                 .host_command_sequence = 0,
2012                 .host_command_length = ssid_len
2013         };
2014         int err;
2015         DECLARE_SSID_BUF(ssid);
2016
2017         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2018
2019         if (ssid_len)
2020                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2021
2022         if (!batch_mode) {
2023                 err = ipw2100_disable_adapter(priv);
2024                 if (err)
2025                         return err;
2026         }
2027
2028         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2029          * disable auto association -- so we cheat by setting a bogus SSID */
2030         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2031                 int i;
2032                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2033                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2034                         bogus[i] = 0x18 + i;
2035                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2036         }
2037
2038         /* NOTE:  We always send the SSID command even if the provided ESSID is
2039          * the same as what we currently think is set. */
2040
2041         err = ipw2100_hw_send_command(priv, &cmd);
2042         if (!err) {
2043                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2044                 memcpy(priv->essid, essid, ssid_len);
2045                 priv->essid_len = ssid_len;
2046         }
2047
2048         if (!batch_mode) {
2049                 if (ipw2100_enable_adapter(priv))
2050                         err = -EIO;
2051         }
2052
2053         return err;
2054 }
2055
2056 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2057 {
2058         DECLARE_SSID_BUF(ssid);
2059
2060         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2061                   "disassociated: '%s' %pM \n",
2062                   print_ssid(ssid, priv->essid, priv->essid_len),
2063                   priv->bssid);
2064
2065         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066
2067         if (priv->status & STATUS_STOPPING) {
2068                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2069                 return;
2070         }
2071
2072         memset(priv->bssid, 0, ETH_ALEN);
2073         memset(priv->ieee->bssid, 0, ETH_ALEN);
2074
2075         netif_carrier_off(priv->net_dev);
2076         netif_stop_queue(priv->net_dev);
2077
2078         if (!(priv->status & STATUS_RUNNING))
2079                 return;
2080
2081         if (priv->status & STATUS_SECURITY_UPDATED)
2082                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2083
2084         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2085 }
2086
2087 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2088 {
2089         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2090                        priv->net_dev->name);
2091
2092         /* RF_KILL is now enabled (else we wouldn't be here) */
2093         priv->status |= STATUS_RF_KILL_HW;
2094
2095         /* Make sure the RF Kill check timer is running */
2096         priv->stop_rf_kill = 0;
2097         cancel_delayed_work(&priv->rf_kill);
2098         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2099                            round_jiffies_relative(HZ));
2100 }
2101
2102 static void send_scan_event(void *data)
2103 {
2104         struct ipw2100_priv *priv = data;
2105         union iwreq_data wrqu;
2106
2107         wrqu.data.length = 0;
2108         wrqu.data.flags = 0;
2109         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2110 }
2111
2112 static void ipw2100_scan_event_later(struct work_struct *work)
2113 {
2114         send_scan_event(container_of(work, struct ipw2100_priv,
2115                                         scan_event_later.work));
2116 }
2117
2118 static void ipw2100_scan_event_now(struct work_struct *work)
2119 {
2120         send_scan_event(container_of(work, struct ipw2100_priv,
2121                                         scan_event_now));
2122 }
2123
2124 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2125 {
2126         IPW_DEBUG_SCAN("scan complete\n");
2127         /* Age the scan results... */
2128         priv->ieee->scans++;
2129         priv->status &= ~STATUS_SCANNING;
2130
2131         /* Only userspace-requested scan completion events go out immediately */
2132         if (!priv->user_requested_scan) {
2133                 if (!delayed_work_pending(&priv->scan_event_later))
2134                         queue_delayed_work(priv->workqueue,
2135                                         &priv->scan_event_later,
2136                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2137         } else {
2138                 priv->user_requested_scan = 0;
2139                 cancel_delayed_work(&priv->scan_event_later);
2140                 queue_work(priv->workqueue, &priv->scan_event_now);
2141         }
2142 }
2143
2144 #ifdef CONFIG_IPW2100_DEBUG
2145 #define IPW2100_HANDLER(v, f) { v, f, # v }
2146 struct ipw2100_status_indicator {
2147         int status;
2148         void (*cb) (struct ipw2100_priv * priv, u32 status);
2149         char *name;
2150 };
2151 #else
2152 #define IPW2100_HANDLER(v, f) { v, f }
2153 struct ipw2100_status_indicator {
2154         int status;
2155         void (*cb) (struct ipw2100_priv * priv, u32 status);
2156 };
2157 #endif                          /* CONFIG_IPW2100_DEBUG */
2158
2159 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2160 {
2161         IPW_DEBUG_SCAN("Scanning...\n");
2162         priv->status |= STATUS_SCANNING;
2163 }
2164
2165 static const struct ipw2100_status_indicator status_handlers[] = {
2166         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2167         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2168         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2169         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2170         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2171         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2172         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2173         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2174         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2175         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2176         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2177         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2178         IPW2100_HANDLER(-1, NULL)
2179 };
2180
2181 static void isr_status_change(struct ipw2100_priv *priv, int status)
2182 {
2183         int i;
2184
2185         if (status == IPW_STATE_SCANNING &&
2186             priv->status & STATUS_ASSOCIATED &&
2187             !(priv->status & STATUS_SCANNING)) {
2188                 IPW_DEBUG_INFO("Scan detected while associated, with "
2189                                "no scan request.  Restarting firmware.\n");
2190
2191                 /* Wake up any sleeping jobs */
2192                 schedule_reset(priv);
2193         }
2194
2195         for (i = 0; status_handlers[i].status != -1; i++) {
2196                 if (status == status_handlers[i].status) {
2197                         IPW_DEBUG_NOTIF("Status change: %s\n",
2198                                         status_handlers[i].name);
2199                         if (status_handlers[i].cb)
2200                                 status_handlers[i].cb(priv, status);
2201                         priv->wstats.status = status;
2202                         return;
2203                 }
2204         }
2205
2206         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2207 }
2208
2209 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2210                                     struct ipw2100_cmd_header *cmd)
2211 {
2212 #ifdef CONFIG_IPW2100_DEBUG
2213         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2214                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2215                              command_types[cmd->host_command_reg],
2216                              cmd->host_command_reg);
2217         }
2218 #endif
2219         if (cmd->host_command_reg == HOST_COMPLETE)
2220                 priv->status |= STATUS_ENABLED;
2221
2222         if (cmd->host_command_reg == CARD_DISABLE)
2223                 priv->status &= ~STATUS_ENABLED;
2224
2225         priv->status &= ~STATUS_CMD_ACTIVE;
2226
2227         wake_up_interruptible(&priv->wait_command_queue);
2228 }
2229
2230 #ifdef CONFIG_IPW2100_DEBUG
2231 static const char *frame_types[] = {
2232         "COMMAND_STATUS_VAL",
2233         "STATUS_CHANGE_VAL",
2234         "P80211_DATA_VAL",
2235         "P8023_DATA_VAL",
2236         "HOST_NOTIFICATION_VAL"
2237 };
2238 #endif
2239
2240 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2241                                     struct ipw2100_rx_packet *packet)
2242 {
2243         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2244         if (!packet->skb)
2245                 return -ENOMEM;
2246
2247         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2248         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2249                                           sizeof(struct ipw2100_rx),
2250                                           PCI_DMA_FROMDEVICE);
2251         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2252          *       dma_addr */
2253
2254         return 0;
2255 }
2256
2257 #define SEARCH_ERROR   0xffffffff
2258 #define SEARCH_FAIL    0xfffffffe
2259 #define SEARCH_SUCCESS 0xfffffff0
2260 #define SEARCH_DISCARD 0
2261 #define SEARCH_SNAPSHOT 1
2262
2263 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2264 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2265 {
2266         int i;
2267         if (!priv->snapshot[0])
2268                 return;
2269         for (i = 0; i < 0x30; i++)
2270                 kfree(priv->snapshot[i]);
2271         priv->snapshot[0] = NULL;
2272 }
2273
2274 #ifdef IPW2100_DEBUG_C3
2275 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2276 {
2277         int i;
2278         if (priv->snapshot[0])
2279                 return 1;
2280         for (i = 0; i < 0x30; i++) {
2281                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2282                 if (!priv->snapshot[i]) {
2283                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2284                                        "buffer %d\n", priv->net_dev->name, i);
2285                         while (i > 0)
2286                                 kfree(priv->snapshot[--i]);
2287                         priv->snapshot[0] = NULL;
2288                         return 0;
2289                 }
2290         }
2291
2292         return 1;
2293 }
2294
2295 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2296                                     size_t len, int mode)
2297 {
2298         u32 i, j;
2299         u32 tmp;
2300         u8 *s, *d;
2301         u32 ret;
2302
2303         s = in_buf;
2304         if (mode == SEARCH_SNAPSHOT) {
2305                 if (!ipw2100_snapshot_alloc(priv))
2306                         mode = SEARCH_DISCARD;
2307         }
2308
2309         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2310                 read_nic_dword(priv->net_dev, i, &tmp);
2311                 if (mode == SEARCH_SNAPSHOT)
2312                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2313                 if (ret == SEARCH_FAIL) {
2314                         d = (u8 *) & tmp;
2315                         for (j = 0; j < 4; j++) {
2316                                 if (*s != *d) {
2317                                         s = in_buf;
2318                                         continue;
2319                                 }
2320
2321                                 s++;
2322                                 d++;
2323
2324                                 if ((s - in_buf) == len)
2325                                         ret = (i + j) - len + 1;
2326                         }
2327                 } else if (mode == SEARCH_DISCARD)
2328                         return ret;
2329         }
2330
2331         return ret;
2332 }
2333 #endif
2334
2335 /*
2336  *
2337  * 0) Disconnect the SKB from the firmware (just unmap)
2338  * 1) Pack the ETH header into the SKB
2339  * 2) Pass the SKB to the network stack
2340  *
2341  * When packet is provided by the firmware, it contains the following:
2342  *
2343  * .  libipw_hdr
2344  * .  libipw_snap_hdr
2345  *
2346  * The size of the constructed ethernet
2347  *
2348  */
2349 #ifdef IPW2100_RX_DEBUG
2350 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2351 #endif
2352
2353 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2354 {
2355 #ifdef IPW2100_DEBUG_C3
2356         struct ipw2100_status *status = &priv->status_queue.drv[i];
2357         u32 match, reg;
2358         int j;
2359 #endif
2360
2361         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2362                        i * sizeof(struct ipw2100_status));
2363
2364 #ifdef IPW2100_DEBUG_C3
2365         /* Halt the firmware so we can get a good image */
2366         write_register(priv->net_dev, IPW_REG_RESET_REG,
2367                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2368         j = 5;
2369         do {
2370                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2371                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2372
2373                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2374                         break;
2375         } while (j--);
2376
2377         match = ipw2100_match_buf(priv, (u8 *) status,
2378                                   sizeof(struct ipw2100_status),
2379                                   SEARCH_SNAPSHOT);
2380         if (match < SEARCH_SUCCESS)
2381                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2382                                "offset 0x%06X, length %d:\n",
2383                                priv->net_dev->name, match,
2384                                sizeof(struct ipw2100_status));
2385         else
2386                 IPW_DEBUG_INFO("%s: No DMA status match in "
2387                                "Firmware.\n", priv->net_dev->name);
2388
2389         printk_buf((u8 *) priv->status_queue.drv,
2390                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2391 #endif
2392
2393         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2394         priv->net_dev->stats.rx_errors++;
2395         schedule_reset(priv);
2396 }
2397
2398 static void isr_rx(struct ipw2100_priv *priv, int i,
2399                           struct libipw_rx_stats *stats)
2400 {
2401         struct net_device *dev = priv->net_dev;
2402         struct ipw2100_status *status = &priv->status_queue.drv[i];
2403         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2404
2405         IPW_DEBUG_RX("Handler...\n");
2406
2407         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2408                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2409                                "  Dropping.\n",
2410                                dev->name,
2411                                status->frame_size, skb_tailroom(packet->skb));
2412                 dev->stats.rx_errors++;
2413                 return;
2414         }
2415
2416         if (unlikely(!netif_running(dev))) {
2417                 dev->stats.rx_errors++;
2418                 priv->wstats.discard.misc++;
2419                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2420                 return;
2421         }
2422
2423         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2424                      !(priv->status & STATUS_ASSOCIATED))) {
2425                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2426                 priv->wstats.discard.misc++;
2427                 return;
2428         }
2429
2430         pci_unmap_single(priv->pci_dev,
2431                          packet->dma_addr,
2432                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2433
2434         skb_put(packet->skb, status->frame_size);
2435
2436 #ifdef IPW2100_RX_DEBUG
2437         /* Make a copy of the frame so we can dump it to the logs if
2438          * libipw_rx fails */
2439         skb_copy_from_linear_data(packet->skb, packet_data,
2440                                   min_t(u32, status->frame_size,
2441                                              IPW_RX_NIC_BUFFER_LENGTH));
2442 #endif
2443
2444         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2445 #ifdef IPW2100_RX_DEBUG
2446                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2447                                dev->name);
2448                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2449 #endif
2450                 dev->stats.rx_errors++;
2451
2452                 /* libipw_rx failed, so it didn't free the SKB */
2453                 dev_kfree_skb_any(packet->skb);
2454                 packet->skb = NULL;
2455         }
2456
2457         /* We need to allocate a new SKB and attach it to the RDB. */
2458         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2459                 printk(KERN_WARNING DRV_NAME ": "
2460                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2461                        "adapter.\n", dev->name);
2462                 /* TODO: schedule adapter shutdown */
2463                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2464         }
2465
2466         /* Update the RDB entry */
2467         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2468 }
2469
2470 #ifdef CONFIG_IPW2100_MONITOR
2471
2472 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2473                    struct libipw_rx_stats *stats)
2474 {
2475         struct net_device *dev = priv->net_dev;
2476         struct ipw2100_status *status = &priv->status_queue.drv[i];
2477         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2478
2479         /* Magic struct that slots into the radiotap header -- no reason
2480          * to build this manually element by element, we can write it much
2481          * more efficiently than we can parse it. ORDER MATTERS HERE */
2482         struct ipw_rt_hdr {
2483                 struct ieee80211_radiotap_header rt_hdr;
2484                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2485         } *ipw_rt;
2486
2487         IPW_DEBUG_RX("Handler...\n");
2488
2489         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2490                                 sizeof(struct ipw_rt_hdr))) {
2491                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2492                                "  Dropping.\n",
2493                                dev->name,
2494                                status->frame_size,
2495                                skb_tailroom(packet->skb));
2496                 dev->stats.rx_errors++;
2497                 return;
2498         }
2499
2500         if (unlikely(!netif_running(dev))) {
2501                 dev->stats.rx_errors++;
2502                 priv->wstats.discard.misc++;
2503                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504                 return;
2505         }
2506
2507         if (unlikely(priv->config & CFG_CRC_CHECK &&
2508                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2509                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2510                 dev->stats.rx_errors++;
2511                 return;
2512         }
2513
2514         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2515                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2516         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2517                 packet->skb->data, status->frame_size);
2518
2519         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2520
2521         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2522         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2523         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2524
2525         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2526
2527         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2528
2529         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2530
2531         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2532                 dev->stats.rx_errors++;
2533
2534                 /* libipw_rx failed, so it didn't free the SKB */
2535                 dev_kfree_skb_any(packet->skb);
2536                 packet->skb = NULL;
2537         }
2538
2539         /* We need to allocate a new SKB and attach it to the RDB. */
2540         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2541                 IPW_DEBUG_WARNING(
2542                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2543                         "adapter.\n", dev->name);
2544                 /* TODO: schedule adapter shutdown */
2545                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2546         }
2547
2548         /* Update the RDB entry */
2549         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2550 }
2551
2552 #endif
2553
2554 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2555 {
2556         struct ipw2100_status *status = &priv->status_queue.drv[i];
2557         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2558         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2559
2560         switch (frame_type) {
2561         case COMMAND_STATUS_VAL:
2562                 return (status->frame_size != sizeof(u->rx_data.command));
2563         case STATUS_CHANGE_VAL:
2564                 return (status->frame_size != sizeof(u->rx_data.status));
2565         case HOST_NOTIFICATION_VAL:
2566                 return (status->frame_size < sizeof(u->rx_data.notification));
2567         case P80211_DATA_VAL:
2568         case P8023_DATA_VAL:
2569 #ifdef CONFIG_IPW2100_MONITOR
2570                 return 0;
2571 #else
2572                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2573                 case IEEE80211_FTYPE_MGMT:
2574                 case IEEE80211_FTYPE_CTL:
2575                         return 0;
2576                 case IEEE80211_FTYPE_DATA:
2577                         return (status->frame_size >
2578                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2579                 }
2580 #endif
2581         }
2582
2583         return 1;
2584 }
2585
2586 /*
2587  * ipw2100 interrupts are disabled at this point, and the ISR
2588  * is the only code that calls this method.  So, we do not need
2589  * to play with any locks.
2590  *
2591  * RX Queue works as follows:
2592  *
2593  * Read index - firmware places packet in entry identified by the
2594  *              Read index and advances Read index.  In this manner,
2595  *              Read index will always point to the next packet to
2596  *              be filled--but not yet valid.
2597  *
2598  * Write index - driver fills this entry with an unused RBD entry.
2599  *               This entry has not filled by the firmware yet.
2600  *
2601  * In between the W and R indexes are the RBDs that have been received
2602  * but not yet processed.
2603  *
2604  * The process of handling packets will start at WRITE + 1 and advance
2605  * until it reaches the READ index.
2606  *
2607  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2608  *
2609  */
2610 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2611 {
2612         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2613         struct ipw2100_status_queue *sq = &priv->status_queue;
2614         struct ipw2100_rx_packet *packet;
2615         u16 frame_type;
2616         u32 r, w, i, s;
2617         struct ipw2100_rx *u;
2618         struct libipw_rx_stats stats = {
2619                 .mac_time = jiffies,
2620         };
2621
2622         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2623         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2624
2625         if (r >= rxq->entries) {
2626                 IPW_DEBUG_RX("exit - bad read index\n");
2627                 return;
2628         }
2629
2630         i = (rxq->next + 1) % rxq->entries;
2631         s = i;
2632         while (i != r) {
2633                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2634                    r, rxq->next, i); */
2635
2636                 packet = &priv->rx_buffers[i];
2637
2638                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2639                  * the correct values */
2640                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2641                                             sq->nic +
2642                                             sizeof(struct ipw2100_status) * i,
2643                                             sizeof(struct ipw2100_status),
2644                                             PCI_DMA_FROMDEVICE);
2645
2646                 /* Sync the DMA for the RX buffer so CPU is sure to get
2647                  * the correct values */
2648                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2649                                             sizeof(struct ipw2100_rx),
2650                                             PCI_DMA_FROMDEVICE);
2651
2652                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2653                         ipw2100_corruption_detected(priv, i);
2654                         goto increment;
2655                 }
2656
2657                 u = packet->rxp;
2658                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2659                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2660                 stats.len = sq->drv[i].frame_size;
2661
2662                 stats.mask = 0;
2663                 if (stats.rssi != 0)
2664                         stats.mask |= LIBIPW_STATMASK_RSSI;
2665                 stats.freq = LIBIPW_24GHZ_BAND;
2666
2667                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2668                              priv->net_dev->name, frame_types[frame_type],
2669                              stats.len);
2670
2671                 switch (frame_type) {
2672                 case COMMAND_STATUS_VAL:
2673                         /* Reset Rx watchdog */
2674                         isr_rx_complete_command(priv, &u->rx_data.command);
2675                         break;
2676
2677                 case STATUS_CHANGE_VAL:
2678                         isr_status_change(priv, u->rx_data.status);
2679                         break;
2680
2681                 case P80211_DATA_VAL:
2682                 case P8023_DATA_VAL:
2683 #ifdef CONFIG_IPW2100_MONITOR
2684                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2685                                 isr_rx_monitor(priv, i, &stats);
2686                                 break;
2687                         }
2688 #endif
2689                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2690                                 break;
2691                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2692                         case IEEE80211_FTYPE_MGMT:
2693                                 libipw_rx_mgt(priv->ieee,
2694                                                  &u->rx_data.header, &stats);
2695                                 break;
2696
2697                         case IEEE80211_FTYPE_CTL:
2698                                 break;
2699
2700                         case IEEE80211_FTYPE_DATA:
2701                                 isr_rx(priv, i, &stats);
2702                                 break;
2703
2704                         }
2705                         break;
2706                 }
2707
2708               increment:
2709                 /* clear status field associated with this RBD */
2710                 rxq->drv[i].status.info.field = 0;
2711
2712                 i = (i + 1) % rxq->entries;
2713         }
2714
2715         if (i != s) {
2716                 /* backtrack one entry, wrapping to end if at 0 */
2717                 rxq->next = (i ? i : rxq->entries) - 1;
2718
2719                 write_register(priv->net_dev,
2720                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2721         }
2722 }
2723
2724 /*
2725  * __ipw2100_tx_process
2726  *
2727  * This routine will determine whether the next packet on
2728  * the fw_pend_list has been processed by the firmware yet.
2729  *
2730  * If not, then it does nothing and returns.
2731  *
2732  * If so, then it removes the item from the fw_pend_list, frees
2733  * any associated storage, and places the item back on the
2734  * free list of its source (either msg_free_list or tx_free_list)
2735  *
2736  * TX Queue works as follows:
2737  *
2738  * Read index - points to the next TBD that the firmware will
2739  *              process.  The firmware will read the data, and once
2740  *              done processing, it will advance the Read index.
2741  *
2742  * Write index - driver fills this entry with an constructed TBD
2743  *               entry.  The Write index is not advanced until the
2744  *               packet has been configured.
2745  *
2746  * In between the W and R indexes are the TBDs that have NOT been
2747  * processed.  Lagging behind the R index are packets that have
2748  * been processed but have not been freed by the driver.
2749  *
2750  * In order to free old storage, an internal index will be maintained
2751  * that points to the next packet to be freed.  When all used
2752  * packets have been freed, the oldest index will be the same as the
2753  * firmware's read index.
2754  *
2755  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2756  *
2757  * Because the TBD structure can not contain arbitrary data, the
2758  * driver must keep an internal queue of cached allocations such that
2759  * it can put that data back into the tx_free_list and msg_free_list
2760  * for use by future command and data packets.
2761  *
2762  */
2763 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2764 {
2765         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2766         struct ipw2100_bd *tbd;
2767         struct list_head *element;
2768         struct ipw2100_tx_packet *packet;
2769         int descriptors_used;
2770         int e, i;
2771         u32 r, w, frag_num = 0;
2772
2773         if (list_empty(&priv->fw_pend_list))
2774                 return 0;
2775
2776         element = priv->fw_pend_list.next;
2777
2778         packet = list_entry(element, struct ipw2100_tx_packet, list);
2779         tbd = &txq->drv[packet->index];
2780
2781         /* Determine how many TBD entries must be finished... */
2782         switch (packet->type) {
2783         case COMMAND:
2784                 /* COMMAND uses only one slot; don't advance */
2785                 descriptors_used = 1;
2786                 e = txq->oldest;
2787                 break;
2788
2789         case DATA:
2790                 /* DATA uses two slots; advance and loop position. */
2791                 descriptors_used = tbd->num_fragments;
2792                 frag_num = tbd->num_fragments - 1;
2793                 e = txq->oldest + frag_num;
2794                 e %= txq->entries;
2795                 break;
2796
2797         default:
2798                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2799                        priv->net_dev->name);
2800                 return 0;
2801         }
2802
2803         /* if the last TBD is not done by NIC yet, then packet is
2804          * not ready to be released.
