1a039f2bd7327d86c50cb04847db94f07a380c17
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #define _ATH5K_PHY
24
25 #include <linux/delay.h>
26
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32
33 /*
34  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35  */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37                                         const struct ath5k_rf_reg *rf_regs,
38                                         u32 val, u8 reg_id, bool set)
39 {
40         const struct ath5k_rf_reg *rfreg = NULL;
41         u8 offset, bank, num_bits, col, position;
42         u16 entry;
43         u32 mask, data, last_bit, bits_shifted, first_bit;
44         u32 *rfb;
45         s32 bits_left;
46         int i;
47
48         data = 0;
49         rfb = ah->ah_rf_banks;
50
51         for (i = 0; i < ah->ah_rf_regs_count; i++) {
52                 if (rf_regs[i].index == reg_id) {
53                         rfreg = &rf_regs[i];
54                         break;
55                 }
56         }
57
58         if (rfb == NULL || rfreg == NULL) {
59                 ATH5K_PRINTF("Rf register not found!\n");
60                 /* should not happen */
61                 return 0;
62         }
63
64         bank = rfreg->bank;
65         num_bits = rfreg->field.len;
66         first_bit = rfreg->field.pos;
67         col = rfreg->field.col;
68
69         /* first_bit is an offset from bank's
70          * start. Since we have all banks on
71          * the same array, we use this offset
72          * to mark each bank's start */
73         offset = ah->ah_offset[bank];
74
75         /* Boundary check */
76         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
78                 return 0;
79         }
80
81         entry = ((first_bit - 1) / 8) + offset;
82         position = (first_bit - 1) % 8;
83
84         if (set)
85                 data = ath5k_hw_bitswap(val, num_bits);
86
87         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88         position = 0, entry++) {
89
90                 last_bit = (position + bits_left > 8) ? 8 :
91                                         position + bits_left;
92
93                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94                                                                 (col * 8);
95
96                 if (set) {
97                         rfb[entry] &= ~mask;
98                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
99                         data >>= (8 - position);
100                 } else {
101                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102                                 << bits_shifted;
103                         bits_shifted += last_bit - position;
104                 }
105
106                 bits_left -= 8 - position;
107         }
108
109         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111         return data;
112 }
113
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117
118 /*
119  * This code is used to optimize rf gain on different environments
120  * (temprature mostly) based on feedback from a power detector.
121  *
122  * It's only used on RF5111 and RF5112, later RF chips seem to have
123  * auto adjustment on hw -notice they have a much smaller BANK 7 and
124  * no gain optimization ladder-.
125  *
126  * For more infos check out this patent doc
127  * http://www.freepatentsonline.com/7400691.html
128  *
129  * This paper describes power drops as seen on the receiver due to
130  * probe packets
131  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132  * %20of%20Power%20Control.pdf
133  *
134  * And this is the MadWiFi bug entry related to the above
135  * http://madwifi-project.org/ticket/1659
136  * with various measurements and diagrams
137  *
138  * TODO: Deal with power drops due to probes by setting an apropriate
139  * tx power on the probe packets ! Make this part of the calibration process.
140  */
141
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145         /* Initialize the gain optimization values */
146         switch (ah->ah_radio) {
147         case AR5K_RF5111:
148                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149                 ah->ah_gain.g_low = 20;
150                 ah->ah_gain.g_high = 35;
151                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152                 break;
153         case AR5K_RF5112:
154                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155                 ah->ah_gain.g_low = 20;
156                 ah->ah_gain.g_high = 85;
157                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158                 break;
159         default:
160                 return -EINVAL;
161         }
162
163         return 0;
164 }
165
166 /* Schedule a gain probe check on the next transmited packet.
167  * That means our next packet is going to be sent with lower
168  * tx power and a Peak to Average Power Detector (PAPD) will try
169  * to measure the gain.
170  *
171  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
172  * just after we enable the probe so that we don't mess with
173  * standard traffic ? Maybe it's time to use sw interrupts and
174  * a probe tasklet !!!