2805          *
2806          */
2807         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2808                       &r);
2809         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2810                       &w);
2811         if (w != txq->next)
2812                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2813                        priv->net_dev->name);
2814
2815         /*
2816          * txq->next is the index of the last packet written txq->oldest is
2817          * the index of the r is the index of the next packet to be read by
2818          * firmware
2819          */
2820
2821         /*
2822          * Quick graphic to help you visualize the following
2823          * if / else statement
2824          *
2825          * ===>|                     s---->|===============
2826          *                               e>|
2827          * | a | b | c | d | e | f | g | h | i | j | k | l
2828          *       r---->|
2829          *               w
2830          *
2831          * w - updated by driver
2832          * r - updated by firmware
2833          * s - start of oldest BD entry (txq->oldest)
2834          * e - end of oldest BD entry
2835          *
2836          */
2837         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2838                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2839                 return 0;
2840         }
2841
2842         list_del(element);
2843         DEC_STAT(&priv->fw_pend_stat);
2844
2845 #ifdef CONFIG_IPW2100_DEBUG
2846         {
2847                 i = txq->oldest;
2848                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2849                              &txq->drv[i],
2850                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2851                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2852
2853                 if (packet->type == DATA) {
2854                         i = (i + 1) % txq->entries;
2855
2856                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2857                                      &txq->drv[i],
2858                                      (u32) (txq->nic + i *
2859                                             sizeof(struct ipw2100_bd)),
2860                                      (u32) txq->drv[i].host_addr,
2861                                      txq->drv[i].buf_length);
2862                 }
2863         }
2864 #endif
2865
2866         switch (packet->type) {
2867         case DATA:
2868                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2869                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2870                                "Expecting DATA TBD but pulled "
2871                                "something else: ids %d=%d.\n",
2872                                priv->net_dev->name, txq->oldest, packet->index);
2873
2874                 /* DATA packet; we have to unmap and free the SKB */
2875                 for (i = 0; i < frag_num; i++) {
2876                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2877
2878                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2879                                      (packet->index + 1 + i) % txq->entries,
2880                                      tbd->host_addr, tbd->buf_length);
2881
2882                         pci_unmap_single(priv->pci_dev,
2883                                          tbd->host_addr,
2884                                          tbd->buf_length, PCI_DMA_TODEVICE);
2885                 }
2886
2887                 libipw_txb_free(packet->info.d_struct.txb);
2888                 packet->info.d_struct.txb = NULL;
2889
2890                 list_add_tail(element, &priv->tx_free_list);
2891                 INC_STAT(&priv->tx_free_stat);
2892
2893                 /* We have a free slot in the Tx queue, so wake up the
2894                  * transmit layer if it is stopped. */
2895                 if (priv->status & STATUS_ASSOCIATED)
2896                         netif_wake_queue(priv->net_dev);
2897
2898                 /* A packet was processed by the hardware, so update the
2899                  * watchdog */
2900                 priv->net_dev->trans_start = jiffies;
2901
2902                 break;
2903
2904         case COMMAND:
2905                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2906                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2907                                "Expecting COMMAND TBD but pulled "
2908                                "something else: ids %d=%d.\n",
2909                                priv->net_dev->name, txq->oldest, packet->index);
2910
2911 #ifdef CONFIG_IPW2100_DEBUG
2912                 if (packet->info.c_struct.cmd->host_command_reg <
2913                     ARRAY_SIZE(command_types))
2914                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2915                                      command_types[packet->info.c_struct.cmd->
2916                                                    host_command_reg],
2917                                      packet->info.c_struct.cmd->
2918                                      host_command_reg,
2919                                      packet->info.c_struct.cmd->cmd_status_reg);
2920 #endif
2921
2922                 list_add_tail(element, &priv->msg_free_list);
2923                 INC_STAT(&priv->msg_free_stat);
2924                 break;
2925         }
2926
2927         /* advance oldest used TBD pointer to start of next entry */
2928         txq->oldest = (e + 1) % txq->entries;
2929         /* increase available TBDs number */
2930         txq->available += descriptors_used;
2931         SET_STAT(&priv->txq_stat, txq->available);
2932
2933         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2934                      jiffies - packet->jiffy_start);
2935
2936         return (!list_empty(&priv->fw_pend_list));
2937 }
2938
2939 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2940 {
2941         int i = 0;
2942
2943         while (__ipw2100_tx_process(priv) && i < 200)
2944                 i++;
2945
2946         if (i == 200) {
2947                 printk(KERN_WARNING DRV_NAME ": "
2948                        "%s: Driver is running slow (%d iters).\n",
2949                        priv->net_dev->name, i);
2950         }
2951 }
2952
2953 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2954 {
2955         struct list_head *element;
2956         struct ipw2100_tx_packet *packet;
2957         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2958         struct ipw2100_bd *tbd;
2959         int next = txq->next;
2960
2961         while (!list_empty(&priv->msg_pend_list)) {
2962                 /* if there isn't enough space in TBD queue, then
2963                  * don't stuff a new one in.
2964                  * NOTE: 3 are needed as a command will take one,
2965                  *       and there is a minimum of 2 that must be
2966                  *       maintained between the r and w indexes
2967                  */
2968                 if (txq->available <= 3) {
2969                         IPW_DEBUG_TX("no room in tx_queue\n");
2970                         break;
2971                 }
2972
2973                 element = priv->msg_pend_list.next;
2974                 list_del(element);
2975                 DEC_STAT(&priv->msg_pend_stat);
2976
2977                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2978
2979                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2980                              &txq->drv[txq->next],
2981                              (void *)(txq->nic + txq->next *
2982                                       sizeof(struct ipw2100_bd)));
2983
2984                 packet->index = txq->next;
2985
2986                 tbd = &txq->drv[txq->next];
2987
2988                 /* initialize TBD */
2989                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2990                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2991                 /* not marking number of fragments causes problems
2992                  * with f/w debug version */
2993                 tbd->num_fragments = 1;
2994                 tbd->status.info.field =
2995                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2996                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2997
2998                 /* update TBD queue counters */
2999                 txq->next++;
3000                 txq->next %= txq->entries;
3001                 txq->available--;
3002                 DEC_STAT(&priv->txq_stat);
3003
3004                 list_add_tail(element, &priv->fw_pend_list);
3005                 INC_STAT(&priv->fw_pend_stat);
3006         }
3007
3008         if (txq->next != next) {
3009                 /* kick off the DMA by notifying firmware the
3010                  * write index has moved; make sure TBD stores are sync'd */
3011                 wmb();
3012                 write_register(priv->net_dev,
3013                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3014                                txq->next);
3015         }
3016 }
3017
3018 /*
3019  * ipw2100_tx_send_data
3020  *
3021  */
3022 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3023 {
3024         struct list_head *element;
3025         struct ipw2100_tx_packet *packet;
3026         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3027         struct ipw2100_bd *tbd;
3028         int next = txq->next;
3029         int i = 0;
3030         struct ipw2100_data_header *ipw_hdr;
3031         struct libipw_hdr_3addr *hdr;
3032
3033         while (!list_empty(&priv->tx_pend_list)) {
3034                 /* if there isn't enough space in TBD queue, then
3035                  * don't stuff a new one in.
3036                  * NOTE: 4 are needed as a data will take two,
3037                  *       and there is a minimum of 2 that must be
3038                  *       maintained between the r and w indexes
3039                  */
3040                 element = priv->tx_pend_list.next;
3041                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3042
3043                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3044                              IPW_MAX_BDS)) {
3045                         /* TODO: Support merging buffers if more than
3046                          * IPW_MAX_BDS are used */
3047                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3048                                        "Increase fragmentation level.\n",
3049                                        priv->net_dev->name);
3050                 }
3051
3052                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3053                         IPW_DEBUG_TX("no room in tx_queue\n");
3054                         break;
3055                 }
3056
3057                 list_del(element);
3058                 DEC_STAT(&priv->tx_pend_stat);
3059
3060                 tbd = &txq->drv[txq->next];
3061
3062                 packet->index = txq->next;
3063
3064                 ipw_hdr = packet->info.d_struct.data;
3065                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3066                     fragments[0]->data;
3067
3068                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3069                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3070                            Addr3 = DA */
3071                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3072                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3073                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3074                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3075                            Addr3 = BSSID */
3076                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3077                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3078                 }
3079
3080                 ipw_hdr->host_command_reg = SEND;
3081                 ipw_hdr->host_command_reg1 = 0;
3082
3083                 /* For now we only support host based encryption */
3084                 ipw_hdr->needs_encryption = 0;
3085                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3086                 if (packet->info.d_struct.txb->nr_frags > 1)
3087                         ipw_hdr->fragment_size =
3088                             packet->info.d_struct.txb->frag_size -
3089                             LIBIPW_3ADDR_LEN;
3090                 else
3091                         ipw_hdr->fragment_size = 0;
3092
3093                 tbd->host_addr = packet->info.d_struct.data_phys;
3094                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3095                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3096                 tbd->status.info.field =
3097                     IPW_BD_STATUS_TX_FRAME_802_3 |
3098                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099                 txq->next++;
3100                 txq->next %= txq->entries;
3101
3102                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3103                              packet->index, tbd->host_addr, tbd->buf_length);
3104 #ifdef CONFIG_IPW2100_DEBUG
3105                 if (packet->info.d_struct.txb->nr_frags > 1)
3106                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3107                                        packet->info.d_struct.txb->nr_frags);
3108 #endif
3109
3110                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3111                         tbd = &txq->drv[txq->next];
3112                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3113                                 tbd->status.info.field =
3114                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3115                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3116                         else
3117                                 tbd->status.info.field =
3118                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3119                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3120
3121                         tbd->buf_length = packet->info.d_struct.txb->
3122                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3123
3124                         tbd->host_addr = pci_map_single(priv->pci_dev,
3125                                                         packet->info.d_struct.
3126                                                         txb->fragments[i]->
3127                                                         data +
3128                                                         LIBIPW_3ADDR_LEN,
3129                                                         tbd->buf_length,
3130                                                         PCI_DMA_TODEVICE);
3131
3132                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3133                                      txq->next, tbd->host_addr,
3134                                      tbd->buf_length);
3135
3136                         pci_dma_sync_single_for_device(priv->pci_dev,
3137                                                        tbd->host_addr,
3138                                                        tbd->buf_length,
3139                                                        PCI_DMA_TODEVICE);
3140
3141                         txq->next++;
3142                         txq->next %= txq->entries;
3143                 }
3144
3145                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3146                 SET_STAT(&priv->txq_stat, txq->available);
3147
3148                 list_add_tail(element, &priv->fw_pend_list);
3149                 INC_STAT(&priv->fw_pend_stat);
3150         }
3151
3152         if (txq->next != next) {
3153                 /* kick off the DMA by notifying firmware the
3154                  * write index has moved; make sure TBD stores are sync'd */
3155                 write_register(priv->net_dev,
3156                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3157                                txq->next);
3158         }
3159         return;
3160 }
3161
3162 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3163 {
3164         struct net_device *dev = priv->net_dev;
3165         unsigned long flags;
3166         u32 inta, tmp;
3167
3168         spin_lock_irqsave(&priv->low_lock, flags);
3169         ipw2100_disable_interrupts(priv);
3170
3171         read_register(dev, IPW_REG_INTA, &inta);
3172
3173         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3174                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3175
3176         priv->in_isr++;
3177         priv->interrupts++;
3178
3179         /* We do not loop and keep polling for more interrupts as this
3180          * is frowned upon and doesn't play nicely with other potentially
3181          * chained IRQs */
3182         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3183                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3184
3185         if (inta & IPW2100_INTA_FATAL_ERROR) {
3186                 printk(KERN_WARNING DRV_NAME
3187                        ": Fatal interrupt. Scheduling firmware restart.\n");
3188                 priv->inta_other++;
3189                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3190
3191                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3192                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3193                                priv->net_dev->name, priv->fatal_error);
3194
3195                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3196                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3197                                priv->net_dev->name, tmp);
3198
3199                 /* Wake up any sleeping jobs */
3200                 schedule_reset(priv);
3201         }
3202
3203         if (inta & IPW2100_INTA_PARITY_ERROR) {
3204                 printk(KERN_ERR DRV_NAME
3205                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3206                 priv->inta_other++;
3207                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3208         }
3209
3210         if (inta & IPW2100_INTA_RX_TRANSFER) {
3211                 IPW_DEBUG_ISR("RX interrupt\n");
3212
3213                 priv->rx_interrupts++;
3214
3215                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3216
3217                 __ipw2100_rx_process(priv);
3218                 __ipw2100_tx_complete(priv);
3219         }
3220
3221         if (inta & IPW2100_INTA_TX_TRANSFER) {
3222                 IPW_DEBUG_ISR("TX interrupt\n");
3223
3224                 priv->tx_interrupts++;
3225
3226                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3227
3228                 __ipw2100_tx_complete(priv);
3229                 ipw2100_tx_send_commands(priv);
3230                 ipw2100_tx_send_data(priv);
3231         }
3232
3233         if (inta & IPW2100_INTA_TX_COMPLETE) {
3234                 IPW_DEBUG_ISR("TX complete\n");
3235                 priv->inta_other++;
3236                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3237
3238                 __ipw2100_tx_complete(priv);
3239         }
3240
3241         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3242                 /* ipw2100_handle_event(dev); */
3243                 priv->inta_other++;
3244                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3245         }
3246
3247         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3248                 IPW_DEBUG_ISR("FW init done interrupt\n");
3249                 priv->inta_other++;
3250
3251                 read_register(dev, IPW_REG_INTA, &tmp);
3252                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3253                            IPW2100_INTA_PARITY_ERROR)) {
3254                         write_register(dev, IPW_REG_INTA,
3255                                        IPW2100_INTA_FATAL_ERROR |
3256                                        IPW2100_INTA_PARITY_ERROR);
3257                 }
3258
3259                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3260         }
3261
3262         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3263                 IPW_DEBUG_ISR("Status change interrupt\n");
3264                 priv->inta_other++;
3265                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3266         }
3267
3268         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3269                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3270                 priv->inta_other++;
3271                 write_register(dev, IPW_REG_INTA,
3272                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3273         }
3274
3275         priv->in_isr--;
3276         ipw2100_enable_interrupts(priv);
3277
3278         spin_unlock_irqrestore(&priv->low_lock, flags);
3279
3280         IPW_DEBUG_ISR("exit\n");
3281 }
3282
3283 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3284 {
3285         struct ipw2100_priv *priv = data;
3286         u32 inta, inta_mask;
3287
3288         if (!data)
3289                 return IRQ_NONE;
3290
3291         spin_lock(&priv->low_lock);
3292
3293         /* We check to see if we should be ignoring interrupts before
3294          * we touch the hardware.  During ucode load if we try and handle
3295          * an interrupt we can cause keyboard problems as well as cause
3296          * the ucode to fail to initialize */
3297         if (!(priv->status & STATUS_INT_ENABLED)) {
3298                 /* Shared IRQ */
3299                 goto none;
3300         }
3301
3302         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3303         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3304
3305         if (inta == 0xFFFFFFFF) {
3306                 /* Hardware disappeared */
3307                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3308                 goto none;
3309         }
3310
3311         inta &= IPW_INTERRUPT_MASK;
3312
3313         if (!(inta & inta_mask)) {
3314                 /* Shared interrupt */
3315                 goto none;
3316         }
3317
3318         /* We disable the hardware interrupt here just to prevent unneeded
3319          * calls to be made.  We disable this again within the actual
3320          * work tasklet, so if another part of the code re-enables the
3321          * interrupt, that is fine */
3322         ipw2100_disable_interrupts(priv);
3323
3324         tasklet_schedule(&priv->irq_tasklet);
3325         spin_unlock(&priv->low_lock);
3326
3327         return IRQ_HANDLED;
3328       none:
3329         spin_unlock(&priv->low_lock);
3330         return IRQ_NONE;
3331 }
3332
3333 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3334                               struct net_device *dev, int pri)
3335 {
3336         struct ipw2100_priv *priv = libipw_priv(dev);
3337         struct list_head *element;
3338         struct ipw2100_tx_packet *packet;
3339         unsigned long flags;
3340
3341         spin_lock_irqsave(&priv->low_lock, flags);
3342
3343         if (!(priv->status & STATUS_ASSOCIATED)) {
3344                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3345                 priv->net_dev->stats.tx_carrier_errors++;
3346                 netif_stop_queue(dev);
3347                 goto fail_unlock;
3348         }
3349
3350         if (list_empty(&priv->tx_free_list))
3351                 goto fail_unlock;
3352
3353         element = priv->tx_free_list.next;
3354         packet = list_entry(element, struct ipw2100_tx_packet, list);
3355
3356         packet->info.d_struct.txb = txb;
3357
3358         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3359         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3360
3361         packet->jiffy_start = jiffies;
3362
3363         list_del(element);
3364         DEC_STAT(&priv->tx_free_stat);
3365
3366         list_add_tail(element, &priv->tx_pend_list);
3367         INC_STAT(&priv->tx_pend_stat);
3368
3369         ipw2100_tx_send_data(priv);
3370
3371         spin_unlock_irqrestore(&priv->low_lock, flags);
3372         return NETDEV_TX_OK;
3373
3374 fail_unlock:
3375         netif_stop_queue(dev);
3376         spin_unlock_irqrestore(&priv->low_lock, flags);
3377         return NETDEV_TX_BUSY;
3378 }
3379
3380 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3381 {
3382         int i, j, err = -EINVAL;
3383         void *v;
3384         dma_addr_t p;
3385
3386         priv->msg_buffers =
3387             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3388                                                 sizeof(struct
3389                                                        ipw2100_tx_packet),
3390                                                 GFP_KERNEL);
3391         if (!priv->msg_buffers) {
3392                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3393                        "buffers.\n", priv->net_dev->name);
3394                 return -ENOMEM;
3395         }
3396
3397         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3398                 v = pci_alloc_consistent(priv->pci_dev,
3399                                          sizeof(struct ipw2100_cmd_header), &p);
3400                 if (!v) {
3401                         printk(KERN_ERR DRV_NAME ": "
3402                                "%s: PCI alloc failed for msg "
3403                                "buffers.\n", priv->net_dev->name);
3404                         err = -ENOMEM;
3405                         break;
3406                 }
3407
3408                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3409
3410                 priv->msg_buffers[i].type = COMMAND;
3411                 priv->msg_buffers[i].info.c_struct.cmd =
3412                     (struct ipw2100_cmd_header *)v;
3413                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3414         }
3415
3416         if (i == IPW_COMMAND_POOL_SIZE)
3417                 return 0;
3418
3419         for (j = 0; j < i; j++) {
3420                 pci_free_consistent(priv->pci_dev,
3421                                     sizeof(struct ipw2100_cmd_header),
3422                                     priv->msg_buffers[j].info.c_struct.cmd,
3423                                     priv->msg_buffers[j].info.c_struct.
3424                                     cmd_phys);
3425         }
3426
3427         kfree(priv->msg_buffers);
3428         priv->msg_buffers = NULL;
3429
3430         return err;
3431 }
3432
3433 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3434 {
3435         int i;
3436
3437         INIT_LIST_HEAD(&priv->msg_free_list);
3438         INIT_LIST_HEAD(&priv->msg_pend_list);
3439
3440         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3441                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3442         SET_STAT(&priv->msg_free_stat, i);
3443
3444         return 0;
3445 }
3446
3447 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3448 {
3449         int i;
3450
3451         if (!priv->msg_buffers)
3452                 return;
3453
3454         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455                 pci_free_consistent(priv->pci_dev,
3456                                     sizeof(struct ipw2100_cmd_header),
3457                                     priv->msg_buffers[i].info.c_struct.cmd,
3458                                     priv->msg_buffers[i].info.c_struct.
3459                                     cmd_phys);
3460         }
3461
3462         kfree(priv->msg_buffers);
3463         priv->msg_buffers = NULL;
3464 }
3465
3466 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3467                         char *buf)
3468 {
3469         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3470         char *out = buf;
3471         int i, j;
3472         u32 val;
3473
3474         for (i = 0; i < 16; i++) {
3475                 out += sprintf(out, "[%08X] ", i * 16);
3476                 for (j = 0; j < 16; j += 4) {
3477                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3478                         out += sprintf(out, "%08X ", val);
3479                 }
3480                 out += sprintf(out, "\n");
3481         }
3482
3483         return out - buf;
3484 }
3485
3486 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3487
3488 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3489                         char *buf)
3490 {
3491         struct ipw2100_priv *p = dev_get_drvdata(d);
3492         return sprintf(buf, "0x%08x\n", (int)p->config);
3493 }
3494
3495 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3496
3497 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3498                            char *buf)
3499 {
3500         struct ipw2100_priv *p = dev_get_drvdata(d);
3501         return sprintf(buf, "0x%08x\n", (int)p->status);
3502 }
3503
3504 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3505
3506 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3507                                char *buf)
3508 {
3509         struct ipw2100_priv *p = dev_get_drvdata(d);
3510         return sprintf(buf, "0x%08x\n", (int)p->capability);
3511 }
3512
3513 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3514
3515 #define IPW2100_REG(x) { IPW_ ##x, #x }
3516 static const struct {
3517         u32 addr;
3518         const char *name;
3519 } hw_data[] = {
3520 IPW2100_REG(REG_GP_CNTRL),
3521             IPW2100_REG(REG_GPIO),
3522             IPW2100_REG(REG_INTA),
3523             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3524 #define IPW2100_NIC(x, s) { x, #x, s }
3525 static const struct {
3526         u32 addr;
3527         const char *name;
3528         size_t size;
3529 } nic_data[] = {
3530 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3531             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3532 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3533 static const struct {
3534         u8 index;
3535         const char *name;
3536         const char *desc;
3537 } ord_data[] = {
3538 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3539             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3540                                 "successful Host Tx's (MSDU)"),
3541             IPW2100_ORD(STAT_TX_DIR_DATA,
3542                                 "successful Directed Tx's (MSDU)"),
3543             IPW2100_ORD(STAT_TX_DIR_DATA1,
3544                                 "successful Directed Tx's (MSDU) @ 1MB"),
3545             IPW2100_ORD(STAT_TX_DIR_DATA2,
3546                                 "successful Directed Tx's (MSDU) @ 2MB"),
3547             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3548                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3549             IPW2100_ORD(STAT_TX_DIR_DATA11,
3550                                 "successful Directed Tx's (MSDU) @ 11MB"),
3551             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3552                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3553             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3554                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3555             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3556                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3557             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3558                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3559             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3560             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3561             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3562             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3563             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3564             IPW2100_ORD(STAT_TX_ASSN_RESP,
3565                                 "successful Association response Tx's"),
3566             IPW2100_ORD(STAT_TX_REASSN,
3567                                 "successful Reassociation Tx's"),
3568             IPW2100_ORD(STAT_TX_REASSN_RESP,
3569                                 "successful Reassociation response Tx's"),
3570             IPW2100_ORD(STAT_TX_PROBE,
3571                                 "probes successfully transmitted"),
3572             IPW2100_ORD(STAT_TX_PROBE_RESP,
3573                                 "probe responses successfully transmitted"),
3574             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3575             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3576             IPW2100_ORD(STAT_TX_DISASSN,
3577                                 "successful Disassociation TX"),
3578             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3579             IPW2100_ORD(STAT_TX_DEAUTH,
3580                                 "successful Deauthentication TX"),
3581             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3582                                 "Total successful Tx data bytes"),
3583             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3584             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3585             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3586             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3587             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3588             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3589             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3590                                 "times max tries in a hop failed"),
3591             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3592                                 "times disassociation failed"),
3593             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3594             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3595             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3596             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3597             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3598             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3599             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3600                                 "directed packets at 5.5MB"),
3601             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3602             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3603             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3604                                 "nondirected packets at 1MB"),
3605             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3606                                 "nondirected packets at 2MB"),
3607             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3608                                 "nondirected packets at 5.5MB"),
3609             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3610                                 "nondirected packets at 11MB"),
3611             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3612             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3613                                                                     "Rx CTS"),
3614             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3615             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3616             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3617             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3618             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3619             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3620             IPW2100_ORD(STAT_RX_REASSN_RESP,
3621                                 "Reassociation response Rx's"),
3622             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3623             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3624             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3625             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3626             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3627             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3628             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3629             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3630                                 "Total rx data bytes received"),
3631             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3632             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3633             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3634             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3635             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3636             IPW2100_ORD(STAT_RX_DUPLICATE1,
3637                                 "duplicate rx packets at 1MB"),
3638             IPW2100_ORD(STAT_RX_DUPLICATE2,
3639                                 "duplicate rx packets at 2MB"),
3640             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3641                                 "duplicate rx packets at 5.5MB"),
3642             IPW2100_ORD(STAT_RX_DUPLICATE11,
3643                                 "duplicate rx packets at 11MB"),
3644             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3645             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3646             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3647             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3648             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3649                                 "rx frames with invalid protocol"),
3650             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3651             IPW2100_ORD(STAT_RX_NO_BUFFER,
3652                                 "rx frames rejected due to no buffer"),
3653             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3654                                 "rx frames dropped due to missing fragment"),
3655             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3656                                 "rx frames dropped due to non-sequential fragment"),
3657             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3658                                 "rx frames dropped due to unmatched 1st frame"),
3659             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3660                                 "rx frames dropped due to uncompleted frame"),
3661             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3662                                 "ICV errors during decryption"),
3663             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3664             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3665             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3666                                 "poll response timeouts"),
3667             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3668                                 "timeouts waiting for last {broad,multi}cast pkt"),
3669             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3670             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3671             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3672             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3673             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3674                                 "current calculation of % missed beacons"),
3675             IPW2100_ORD(STAT_PERCENT_RETRIES,
3676                                 "current calculation of % missed tx retries"),
3677             IPW2100_ORD(ASSOCIATED_AP_PTR,
3678                                 "0 if not associated, else pointer to AP table entry"),
3679             IPW2100_ORD(AVAILABLE_AP_CNT,
3680                                 "AP's decsribed in the AP table"),
3681             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3682             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3683             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3684             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3685                                 "failures due to response fail"),
3686             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3687             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3688             IPW2100_ORD(STAT_ROAM_INHIBIT,
3689                                 "times roaming was inhibited due to activity"),
3690             IPW2100_ORD(RSSI_AT_ASSN,
3691                                 "RSSI of associated AP at time of association"),
3692             IPW2100_ORD(STAT_ASSN_CAUSE1,
3693                                 "reassociation: no probe response or TX on hop"),
3694             IPW2100_ORD(STAT_ASSN_CAUSE2,
3695                                 "reassociation: poor tx/rx quality"),
3696             IPW2100_ORD(STAT_ASSN_CAUSE3,
3697                                 "reassociation: tx/rx quality (excessive AP load"),
3698             IPW2100_ORD(STAT_ASSN_CAUSE4,
3699                                 "reassociation: AP RSSI level"),
3700             IPW2100_ORD(STAT_ASSN_CAUSE5,
3701                                 "reassociations due to load leveling"),
3702             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3703             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3704                                 "times authentication response failed"),
3705             IPW2100_ORD(STATION_TABLE_CNT,
3706                                 "entries in association table"),
3707             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3708             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3709             IPW2100_ORD(COUNTRY_CODE,
3710                                 "IEEE country code as recv'd from beacon"),
3711             IPW2100_ORD(COUNTRY_CHANNELS,
3712                                 "channels suported by country"),
3713             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3714             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3715             IPW2100_ORD(ANTENNA_DIVERSITY,
3716                                 "TRUE if antenna diversity is disabled"),
3717             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3718             IPW2100_ORD(OUR_FREQ,
3719                                 "current radio freq lower digits - channel ID"),
3720             IPW2100_ORD(RTC_TIME, "current RTC time"),
3721             IPW2100_ORD(PORT_TYPE, "operating mode"),
3722             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3723             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3724             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3725             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3726             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3727             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3728             IPW2100_ORD(CAPABILITIES,
3729                                 "Management frame capability field"),
3730             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3731             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3732             IPW2100_ORD(RTS_THRESHOLD,
3733                                 "Min packet length for RTS handshaking"),
3734             IPW2100_ORD(INT_MODE, "International mode"),
3735             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3736                                 "protocol frag threshold"),
3737             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3738                                 "EEPROM offset in SRAM"),
3739             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3740                                 "EEPROM size in SRAM"),
3741             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3742             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3743                                 "EEPROM IBSS 11b channel set"),
3744             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3745             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3746             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3747             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3748             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3749
3750 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3751                               char *buf)
3752 {
3753         int i;
3754         struct ipw2100_priv *priv = dev_get_drvdata(d);
3755         struct net_device *dev = priv->net_dev;
3756         char *out = buf;
3757         u32 val = 0;
3758
3759         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3760
3761         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3762                 read_register(dev, hw_data[i].addr, &val);
3763                 out += sprintf(out, "%30s [%08X] : %08X\n",
3764                                hw_data[i].name, hw_data[i].addr, val);
3765         }
3766
3767         return out - buf;
3768 }
3769
3770 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3771
3772 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3773                              char *buf)
3774 {
3775         struct ipw2100_priv *priv = dev_get_drvdata(d);
3776         struct net_device *dev = priv->net_dev;
3777         char *out = buf;
3778         int i;
3779
3780         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3781
3782         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3783                 u8 tmp8;
3784                 u16 tmp16;
3785                 u32 tmp32;
3786
3787                 switch (nic_data[i].size) {
3788                 case 1:
3789                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3790                         out += sprintf(out, "%30s [%08X] : %02X\n",
3791                                        nic_data[i].name, nic_data[i].addr,
3792                                        tmp8);
3793                         break;
3794                 case 2:
3795                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3796                         out += sprintf(out, "%30s [%08X] : %04X\n",
3797                                        nic_data[i].name, nic_data[i].addr,
3798                                        tmp16);
3799                         break;
3800                 case 4:
3801                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3802                         out += sprintf(out, "%30s [%08X] : %08X\n",
3803                                        nic_data[i].name, nic_data[i].addr,
3804                                        tmp32);
3805                         break;
3806                 }
3807         }
3808         return out - buf;
3809 }
3810
3811 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3812
3813 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3814                            char *buf)
3815 {
3816         struct ipw2100_priv *priv = dev_get_drvdata(d);
3817         struct net_device *dev = priv->net_dev;
3818         static unsigned long loop = 0;
3819         int len = 0;
3820         u32 buffer[4];
3821         int i;
3822         char line[81];
3823
3824         if (loop >= 0x30000)
3825                 loop = 0;
3826
3827         /* sysfs provides us PAGE_SIZE buffer */
3828         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3829
3830                 if (priv->snapshot[0])
3831                         for (i = 0; i < 4; i++)
3832                                 buffer[i] =
3833                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3834                 else
3835                         for (i = 0; i < 4; i++)
3836                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3837
3838                 if (priv->dump_raw)
3839                         len += sprintf(buf + len,
3840                                        "%c%c%c%c"
3841                                        "%c%c%c%c"
3842                                        "%c%c%c%c"
3843                                        "%c%c%c%c",
3844                                        ((u8 *) buffer)[0x0],
3845                                        ((u8 *) buffer)[0x1],
3846                                        ((u8 *) buffer)[0x2],
3847                                        ((u8 *) buffer)[0x3],
3848                                        ((u8 *) buffer)[0x4],
3849                                        ((u8 *) buffer)[0x5],
3850                                        ((u8 *) buffer)[0x6],
3851                                        ((u8 *) buffer)[0x7],
3852                                        ((u8 *) buffer)[0x8],
3853                                        ((u8 *) buffer)[0x9],
3854                                        ((u8 *) buffer)[0xa],
3855                                        ((u8 *) buffer)[0xb],
3856                                        ((u8 *) buffer)[0xc],
3857                                        ((u8 *) buffer)[0xd],
3858                                        ((u8 *) buffer)[0xe],
3859                                        ((u8 *) buffer)[0xf]);
3860                 else
3861                         len += sprintf(buf + len, "%s\n",
3862                                        snprint_line(line, sizeof(line),
3863                                                     (u8 *) buffer, 16, loop));
3864                 loop += 16;
3865         }
3866
3867         return len;
3868 }
3869
3870 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3871                             const char *buf, size_t count)
3872 {
3873         struct ipw2100_priv *priv = dev_get_drvdata(d);
3874         struct net_device *dev = priv->net_dev;
3875         const char *p = buf;
3876
3877         (void)dev;              /* kill unused-var warning for debug-only code */
3878
3879         if (count < 1)
3880                 return count;
3881
3882         if (p[0] == '1' ||
3883             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3884                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3885                                dev->name);
3886                 priv->dump_raw = 1;
3887
3888         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3889                                    tolower(p[1]) == 'f')) {
3890                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3891                                dev->name);
3892                 priv->dump_raw = 0;
3893
3894         } else if (tolower(p[0]) == 'r') {
3895                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3896                 ipw2100_snapshot_free(priv);
3897
3898         } else
3899                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3900                                "reset = clear memory snapshot\n", dev->name);
3901
3902         return count;
3903 }
3904
3905 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3906
3907 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3908                              char *buf)
3909 {
3910         struct ipw2100_priv *priv = dev_get_drvdata(d);
3911         u32 val = 0;
3912         int len = 0;
3913         u32 val_len;
3914         static int loop = 0;
3915
3916         if (priv->status & STATUS_RF_KILL_MASK)
3917                 return 0;
3918
3919         if (loop >= ARRAY_SIZE(ord_data))
3920                 loop = 0;
3921
3922         /* sysfs provides us PAGE_SIZE buffer */
3923         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3924                 val_len = sizeof(u32);
3925
3926                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3927                                         &val_len))
3928                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3929                                        ord_data[loop].index,
3930                                        ord_data[loop].desc);
3931                 else
3932                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3933                                        ord_data[loop].index, val,
3934                                        ord_data[loop].desc);
3935                 loop++;
3936         }
3937
3938         return len;
3939 }
3940
3941 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3942
3943 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3944                           char *buf)
3945 {
3946         struct ipw2100_priv *priv = dev_get_drvdata(d);
3947         char *out = buf;
3948
3949         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3950                        priv->interrupts, priv->tx_interrupts,
3951                        priv->rx_interrupts, priv->inta_other);
3952         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3953         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3954 #ifdef CONFIG_IPW2100_DEBUG
3955         out += sprintf(out, "packet mismatch image: %s\n",
3956                        priv->snapshot[0] ? "YES" : "NO");
3957 #endif
3958
3959         return out - buf;
3960 }
3961
3962 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3963
3964 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3965 {
3966         int err;
3967
3968         if (mode == priv->ieee->iw_mode)
3969                 return 0;
3970
3971         err = ipw2100_disable_adapter(priv);
3972         if (err) {
3973                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3974                        priv->net_dev->name, err);
3975                 return err;
3976         }
3977
3978         switch (mode) {
3979         case IW_MODE_INFRA:
3980                 priv->net_dev->type = ARPHRD_ETHER;
3981                 break;
3982         case IW_MODE_ADHOC:
3983                 priv->net_dev->type = ARPHRD_ETHER;
3984                 break;
3985 #ifdef CONFIG_IPW2100_MONITOR
3986         case IW_MODE_MONITOR:
3987                 priv->last_mode = priv->ieee->iw_mode;
3988                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3989                 break;
3990 #endif                          /* CONFIG_IPW2100_MONITOR */
3991         }
3992
3993         priv->ieee->iw_mode = mode;
3994
3995 #ifdef CONFIG_PM
3996         /* Indicate ipw2100_download_firmware download firmware
3997          * from disk instead of memory. */
3998         ipw2100_firmware.version = 0;
3999 #endif
4000
4001         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4002         priv->reset_backoff = 0;
4003         schedule_reset(priv);
4004
4005         return 0;
4006 }
4007
4008 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4009                               char *buf)
4010 {
4011         struct ipw2100_priv *priv = dev_get_drvdata(d);
4012         int len = 0;
4013
4014 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4015
4016         if (priv->status & STATUS_ASSOCIATED)
4017                 len += sprintf(buf + len, "connected: %lu\n",
4018                                get_seconds() - priv->connect_start);
4019         else
4020                 len += sprintf(buf + len, "not connected\n");
4021
4022         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4023         DUMP_VAR(status, "08lx");
4024         DUMP_VAR(config, "08lx");
4025         DUMP_VAR(capability, "08lx");
4026
4027         len +=
4028             sprintf(buf + len, "last_rtc: %lu\n",
4029                     (unsigned long)priv->last_rtc);
4030
4031         DUMP_VAR(fatal_error, "d");
4032         DUMP_VAR(stop_hang_check, "d");
4033         DUMP_VAR(stop_rf_kill, "d");
4034         DUMP_VAR(messages_sent, "d");
4035
4036         DUMP_VAR(tx_pend_stat.value, "d");
4037         DUMP_VAR(tx_pend_stat.hi, "d");
4038
4039         DUMP_VAR(tx_free_stat.value, "d");
4040         DUMP_VAR(tx_free_stat.lo, "d");
4041
4042         DUMP_VAR(msg_free_stat.value, "d");
4043         DUMP_VAR(msg_free_stat.lo, "d");
4044
4045         DUMP_VAR(msg_pend_stat.value, "d");
4046         DUMP_VAR(msg_pend_stat.hi, "d");
4047
4048         DUMP_VAR(fw_pend_stat.value, "d");
4049         DUMP_VAR(fw_pend_stat.hi, "d");
4050
4051         DUMP_VAR(txq_stat.value, "d");
4052         DUMP_VAR(txq_stat.lo, "d");
4053
4054         DUMP_VAR(ieee->scans, "d");
4055         DUMP_VAR(reset_backoff, "d");
4056
4057         return len;
4058 }
4059
4060 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4061
4062 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4063                             char *buf)
4064 {
4065         struct ipw2100_priv *priv = dev_get_drvdata(d);
4066         char essid[IW_ESSID_MAX_SIZE + 1];
4067         u8 bssid[ETH_ALEN];
4068         u32 chan = 0;
4069         char *out = buf;
4070         unsigned int length;
4071         int ret;
4072
4073         if (priv->status & STATUS_RF_KILL_MASK)
4074                 return 0;
4075
4076         memset(essid, 0, sizeof(essid));
4077         memset(bssid, 0, sizeof(bssid));
4078
4079         length = IW_ESSID_MAX_SIZE;
4080         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4081         if (ret)
4082                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4083                                __LINE__);
4084
4085         length = sizeof(bssid);
4086         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4087                                   bssid, &length);
4088         if (ret)
4089                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4090                                __LINE__);
4091
4092         length = sizeof(u32);
4093         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4094         if (ret)
4095                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4096                                __LINE__);
4097
4098         out += sprintf(out, "ESSID: %s\n", essid);
4099         out += sprintf(out, "BSSID:   %pM\n", bssid);
4100         out += sprintf(out, "Channel: %d\n", chan);
4101
4102         return out - buf;
4103 }
4104
4105 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4106
4107 #ifdef CONFIG_IPW2100_DEBUG
4108 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4109 {
4110         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4111 }
4112
4113 static ssize_t store_debug_level(struct device_driver *d,
4114                                  const char *buf, size_t count)
4115 {
4116         char *p = (char *)buf;
4117         u32 val;
4118
4119         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4120                 p++;
4121                 if (p[0] == 'x' || p[0] == 'X')
4122                         p++;
4123                 val = simple_strtoul(p, &p, 16);
4124         } else
4125                 val = simple_strtoul(p, &p, 10);
4126         if (p == buf)
4127                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4128         else
4129                 ipw2100_debug_level = val;
4130
4131         return strnlen(buf, count);
4132 }
4133
4134 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4135                    store_debug_level);
4136 #endif                          /* CONFIG_IPW2100_DEBUG */
4137
4138 static ssize_t show_fatal_error(struct device *d,
4139                                 struct device_attribute *attr, char *buf)
4140 {
4141         struct ipw2100_priv *priv = dev_get_drvdata(d);
4142         char *out = buf;
4143         int i;
4144
4145         if (priv->fatal_error)
4146                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4147         else
4148                 out += sprintf(out, "0\n");
4149
4150         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4151                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4152                                         IPW2100_ERROR_QUEUE])
4153                         continue;
4154
4155                 out += sprintf(out, "%d. 0x%08X\n", i,
4156                                priv->fatal_errors[(priv->fatal_index - i) %
4157                                                   IPW2100_ERROR_QUEUE]);
4158         }
4159
4160         return out - buf;
4161 }
4162
4163 static ssize_t store_fatal_error(struct device *d,
4164                                  struct device_attribute *attr, const char *buf,
4165                                  size_t count)
4166 {
4167         struct ipw2100_priv *priv = dev_get_drvdata(d);
4168         schedule_reset(priv);
4169         return count;
4170 }
4171
4172 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4173                    store_fatal_error);
4174
4175 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4176                              char *buf)
4177 {
4178         struct ipw2100_priv *priv = dev_get_drvdata(d);
4179         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4180 }
4181
4182 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4183                               const char *buf, size_t count)
4184 {
4185         struct ipw2100_priv *priv = dev_get_drvdata(d);
4186         struct net_device *dev = priv->net_dev;
4187         char buffer[] = "00000000";
4188         unsigned long len =
4189             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4190         unsigned long val;
4191         char *p = buffer;
4192
4193         (void)dev;              /* kill unused-var warning for debug-only code */
4194
4195         IPW_DEBUG_INFO("enter\n");
4196
4197         strncpy(buffer, buf, len);
4198         buffer[len] = 0;
4199
4200         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4201                 p++;
4202                 if (p[0] == 'x' || p[0] == 'X')
4203                         p++;
4204                 val = simple_strtoul(p, &p, 16);
4205         } else
4206                 val = simple_strtoul(p, &p, 10);
4207         if (p == buffer) {
4208                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4209         } else {
4210                 priv->ieee->scan_age = val;
4211                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4212         }
4213
4214         IPW_DEBUG_INFO("exit\n");
4215         return len;
4216 }
4217
4218 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4219
4220 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4221                             char *buf)
4222 {
4223         /* 0 - RF kill not enabled
4224            1 - SW based RF kill active (sysfs)
4225            2 - HW based RF kill active
4226            3 - Both HW and SW baed RF kill active */
4227         struct ipw2100_priv *priv = dev_get_drvdata(d);
4228         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4229             (rf_kill_active(priv) ? 0x2 : 0x0);
4230         return sprintf(buf, "%i\n", val);
4231 }
4232
4233 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4234 {
4235         if ((disable_radio ? 1 : 0) ==
4236             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4237                 return 0;
4238
4239         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4240                           disable_radio ? "OFF" : "ON");
4241
4242         mutex_lock(&priv->action_mutex);
4243
4244         if (disable_radio) {
4245                 priv->status |= STATUS_RF_KILL_SW;
4246                 ipw2100_down(priv);
4247         } else {
4248                 priv->status &= ~STATUS_RF_KILL_SW;
4249                 if (rf_kill_active(priv)) {
4250                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4251                                           "disabled by HW switch\n");
4252                         /* Make sure the RF_KILL check timer is running */
4253                         priv->stop_rf_kill = 0;
4254                         cancel_delayed_work(&priv->rf_kill);
4255                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4256                                            round_jiffies_relative(HZ));
4257                 } else
4258                         schedule_reset(priv);
4259         }
4260
4261         mutex_unlock(&priv->action_mutex);
4262         return 1;
4263 }
4264
4265 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4266                              const char *buf, size_t count)
4267 {
4268         struct ipw2100_priv *priv = dev_get_drvdata(d);
4269         ipw_radio_kill_sw(priv, buf[0] == '1');
4270         return count;
4271 }
4272
4273 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4274
4275 static struct attribute *ipw2100_sysfs_entries[] = {
4276         &dev_attr_hardware.attr,
4277         &dev_attr_registers.attr,
4278         &dev_attr_ordinals.attr,
4279         &dev_attr_pci.attr,
4280         &dev_attr_stats.attr,
4281         &dev_attr_internals.attr,
4282         &dev_attr_bssinfo.attr,
4283         &dev_attr_memory.attr,
4284         &dev_attr_scan_age.attr,
4285         &dev_attr_fatal_error.attr,
4286         &dev_attr_rf_kill.attr,
4287         &dev_attr_cfg.attr,
4288         &dev_attr_status.attr,
4289         &dev_attr_capability.attr,
4290         NULL,
4291 };
4292
4293 static struct attribute_group ipw2100_attribute_group = {
4294         .attrs = ipw2100_sysfs_entries,
4295 };
4296
4297 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4298 {
4299         struct ipw2100_status_queue *q = &priv->status_queue;
4300
4301         IPW_DEBUG_INFO("enter\n");
4302
4303         q->size = entries * sizeof(struct ipw2100_status);
4304         q->drv =
4305             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4306                                                           q->size, &q->nic);
4307         if (!q->drv) {
4308                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4309                 return -ENOMEM;
4310         }
4311
4312         memset(q->drv, 0, q->size);
4313
4314         IPW_DEBUG_INFO("exit\n");
4315
4316         return 0;
4317 }
4318
4319 static void status_queue_free(struct ipw2100_priv *priv)
4320 {
4321         IPW_DEBUG_INFO("enter\n");
4322
4323         if (priv->status_queue.drv) {
4324                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4325                                     priv->status_queue.drv,
4326                                     priv->status_queue.nic);
4327                 priv->status_queue.drv = NULL;
4328         }
4329
4330         IPW_DEBUG_INFO("exit\n");
4331 }
4332
4333 static int bd_queue_allocate(struct ipw2100_priv *priv,
4334                              struct ipw2100_bd_queue *q, int entries)
4335 {
4336         IPW_DEBUG_INFO("enter\n");
4337
4338         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4339
4340         q->entries = entries;
4341         q->size = entries * sizeof(struct ipw2100_bd);
4342         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4343         if (!q->drv) {
4344                 IPW_DEBUG_INFO
4345                     ("can't allocate shared memory for buffer descriptors\n");
4346                 return -ENOMEM;
4347         }
4348         memset(q->drv, 0, q->size);
4349
4350         IPW_DEBUG_INFO("exit\n");
4351
4352         return 0;
4353 }
4354
4355 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4356 {
4357         IPW_DEBUG_INFO("enter\n");
4358
4359         if (!q)
4360                 return;
4361
4362         if (q->drv) {
4363                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4364                 q->drv = NULL;
4365         }
4366
4367         IPW_DEBUG_INFO("exit\n");
4368 }
4369
4370 static void bd_queue_initialize(struct ipw2100_priv *priv,
4371                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4372                                 u32 r, u32 w)
4373 {
4374         IPW_DEBUG_INFO("enter\n");
4375
4376         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4377                        (u32) q->nic);
4378
4379         write_register(priv->net_dev, base, q->nic);
4380         write_register(priv->net_dev, size, q->entries);
4381         write_register(priv->net_dev, r, q->oldest);
4382         write_register(priv->net_dev, w, q->next);
4383
4384         IPW_DEBUG_INFO("exit\n");
4385 }
4386
4387 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4388 {
4389         if (priv->workqueue) {
4390                 priv->stop_rf_kill = 1;
4391                 priv->stop_hang_check = 1;
4392                 cancel_delayed_work(&priv->reset_work);
4393                 cancel_delayed_work(&priv->security_work);
4394                 cancel_delayed_work(&priv->wx_event_work);
4395                 cancel_delayed_work(&priv->hang_check);
4396                 cancel_delayed_work(&priv->rf_kill);
4397                 cancel_delayed_work(&priv->scan_event_later);
4398                 destroy_workqueue(priv->workqueue);
4399                 priv->workqueue = NULL;
4400         }
4401 }
4402
4403 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4404 {
4405         int i, j, err = -EINVAL;
4406         void *v;
4407         dma_addr_t p;
4408
4409         IPW_DEBUG_INFO("enter\n");
4410
4411         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4412         if (err) {
4413                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4414                                 priv->net_dev->name);
4415                 return err;
4416         }
4417
4418         priv->tx_buffers =
4419             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4420                                                 sizeof(struct
4421                                                        ipw2100_tx_packet),
4422                                                 GFP_ATOMIC);
4423         if (!priv->tx_buffers) {
4424                 printk(KERN_ERR DRV_NAME
4425                        ": %s: alloc failed form tx buffers.\n",
4426                        priv->net_dev->name);
4427                 bd_queue_free(priv, &priv->tx_queue);
4428                 return -ENOMEM;
4429         }
4430
4431         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4432                 v = pci_alloc_consistent(priv->pci_dev,
4433                                          sizeof(struct ipw2100_data_header),
4434                                          &p);
4435                 if (!v) {
4436                         printk(KERN_ERR DRV_NAME
4437                                ": %s: PCI alloc failed for tx " "buffers.\n",
4438                                priv->net_dev->name);
4439                         err = -ENOMEM;
4440                         break;
4441                 }
4442
4443                 priv->tx_buffers[i].type = DATA;
4444                 priv->tx_buffers[i].info.d_struct.data =
4445                     (struct ipw2100_data_header *)v;
4446                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4447                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4448         }
4449
4450         if (i == TX_PENDED_QUEUE_LENGTH)
4451                 return 0;
4452
4453         for (j = 0; j < i; j++) {
4454                 pci_free_consistent(priv->pci_dev,
4455                                     sizeof(struct ipw2100_data_header),
4456                                     priv->tx_buffers[j].info.d_struct.data,
4457                                     priv->tx_buffers[j].info.d_struct.
4458                                     data_phys);
4459         }
4460
4461         kfree(priv->tx_buffers);
4462         priv->tx_buffers = NULL;
4463
4464         return err;
4465 }
4466
4467 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4468 {
4469         int i;
4470
4471         IPW_DEBUG_INFO("enter\n");
4472
4473         /*
4474          * reinitialize packet info lists
4475          */
4476         INIT_LIST_HEAD(&priv->fw_pend_list);
4477         INIT_STAT(&priv->fw_pend_stat);
4478
4479         /*
4480          * reinitialize lists
4481          */
4482         INIT_LIST_HEAD(&priv->tx_pend_list);
4483         INIT_LIST_HEAD(&priv->tx_free_list);
4484         INIT_STAT(&priv->tx_pend_stat);
4485         INIT_STAT(&priv->tx_free_stat);
4486
4487         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4488                 /* We simply drop any SKBs that have been queued for
4489                  * transmit */
4490                 if (priv->tx_buffers[i].info.d_struct.txb) {
4491                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4492                                            txb);
4493                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4494                 }
4495
4496                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4497         }
4498
4499         SET_STAT(&priv->tx_free_stat, i);
4500
4501         priv->tx_queue.oldest = 0;
4502         priv->tx_queue.available = priv->tx_queue.entries;
4503         priv->tx_queue.next = 0;
4504         INIT_STAT(&priv->txq_stat);
4505         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4506
4507         bd_queue_initialize(priv, &priv->tx_queue,
4508                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4509                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4510                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4511                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4512
4513         IPW_DEBUG_INFO("exit\n");
4514
4515 }
4516
4517 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4518 {
4519         int i;
4520
4521         IPW_DEBUG_INFO("enter\n");
4522
4523         bd_queue_free(priv, &priv->tx_queue);
4524
4525         if (!priv->tx_buffers)
4526                 return;
4527
4528         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4529                 if (priv->tx_buffers[i].info.d_struct.txb) {
4530                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4531                                            txb);
4532                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4533                 }
4534                 if (priv->tx_buffers[i].info.d_struct.data)
4535                         pci_free_consistent(priv->pci_dev,
4536                                             sizeof(struct ipw2100_data_header),
4537                                             priv->tx_buffers[i].info.d_struct.
4538                                             data,
4539                                             priv->tx_buffers[i].info.d_struct.
4540                                             data_phys);
4541         }
4542
4543         kfree(priv->tx_buffers);
4544         priv->tx_buffers = NULL;
4545
4546         IPW_DEBUG_INFO("exit\n");
4547 }
4548
4549 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4550 {
4551         int i, j, err = -EINVAL;
4552
4553         IPW_DEBUG_INFO("enter\n");
4554
4555         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4556         if (err) {
4557                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4558                 return err;
4559         }
4560
4561         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4562         if (err) {
4563                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4564                 bd_queue_free(priv, &priv->rx_queue);
4565                 return err;
4566         }
4567
4568         /*
4569          * allocate packets
4570          */
4571         priv->rx_buffers = (struct ipw2100_rx_packet *)
4572             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4573                     GFP_KERNEL);
4574         if (!priv->rx_buffers) {
4575                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4576
4577                 bd_queue_free(priv, &priv->rx_queue);
4578
4579                 status_queue_free(priv);
4580
4581                 return -ENOMEM;
4582         }
4583
4584         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4585                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4586
4587                 err = ipw2100_alloc_skb(priv, packet);
4588                 if (unlikely(err)) {
4589                         err = -ENOMEM;
4590                         break;
4591                 }
4592
4593                 /* The BD holds the cache aligned address */
4594                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4595                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4596                 priv->status_queue.drv[i].status_fields = 0;
4597         }
4598
4599         if (i == RX_QUEUE_LENGTH)
4600                 return 0;
4601
4602         for (j = 0; j < i; j++) {
4603                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4604                                  sizeof(struct ipw2100_rx_packet),
4605                                  PCI_DMA_FROMDEVICE);
4606                 dev_kfree_skb(priv->rx_buffers[j].skb);
4607         }
4608
4609         kfree(priv->rx_buffers);
4610         priv->rx_buffers = NULL;
4611
4612         bd_queue_free(priv, &priv->rx_queue);
4613
4614         status_queue_free(priv);
4615
4616         return err;
4617 }
4618
4619 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4620 {
4621         IPW_DEBUG_INFO("enter\n");
4622
4623         priv->rx_queue.oldest = 0;
4624         priv->rx_queue.available = priv->rx_queue.entries - 1;
4625         priv->rx_queue.next = priv->rx_queue.entries - 1;
4626
4627         INIT_STAT(&priv->rxq_stat);
4628         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4629
4630         bd_queue_initialize(priv, &priv->rx_queue,
4631                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4632                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4633                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4634                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4635
4636         /* set up the status queue */
4637         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4638                        priv->status_queue.nic);
4639
4640         IPW_DEBUG_INFO("exit\n");
4641 }
4642
4643 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4644 {
4645         int i;
4646
4647         IPW_DEBUG_INFO("enter\n");
4648
4649         bd_queue_free(priv, &priv->rx_queue);
4650         status_queue_free(priv);
4651
4652         if (!priv->rx_buffers)
4653                 return;
4654
4655         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656                 if (priv->rx_buffers[i].rxp) {
4657                         pci_unmap_single(priv->pci_dev,
4658                                          priv->rx_buffers[i].dma_addr,
4659                                          sizeof(struct ipw2100_rx),
4660                                          PCI_DMA_FROMDEVICE);
4661                         dev_kfree_skb(priv->rx_buffers[i].skb);
4662                 }
4663         }
4664
4665         kfree(priv->rx_buffers);
4666         priv->rx_buffers = NULL;
4667
4668         IPW_DEBUG_INFO("exit\n");
4669 }
4670
4671 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4672 {
4673         u32 length = ETH_ALEN;
4674         u8 addr[ETH_ALEN];
4675
4676         int err;
4677
4678         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4679         if (err) {
4680                 IPW_DEBUG_INFO("MAC address read failed\n");
4681                 return -EIO;
4682         }
4683
4684         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4685         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4686
4687         return 0;
4688 }
4689
4690 /********************************************************************
4691  *
4692  * Firmware Commands
4693  *
4694  ********************************************************************/
4695
4696 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4697 {
4698         struct host_command cmd = {
4699                 .host_command = ADAPTER_ADDRESS,
4700                 .host_command_sequence = 0,
4701                 .host_command_length = ETH_ALEN
4702         };
4703         int err;
4704
4705         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4706
4707         IPW_DEBUG_INFO("enter\n");
4708
4709         if (priv->config & CFG_CUSTOM_MAC) {
4710                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4711                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4712         } else
4713                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4714                        ETH_ALEN);
4715
4716         err = ipw2100_hw_send_command(priv, &cmd);
4717
4718         IPW_DEBUG_INFO("exit\n");
4719         return err;
4720 }
4721
4722 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4723                                  int batch_mode)
4724 {
4725         struct host_command cmd = {
4726                 .host_command = PORT_TYPE,
4727                 .host_command_sequence = 0,
4728                 .host_command_length = sizeof(u32)
4729         };
4730         int err;
4731
4732         switch (port_type) {
4733         case IW_MODE_INFRA:
4734                 cmd.host_command_parameters[0] = IPW_BSS;
4735                 break;
4736         case IW_MODE_ADHOC:
4737                 cmd.host_command_parameters[0] = IPW_IBSS;
4738                 break;
4739         }
4740
4741         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4742                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4743
4744         if (!batch_mode) {
4745                 err = ipw2100_disable_adapter(priv);
4746                 if (err) {
4747                         printk(KERN_ERR DRV_NAME
4748                                ": %s: Could not disable adapter %d\n",
4749                                priv->net_dev->name, err);
4750                         return err;
4751                 }
4752         }
4753
4754         /* send cmd to firmware */
4755         err = ipw2100_hw_send_command(priv, &cmd);
4756
4757         if (!batch_mode)
4758                 ipw2100_enable_adapter(priv);
4759
4760         return err;
4761 }
4762
4763 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4764                                int batch_mode)
4765 {
4766         struct host_command cmd = {
4767                 .host_command = CHANNEL,
4768                 .host_command_sequence = 0,
4769                 .host_command_length = sizeof(u32)
4770         };
4771         int err;
4772
4773         cmd.host_command_parameters[0] = channel;
4774
4775         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4776
4777         /* If BSS then we don't support channel selection */
4778         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4779                 return 0;
4780
4781         if ((channel != 0) &&
4782             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4783                 return -EINVAL;
4784
4785         if (!batch_mode) {
4786                 err = ipw2100_disable_adapter(priv);
4787                 if (err)
4788                         return err;
4789         }
4790
4791         err = ipw2100_hw_send_command(priv, &cmd);
4792         if (err) {
4793                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4794                 return err;
4795         }
4796
4797         if (channel)
4798                 priv->config |= CFG_STATIC_CHANNEL;
4799         else
4800                 priv->config &= ~CFG_STATIC_CHANNEL;
4801
4802         priv->channel = channel;
4803
4804         if (!batch_mode) {
4805                 err = ipw2100_enable_adapter(priv);
4806                 if (err)
4807                         return err;
4808         }
4809
4810         return 0;
4811 }
4812
4813 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4814 {
4815         struct host_command cmd = {
4816                 .host_command = SYSTEM_CONFIG,
4817                 .host_command_sequence = 0,
4818                 .host_command_length = 12,
4819         };
4820         u32 ibss_mask, len = sizeof(u32);
4821         int err;
4822
4823         /* Set system configuration */
4824
4825         if (!batch_mode) {
4826                 err = ipw2100_disable_adapter(priv);
4827                 if (err)
4828                         return err;
4829         }
4830
4831         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4832                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4833
4834         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4835             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4836
4837         if (!(priv->config & CFG_LONG_PREAMBLE))
4838                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4839
4840         err = ipw2100_get_ordinal(priv,
4841                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4842                                   &ibss_mask, &len);
4843         if (err)
4844                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4845
4846         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4847         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4848
4849         /* 11b only */
4850         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4851
4852         err = ipw2100_hw_send_command(priv, &cmd);
4853         if (err)
4854                 return err;
4855
4856 /* If IPv6 is configured in the kernel then we don't want to filter out all
4857  * of the multicast packets as IPv6 needs some. */
4858 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4859         cmd.host_command = ADD_MULTICAST;
4860         cmd.host_command_sequence = 0;
4861         cmd.host_command_length = 0;
4862
4863         ipw2100_hw_send_command(priv, &cmd);
4864 #endif
4865         if (!batch_mode) {
4866                 err = ipw2100_enable_adapter(priv);
4867                 if (err)
4868                         return err;
4869         }
4870
4871         return 0;
4872 }
4873
4874 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4875                                 int batch_mode)
4876 {
4877         struct host_command cmd = {
4878                 .host_command = BASIC_TX_RATES,
4879                 .host_command_sequence = 0,
4880                 .host_command_length = 4
4881         };
4882         int err;
4883
4884         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4885
4886         if (!batch_mode) {
4887                 err = ipw2100_disable_adapter(priv);
4888                 if (err)
4889                         return err;
4890         }
4891
4892         /* Set BASIC TX Rate first */
4893         ipw2100_hw_send_command(priv, &cmd);
4894
4895         /* Set TX Rate */
4896         cmd.host_command = TX_RATES;
4897         ipw2100_hw_send_command(priv, &cmd);
4898
4899         /* Set MSDU TX Rate */
4900         cmd.host_command = MSDU_TX_RATES;
4901         ipw2100_hw_send_command(priv, &cmd);
4902
4903         if (!batch_mode) {
4904                 err = ipw2100_enable_adapter(priv);
4905                 if (err)
4906                         return err;
4907         }
4908
4909         priv->tx_rates = rate;
4910
4911         return 0;
4912 }
4913
4914 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4915 {
4916         struct host_command cmd = {
4917                 .host_command = POWER_MODE,
4918                 .host_command_sequence = 0,
4919                 .host_command_length = 4
4920         };
4921         int err;
4922
4923         cmd.host_command_parameters[0] = power_level;
4924
4925         err = ipw2100_hw_send_command(priv, &cmd);
4926         if (err)
4927                 return err;
4928
4929         if (power_level == IPW_POWER_MODE_CAM)
4930                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4931         else
4932                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4933
4934 #ifdef IPW2100_TX_POWER
4935         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4936                 /* Set beacon interval */
4937                 cmd.host_command = TX_POWER_INDEX;
4938                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4939
4940                 err = ipw2100_hw_send_command(priv, &cmd);
4941                 if (err)
4942                         return err;
4943         }
4944 #endif
4945
4946         return 0;
4947 }
4948
4949 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4950 {
4951         struct host_command cmd = {
4952                 .host_command = RTS_THRESHOLD,
4953                 .host_command_sequence = 0,
4954                 .host_command_length = 4
4955         };
4956         int err;
4957
4958         if (threshold & RTS_DISABLED)
4959                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4960         else
4961                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4962
4963         err = ipw2100_hw_send_command(priv, &cmd);
4964         if (err)
4965                 return err;
4966
4967         priv->rts_threshold = threshold;
4968
4969         return 0;
4970 }
4971
4972 #if 0
4973 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4974                                         u32 threshold, int batch_mode)
4975 {
4976         struct host_command cmd = {
4977                 .host_command = FRAG_THRESHOLD,
4978                 .host_command_sequence = 0,
4979                 .host_command_length = 4,
4980                 .host_command_parameters[0] = 0,
4981         };
4982         int err;
4983
4984         if (!batch_mode) {
4985                 err = ipw2100_disable_adapter(priv);
4986                 if (err)
4987                         return err;
4988         }
4989
4990         if (threshold == 0)
4991                 threshold = DEFAULT_FRAG_THRESHOLD;
4992         else {
4993                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4994                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4995         }
4996
4997         cmd.host_command_parameters[0] = threshold;
4998
4999         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5000
5001         err = ipw2100_hw_send_command(priv, &cmd);
5002
5003         if (!batch_mode)
5004                 ipw2100_enable_adapter(priv);
5005
5006         if (!err)
5007                 priv->frag_threshold = threshold;
5008
5009         return err;
5010 }
5011 #endif
5012
5013 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5014 {
5015         struct host_command cmd = {
5016                 .host_command = SHORT_RETRY_LIMIT,
5017                 .host_command_sequence = 0,
5018                 .host_command_length = 4
5019         };
5020         int err;
5021
5022         cmd.host_command_parameters[0] = retry;
5023
5024         err = ipw2100_hw_send_command(priv, &cmd);
5025         if (err)
5026                 return err;
5027
5028         priv->short_retry_limit = retry;
5029
5030         return 0;
5031 }
5032
5033 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035         struct host_command cmd = {
5036                 .host_command = LONG_RETRY_LIMIT,
5037                 .host_command_sequence = 0,
5038                 .host_command_length = 4
5039         };
5040         int err;
5041
5042         cmd.host_command_parameters[0] = retry;
5043
5044         err = ipw2100_hw_send_command(priv, &cmd);
5045         if (err)
5046                 return err;
5047
5048         priv->long_retry_limit = retry;
5049
5050         return 0;
5051 }
5052
5053 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5054                                        int batch_mode)
5055 {
5056         struct host_command cmd = {
5057                 .host_command = MANDATORY_BSSID,
5058                 .host_command_sequence = 0,
5059                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5060         };
5061         int err;
5062
5063 #ifdef CONFIG_IPW2100_DEBUG
5064         if (bssid != NULL)
5065                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5066         else
5067                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5068 #endif
5069         /* if BSSID is empty then we disable mandatory bssid mode */
5070         if (bssid != NULL)
5071                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5072
5073         if (!batch_mode) {
5074                 err = ipw2100_disable_adapter(priv);
5075                 if (err)
5076                         return err;
5077         }
5078
5079         err = ipw2100_hw_send_command(priv, &cmd);
5080
5081         if (!batch_mode)
5082                 ipw2100_enable_adapter(priv);
5083
5084         return err;
5085 }
5086
5087 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5088 {
5089         struct host_command cmd = {
5090                 .host_command = DISASSOCIATION_BSSID,
5091                 .host_command_sequence = 0,
5092                 .host_command_length = ETH_ALEN
5093         };
5094         int err;
5095         int len;
5096
5097         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5098
5099         len = ETH_ALEN;
5100         /* The Firmware currently ignores the BSSID and just disassociates from
5101          * the currently associated AP -- but in the off chance that a future
5102          * firmware does use the BSSID provided here, we go ahead and try and
5103          * set it to the currently associated AP's BSSID */
5104         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5105
5106         err = ipw2100_hw_send_command(priv, &cmd);
5107
5108         return err;
5109 }
5110
5111 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5112                               struct ipw2100_wpa_assoc_frame *, int)
5113     __attribute__ ((unused));
5114
5115 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5116                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5117                               int batch_mode)
5118 {
5119         struct host_command cmd = {
5120                 .host_command = SET_WPA_IE,
5121                 .host_command_sequence = 0,
5122                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5123         };
5124         int err;
5125
5126         IPW_DEBUG_HC("SET_WPA_IE\n");
5127
5128         if (!batch_mode) {
5129                 err = ipw2100_disable_adapter(priv);
5130                 if (err)
5131                         return err;
5132         }
5133
5134         memcpy(cmd.host_command_parameters, wpa_frame,
5135                sizeof(struct ipw2100_wpa_assoc_frame));
5136
5137         err = ipw2100_hw_send_command(priv, &cmd);
5138
5139         if (!batch_mode) {
5140                 if (ipw2100_enable_adapter(priv))
5141                         err = -EIO;
5142         }
5143
5144         return err;
5145 }
5146
5147 struct security_info_params {
5148         u32 allowed_ciphers;
5149         u16 version;
5150         u8 auth_mode;
5151         u8 replay_counters_number;
5152         u8 unicast_using_group;
5153 } __attribute__ ((packed));
5154
5155 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5156                                             int auth_mode,
5157                                             int security_level,
5158                                             int unicast_using_group,
5159                                             int batch_mode)
5160 {
5161         struct host_command cmd = {
5162                 .host_command = SET_SECURITY_INFORMATION,
5163                 .host_command_sequence = 0,
5164                 .host_command_length = sizeof(struct security_info_params)
5165         };
5166         struct security_info_params *security =
5167             (struct security_info_params *)&cmd.host_command_parameters;
5168         int err;
5169         memset(security, 0, sizeof(*security));
5170
5171         /* If shared key AP authentication is turned on, then we need to
5172          * configure the firmware to try and use it.
5173          *
5174          * Actual data encryption/decryption is handled by the host. */
5175         security->auth_mode = auth_mode;
5176         security->unicast_using_group = unicast_using_group;
5177
5178         switch (security_level) {
5179         default:
5180         case SEC_LEVEL_0:
5181                 security->allowed_ciphers = IPW_NONE_CIPHER;
5182                 break;
5183         case SEC_LEVEL_1:
5184                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5185                     IPW_WEP104_CIPHER;
5186                 break;
5187         case SEC_LEVEL_2:
5188                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5189                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5190                 break;
5191         case SEC_LEVEL_2_CKIP:
5192                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5193                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5194                 break;
5195         case SEC_LEVEL_3:
5196                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5197                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5198                 break;
5199         }
5200
5201         IPW_DEBUG_HC
5202             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5203              security->auth_mode, security->allowed_ciphers, security_level);
5204
5205         security->replay_counters_number = 0;
5206
5207         if (!batch_mode) {
5208                 err = ipw2100_disable_adapter(priv);
5209                 if (err)
5210                         return err;
5211         }
5212
5213         err = ipw2100_hw_send_command(priv, &cmd);
5214
5215         if (!batch_mode)
5216                 ipw2100_enable_adapter(priv);
5217
5218         return err;
5219 }
5220
5221 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5222 {
5223         struct host_command cmd = {
5224                 .host_command = TX_POWER_INDEX,
5225                 .host_command_sequence = 0,
5226                 .host_command_length = 4
5227         };
5228         int err = 0;
5229         u32 tmp = tx_power;
5230
5231         if (tx_power != IPW_TX_POWER_DEFAULT)
5232                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5233                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5234
5235         cmd.host_command_parameters[0] = tmp;
5236
5237         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5238                 err = ipw2100_hw_send_command(priv, &cmd);
5239         if (!err)
5240                 priv->tx_power = tx_power;
5241
5242         return 0;
5243 }
5244
5245 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5246                                             u32 interval, int batch_mode)
5247 {
5248         struct host_command cmd = {
5249                 .host_command = BEACON_INTERVAL,
5250                 .host_command_sequence = 0,
5251                 .host_command_length = 4
5252         };
5253         int err;
5254
5255         cmd.host_command_parameters[0] = interval;
5256
5257         IPW_DEBUG_INFO("enter\n");
5258
5259         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5260                 if (!batch_mode) {
5261                         err = ipw2100_disable_adapter(priv);
5262                         if (err)
5263                                 return err;
5264                 }
5265
5266                 ipw2100_hw_send_command(priv, &cmd);
5267
5268                 if (!batch_mode) {
5269                         err = ipw2100_enable_adapter(priv);
5270                         if (err)
5271                                 return err;
5272                 }
5273         }
5274
5275         IPW_DEBUG_INFO("exit\n");
5276
5277         return 0;
5278 }
5279
5280 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5281 {
5282         ipw2100_tx_initialize(priv);
5283         ipw2100_rx_initialize(priv);
5284         ipw2100_msg_initialize(priv);
5285 }
5286
5287 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5288 {
5289         ipw2100_tx_free(priv);
5290         ipw2100_rx_free(priv);
5291         ipw2100_msg_free(priv);
5292 }
5293
5294 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5295 {
5296         if (ipw2100_tx_allocate(priv) ||
5297             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5298                 goto fail;
5299
5300         return 0;
5301
5302       fail:
5303         ipw2100_tx_free(priv);
5304         ipw2100_rx_free(priv);
5305         ipw2100_msg_free(priv);
5306         return -ENOMEM;
5307 }
5308
5309 #define IPW_PRIVACY_CAPABLE 0x0008
5310
5311 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5312                                  int batch_mode)
5313 {
5314         struct host_command cmd = {
5315                 .host_command = WEP_FLAGS,
5316                 .host_command_sequence = 0,
5317                 .host_command_length = 4
5318         };
5319         int err;
5320
5321         cmd.host_command_parameters[0] = flags;
5322
5323         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5324
5325         if (!batch_mode) {
5326                 err = ipw2100_disable_adapter(priv);
5327                 if (err) {
5328                         printk(KERN_ERR DRV_NAME
5329                                ": %s: Could not disable adapter %d\n",
5330                                priv->net_dev->name, err);
5331                         return err;
5332                 }
5333         }
5334
5335         /* send cmd to firmware */
5336         err = ipw2100_hw_send_command(priv, &cmd);
5337
5338         if (!batch_mode)
5339                 ipw2100_enable_adapter(priv);
5340
5341         return err;
5342 }
5343
5344 struct ipw2100_wep_key {
5345         u8 idx;
5346         u8 len;
5347         u8 key[13];
5348 };
5349
5350 /* Macros to ease up priting WEP keys */
5351 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5352 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5353 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5354 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5355
5356 /**
5357  * Set a the wep key
5358  *
5359  * @priv: struct to work on
5360  * @idx: index of the key we want to set
5361  * @key: ptr to the key data to set
5362  * @len: length of the buffer at @key
5363  * @batch_mode: FIXME perform the operation in batch mode, not
5364  *              disabling the device.
5365  *
5366  * @returns 0 if OK, < 0 errno code on error.
5367  *
5368  * Fill out a command structure with the new wep key, length an
5369  * index and send it down the wire.
5370  */
5371 static int ipw2100_set_key(struct ipw2100_priv *priv,
5372                            int idx, char *key, int len, int batch_mode)
5373 {
5374         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5375         struct host_command cmd = {
5376                 .host_command = WEP_KEY_INFO,
5377                 .host_command_sequence = 0,
5378                 .host_command_length = sizeof(struct ipw2100_wep_key),
5379         };
5380         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5381         int err;
5382
5383         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5384                      idx, keylen, len);
5385
5386         /* NOTE: We don't check cached values in case the firmware was reset
5387          * or some other problem is occurring.  If the user is setting the key,
5388          * then we push the change */
5389
5390         wep_key->idx = idx;
5391         wep_key->len = keylen;
5392
5393         if (keylen) {
5394                 memcpy(wep_key->key, key, len);
5395                 memset(wep_key->key + len, 0, keylen - len);
5396         }
5397
5398         /* Will be optimized out on debug not being configured in */
5399         if (keylen == 0)
5400                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5401                               priv->net_dev->name, wep_key->idx);
5402         else if (keylen == 5)
5403                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5404                               priv->net_dev->name, wep_key->idx, wep_key->len,
5405                               WEP_STR_64(wep_key->key));
5406         else
5407                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5408                               "\n",
5409                               priv->net_dev->name, wep_key->idx, wep_key->len,
5410                               WEP_STR_128(wep_key->key));
5411
5412         if (!batch_mode) {
5413                 err = ipw2100_disable_adapter(priv);
5414                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5415                 if (err) {
5416                         printk(KERN_ERR DRV_NAME
5417                                ": %s: Could not disable adapter %d\n",
5418                                priv->net_dev->name, err);
5419                         return err;
5420                 }
5421         }
5422
5423         /* send cmd to firmware */
5424         err = ipw2100_hw_send_command(priv, &cmd);
5425
5426         if (!batch_mode) {
5427                 int err2 = ipw2100_enable_adapter(priv);
5428                 if (err == 0)
5429                         err = err2;
5430         }
5431         return err;
5432 }
5433
5434 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5435                                  int idx, int batch_mode)
5436 {
5437         struct host_command cmd = {
5438                 .host_command = WEP_KEY_INDEX,
5439                 .host_command_sequence = 0,
5440                 .host_command_length = 4,
5441                 .host_command_parameters = {idx},
5442         };
5443         int err;
5444
5445         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5446
5447         if (idx < 0 || idx > 3)
5448                 return -EINVAL;
5449
5450         if (!batch_mode) {
5451                 err = ipw2100_disable_adapter(priv);
5452                 if (err) {
5453                         printk(KERN_ERR DRV_NAME
5454                                ": %s: Could not disable adapter %d\n",
5455                                priv->net_dev->name, err);
5456                         return err;
5457                 }
5458         }
5459
5460         /* send cmd to firmware */
5461         err = ipw2100_hw_send_command(priv, &cmd);
5462
5463         if (!batch_mode)
5464                 ipw2100_enable_adapter(priv);
5465
5466         return err;
5467 }
5468
5469 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5470 {
5471         int i, err, auth_mode, sec_level, use_group;
5472
5473         if (!(priv->status & STATUS_RUNNING))
5474                 return 0;
5475
5476         if (!batch_mode) {
5477                 err = ipw2100_disable_adapter(priv);
5478                 if (err)
5479                         return err;
5480         }
5481
5482         if (!priv->ieee->sec.enabled) {
5483                 err =
5484                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5485                                                      SEC_LEVEL_0, 0, 1);
5486         } else {
5487                 auth_mode = IPW_AUTH_OPEN;
5488                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5489                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5490                                 auth_mode = IPW_AUTH_SHARED;
5491                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5492                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5493                 }
5494
5495                 sec_level = SEC_LEVEL_0;
5496                 if (priv->ieee->sec.flags & SEC_LEVEL)
5497                         sec_level = priv->ieee->sec.level;
5498
5499                 use_group = 0;
5500                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5501                         use_group = priv->ieee->sec.unicast_uses_group;
5502
5503                 err =
5504                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5505                                                      use_group, 1);
5506         }
5507
5508         if (err)
5509                 goto exit;
5510
5511         if (priv->ieee->sec.enabled) {
5512                 for (i = 0; i < 4; i++) {
5513                         if (!(priv->ieee->sec.flags & (1 << i))) {
5514                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5515                                 priv->ieee->sec.key_sizes[i] = 0;
5516                         } else {
5517                                 err = ipw2100_set_key(priv, i,
5518                                                       priv->ieee->sec.keys[i],
5519                                                       priv->ieee->sec.
5520                                                       key_sizes[i], 1);
5521                                 if (err)
5522                                         goto exit;
5523                         }
5524                 }
5525
5526                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5527         }
5528
5529         /* Always enable privacy so the Host can filter WEP packets if
5530          * encrypted data is sent up */
5531         err =
5532             ipw2100_set_wep_flags(priv,
5533                                   priv->ieee->sec.
5534                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5535         if (err)
5536                 goto exit;
5537
5538         priv->status &= ~STATUS_SECURITY_UPDATED;
5539
5540       exit:
5541         if (!batch_mode)
5542                 ipw2100_enable_adapter(priv);
5543
5544         return err;
5545 }
5546
5547 static void ipw2100_security_work(struct work_struct *work)
5548 {
5549         struct ipw2100_priv *priv =
5550                 container_of(work, struct ipw2100_priv, security_work.work);
5551
5552         /* If we happen to have reconnected before we get a chance to
5553          * process this, then update the security settings--which causes
5554          * a disassociation to occur */
5555         if (!(priv->status & STATUS_ASSOCIATED) &&
5556             priv->status & STATUS_SECURITY_UPDATED)
5557                 ipw2100_configure_security(priv, 0);
5558 }
5559
5560 static void shim__set_security(struct net_device *dev,
5561                                struct libipw_security *sec)
5562 {
5563         struct ipw2100_priv *priv = libipw_priv(dev);
5564         int i, force_update = 0;
5565
5566         mutex_lock(&priv->action_mutex);
5567         if (!(priv->status & STATUS_INITIALIZED))
5568                 goto done;
5569
5570         for (i = 0; i < 4; i++) {
5571                 if (sec->flags & (1 << i)) {
5572                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5573                         if (sec->key_sizes[i] == 0)
5574                                 priv->ieee->sec.flags &= ~(1 << i);
5575                         else
5576                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5577                                        sec->key_sizes[i]);
5578                         if (sec->level == SEC_LEVEL_1) {
5579                                 priv->ieee->sec.flags |= (1 << i);
5580                                 priv->status |= STATUS_SECURITY_UPDATED;
5581                         } else
5582                                 priv->ieee->sec.flags &= ~(1 << i);
5583                 }
5584         }
5585
5586         if ((sec->flags & SEC_ACTIVE_KEY) &&
5587             priv->ieee->sec.active_key != sec->active_key) {
5588                 if (sec->active_key <= 3) {
5589                         priv->ieee->sec.active_key = sec->active_key;
5590                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5591                 } else
5592                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5593
5594                 priv->status |= STATUS_SECURITY_UPDATED;
5595         }
5596
5597         if ((sec->flags & SEC_AUTH_MODE) &&
5598             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5599                 priv->ieee->sec.auth_mode = sec->auth_mode;
5600                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5601                 priv->status |= STATUS_SECURITY_UPDATED;
5602         }
5603
5604         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5605                 priv->ieee->sec.flags |= SEC_ENABLED;
5606                 priv->ieee->sec.enabled = sec->enabled;
5607                 priv->status |= STATUS_SECURITY_UPDATED;
5608                 force_update = 1;
5609         }
5610
5611         if (sec->flags & SEC_ENCRYPT)
5612                 priv->ieee->sec.encrypt = sec->encrypt;
5613
5614         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5615                 priv->ieee->sec.level = sec->level;
5616                 priv->ieee->sec.flags |= SEC_LEVEL;
5617                 priv->status |= STATUS_SECURITY_UPDATED;
5618         }
5619
5620         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5621                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5622                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5623                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5624                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5625                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5626                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5627                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5628                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5629                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5630
5631 /* As a temporary work around to enable WPA until we figure out why
5632  * wpa_supplicant toggles the security capability of the driver, which
5633  * forces a disassocation with force_update...
5634  *
5635  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5636         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5637                 ipw2100_configure_security(priv, 0);
5638       done:
5639         mutex_unlock(&priv->action_mutex);
5640 }
5641
5642 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5643 {
5644         int err;
5645         int batch_mode = 1;
5646         u8 *bssid;
5647
5648         IPW_DEBUG_INFO("enter\n");
5649
5650         err = ipw2100_disable_adapter(priv);
5651         if (err)
5652                 return err;
5653 #ifdef CONFIG_IPW2100_MONITOR
5654         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5655                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656                 if (err)
5657                         return err;
5658
5659                 IPW_DEBUG_INFO("exit\n");
5660
5661                 return 0;
5662         }
5663 #endif                          /* CONFIG_IPW2100_MONITOR */
5664
5665         err = ipw2100_read_mac_address(priv);
5666         if (err)
5667                 return -EIO;
5668
5669         err = ipw2100_set_mac_address(priv, batch_mode);
5670         if (err)
5671                 return err;
5672
5673         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5674         if (err)
5675                 return err;
5676
5677         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5678                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5679                 if (err)
5680                         return err;
5681         }
5682
5683         err = ipw2100_system_config(priv, batch_mode);
5684         if (err)
5685                 return err;
5686
5687         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5688         if (err)
5689                 return err;
5690
5691         /* Default to power mode OFF */
5692         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5693         if (err)
5694                 return err;
5695
5696         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5697         if (err)
5698                 return err;
5699
5700         if (priv->config & CFG_STATIC_BSSID)
5701                 bssid = priv->bssid;
5702         else
5703                 bssid = NULL;
5704         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5705         if (err)
5706                 return err;
5707
5708         if (priv->config & CFG_STATIC_ESSID)
5709                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5710                                         batch_mode);
5711         else
5712                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5713         if (err)
5714                 return err;
5715
5716         err = ipw2100_configure_security(priv, batch_mode);
5717         if (err)
5718                 return err;
5719
5720         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5721                 err =
5722                     ipw2100_set_ibss_beacon_interval(priv,
5723                                                      priv->beacon_interval,
5724                                                      batch_mode);
5725                 if (err)
5726                         return err;
5727
5728                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5729                 if (err)
5730                         return err;
5731         }
5732
5733         /*
5734            err = ipw2100_set_fragmentation_threshold(
5735            priv, priv->frag_threshold, batch_mode);
5736            if (err)
5737            return err;
5738          */
5739
5740         IPW_DEBUG_INFO("exit\n");
5741
5742         return 0;
5743 }
5744
5745 /*************************************************************************
5746  *
5747  * EXTERNALLY CALLED METHODS
5748  *
5749  *************************************************************************/
5750
5751 /* This method is called by the network layer -- not to be confused with
5752  * ipw2100_set_mac_address() declared above called by this driver (and this
5753  * method as well) to talk to the firmware */
5754 static int ipw2100_set_address(struct net_device *dev, void *p)
5755 {
5756         struct ipw2100_priv *priv = libipw_priv(dev);
5757         struct sockaddr *addr = p;
5758         int err = 0;
5759
5760         if (!is_valid_ether_addr(addr->sa_data))
5761                 return -EADDRNOTAVAIL;
5762
5763         mutex_lock(&priv->action_mutex);
5764
5765         priv->config |= CFG_CUSTOM_MAC;
5766         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5767
5768         err = ipw2100_set_mac_address(priv, 0);
5769         if (err)
5770                 goto done;
5771
5772         priv->reset_backoff = 0;
5773         mutex_unlock(&priv->action_mutex);
5774         ipw2100_reset_adapter(&priv->reset_work.work);
5775         return 0;
5776
5777       done:
5778         mutex_unlock(&priv->action_mutex);
5779         return err;
5780 }
5781
5782 static int ipw2100_open(struct net_device *dev)
5783 {
5784         struct ipw2100_priv *priv = libipw_priv(dev);
5785         unsigned long flags;
5786         IPW_DEBUG_INFO("dev->open\n");
5787
5788         spin_lock_irqsave(&priv->low_lock, flags);
5789         if (priv->status & STATUS_ASSOCIATED) {
5790                 netif_carrier_on(dev);
5791                 netif_start_queue(dev);
5792         }
5793         spin_unlock_irqrestore(&priv->low_lock, flags);
5794
5795         return 0;
5796 }
5797
5798 static int ipw2100_close(struct net_device *dev)
5799 {
5800         struct ipw2100_priv *priv = libipw_priv(dev);
5801         unsigned long flags;
5802         struct list_head *element;
5803         struct ipw2100_tx_packet *packet;
5804
5805         IPW_DEBUG_INFO("enter\n");
5806
5807         spin_lock_irqsave(&priv->low_lock, flags);
5808
5809         if (priv->status & STATUS_ASSOCIATED)
5810                 netif_carrier_off(dev);
5811         netif_stop_queue(dev);
5812
5813         /* Flush the TX queue ... */
5814         while (!list_empty(&priv->tx_pend_list)) {
5815                 element = priv->tx_pend_list.next;
5816                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5817
5818                 list_del(element);
5819                 DEC_STAT(&priv->tx_pend_stat);
5820
5821                 libipw_txb_free(packet->info.d_struct.txb);
5822                 packet->info.d_struct.txb = NULL;
5823
5824                 list_add_tail(element, &priv->tx_free_list);
5825                 INC_STAT(&priv->tx_free_stat);
5826         }
5827         spin_unlock_irqrestore(&priv->low_lock, flags);
5828
5829         IPW_DEBUG_INFO("exit\n");
5830
5831         return 0;
5832 }
5833
5834 /*
5835  * TODO:  Fix this function... its just wrong
5836  */
5837 static void ipw2100_tx_timeout(struct net_device *dev)
5838 {
5839         struct ipw2100_priv *priv = libipw_priv(dev);
5840
5841         dev->stats.tx_errors++;
5842
5843 #ifdef CONFIG_IPW2100_MONITOR
5844         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5845                 return;
5846 #endif
5847
5848         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5849                        dev->name);
5850         schedule_reset(priv);
5851 }
5852
5853 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5854 {
5855         /* This is called when wpa_supplicant loads and closes the driver
5856          * interface. */
5857         priv->ieee->wpa_enabled = value;
5858         return 0;
5859 }
5860
5861 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5862 {
5863
5864         struct libipw_device *ieee = priv->ieee;
5865         struct libipw_security sec = {
5866                 .flags = SEC_AUTH_MODE,
5867         };
5868         int ret = 0;
5869
5870         if (value & IW_AUTH_ALG_SHARED_KEY) {
5871                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5872                 ieee->open_wep = 0;
5873         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5874                 sec.auth_mode = WLAN_AUTH_OPEN;
5875                 ieee->open_wep = 1;
5876         } else if (value & IW_AUTH_ALG_LEAP) {
5877                 sec.auth_mode = WLAN_AUTH_LEAP;
5878                 ieee->open_wep = 1;
5879         } else
5880                 return -EINVAL;
5881
5882         if (ieee->set_security)
5883                 ieee->set_security(ieee->dev, &sec);
5884         else
5885                 ret = -EOPNOTSUPP;
5886
5887         return ret;
5888 }
5889
5890 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5891                                     char *wpa_ie, int wpa_ie_len)
5892 {
5893
5894         struct ipw2100_wpa_assoc_frame frame;
5895
5896         frame.fixed_ie_mask = 0;
5897
5898         /* copy WPA IE */
5899         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5900         frame.var_ie_len = wpa_ie_len;
5901
5902         /* make sure WPA is enabled */
5903         ipw2100_wpa_enable(priv, 1);
5904         ipw2100_set_wpa_ie(priv, &frame, 0);
5905 }
5906
5907 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5908                                     struct ethtool_drvinfo *info)
5909 {
5910         struct ipw2100_priv *priv = libipw_priv(dev);
5911         char fw_ver[64], ucode_ver[64];
5912
5913         strcpy(info->driver, DRV_NAME);
5914         strcpy(info->version, DRV_VERSION);
5915
5916         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5917         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5918
5919         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5920                  fw_ver, priv->eeprom_version, ucode_ver);
5921
5922         strcpy(info->bus_info, pci_name(priv->pci_dev));
5923 }
5924
5925 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5926 {
5927         struct ipw2100_priv *priv = libipw_priv(dev);
5928         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5929 }
5930
5931 static const struct ethtool_ops ipw2100_ethtool_ops = {
5932         .get_link = ipw2100_ethtool_get_link,
5933         .get_drvinfo = ipw_ethtool_get_drvinfo,
5934 };
5935
5936 static void ipw2100_hang_check(struct work_struct *work)
5937 {
5938         struct ipw2100_priv *priv =
5939                 container_of(work, struct ipw2100_priv, hang_check.work);
5940         unsigned long flags;
5941         u32 rtc = 0xa5a5a5a5;
5942         u32 len = sizeof(rtc);
5943         int restart = 0;
5944
5945         spin_lock_irqsave(&priv->low_lock, flags);
5946
5947         if (priv->fatal_error != 0) {
5948                 /* If fatal_error is set then we need to restart */
5949                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5950                                priv->net_dev->name);
5951
5952                 restart = 1;
5953         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5954                    (rtc == priv->last_rtc)) {
5955                 /* Check if firmware is hung */
5956                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5957                                priv->net_dev->name);
5958
5959                 restart = 1;
5960         }
5961
5962         if (restart) {
5963                 /* Kill timer */
5964                 priv->stop_hang_check = 1;
5965                 priv->hangs++;
5966
5967                 /* Restart the NIC */
5968                 schedule_reset(priv);
5969         }
5970
5971         priv->last_rtc = rtc;
5972
5973         if (!priv->stop_hang_check)
5974                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5975
5976         spin_unlock_irqrestore(&priv->low_lock, flags);
5977 }
5978
5979 static void ipw2100_rf_kill(struct work_struct *work)
5980 {
5981         struct ipw2100_priv *priv =
5982                 container_of(work, struct ipw2100_priv, rf_kill.work);
5983         unsigned long flags;
5984
5985         spin_lock_irqsave(&priv->low_lock, flags);
5986
5987         if (rf_kill_active(priv)) {
5988                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5989                 if (!priv->stop_rf_kill)
5990                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5991                                            round_jiffies_relative(HZ));
5992                 goto exit_unlock;
5993         }
5994
5995         /* RF Kill is now disabled, so bring the device back up */
5996
5997         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5998                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5999                                   "device\n");
6000                 schedule_reset(priv);
6001         } else
6002                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6003                                   "enabled\n");
6004
6005       exit_unlock:
6006         spin_unlock_irqrestore(&priv->low_lock, flags);
6007 }
6008
6009 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6010
6011 static const struct net_device_ops ipw2100_netdev_ops = {
6012         .ndo_open               = ipw2100_open,
6013         .ndo_stop               = ipw2100_close,
6014         .ndo_start_xmit         = libipw_xmit,
6015         .ndo_change_mtu         = libipw_change_mtu,
6016         .ndo_init               = ipw2100_net_init,
6017         .ndo_tx_timeout         = ipw2100_tx_timeout,
6018         .ndo_set_mac_address    = ipw2100_set_address,
6019         .ndo_validate_addr      = eth_validate_addr,
6020 };
6021
6022 /* Look into using netdev destructor to shutdown ieee80211? */
6023
6024 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6025                                                void __iomem * base_addr,
6026                                                unsigned long mem_start,
6027                                                unsigned long mem_len)
6028 {
6029         struct ipw2100_priv *priv;
6030         struct net_device *dev;
6031
6032         dev = alloc_ieee80211(sizeof(struct ipw2100_priv), 0);
6033         if (!dev)
6034                 return NULL;
6035         priv = libipw_priv(dev);
6036         priv->ieee = netdev_priv(dev);
6037         priv->pci_dev = pci_dev;
6038         priv->net_dev = dev;
6039
6040         priv->ieee->hard_start_xmit = ipw2100_tx;
6041         priv->ieee->set_security = shim__set_security;
6042
6043         priv->ieee->perfect_rssi = -20;
6044         priv->ieee->worst_rssi = -85;
6045
6046         dev->netdev_ops = &ipw2100_netdev_ops;
6047         dev->ethtool_ops = &ipw2100_ethtool_ops;
6048         dev->wireless_handlers = &ipw2100_wx_handler_def;
6049         priv->wireless_data.libipw = priv->ieee;
6050         dev->wireless_data = &priv->wireless_data;
6051         dev->watchdog_timeo = 3 * HZ;
6052         dev->irq = 0;
6053
6054         dev->base_addr = (unsigned long)base_addr;
6055         dev->mem_start = mem_start;
6056         dev->mem_end = dev->mem_start + mem_len - 1;
6057
6058         /* NOTE: We don't use the wireless_handlers hook
6059          * in dev as the system will start throwing WX requests
6060          * to us before we're actually initialized and it just
6061          * ends up causing problems.  So, we just handle
6062          * the WX extensions through the ipw2100_ioctl interface */
6063
6064         /* memset() puts everything to 0, so we only have explicitly set
6065          * those values that need to be something else */
6066
6067         /* If power management is turned on, default to AUTO mode */
6068         priv->power_mode = IPW_POWER_AUTO;
6069
6070 #ifdef CONFIG_IPW2100_MONITOR
6071         priv->config |= CFG_CRC_CHECK;
6072 #endif
6073         priv->ieee->wpa_enabled = 0;
6074         priv->ieee->drop_unencrypted = 0;
6075         priv->ieee->privacy_invoked = 0;
6076         priv->ieee->ieee802_1x = 1;
6077
6078         /* Set module parameters */
6079         switch (network_mode) {
6080         case 1:
6081                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6082                 break;
6083 #ifdef CONFIG_IPW2100_MONITOR
6084         case 2:
6085                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6086                 break;
6087 #endif
6088         default:
6089         case 0:
6090                 priv->ieee->iw_mode = IW_MODE_INFRA;
6091                 break;
6092         }
6093
6094         if (disable == 1)
6095                 priv->status |= STATUS_RF_KILL_SW;
6096
6097         if (channel != 0 &&
6098             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6099                 priv->config |= CFG_STATIC_CHANNEL;
6100                 priv->channel = channel;
6101         }
6102
6103         if (associate)
6104                 priv->config |= CFG_ASSOCIATE;
6105
6106         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6107         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6108         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6109         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6110         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6111         priv->tx_power = IPW_TX_POWER_DEFAULT;
6112         priv->tx_rates = DEFAULT_TX_RATES;
6113
6114         strcpy(priv->nick, "ipw2100");
6115
6116         spin_lock_init(&priv->low_lock);
6117         mutex_init(&priv->action_mutex);
6118         mutex_init(&priv->adapter_mutex);
6119
6120         init_waitqueue_head(&priv->wait_command_queue);
6121
6122         netif_carrier_off(dev);
6123
6124         INIT_LIST_HEAD(&priv->msg_free_list);
6125         INIT_LIST_HEAD(&priv->msg_pend_list);
6126         INIT_STAT(&priv->msg_free_stat);
6127         INIT_STAT(&priv->msg_pend_stat);
6128
6129         INIT_LIST_HEAD(&priv->tx_free_list);
6130         INIT_LIST_HEAD(&priv->tx_pend_list);
6131         INIT_STAT(&priv->tx_free_stat);
6132         INIT_STAT(&priv->tx_pend_stat);
6133
6134         INIT_LIST_HEAD(&priv->fw_pend_list);
6135         INIT_STAT(&priv->fw_pend_stat);
6136
6137         priv->workqueue = create_workqueue(DRV_NAME);
6138
6139         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6140         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6141         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6142         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6143         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6144         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6145         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6146
6147         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6148                      ipw2100_irq_tasklet, (unsigned long)priv);
6149
6150         /* NOTE:  We do not start the deferred work for status checks yet */
6151         priv->stop_rf_kill = 1;
6152         priv->stop_hang_check = 1;
6153
6154         return dev;
6155 }
6156
6157 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6158                                 const struct pci_device_id *ent)
6159 {
6160         unsigned long mem_start, mem_len, mem_flags;
6161         void __iomem *base_addr = NULL;
6162         struct net_device *dev = NULL;
6163         struct ipw2100_priv *priv = NULL;
6164         int err = 0;
6165         int registered = 0;
6166         u32 val;
6167
6168         IPW_DEBUG_INFO("enter\n");
6169
6170         mem_start = pci_resource_start(pci_dev, 0);
6171         mem_len = pci_resource_len(pci_dev, 0);
6172         mem_flags = pci_resource_flags(pci_dev, 0);
6173
6174         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6175                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6176                 err = -ENODEV;
6177                 goto fail;
6178         }
6179
6180         base_addr = ioremap_nocache(mem_start, mem_len);
6181         if (!base_addr) {
6182                 printk(KERN_WARNING DRV_NAME
6183                        "Error calling ioremap_nocache.\n");
6184                 err = -EIO;
6185                 goto fail;
6186         }
6187
6188         /* allocate and initialize our net_device */
6189         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6190         if (!dev) {
6191                 printk(KERN_WARNING DRV_NAME
6192                        "Error calling ipw2100_alloc_device.\n");
6193                 err = -ENOMEM;
6194                 goto fail;
6195         }
6196
6197         /* set up PCI mappings for device */
6198         err = pci_enable_device(pci_dev);
6199         if (err) {
6200                 printk(KERN_WARNING DRV_NAME
6201                        "Error calling pci_enable_device.\n");
6202                 return err;
6203         }
6204
6205         priv = libipw_priv(dev);
6206
6207         pci_set_master(pci_dev);
6208         pci_set_drvdata(pci_dev, priv);
6209
6210         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6211         if (err) {
6212                 printk(KERN_WARNING DRV_NAME
6213                        "Error calling pci_set_dma_mask.\n");
6214                 pci_disable_device(pci_dev);
6215                 return err;
6216         }
6217
6218         err = pci_request_regions(pci_dev, DRV_NAME);
6219         if (err) {
6220                 printk(KERN_WARNING DRV_NAME
6221                        "Error calling pci_request_regions.\n");
6222                 pci_disable_device(pci_dev);
6223                 return err;
6224         }
6225
6226         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6227          * PCI Tx retries from interfering with C3 CPU state */
6228         pci_read_config_dword(pci_dev, 0x40, &val);
6229         if ((val & 0x0000ff00) != 0)
6230                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6231
6232         pci_set_power_state(pci_dev, PCI_D0);
6233
6234         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Device not found via register read.\n");
6237                 err = -ENODEV;
6238                 goto fail;
6239         }
6240
6241         SET_NETDEV_DEV(dev, &pci_dev->dev);
6242
6243         /* Force interrupts to be shut off on the device */
6244         priv->status |= STATUS_INT_ENABLED;
6245         ipw2100_disable_interrupts(priv);
6246
6247         /* Allocate and initialize the Tx/Rx queues and lists */
6248         if (ipw2100_queues_allocate(priv)) {
6249                 printk(KERN_WARNING DRV_NAME
6250                        "Error calling ipw2100_queues_allocate.\n");
6251                 err = -ENOMEM;
6252                 goto fail;
6253         }
6254         ipw2100_queues_initialize(priv);
6255
6256         err = request_irq(pci_dev->irq,
6257                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6258         if (err) {
6259                 printk(KERN_WARNING DRV_NAME
6260                        "Error calling request_irq: %d.\n", pci_dev->irq);
6261                 goto fail;
6262         }
6263         dev->irq = pci_dev->irq;
6264
6265         IPW_DEBUG_INFO("Attempting to register device...\n");
6266
6267         printk(KERN_INFO DRV_NAME
6268                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6269
6270         /* Bring up the interface.  Pre 0.46, after we registered the
6271          * network device we would call ipw2100_up.  This introduced a race
6272          * condition with newer hotplug configurations (network was coming
6273          * up and making calls before the device was initialized).
6274          *
6275          * If we called ipw2100_up before we registered the device, then the
6276          * device name wasn't registered.  So, we instead use the net_dev->init
6277          * member to call a function that then just turns and calls ipw2100_up.
6278          * net_dev->init is called after name allocation but before the
6279          * notifier chain is called */
6280         err = register_netdev(dev);
6281         if (err) {
6282                 printk(KERN_WARNING DRV_NAME
6283                        "Error calling register_netdev.\n");
6284                 goto fail;
6285         }
6286
6287         mutex_lock(&priv->action_mutex);
6288         registered = 1;
6289
6290         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6291
6292         /* perform this after register_netdev so that dev->name is set */
6293         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6294         if (err)
6295                 goto fail_unlock;
6296
6297         /* If the RF Kill switch is disabled, go ahead and complete the
6298          * startup sequence */
6299         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6300                 /* Enable the adapter - sends HOST_COMPLETE */
6301                 if (ipw2100_enable_adapter(priv)) {
6302                         printk(KERN_WARNING DRV_NAME
6303                                ": %s: failed in call to enable adapter.\n",
6304                                priv->net_dev->name);
6305                         ipw2100_hw_stop_adapter(priv);
6306                         err = -EIO;
6307                         goto fail_unlock;
6308                 }
6309
6310                 /* Start a scan . . . */
6311                 ipw2100_set_scan_options(priv);
6312                 ipw2100_start_scan(priv);
6313         }
6314
6315         IPW_DEBUG_INFO("exit\n");
6316
6317         priv->status |= STATUS_INITIALIZED;
6318
6319         mutex_unlock(&priv->action_mutex);
6320
6321         return 0;
6322
6323       fail_unlock:
6324         mutex_unlock(&priv->action_mutex);
6325
6326       fail:
6327         if (dev) {
6328                 if (registered) {
6329                         unregister_ieee80211(priv->ieee);
6330                         unregister_netdev(dev);
6331                 }
6332
6333                 ipw2100_hw_stop_adapter(priv);
6334
6335                 ipw2100_disable_interrupts(priv);
6336
6337                 if (dev->irq)
6338                         free_irq(dev->irq, priv);
6339
6340                 ipw2100_kill_workqueue(priv);
6341
6342                 /* These are safe to call even if they weren't allocated */
6343                 ipw2100_queues_free(priv);
6344                 sysfs_remove_group(&pci_dev->dev.kobj,
6345                                    &ipw2100_attribute_group);
6346
6347                 free_ieee80211(dev, 0);
6348                 pci_set_drvdata(pci_dev, NULL);
6349         }
6350
6351         if (base_addr)
6352                 iounmap(base_addr);
6353
6354         pci_release_regions(pci_dev);
6355         pci_disable_device(pci_dev);
6356
6357         return err;
6358 }
6359
6360 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6361 {
6362         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6363         struct net_device *dev;
6364
6365         if (priv) {
6366                 mutex_lock(&priv->action_mutex);
6367
6368                 priv->status &= ~STATUS_INITIALIZED;
6369
6370                 dev = priv->net_dev;
6371                 sysfs_remove_group(&pci_dev->dev.kobj,
6372                                    &ipw2100_attribute_group);
6373
6374 #ifdef CONFIG_PM
6375                 if (ipw2100_firmware.version)
6376                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6377 #endif
6378                 /* Take down the hardware */
6379                 ipw2100_down(priv);
6380
6381                 /* Release the mutex so that the network subsystem can
6382                  * complete any needed calls into the driver... */
6383                 mutex_unlock(&priv->action_mutex);
6384
6385                 /* Unregister the device first - this results in close()
6386                  * being called if the device is open.  If we free storage
6387                  * first, then close() will crash. */
6388                 unregister_ieee80211(priv->ieee);
6389                 unregister_netdev(dev);
6390
6391                 /* ipw2100_down will ensure that there is no more pending work
6392                  * in the workqueue's, so we can safely remove them now. */
6393                 ipw2100_kill_workqueue(priv);
6394
6395                 ipw2100_queues_free(priv);
6396
6397                 /* Free potential debugging firmware snapshot */
6398                 ipw2100_snapshot_free(priv);
6399
6400                 if (dev->irq)
6401                         free_irq(dev->irq, priv);
6402
6403                 if (dev->base_addr)
6404                         iounmap((void __iomem *)dev->base_addr);
6405
6406                 free_ieee80211(dev, 0);
6407         }
6408
6409         pci_release_regions(pci_dev);
6410         pci_disable_device(pci_dev);
6411
6412         IPW_DEBUG_INFO("exit\n");
6413 }
6414
6415 #ifdef CONFIG_PM
6416 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6417 {
6418         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419         struct net_device *dev = priv->net_dev;
6420
6421         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6422
6423         mutex_lock(&priv->action_mutex);
6424         if (priv->status & STATUS_INITIALIZED) {
6425                 /* Take down the device; powers it off, etc. */
6426                 ipw2100_down(priv);
6427         }
6428
6429         /* Remove the PRESENT state of the device */
6430         netif_device_detach(dev);
6431
6432         pci_save_state(pci_dev);
6433         pci_disable_device(pci_dev);
6434         pci_set_power_state(pci_dev, PCI_D3hot);
6435
6436         priv->suspend_at = get_seconds();
6437
6438         mutex_unlock(&priv->action_mutex);
6439
6440         return 0;
6441 }
6442
6443 static int ipw2100_resume(struct pci_dev *pci_dev)
6444 {
6445         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6446         struct net_device *dev = priv->net_dev;
6447         int err;
6448         u32 val;
6449
6450         if (IPW2100_PM_DISABLED)
6451                 return 0;
6452
6453         mutex_lock(&priv->action_mutex);
6454
6455         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6456
6457         pci_set_power_state(pci_dev, PCI_D0);
6458         err = pci_enable_device(pci_dev);
6459         if (err) {
6460                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6461                        dev->name);
6462                 mutex_unlock(&priv->action_mutex);
6463                 return err;
6464         }
6465         pci_restore_state(pci_dev);
6466
6467         /*
6468          * Suspend/Resume resets the PCI configuration space, so we have to
6469          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6470          * from interfering with C3 CPU state. pci_restore_state won't help
6471          * here since it only restores the first 64 bytes pci config header.
6472          */
6473         pci_read_config_dword(pci_dev, 0x40, &val);
6474         if ((val & 0x0000ff00) != 0)
6475                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6476
6477         /* Set the device back into the PRESENT state; this will also wake
6478          * the queue of needed */
6479         netif_device_attach(dev);
6480
6481         priv->suspend_time = get_seconds() - priv->suspend_at;
6482
6483         /* Bring the device back up */
6484         if (!(priv->status & STATUS_RF_KILL_SW))
6485                 ipw2100_up(priv, 0);
6486
6487         mutex_unlock(&priv->action_mutex);
6488
6489         return 0;
6490 }
6491 #endif
6492
6493 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6494
6495 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6496         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6497         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6498         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6499         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6500         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6501         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6503         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6504         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6505         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6506         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6507         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6508         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6509
6510         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6511         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6512         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6513         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6515
6516         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6517         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6518         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6519         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6520         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6521         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6522         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6523
6524         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6525
6526         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6527         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6528         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6529         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6530         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6531         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6532         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6533
6534         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6535         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6536         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6537         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6538         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6539         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6540
6541         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6542         {0,},
6543 };
6544
6545 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6546
6547 static struct pci_driver ipw2100_pci_driver = {
6548         .name = DRV_NAME,
6549         .id_table = ipw2100_pci_id_table,
6550         .probe = ipw2100_pci_init_one,
6551         .remove = __devexit_p(ipw2100_pci_remove_one),
6552 #ifdef CONFIG_PM
6553         .suspend = ipw2100_suspend,
6554         .resume = ipw2100_resume,
6555 #endif
6556 };
6557
6558 /**
6559  * Initialize the ipw2100 driver/module
6560  *
6561  * @returns 0 if ok, < 0 errno node con error.
6562  *
6563  * Note: we cannot init the /proc stuff until the PCI driver is there,
6564  * or we risk an unlikely race condition on someone accessing
6565  * uninitialized data in the PCI dev struct through /proc.
6566  */
6567 static int __init ipw2100_init(void)
6568 {
6569         int ret;
6570
6571         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6572         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6573
6574         ret = pci_register_driver(&ipw2100_pci_driver);
6575         if (ret)
6576                 goto out;
6577
6578         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6579                         PM_QOS_DEFAULT_VALUE);
6580 #ifdef CONFIG_IPW2100_DEBUG
6581         ipw2100_debug_level = debug;
6582         ret = driver_create_file(&ipw2100_pci_driver.driver,
6583                                  &driver_attr_debug_level);
6584 #endif
6585
6586 out:
6587         return ret;
6588 }
6589
6590 /**
6591  * Cleanup ipw2100 driver registration
6592  */
6593 static void __exit ipw2100_exit(void)
6594 {
6595         /* FIXME: IPG: check that we have no instances of the devices open */
6596 #ifdef CONFIG_IPW2100_DEBUG
6597         driver_remove_file(&ipw2100_pci_driver.driver,
6598                            &driver_attr_debug_level);
6599 #endif
6600         pci_unregister_driver(&ipw2100_pci_driver);
6601         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6602 }
6603
6604 module_init(ipw2100_init);
6605 module_exit(ipw2100_exit);
6606
6607 #define WEXT_USECHANNELS 1
6608
6609 static const long ipw2100_frequencies[] = {
6610         2412, 2417, 2422, 2427,
6611         2432, 2437, 2442, 2447,
6612         2452, 2457, 2462, 2467,
6613         2472, 2484
6614 };
6615
6616 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
6617
6618 static const long ipw2100_rates_11b[] = {
6619         1000000,
6620         2000000,
6621         5500000,
6622         11000000
6623 };
6624
6625 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6626
6627 static int ipw2100_wx_get_name(struct net_device *dev,
6628                                struct iw_request_info *info,
6629                                union iwreq_data *wrqu, char *extra)
6630 {
6631         /*
6632          * This can be called at any time.  No action lock required
6633          */
6634
6635         struct ipw2100_priv *priv = libipw_priv(dev);
6636         if (!(priv->status & STATUS_ASSOCIATED))
6637                 strcpy(wrqu->name, "unassociated");
6638         else
6639                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6640
6641         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6642         return 0;
6643 }
6644
6645 static int ipw2100_wx_set_freq(struct net_device *dev,
6646                                struct iw_request_info *info,
6647                                union iwreq_data *wrqu, char *extra)
6648 {
6649         struct ipw2100_priv *priv = libipw_priv(dev);
6650         struct iw_freq *fwrq = &wrqu->freq;
6651         int err = 0;
6652
6653         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6654                 return -EOPNOTSUPP;
6655
6656         mutex_lock(&priv->action_mutex);
6657         if (!(priv->status & STATUS_INITIALIZED)) {
6658                 err = -EIO;
6659                 goto done;
6660         }
6661
6662         /* if setting by freq convert to channel */
6663         if (fwrq->e == 1) {
6664                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6665                         int f = fwrq->m / 100000;
6666                         int c = 0;
6667
6668                         while ((c < REG_MAX_CHANNEL) &&
6669                                (f != ipw2100_frequencies[c]))
6670                                 c++;
6671
6672                         /* hack to fall through */
6673                         fwrq->e = 0;
6674                         fwrq->m = c + 1;
6675                 }
6676         }
6677
6678         if (fwrq->e > 0 || fwrq->m > 1000) {
6679                 err = -EOPNOTSUPP;
6680                 goto done;
6681         } else {                /* Set the channel */
6682                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6683                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6684         }
6685
6686       done:
6687         mutex_unlock(&priv->action_mutex);
6688         return err;
6689 }
6690
6691 static int ipw2100_wx_get_freq(struct net_device *dev,
6692                                struct iw_request_info *info,
6693                                union iwreq_data *wrqu, char *extra)
6694 {
6695         /*
6696          * This can be called at any time.  No action lock required
6697          */
6698
6699         struct ipw2100_priv *priv = libipw_priv(dev);
6700
6701         wrqu->freq.e = 0;
6702
6703         /* If we are associated, trying to associate, or have a statically
6704          * configured CHANNEL then return that; otherwise return ANY */
6705         if (priv->config & CFG_STATIC_CHANNEL ||
6706             priv->status & STATUS_ASSOCIATED)
6707                 wrqu->freq.m = priv->channel;
6708         else
6709                 wrqu->freq.m = 0;
6710
6711         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6712         return 0;
6713
6714 }
6715
6716 static int ipw2100_wx_set_mode(struct net_device *dev,
6717                                struct iw_request_info *info,
6718                                union iwreq_data *wrqu, char *extra)
6719 {
6720         struct ipw2100_priv *priv = libipw_priv(dev);
6721         int err = 0;
6722
6723         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6724
6725         if (wrqu->mode == priv->ieee->iw_mode)
6726                 return 0;
6727
6728         mutex_lock(&priv->action_mutex);
6729         if (!(priv->status & STATUS_INITIALIZED)) {
6730                 err = -EIO;
6731                 goto done;
6732         }
6733
6734         switch (wrqu->mode) {
6735 #ifdef CONFIG_IPW2100_MONITOR
6736         case IW_MODE_MONITOR:
6737                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6738                 break;
6739 #endif                          /* CONFIG_IPW2100_MONITOR */
6740         case IW_MODE_ADHOC:
6741                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6742                 break;
6743         case IW_MODE_INFRA:
6744         case IW_MODE_AUTO:
6745         default:
6746                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6747                 break;
6748         }
6749
6750       done:
6751         mutex_unlock(&priv->action_mutex);
6752         return err;
6753 }
6754
6755 static int ipw2100_wx_get_mode(struct net_device *dev,
6756                                struct iw_request_info *info,
6757                                union iwreq_data *wrqu, char *extra)
6758 {
6759         /*
6760          * This can be called at any time.  No action lock required
6761          */
6762
6763         struct ipw2100_priv *priv = libipw_priv(dev);
6764
6765         wrqu->mode = priv->ieee->iw_mode;
6766         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6767
6768         return 0;
6769 }
6770
6771 #define POWER_MODES 5
6772
6773 /* Values are in microsecond */
6774 static const s32 timeout_duration[POWER_MODES] = {
6775         350000,
6776         250000,
6777         75000,
6778         37000,
6779         25000,
6780 };
6781
6782 static const s32 period_duration[POWER_MODES] = {
6783         400000,
6784         700000,
6785         1000000,
6786         1000000,
6787         1000000
6788 };
6789
6790 static int ipw2100_wx_get_range(struct net_device *dev,
6791                                 struct iw_request_info *info,
6792                                 union iwreq_data *wrqu, char *extra)
6793 {
6794         /*
6795          * This can be called at any time.  No action lock required
6796          */
6797
6798         struct ipw2100_priv *priv = libipw_priv(dev);
6799         struct iw_range *range = (struct iw_range *)extra;
6800         u16 val;
6801         int i, level;
6802
6803         wrqu->data.length = sizeof(*range);
6804         memset(range, 0, sizeof(*range));
6805
6806         /* Let's try to keep this struct in the same order as in
6807          * linux/include/wireless.h
6808          */
6809
6810         /* TODO: See what values we can set, and remove the ones we can't
6811          * set, or fill them with some default data.
6812          */
6813
6814         /* ~5 Mb/s real (802.11b) */
6815         range->throughput = 5 * 1000 * 1000;
6816
6817 //      range->sensitivity;     /* signal level threshold range */
6818
6819         range->max_qual.qual = 100;
6820         /* TODO: Find real max RSSI and stick here */
6821         range->max_qual.level = 0;
6822         range->max_qual.noise = 0;
6823         range->max_qual.updated = 7;    /* Updated all three */
6824
6825         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6826         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6827         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6828         range->avg_qual.noise = 0;
6829         range->avg_qual.updated = 7;    /* Updated all three */
6830
6831         range->num_bitrates = RATE_COUNT;
6832
6833         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6834                 range->bitrate[i] = ipw2100_rates_11b[i];
6835         }
6836
6837         range->min_rts = MIN_RTS_THRESHOLD;
6838         range->max_rts = MAX_RTS_THRESHOLD;
6839         range->min_frag = MIN_FRAG_THRESHOLD;
6840         range->max_frag = MAX_FRAG_THRESHOLD;
6841
6842         range->min_pmp = period_duration[0];    /* Minimal PM period */
6843         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6844         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6845         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6846
6847         /* How to decode max/min PM period */
6848         range->pmp_flags = IW_POWER_PERIOD;
6849         /* How to decode max/min PM period */
6850         range->pmt_flags = IW_POWER_TIMEOUT;
6851         /* What PM options are supported */
6852         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6853
6854         range->encoding_size[0] = 5;
6855         range->encoding_size[1] = 13;   /* Different token sizes */
6856         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6857         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6858 //      range->encoding_login_index;            /* token index for login token */
6859
6860         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6861                 range->txpower_capa = IW_TXPOW_DBM;
6862                 range->num_txpower = IW_MAX_TXPOWER;
6863                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6864                      i < IW_MAX_TXPOWER;
6865                      i++, level -=
6866                      ((IPW_TX_POWER_MAX_DBM -
6867                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6868                         range->txpower[i] = level / 16;
6869         } else {
6870                 range->txpower_capa = 0;
6871                 range->num_txpower = 0;
6872         }
6873
6874         /* Set the Wireless Extension versions */
6875         range->we_version_compiled = WIRELESS_EXT;
6876         range->we_version_source = 18;
6877
6878 //      range->retry_capa;      /* What retry options are supported */
6879 //      range->retry_flags;     /* How to decode max/min retry limit */
6880 //      range->r_time_flags;    /* How to decode max/min retry life */
6881 //      range->min_retry;       /* Minimal number of retries */
6882 //      range->max_retry;       /* Maximal number of retries */
6883 //      range->min_r_time;      /* Minimal retry lifetime */
6884 //      range->max_r_time;      /* Maximal retry lifetime */
6885
6886         range->num_channels = FREQ_COUNT;
6887
6888         val = 0;
6889         for (i = 0; i < FREQ_COUNT; i++) {
6890                 // TODO: Include only legal frequencies for some countries
6891 //              if (local->channel_mask & (1 << i)) {
6892                 range->freq[val].i = i + 1;
6893                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6894                 range->freq[val].e = 1;
6895                 val++;
6896 //              }
6897                 if (val == IW_MAX_FREQUENCIES)
6898                         break;
6899         }
6900         range->num_frequency = val;
6901
6902         /* Event capability (kernel + driver) */
6903         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6904                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6905         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6906
6907         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6908                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6909
6910         IPW_DEBUG_WX("GET Range\n");
6911
6912         return 0;
6913 }
6914
6915 static int ipw2100_wx_set_wap(struct net_device *dev,
6916                               struct iw_request_info *info,
6917                               union iwreq_data *wrqu, char *extra)
6918 {
6919         struct ipw2100_priv *priv = libipw_priv(dev);
6920         int err = 0;
6921
6922         static const unsigned char any[] = {
6923                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6924         };
6925         static const unsigned char off[] = {
6926                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6927         };
6928
6929         // sanity checks
6930         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6931                 return -EINVAL;
6932
6933         mutex_lock(&priv->action_mutex);
6934         if (!(priv->status & STATUS_INITIALIZED)) {
6935                 err = -EIO;
6936                 goto done;
6937         }
6938
6939         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6940             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6941                 /* we disable mandatory BSSID association */
6942                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6943                 priv->config &= ~CFG_STATIC_BSSID;
6944                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6945                 goto done;
6946         }
6947
6948         priv->config |= CFG_STATIC_BSSID;
6949         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6950
6951         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6952
6953         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6954
6955       done:
6956         mutex_unlock(&priv->action_mutex);
6957         return err;
6958 }
6959
6960 static int ipw2100_wx_get_wap(struct net_device *dev,
6961                               struct iw_request_info *info,
6962                               union iwreq_data *wrqu, char *extra)
6963 {
6964         /*
6965          * This can be called at any time.  No action lock required
6966          */
6967
6968         struct ipw2100_priv *priv = libipw_priv(dev);
6969
6970         /* If we are associated, trying to associate, or have a statically
6971          * configured BSSID then return that; otherwise return ANY */
6972         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6973                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6974                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6975         } else
6976                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6977
6978         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6979         return 0;
6980 }
6981
6982 static int ipw2100_wx_set_essid(struct net_device *dev,
6983                                 struct iw_request_info *info,
6984                                 union iwreq_data *wrqu, char *extra)
6985 {
6986         struct ipw2100_priv *priv = libipw_priv(dev);
6987         char *essid = "";       /* ANY */
6988         int length = 0;
6989         int err = 0;
6990         DECLARE_SSID_BUF(ssid);
6991
6992         mutex_lock(&priv->action_mutex);
6993         if (!(priv->status & STATUS_INITIALIZED)) {
6994                 err = -EIO;
6995                 goto done;
6996         }
6997
6998         if (wrqu->essid.flags && wrqu->essid.length) {
6999                 length = wrqu->essid.length;
7000                 essid = extra;
7001         }
7002
7003         if (length == 0) {
7004                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7005                 priv->config &= ~CFG_STATIC_ESSID;
7006                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7007                 goto done;
7008         }
7009
7010         length = min(length, IW_ESSID_MAX_SIZE);
7011
7012         priv->config |= CFG_STATIC_ESSID;
7013
7014         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7015                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7016                 err = 0;
7017                 goto done;
7018         }
7019
7020         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7021                      print_ssid(ssid, essid, length), length);
7022
7023         priv->essid_len = length;
7024         memcpy(priv->essid, essid, priv->essid_len);
7025
7026         err = ipw2100_set_essid(priv, essid, length, 0);
7027
7028       done:
7029         mutex_unlock(&priv->action_mutex);
7030         return err;
7031 }
7032
7033 static int ipw2100_wx_get_essid(struct net_device *dev,
7034                                 struct iw_request_info *info,
7035                                 union iwreq_data *wrqu, char *extra)
7036 {
7037         /*
7038          * This can be called at any time.  No action lock required
7039          */
7040
7041         struct ipw2100_priv *priv = libipw_priv(dev);
7042         DECLARE_SSID_BUF(ssid);
7043
7044         /* If we are associated, trying to associate, or have a statically
7045          * configured ESSID then return that; otherwise return ANY */
7046         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7047                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7048                              print_ssid(ssid, priv->essid, priv->essid_len));
7049                 memcpy(extra, priv->essid, priv->essid_len);
7050                 wrqu->essid.length = priv->essid_len;
7051                 wrqu->essid.flags = 1;  /* active */
7052         } else {
7053                 IPW_DEBUG_WX("Getting essid: ANY\n");
7054                 wrqu->essid.length = 0;
7055                 wrqu->essid.flags = 0;  /* active */
7056         }
7057
7058         return 0;
7059 }
7060
7061 static int ipw2100_wx_set_nick(struct net_device *dev,
7062                                struct iw_request_info *info,
7063                                union iwreq_data *wrqu, char *extra)
7064 {
7065         /*
7066          * This can be called at any time.  No action lock required
7067          */
7068
7069         struct ipw2100_priv *priv = libipw_priv(dev);
7070
7071         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7072                 return -E2BIG;
7073
7074         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7075         memset(priv->nick, 0, sizeof(priv->nick));
7076         memcpy(priv->nick, extra, wrqu->data.length);
7077
7078         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7079
7080         return 0;
7081 }
7082
7083 static int ipw2100_wx_get_nick(struct net_device *dev,
7084                                struct iw_request_info *info,
7085                                union iwreq_data *wrqu, char *extra)
7086 {
7087         /*
7088          * This can be called at any time.  No action lock required
7089          */
7090
7091         struct ipw2100_priv *priv = libipw_priv(dev);
7092
7093         wrqu->data.length = strlen(priv->nick);
7094         memcpy(extra, priv->nick, wrqu->data.length);
7095         wrqu->data.flags = 1;   /* active */
7096
7097         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7098
7099         return 0;
7100 }
7101
7102 static int ipw2100_wx_set_rate(struct net_device *dev,
7103                                struct iw_request_info *info,
7104                                union iwreq_data *wrqu, char *extra)
7105 {
7106         struct ipw2100_priv *priv = libipw_priv(dev);
7107         u32 target_rate = wrqu->bitrate.value;
7108         u32 rate;
7109         int err = 0;
7110
7111         mutex_lock(&priv->action_mutex);
7112         if (!(priv->status & STATUS_INITIALIZED)) {
7113                 err = -EIO;
7114                 goto done;
7115         }
7116
7117         rate = 0;
7118
7119         if (target_rate == 1000000 ||
7120             (!wrqu->bitrate.fixed && target_rate > 1000000))
7121                 rate |= TX_RATE_1_MBIT;
7122         if (target_rate == 2000000 ||
7123             (!wrqu->bitrate.fixed && target_rate > 2000000))
7124                 rate |= TX_RATE_2_MBIT;
7125         if (target_rate == 5500000 ||
7126             (!wrqu->bitrate.fixed && target_rate > 5500000))
7127                 rate |= TX_RATE_5_5_MBIT;
7128         if (target_rate == 11000000 ||
7129             (!wrqu->bitrate.fixed && target_rate > 11000000))
7130                 rate |= TX_RATE_11_MBIT;
7131         if (rate == 0)
7132                 rate = DEFAULT_TX_RATES;
7133
7134         err = ipw2100_set_tx_rates(priv, rate, 0);
7135
7136         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7137       done:
7138         mutex_unlock(&priv->action_mutex);
7139         return err;
7140 }
7141
7142 static int ipw2100_wx_get_rate(struct net_device *dev,
7143                                struct iw_request_info *info,
7144                                union iwreq_data *wrqu, char *extra)
7145 {
7146         struct ipw2100_priv *priv = libipw_priv(dev);
7147         int val;
7148         unsigned int len = sizeof(val);
7149         int err = 0;
7150
7151         if (!(priv->status & STATUS_ENABLED) ||
7152             priv->status & STATUS_RF_KILL_MASK ||
7153             !(priv->status & STATUS_ASSOCIATED)) {
7154                 wrqu->bitrate.value = 0;
7155                 return 0;
7156         }
7157
7158         mutex_lock(&priv->action_mutex);
7159         if (!(priv->status & STATUS_INITIALIZED)) {
7160                 err = -EIO;
7161                 goto done;
7162         }
7163
7164         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7165         if (err) {
7166                 IPW_DEBUG_WX("failed querying ordinals.\n");
7167                 goto done;
7168         }
7169
7170         switch (val & TX_RATE_MASK) {
7171         case TX_RATE_1_MBIT:
7172                 wrqu->bitrate.value = 1000000;
7173                 break;
7174         case TX_RATE_2_MBIT:
7175                 wrqu->bitrate.value = 2000000;
7176                 break;
7177         case TX_RATE_5_5_MBIT:
7178                 wrqu->bitrate.value = 5500000;
7179                 break;
7180         case TX_RATE_11_MBIT:
7181                 wrqu->bitrate.value = 11000000;
7182                 break;
7183         default:
7184                 wrqu->bitrate.value = 0;
7185         }
7186
7187         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7188
7189       done:
7190         mutex_unlock(&priv->action_mutex);
7191         return err;
7192 }
7193
7194 static int ipw2100_wx_set_rts(struct net_device *dev,
7195                               struct iw_request_info *info,
7196                               union iwreq_data *wrqu, char *extra)
7197 {
7198         struct ipw2100_priv *priv = libipw_priv(dev);
7199         int value, err;
7200
7201         /* Auto RTS not yet supported */
7202         if (wrqu->rts.fixed == 0)
7203                 return -EINVAL;
7204
7205         mutex_lock(&priv->action_mutex);
7206         if (!(priv->status & STATUS_INITIALIZED)) {
7207                 err = -EIO;
7208                 goto done;
7209         }
7210
7211         if (wrqu->rts.disabled)
7212                 value = priv->rts_threshold | RTS_DISABLED;
7213         else {
7214                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7215                         err = -EINVAL;
7216                         goto done;
7217                 }
7218                 value = wrqu->rts.value;
7219         }
7220
7221         err = ipw2100_set_rts_threshold(priv, value);
7222
7223         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7224       done:
7225         mutex_unlock(&priv->action_mutex);
7226         return err;
7227 }
7228
7229 static int ipw2100_wx_get_rts(struct net_device *dev,
7230                               struct iw_request_info *info,
7231                               union iwreq_data *wrqu, char *extra)
7232 {
7233         /*
7234          * This can be called at any time.  No action lock required
7235          */
7236
7237         struct ipw2100_priv *priv = libipw_priv(dev);
7238
7239         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7240         wrqu->rts.fixed = 1;    /* no auto select */
7241
7242         /* If RTS is set to the default value, then it is disabled */
7243         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7244
7245         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7246
7247         return 0;
7248 }
7249
7250 static int ipw2100_wx_set_txpow(struct net_device *dev,
7251                                 struct iw_request_info *info,
7252                                 union iwreq_data *wrqu, char *extra)
7253 {
7254         struct ipw2100_priv *priv = libipw_priv(dev);
7255         int err = 0, value;
7256         
7257         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7258                 return -EINPROGRESS;
7259
7260         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7261                 return 0;
7262
7263         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7264                 return -EINVAL;
7265
7266         if (wrqu->txpower.fixed == 0)
7267                 value = IPW_TX_POWER_DEFAULT;
7268         else {
7269                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7270                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7271                         return -EINVAL;
7272
7273                 value = wrqu->txpower.value;
7274         }
7275
7276         mutex_lock(&priv->action_mutex);
7277         if (!(priv->status & STATUS_INITIALIZED)) {
7278                 err = -EIO;
7279                 goto done;
7280         }
7281
7282         err = ipw2100_set_tx_power(priv, value);
7283
7284         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7285
7286       done:
7287         mutex_unlock(&priv->action_mutex);
7288         return err;
7289 }
7290
7291 static int ipw2100_wx_get_txpow(struct net_device *dev,
7292                                 struct iw_request_info *info,
7293                                 union iwreq_data *wrqu, char *extra)
7294 {
7295         /*
7296          * This can be called at any time.  No action lock required
7297          */
7298
7299         struct ipw2100_priv *priv = libipw_priv(dev);
7300
7301         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7302
7303         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7304                 wrqu->txpower.fixed = 0;
7305                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7306         } else {
7307                 wrqu->txpower.fixed = 1;
7308                 wrqu->txpower.value = priv->tx_power;
7309         }
7310
7311         wrqu->txpower.flags = IW_TXPOW_DBM;
7312
7313         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7314
7315         return 0;
7316 }
7317
7318 static int ipw2100_wx_set_frag(struct net_device *dev,
7319                                struct iw_request_info *info,
7320                                union iwreq_data *wrqu, char *extra)
7321 {
7322         /*
7323          * This can be called at any time.  No action lock required
7324          */
7325
7326         struct ipw2100_priv *priv = libipw_priv(dev);
7327
7328         if (!wrqu->frag.fixed)
7329                 return -EINVAL;
7330
7331         if (wrqu->frag.disabled) {
7332                 priv->frag_threshold |= FRAG_DISABLED;
7333                 priv->ieee->fts = DEFAULT_FTS;
7334         } else {
7335                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7336                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7337                         return -EINVAL;
7338
7339                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7340                 priv->frag_threshold = priv->ieee->fts;
7341         }
7342
7343         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7344
7345         return 0;
7346 }
7347
7348 static int ipw2100_wx_get_frag(struct net_device *dev,
7349                                struct iw_request_info *info,
7350                                union iwreq_data *wrqu, char *extra)
7351 {
7352         /*
7353          * This can be called at any time.  No action lock required
7354          */
7355
7356         struct ipw2100_priv *priv = libipw_priv(dev);
7357         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7358         wrqu->frag.fixed = 0;   /* no auto select */
7359         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7360
7361         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7362
7363         return 0;
7364 }
7365
7366 static int ipw2100_wx_set_retry(struct net_device *dev,
7367                                 struct iw_request_info *info,
7368                                 union iwreq_data *wrqu, char *extra)
7369 {
7370         struct ipw2100_priv *priv = libipw_priv(dev);
7371         int err = 0;
7372
7373         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7374                 return -EINVAL;
7375
7376         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7377                 return 0;
7378
7379         mutex_lock(&priv->action_mutex);
7380         if (!(priv->status & STATUS_INITIALIZED)) {
7381                 err = -EIO;
7382                 goto done;
7383         }
7384
7385         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7386                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7387                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7388                              wrqu->retry.value);
7389                 goto done;
7390         }
7391
7392         if (wrqu->retry.flags & IW_RETRY_LONG) {
7393                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7394                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7395                              wrqu->retry.value);
7396                 goto done;
7397         }
7398
7399         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7400         if (!err)
7401                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7402
7403         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7404
7405       done:
7406         mutex_unlock(&priv->action_mutex);
7407         return err;
7408 }
7409
7410 static int ipw2100_wx_get_retry(struct net_device *dev,
7411                                 struct iw_request_info *info,
7412                                 union iwreq_data *wrqu, char *extra)
7413 {
7414         /*
7415          * This can be called at any time.  No action lock required
7416          */
7417
7418         struct ipw2100_priv *priv = libipw_priv(dev);
7419
7420         wrqu->retry.disabled = 0;       /* can't be disabled */
7421
7422         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7423                 return -EINVAL;
7424
7425         if (wrqu->retry.flags & IW_RETRY_LONG) {
7426                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7427                 wrqu->retry.value = priv->long_retry_limit;
7428         } else {
7429                 wrqu->retry.flags =
7430                     (priv->short_retry_limit !=
7431                      priv->long_retry_limit) ?
7432                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7433
7434                 wrqu->retry.value = priv->short_retry_limit;
7435         }
7436
7437         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7438
7439         return 0;
7440 }
7441
7442 static int ipw2100_wx_set_scan(struct net_device *dev,
7443                                struct iw_request_info *info,
7444                                union iwreq_data *wrqu, char *extra)
7445 {
7446         struct ipw2100_priv *priv = libipw_priv(dev);
7447         int err = 0;
7448
7449         mutex_lock(&priv->action_mutex);
7450         if (!(priv->status & STATUS_INITIALIZED)) {
7451                 err = -EIO;
7452                 goto done;
7453         }
7454
7455         IPW_DEBUG_WX("Initiating scan...\n");
7456
7457         priv->user_requested_scan = 1;
7458         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7459                 IPW_DEBUG_WX("Start scan failed.\n");
7460
7461                 /* TODO: Mark a scan as pending so when hardware initialized
7462                  *       a scan starts */
7463         }
7464
7465       done:
7466         mutex_unlock(&priv->action_mutex);
7467         return err;
7468 }
7469
7470 static int ipw2100_wx_get_scan(struct net_device *dev,
7471                                struct iw_request_info *info,
7472                                union iwreq_data *wrqu, char *extra)
7473 {
7474         /*
7475          * This can be called at any time.  No action lock required
7476          */
7477
7478         struct ipw2100_priv *priv = libipw_priv(dev);
7479         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7480 }
7481
7482 /*
7483  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7484  */
7485 static int ipw2100_wx_set_encode(struct net_device *dev,
7486                                  struct iw_request_info *info,
7487                                  union iwreq_data *wrqu, char *key)
7488 {
7489         /*
7490          * No check of STATUS_INITIALIZED required
7491          */
7492
7493         struct ipw2100_priv *priv = libipw_priv(dev);
7494         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_get_encode(struct net_device *dev,
7498                                  struct iw_request_info *info,
7499                                  union iwreq_data *wrqu, char *key)
7500 {
7501         /*
7502          * This can be called at any time.  No action lock required
7503          */
7504
7505         struct ipw2100_priv *priv = libipw_priv(dev);
7506         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7507 }
7508
7509 static int ipw2100_wx_set_power(struct net_device *dev,
7510                                 struct iw_request_info *info,
7511                                 union iwreq_data *wrqu, char *extra)
7512 {
7513         struct ipw2100_priv *priv = libipw_priv(dev);
7514         int err = 0;
7515
7516         mutex_lock(&priv->action_mutex);
7517         if (!(priv->status & STATUS_INITIALIZED)) {
7518                 err = -EIO;
7519                 goto done;
7520         }
7521
7522         if (wrqu->power.disabled) {
7523                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7524                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7525                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7526                 goto done;
7527         }
7528
7529         switch (wrqu->power.flags & IW_POWER_MODE) {
7530         case IW_POWER_ON:       /* If not specified */
7531         case IW_POWER_MODE:     /* If set all mask */
7532         case IW_POWER_ALL_R:    /* If explicitly state all */
7533                 break;
7534         default:                /* Otherwise we don't support it */
7535                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7536                              wrqu->power.flags);
7537                 err = -EOPNOTSUPP;
7538                 goto done;
7539         }
7540
7541         /* If the user hasn't specified a power management mode yet, default
7542          * to BATTERY */
7543         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7544         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7545
7546         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7547
7548       done:
7549         mutex_unlock(&priv->action_mutex);
7550         return err;
7551
7552 }
7553
7554 static int ipw2100_wx_get_power(struct net_device *dev,
7555                                 struct iw_request_info *info,
7556                                 union iwreq_data *wrqu, char *extra)
7557 {
7558         /*
7559          * This can be called at any time.  No action lock required
7560          */
7561
7562         struct ipw2100_priv *priv = libipw_priv(dev);
7563
7564         if (!(priv->power_mode & IPW_POWER_ENABLED))
7565                 wrqu->power.disabled = 1;
7566         else {
7567                 wrqu->power.disabled = 0;
7568                 wrqu->power.flags = 0;
7569         }
7570
7571         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7572
7573         return 0;
7574 }
7575
7576 /*
7577  * WE-18 WPA support
7578  */
7579
7580 /* SIOCSIWGENIE */
7581 static int ipw2100_wx_set_genie(struct net_device *dev,
7582                                 struct iw_request_info *info,
7583                                 union iwreq_data *wrqu, char *extra)
7584 {
7585
7586         struct ipw2100_priv *priv = libipw_priv(dev);
7587         struct libipw_device *ieee = priv->ieee;
7588         u8 *buf;
7589
7590         if (!ieee->wpa_enabled)
7591                 return -EOPNOTSUPP;
7592
7593         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7594             (wrqu->data.length && extra == NULL))
7595                 return -EINVAL;
7596
7597         if (wrqu->data.length) {
7598                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7599                 if (buf == NULL)
7600                         return -ENOMEM;
7601
7602                 kfree(ieee->wpa_ie);
7603                 ieee->wpa_ie = buf;
7604                 ieee->wpa_ie_len = wrqu->data.length;
7605         } else {
7606                 kfree(ieee->wpa_ie);
7607                 ieee->wpa_ie = NULL;
7608                 ieee->wpa_ie_len = 0;
7609         }
7610
7611         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7612
7613         return 0;
7614 }
7615
7616 /* SIOCGIWGENIE */
7617 static int ipw2100_wx_get_genie(struct net_device *dev,
7618                                 struct iw_request_info *info,
7619                                 union iwreq_data *wrqu, char *extra)
7620 {
7621         struct ipw2100_priv *priv = libipw_priv(dev);
7622         struct libipw_device *ieee = priv->ieee;
7623
7624         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7625                 wrqu->data.length = 0;
7626                 return 0;
7627         }
7628
7629         if (wrqu->data.length < ieee->wpa_ie_len)
7630                 return -E2BIG;
7631
7632         wrqu->data.length = ieee->wpa_ie_len;
7633         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7634
7635         return 0;
7636 }
7637
7638 /* SIOCSIWAUTH */
7639 static int ipw2100_wx_set_auth(struct net_device *dev,
7640                                struct iw_request_info *info,
7641                                union iwreq_data *wrqu, char *extra)
7642 {
7643         struct ipw2100_priv *priv = libipw_priv(dev);
7644         struct libipw_device *ieee = priv->ieee;
7645         struct iw_param *param = &wrqu->param;
7646         struct lib80211_crypt_data *crypt;
7647         unsigned long flags;
7648         int ret = 0;
7649
7650         switch (param->flags & IW_AUTH_INDEX) {
7651         case IW_AUTH_WPA_VERSION:
7652         case IW_AUTH_CIPHER_PAIRWISE:
7653         case IW_AUTH_CIPHER_GROUP:
7654         case IW_AUTH_KEY_MGMT:
7655                 /*
7656                  * ipw2200 does not use these parameters
7657                  */
7658                 break;
7659
7660         case IW_AUTH_TKIP_COUNTERMEASURES:
7661                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7662                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7663                         break;
7664
7665                 flags = crypt->ops->get_flags(crypt->priv);
7666
7667                 if (param->value)
7668                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7669                 else
7670                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7671
7672                 crypt->ops->set_flags(flags, crypt->priv);
7673
7674                 break;
7675
7676         case IW_AUTH_DROP_UNENCRYPTED:{
7677                         /* HACK:
7678                          *
7679                          * wpa_supplicant calls set_wpa_enabled when the driver
7680                          * is loaded and unloaded, regardless of if WPA is being
7681                          * used.  No other calls are made which can be used to
7682                          * determine if encryption will be used or not prior to
7683                          * association being expected.  If encryption is not being
7684                          * used, drop_unencrypted is set to false, else true -- we
7685                          * can use this to determine if the CAP_PRIVACY_ON bit should
7686                          * be set.
7687                          */
7688                         struct libipw_security sec = {
7689                                 .flags = SEC_ENABLED,
7690                                 .enabled = param->value,
7691                         };
7692                         priv->ieee->drop_unencrypted = param->value;
7693                         /* We only change SEC_LEVEL for open mode. Others
7694                          * are set by ipw_wpa_set_encryption.
7695                          */
7696                         if (!param->value) {
7697                                 sec.flags |= SEC_LEVEL;
7698                                 sec.level = SEC_LEVEL_0;
7699                         } else {
7700                                 sec.flags |= SEC_LEVEL;
7701                                 sec.level = SEC_LEVEL_1;
7702                         }
7703                         if (priv->ieee->set_security)
7704                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7705                         break;
7706                 }
7707
7708         case IW_AUTH_80211_AUTH_ALG:
7709                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7710                 break;
7711
7712         case IW_AUTH_WPA_ENABLED:
7713                 ret = ipw2100_wpa_enable(priv, param->value);
7714                 break;
7715
7716         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7717                 ieee->ieee802_1x = param->value;
7718                 break;
7719
7720                 //case IW_AUTH_ROAMING_CONTROL:
7721         case IW_AUTH_PRIVACY_INVOKED:
7722                 ieee->privacy_invoked = param->value;
7723                 break;
7724
7725         default:
7726                 return -EOPNOTSUPP;
7727         }
7728         return ret;
7729 }
7730
7731 /* SIOCGIWAUTH */
7732 static int ipw2100_wx_get_auth(struct net_device *dev,
7733                                struct iw_request_info *info,
7734                                union iwreq_data *wrqu, char *extra)
7735 {
7736         struct ipw2100_priv *priv = libipw_priv(dev);
7737         struct libipw_device *ieee = priv->ieee;
7738         struct lib80211_crypt_data *crypt;
7739         struct iw_param *param = &wrqu->param;
7740         int ret = 0;
7741
7742         switch (param->flags & IW_AUTH_INDEX) {
7743         case IW_AUTH_WPA_VERSION:
7744         case IW_AUTH_CIPHER_PAIRWISE:
7745         case IW_AUTH_CIPHER_GROUP:
7746         case IW_AUTH_KEY_MGMT:
7747                 /*
7748                  * wpa_supplicant will control these internally
7749                  */
7750                 ret = -EOPNOTSUPP;
7751                 break;
7752
7753         case IW_AUTH_TKIP_COUNTERMEASURES:
7754                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7755                 if (!crypt || !crypt->ops->get_flags) {
7756                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7757                                           "crypt not set!\n");
7758                         break;
7759                 }
7760
7761                 param->value = (crypt->ops->get_flags(crypt->priv) &
7762                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7763
7764                 break;
7765
7766         case IW_AUTH_DROP_UNENCRYPTED:
7767                 param->value = ieee->drop_unencrypted;
7768                 break;
7769
7770         case IW_AUTH_80211_AUTH_ALG:
7771                 param->value = priv->ieee->sec.auth_mode;
7772                 break;
7773
7774         case IW_AUTH_WPA_ENABLED:
7775                 param->value = ieee->wpa_enabled;
7776                 break;
7777
7778         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7779                 param->value = ieee->ieee802_1x;
7780                 break;
7781
7782         case IW_AUTH_ROAMING_CONTROL:
7783         case IW_AUTH_PRIVACY_INVOKED:
7784                 param->value = ieee->privacy_invoked;
7785                 break;
7786
7787         default:
7788                 return -EOPNOTSUPP;
7789         }
7790         return 0;
7791 }
7792
7793 /* SIOCSIWENCODEEXT */
7794 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7795                                     struct iw_request_info *info,
7796                                     union iwreq_data *wrqu, char *extra)
7797 {
7798         struct ipw2100_priv *priv = libipw_priv(dev);
7799         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7800 }
7801
7802 /* SIOCGIWENCODEEXT */
7803 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7804                                     struct iw_request_info *info,
7805                                     union iwreq_data *wrqu, char *extra)
7806 {
7807         struct ipw2100_priv *priv = libipw_priv(dev);
7808         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7809 }
7810
7811 /* SIOCSIWMLME */
7812 static int ipw2100_wx_set_mlme(struct net_device *dev,
7813                                struct iw_request_info *info,
7814                                union iwreq_data *wrqu, char *extra)
7815 {
7816         struct ipw2100_priv *priv = libipw_priv(dev);
7817         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7818         __le16 reason;
7819
7820         reason = cpu_to_le16(mlme->reason_code);
7821
7822         switch (mlme->cmd) {
7823         case IW_MLME_DEAUTH:
7824                 // silently ignore
7825                 break;
7826
7827         case IW_MLME_DISASSOC:
7828                 ipw2100_disassociate_bssid(priv);
7829                 break;
7830
7831         default:
7832                 return -EOPNOTSUPP;
7833         }
7834         return 0;
7835 }
7836
7837 /*
7838  *
7839  * IWPRIV handlers
7840  *
7841  */
7842 #ifdef CONFIG_IPW2100_MONITOR
7843 static int ipw2100_wx_set_promisc(struct net_device *dev,
7844                                   struct iw_request_info *info,
7845                                   union iwreq_data *wrqu, char *extra)
7846 {
7847         struct ipw2100_priv *priv = libipw_priv(dev);
7848         int *parms = (int *)extra;
7849         int enable = (parms[0] > 0);
7850         int err = 0;
7851
7852         mutex_lock(&priv->action_mutex);
7853         if (!(priv->status & STATUS_INITIALIZED)) {
7854                 err = -EIO;
7855                 goto done;
7856         }
7857
7858         if (enable) {
7859                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7860                         err = ipw2100_set_channel(priv, parms[1], 0);
7861                         goto done;
7862                 }
7863                 priv->channel = parms[1];
7864                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7865         } else {
7866                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7867                         err = ipw2100_switch_mode(priv, priv->last_mode);
7868         }
7869       done:
7870         mutex_unlock(&priv->action_mutex);
7871         return err;
7872 }
7873
7874 static int ipw2100_wx_reset(struct net_device *dev,
7875                             struct iw_request_info *info,
7876                             union iwreq_data *wrqu, char *extra)
7877 {
7878         struct ipw2100_priv *priv = libipw_priv(dev);
7879         if (priv->status & STATUS_INITIALIZED)
7880                 schedule_reset(priv);
7881         return 0;
7882 }
7883
7884 #endif
7885
7886 static int ipw2100_wx_set_powermode(struct net_device *dev,
7887                                     struct iw_request_info *info,
7888                                     union iwreq_data *wrqu, char *extra)
7889 {
7890         struct ipw2100_priv *priv = libipw_priv(dev);
7891         int err = 0, mode = *(int *)extra;
7892
7893         mutex_lock(&priv->action_mutex);
7894         if (!(priv->status & STATUS_INITIALIZED)) {
7895                 err = -EIO;
7896                 goto done;
7897         }
7898
7899         if ((mode < 0) || (mode > POWER_MODES))
7900                 mode = IPW_POWER_AUTO;
7901
7902         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7903                 err = ipw2100_set_power_mode(priv, mode);
7904       done:
7905         mutex_unlock(&priv->action_mutex);
7906         return err;
7907 }
7908
7909 #define MAX_POWER_STRING 80
7910 static int ipw2100_wx_get_powermode(struct net_device *dev,
7911                                     struct iw_request_info *info,
7912                                     union iwreq_data *wrqu, char *extra)
7913 {
7914         /*
7915          * This can be called at any time.  No action lock required
7916          */
7917
7918         struct ipw2100_priv *priv = libipw_priv(dev);
7919         int level = IPW_POWER_LEVEL(priv->power_mode);
7920         s32 timeout, period;
7921
7922         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7923                 snprintf(extra, MAX_POWER_STRING,
7924                          "Power save level: %d (Off)", level);
7925         } else {
7926                 switch (level) {
7927                 case IPW_POWER_MODE_CAM:
7928                         snprintf(extra, MAX_POWER_STRING,
7929                                  "Power save level: %d (None)", level);
7930                         break;
7931                 case IPW_POWER_AUTO:
7932                         snprintf(extra, MAX_POWER_STRING,
7933                                  "Power save level: %d (Auto)", level);
7934                         break;
7935                 default:
7936                         timeout = timeout_duration[level - 1] / 1000;
7937                         period = period_duration[level - 1] / 1000;
7938                         snprintf(extra, MAX_POWER_STRING,
7939                                  "Power save level: %d "
7940                                  "(Timeout %dms, Period %dms)",
7941                                  level, timeout, period);
7942                 }
7943         }
7944
7945         wrqu->data.length = strlen(extra) + 1;
7946
7947         return 0;
7948 }
7949
7950 static int ipw2100_wx_set_preamble(struct net_device *dev,
7951                                    struct iw_request_info *info,
7952                                    union iwreq_data *wrqu, char *extra)
7953 {
7954         struct ipw2100_priv *priv = libipw_priv(dev);
7955         int err, mode = *(int *)extra;
7956
7957         mutex_lock(&priv->action_mutex);
7958         if (!(priv->status & STATUS_INITIALIZED)) {
7959                 err = -EIO;
7960                 goto done;
7961         }
7962
7963         if (mode == 1)
7964                 priv->config |= CFG_LONG_PREAMBLE;
7965         else if (mode == 0)
7966                 priv->config &= ~CFG_LONG_PREAMBLE;
7967         else {
7968                 err = -EINVAL;
7969                 goto done;
7970         }
7971
7972         err = ipw2100_system_config(priv, 0);
7973
7974       done:
7975         mutex_unlock(&priv->action_mutex);
7976         return err;
7977 }
7978
7979 static int ipw2100_wx_get_preamble(struct net_device *dev,
7980                                    struct iw_request_info *info,
7981                                    union iwreq_data *wrqu, char *extra)
7982 {
7983         /*
7984          * This can be called at any time.  No action lock required
7985          */
7986
7987         struct ipw2100_priv *priv = libipw_priv(dev);
7988
7989         if (priv->config & CFG_LONG_PREAMBLE)
7990                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7991         else
7992                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7993
7994         return 0;
7995 }
7996
7997 #ifdef CONFIG_IPW2100_MONITOR
7998 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7999                                     struct iw_request_info *info,
8000                                     union iwreq_data *wrqu, char *extra)
8001 {
8002         struct ipw2100_priv *priv = libipw_priv(dev);
8003         int err, mode = *(int *)extra;
8004
8005         mutex_lock(&priv->action_mutex);
8006         if (!(priv->status & STATUS_INITIALIZED)) {
8007                 err = -EIO;
8008                 goto done;
8009         }
8010
8011         if (mode == 1)
8012                 priv->config |= CFG_CRC_CHECK;
8013         else if (mode == 0)
8014                 priv->config &= ~CFG_CRC_CHECK;
8015         else {
8016                 err = -EINVAL;
8017                 goto done;
8018         }
8019         err = 0;
8020
8021       done:
8022         mutex_unlock(&priv->action_mutex);
8023         return err;
8024 }
8025
8026 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8027                                     struct iw_request_info *info,
8028                                     union iwreq_data *wrqu, char *extra)
8029 {
8030         /*
8031          * This can be called at any time.  No action lock required
8032          */
8033
8034         struct ipw2100_priv *priv = libipw_priv(dev);
8035
8036         if (priv->config & CFG_CRC_CHECK)
8037                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8038         else
8039                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8040
8041         return 0;
8042 }
8043 #endif                          /* CONFIG_IPW2100_MONITOR */
8044
8045 static iw_handler ipw2100_wx_handlers[] = {
8046         NULL,                   /* SIOCSIWCOMMIT */
8047         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8048         NULL,                   /* SIOCSIWNWID */
8049         NULL,                   /* SIOCGIWNWID */
8050         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8051         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8052         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8053         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8054         NULL,                   /* SIOCSIWSENS */
8055         NULL,                   /* SIOCGIWSENS */
8056         NULL,                   /* SIOCSIWRANGE */
8057         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8058         NULL,                   /* SIOCSIWPRIV */
8059         NULL,                   /* SIOCGIWPRIV */
8060         NULL,                   /* SIOCSIWSTATS */
8061         NULL,                   /* SIOCGIWSTATS */
8062         NULL,                   /* SIOCSIWSPY */
8063         NULL,                   /* SIOCGIWSPY */
8064         NULL,                   /* SIOCGIWTHRSPY */
8065         NULL,                   /* SIOCWIWTHRSPY */
8066         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8067         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8068         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8069         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8070         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8071         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8072         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8073         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8074         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8075         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8076         NULL,                   /* -- hole -- */
8077         NULL,                   /* -- hole -- */
8078         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8079         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8080         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8081         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8082         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8083         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8084         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8085         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8086         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8087         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8088         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8089         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8090         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8091         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8092         NULL,                   /* -- hole -- */
8093         NULL,                   /* -- hole -- */
8094         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8095         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8096         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8097         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8098         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8099         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8100         NULL,                   /* SIOCSIWPMKSA */
8101 };
8102
8103 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8104 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8105 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8106 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8107 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8108 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8109 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8110 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8111
8112 static const struct iw_priv_args ipw2100_private_args[] = {
8113
8114 #ifdef CONFIG_IPW2100_MONITOR
8115         {
8116          IPW2100_PRIV_SET_MONITOR,
8117          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8118         {
8119          IPW2100_PRIV_RESET,
8120          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122
8123         {
8124          IPW2100_PRIV_SET_POWER,
8125          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8126         {
8127          IPW2100_PRIV_GET_POWER,
8128          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8129          "get_power"},
8130         {
8131          IPW2100_PRIV_SET_LONGPREAMBLE,
8132          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8133         {
8134          IPW2100_PRIV_GET_LONGPREAMBLE,
8135          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8136 #ifdef CONFIG_IPW2100_MONITOR
8137         {
8138          IPW2100_PRIV_SET_CRC_CHECK,
8139          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8140         {
8141          IPW2100_PRIV_GET_CRC_CHECK,
8142          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8143 #endif                          /* CONFIG_IPW2100_MONITOR */
8144 };
8145
8146 static iw_handler ipw2100_private_handler[] = {
8147 #ifdef CONFIG_IPW2100_MONITOR
8148         ipw2100_wx_set_promisc,
8149         ipw2100_wx_reset,
8150 #else                           /* CONFIG_IPW2100_MONITOR */
8151         NULL,
8152         NULL,
8153 #endif                          /* CONFIG_IPW2100_MONITOR */
8154         ipw2100_wx_set_powermode,
8155         ipw2100_wx_get_powermode,
8156         ipw2100_wx_set_preamble,
8157         ipw2100_wx_get_preamble,
8158 #ifdef CONFIG_IPW2100_MONITOR
8159         ipw2100_wx_set_crc_check,
8160         ipw2100_wx_get_crc_check,
8161 #else                           /* CONFIG_IPW2100_MONITOR */
8162         NULL,
8163         NULL,
8164 #endif                          /* CONFIG_IPW2100_MONITOR */
8165 };
8166
8167 /*
8168  * Get wireless statistics.
8169  * Called by /proc/net/wireless
8170  * Also called by SIOCGIWSTATS
8171  */
8172 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8173 {
8174         enum {
8175                 POOR = 30,
8176                 FAIR = 60,
8177                 GOOD = 80,
8178                 VERY_GOOD = 90,
8179                 EXCELLENT = 95,
8180                 PERFECT = 100
8181         };
8182         int rssi_qual;
8183         int tx_qual;
8184         int beacon_qual;
8185         int quality;
8186
8187         struct ipw2100_priv *priv = libipw_priv(dev);
8188         struct iw_statistics *wstats;
8189         u32 rssi, tx_retries, missed_beacons, tx_failures;
8190         u32 ord_len = sizeof(u32);
8191
8192         if (!priv)
8193                 return (struct iw_statistics *)NULL;
8194
8195         wstats = &priv->wstats;
8196
8197         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8198          * ipw2100_wx_wireless_stats seems to be called before fw is
8199          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8200          * and associated; if not associcated, the values are all meaningless
8201          * anyway, so set them all to NULL and INVALID */
8202         if (!(priv->status & STATUS_ASSOCIATED)) {
8203                 wstats->miss.beacon = 0;
8204                 wstats->discard.retries = 0;
8205                 wstats->qual.qual = 0;
8206                 wstats->qual.level = 0;
8207                 wstats->qual.noise = 0;
8208                 wstats->qual.updated = 7;
8209                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8210                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8211                 return wstats;
8212         }
8213
8214         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8215                                 &missed_beacons, &ord_len))
8216                 goto fail_get_ordinal;
8217
8218         /* If we don't have a connection the quality and level is 0 */
8219         if (!(priv->status & STATUS_ASSOCIATED)) {
8220                 wstats->qual.qual = 0;
8221                 wstats->qual.level = 0;
8222         } else {
8223                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8224                                         &rssi, &ord_len))
8225                         goto fail_get_ordinal;
8226                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8227                 if (rssi < 10)
8228                         rssi_qual = rssi * POOR / 10;
8229                 else if (rssi < 15)
8230                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8231                 else if (rssi < 20)
8232                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8233                 else if (rssi < 30)
8234                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8235                             10 + GOOD;
8236                 else
8237                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8238                             10 + VERY_GOOD;
8239
8240                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8241                                         &tx_retries, &ord_len))
8242                         goto fail_get_ordinal;
8243
8244                 if (tx_retries > 75)
8245                         tx_qual = (90 - tx_retries) * POOR / 15;
8246                 else if (tx_retries > 70)
8247                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8248                 else if (tx_retries > 65)
8249                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8250                 else if (tx_retries > 50)
8251                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8252                             15 + GOOD;
8253                 else
8254                         tx_qual = (50 - tx_retries) *
8255                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8256
8257                 if (missed_beacons > 50)
8258                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8259                 else if (missed_beacons > 40)
8260                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8261                             10 + POOR;
8262                 else if (missed_beacons > 32)
8263                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8264                             18 + FAIR;
8265                 else if (missed_beacons > 20)
8266                         beacon_qual = (32 - missed_beacons) *
8267                             (VERY_GOOD - GOOD) / 20 + GOOD;
8268                 else
8269                         beacon_qual = (20 - missed_beacons) *
8270                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8271
8272                 quality = min(tx_qual, rssi_qual);
8273                 quality = min(beacon_qual, quality);
8274
8275 #ifdef CONFIG_IPW2100_DEBUG
8276                 if (beacon_qual == quality)
8277                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8278                 else if (tx_qual == quality)
8279                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8280                 else if (quality != 100)
8281                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8282                 else
8283                         IPW_DEBUG_WX("Quality not clamped.\n");
8284 #endif
8285
8286                 wstats->qual.qual = quality;
8287                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8288         }
8289
8290         wstats->qual.noise = 0;
8291         wstats->qual.updated = 7;
8292         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8293
8294         /* FIXME: this is percent and not a # */
8295         wstats->miss.beacon = missed_beacons;
8296
8297         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8298                                 &tx_failures, &ord_len))
8299                 goto fail_get_ordinal;
8300         wstats->discard.retries = tx_failures;
8301
8302         return wstats;
8303
8304       fail_get_ordinal:
8305         IPW_DEBUG_WX("failed querying ordinals.\n");
8306
8307         return (struct iw_statistics *)NULL;
8308 }
8309
8310 static struct iw_handler_def ipw2100_wx_handler_def = {
8311         .standard = ipw2100_wx_handlers,
8312         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8313         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8314         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8315         .private = (iw_handler *) ipw2100_private_handler,
8316         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8317         .get_wireless_stats = ipw2100_wx_wireless_stats,
8318 };
8319
8320 static void ipw2100_wx_event_work(struct work_struct *work)
8321 {
8322         struct ipw2100_priv *priv =
8323                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8324         union iwreq_data wrqu;
8325         unsigned int len = ETH_ALEN;
8326
8327         if (priv->status & STATUS_STOPPING)
8328                 return;
8329
8330         mutex_lock(&priv->action_mutex);
8331
8332         IPW_DEBUG_WX("enter\n");
8333
8334         mutex_unlock(&priv->action_mutex);
8335
8336         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8337
8338         /* Fetch BSSID from the hardware */
8339         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8340             priv->status & STATUS_RF_KILL_MASK ||
8341             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8342                                 &priv->bssid, &len)) {
8343                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8344         } else {
8345                 /* We now have the BSSID, so can finish setting to the full
8346                  * associated state */
8347                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8348                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8349                 priv->status &= ~STATUS_ASSOCIATING;
8350                 priv->status |= STATUS_ASSOCIATED;
8351                 netif_carrier_on(priv->net_dev);
8352                 netif_wake_queue(priv->net_dev);
8353         }
8354
8355         if (!(priv->status & STATUS_ASSOCIATED)) {
8356                 IPW_DEBUG_WX("Configuring ESSID\n");
8357                 mutex_lock(&priv->action_mutex);
8358                 /* This is a disassociation event, so kick the firmware to
8359                  * look for another AP */
8360                 if (priv->config & CFG_STATIC_ESSID)
8361                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8362                                           0);
8363                 else
8364                         ipw2100_set_essid(priv, NULL, 0, 0);
8365                 mutex_unlock(&priv->action_mutex);
8366         }
8367
8368         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8369 }
8370
8371 #define IPW2100_FW_MAJOR_VERSION 1
8372 #define IPW2100_FW_MINOR_VERSION 3
8373
8374 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8375 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8376
8377 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8378                              IPW2100_FW_MAJOR_VERSION)
8379
8380 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8381 "." __stringify(IPW2100_FW_MINOR_VERSION)
8382
8383 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8384
8385 /*
8386
8387 BINARY FIRMWARE HEADER FORMAT
8388
8389 offset      length   desc
8390 0           2        version
8391 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8392 4           4        fw_len
8393 8           4        uc_len
8394 C           fw_len   firmware data
8395 12 + fw_len uc_len   microcode data
8396
8397 */
8398
8399 struct ipw2100_fw_header {
8400         short version;
8401         short mode;
8402         unsigned int fw_size;
8403         unsigned int uc_size;
8404 } __attribute__ ((packed));
8405
8406 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8407 {
8408         struct ipw2100_fw_header *h =
8409             (struct ipw2100_fw_header *)fw->fw_entry->data;
8410
8411         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8412                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8413                        "(detected version id of %u). "
8414                        "See Documentation/networking/README.ipw2100\n",
8415                        h->version);
8416                 return 1;
8417         }
8418
8419         fw->version = h->version;
8420         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8421         fw->fw.size = h->fw_size;
8422         fw->uc.data = fw->fw.data + h->fw_size;
8423         fw->uc.size = h->uc_size;
8424
8425         return 0;
8426 }
8427
8428 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8429                                 struct ipw2100_fw *fw)
8430 {
8431         char *fw_name;
8432         int rc;
8433
8434         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8435                        priv->net_dev->name);
8436
8437         switch (priv->ieee->iw_mode) {
8438         case IW_MODE_ADHOC:
8439                 fw_name = IPW2100_FW_NAME("-i");
8440                 break;
8441 #ifdef CONFIG_IPW2100_MONITOR
8442         case IW_MODE_MONITOR:
8443                 fw_name = IPW2100_FW_NAME("-p");
8444                 break;
8445 #endif
8446         case IW_MODE_INFRA:
8447         default:
8448                 fw_name = IPW2100_FW_NAME("");
8449                 break;
8450         }
8451
8452         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8453
8454         if (rc < 0) {
8455                 printk(KERN_ERR DRV_NAME ": "
8456                        "%s: Firmware '%s' not available or load failed.\n",
8457                        priv->net_dev->name, fw_name);
8458                 return rc;
8459         }
8460         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8461                        fw->fw_entry->size);
8462
8463         ipw2100_mod_firmware_load(fw);
8464
8465         return 0;
8466 }
8467
8468 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8469                                      struct ipw2100_fw *fw)
8470 {
8471         fw->version = 0;
8472         if (fw->fw_entry)
8473                 release_firmware(fw->fw_entry);
8474         fw->fw_entry = NULL;
8475 }
8476
8477 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8478                                  size_t max)
8479 {
8480         char ver[MAX_FW_VERSION_LEN];
8481         u32 len = MAX_FW_VERSION_LEN;
8482         u32 tmp;
8483         int i;
8484         /* firmware version is an ascii string (max len of 14) */
8485         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8486                 return -EIO;
8487         tmp = max;
8488         if (len >= max)
8489                 len = max - 1;
8490         for (i = 0; i < len; i++)
8491                 buf[i] = ver[i];
8492         buf[i] = '\0';
8493         return tmp;
8494 }
8495
8496 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8497                                     size_t max)
8498 {
8499         u32 ver;
8500         u32 len = sizeof(ver);
8501         /* microcode version is a 32 bit integer */
8502         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8503                 return -EIO;
8504         return snprintf(buf, max, "%08X", ver);
8505 }
8506
8507 /*
8508  * On exit, the firmware will have been freed from the fw list
8509  */
8510 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8511 {
8512         /* firmware is constructed of N contiguous entries, each entry is
8513          * structured as:
8514          *
8515          * offset    sie         desc
8516          * 0         4           address to write to
8517          * 4         2           length of data run
8518          * 6         length      data
8519          */
8520         unsigned int addr;
8521         unsigned short len;
8522
8523         const unsigned char *firmware_data = fw->fw.data;
8524         unsigned int firmware_data_left = fw->fw.size;
8525
8526         while (firmware_data_left > 0) {
8527                 addr = *(u32 *) (firmware_data);
8528                 firmware_data += 4;
8529                 firmware_data_left -= 4;
8530
8531                 len = *(u16 *) (firmware_data);
8532                 firmware_data += 2;
8533                 firmware_data_left -= 2;
8534
8535                 if (len > 32) {
8536                         printk(KERN_ERR DRV_NAME ": "
8537                                "Invalid firmware run-length of %d bytes\n",
8538                                len);
8539                         return -EINVAL;
8540                 }
8541
8542                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8543                 firmware_data += len;
8544                 firmware_data_left -= len;
8545         }
8546
8547         return 0;
8548 }
8549
8550 struct symbol_alive_response {
8551         u8 cmd_id;
8552         u8 seq_num;
8553         u8 ucode_rev;
8554         u8 eeprom_valid;
8555         u16 valid_flags;
8556         u8 IEEE_addr[6];
8557         u16 flags;
8558         u16 pcb_rev;
8559         u16 clock_settle_time;  // 1us LSB
8560         u16 powerup_settle_time;        // 1us LSB
8561         u16 hop_settle_time;    // 1us LSB
8562         u8 date[3];             // month, day, year
8563         u8 time[2];             // hours, minutes
8564         u8 ucode_valid;
8565 };
8566
8567 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8568                                   struct ipw2100_fw *fw)
8569 {
8570         struct net_device *dev = priv->net_dev;
8571         const unsigned char *microcode_data = fw->uc.data;
8572         unsigned int microcode_data_left = fw->uc.size;
8573         void __iomem *reg = (void __iomem *)dev->base_addr;
8574
8575         struct symbol_alive_response response;
8576         int i, j;
8577         u8 data;
8578
8579         /* Symbol control */
8580         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8581         readl(reg);
8582         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8583         readl(reg);
8584
8585         /* HW config */
8586         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8587         readl(reg);
8588         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8589         readl(reg);
8590
8591         /* EN_CS_ACCESS bit to reset control store pointer */
8592         write_nic_byte(dev, 0x210000, 0x40);
8593         readl(reg);
8594         write_nic_byte(dev, 0x210000, 0x0);
8595         readl(reg);
8596         write_nic_byte(dev, 0x210000, 0x40);
8597         readl(reg);
8598
8599         /* copy microcode from buffer into Symbol */
8600
8601         while (microcode_data_left > 0) {
8602                 write_nic_byte(dev, 0x210010, *microcode_data++);
8603                 write_nic_byte(dev, 0x210010, *microcode_data++);
8604                 microcode_data_left -= 2;
8605         }
8606
8607         /* EN_CS_ACCESS bit to reset the control store pointer */
8608         write_nic_byte(dev, 0x210000, 0x0);
8609         readl(reg);
8610
8611         /* Enable System (Reg 0)
8612          * first enable causes garbage in RX FIFO */
8613         write_nic_byte(dev, 0x210000, 0x0);
8614         readl(reg);
8615         write_nic_byte(dev, 0x210000, 0x80);
8616         readl(reg);
8617
8618         /* Reset External Baseband Reg */
8619         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8620         readl(reg);
8621         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8622         readl(reg);
8623
8624         /* HW Config (Reg 5) */
8625         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8626         readl(reg);
8627         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8628         readl(reg);
8629
8630         /* Enable System (Reg 0)
8631          * second enable should be OK */
8632         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8633         readl(reg);
8634         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8635
8636         /* check Symbol is enabled - upped this from 5 as it wasn't always
8637          * catching the update */
8638         for (i = 0; i < 10; i++) {
8639                 udelay(10);
8640
8641                 /* check Dino is enabled bit */
8642                 read_nic_byte(dev, 0x210000, &data);
8643                 if (data & 0x1)
8644                         break;
8645         }
8646
8647         if (i == 10) {
8648                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8649                        dev->name);
8650                 return -EIO;
8651         }
8652
8653         /* Get Symbol alive response */
8654         for (i = 0; i < 30; i++) {
8655                 /* Read alive response structure */
8656                 for (j = 0;
8657                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8658                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8659
8660                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8661                         break;
8662                 udelay(10);
8663         }
8664
8665         if (i == 30) {
8666                 printk(KERN_ERR DRV_NAME
8667                        ": %s: No response from Symbol - hw not alive\n",
8668                        dev->name);
8669                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8670                 return -EIO;
8671         }
8672
8673         return 0;
8674 }