175  */
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177 {
178
179         /* Skip if gain calibration is inactive or
180          * we already handle a probe request */
181         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182                 return;
183
184         /* Send the packet with 2dB below max power as
185          * patent doc suggest */
186         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
188                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189
190         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191
192 }
193
194 /* Calculate gain_F measurement correction
195  * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 {
198         u32 mix, step;
199         u32 *rf;
200         const struct ath5k_gain_opt *go;
201         const struct ath5k_gain_opt_step *g_step;
202         const struct ath5k_rf_reg *rf_regs;
203
204         /* Only RF5112 Rev. 2 supports it */
205         if ((ah->ah_radio != AR5K_RF5112) ||
206         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207                 return 0;
208
209         go = &rfgain_opt_5112;
210         rf_regs = rf_regs_5112a;
211         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212
213         g_step = &go->go_step[ah->ah_gain.g_step_idx];
214
215         if (ah->ah_rf_banks == NULL)
216                 return 0;
217
218         rf = ah->ah_rf_banks;
219         ah->ah_gain.g_f_corr = 0;
220
221         /* No VGA (Variable Gain Amplifier) override, skip */
222         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223                 return 0;
224
225         /* Mix gain stepping */
226         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227
228         /* Mix gain override */
229         mix = g_step->gos_param[0];
230
231         switch (mix) {
232         case 3:
233                 ah->ah_gain.g_f_corr = step * 2;
234                 break;
235         case 2:
236                 ah->ah_gain.g_f_corr = (step - 5) * 2;
237                 break;
238         case 1:
239                 ah->ah_gain.g_f_corr = step;
240                 break;
241         default:
242                 ah->ah_gain.g_f_corr = 0;
243                 break;
244         }
245
246         return ah->ah_gain.g_f_corr;
247 }
248
249 /* Check if current gain_F measurement is in the range of our
250  * power detector windows. If we get a measurement outside range
251  * we know it's not accurate (detectors can't measure anything outside
252  * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254 {
255         const struct ath5k_rf_reg *rf_regs;
256         u32 step, mix_ovr, level[4];
257         u32 *rf;
258
259         if (ah->ah_rf_banks == NULL)
260                 return false;
261
262         rf = ah->ah_rf_banks;
263
264         if (ah->ah_radio == AR5K_RF5111) {
265
266                 rf_regs = rf_regs_5111;
267                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268
269                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270                         false);
271
272                 level[0] = 0;
273                 level[1] = (step == 63) ? 50 : step + 4;
274                 level[2] = (step != 63) ? 64 : level[0];
275                 level[3] = level[2] + 50 ;
276
277                 ah->ah_gain.g_high = level[3] -
278                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279                 ah->ah_gain.g_low = level[0] +
280                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281         } else {
282
283                 rf_regs = rf_regs_5112;
284                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285
286                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287                         false);
288
289                 level[0] = level[2] = 0;
290
291                 if (mix_ovr == 1) {
292                         level[1] = level[3] = 83;
293                 } else {
294                         level[1] = level[3] = 107;
295                         ah->ah_gain.g_high = 55;
296                 }
297         }
298
299         return (ah->ah_gain.g_current >= level[0] &&
300                         ah->ah_gain.g_current <= level[1]) ||
301                 (ah->ah_gain.g_current >= level[2] &&
302                         ah->ah_gain.g_current <= level[3]);
303 }
304
305 /* Perform gain_F adjustment by choosing the right set
306  * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 {
309         const struct ath5k_gain_opt *go;
310         const struct ath5k_gain_opt_step *g_step;
311         int ret = 0;
312
313         switch (ah->ah_radio) {
314         case AR5K_RF5111:
315                 go = &rfgain_opt_5111;
316                 break;
317         case AR5K_RF5112:
318                 go = &rfgain_opt_5112;
319                 break;
320         default:
321                 return 0;
322         }
323
324         g_step = &go->go_step[ah->ah_gain.g_step_idx];
325
326         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327
328                 /* Reached maximum */
329                 if (ah->ah_gain.g_step_idx == 0)
330                         return -1;
331
332                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
334                                 ah->ah_gain.g_step_idx > 0;
335                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
336                         ah->ah_gain.g_target -= 2 *
337                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338                             g_step->gos_gain);
339
340                 ret = 1;
341                 goto done;
342         }
343
344         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345
346                 /* Reached minimum */
347                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348                         return -2;
349
350                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
353                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
354                         ah->ah_gain.g_target -= 2 *
355                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356                             g_step->gos_gain);
357
358                 ret = 2;
359                 goto done;
360         }
361
362 done:
363         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364                 "ret %d, gain step %u, current gain %u, target gain %u\n",
365                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366                 ah->ah_gain.g_target);
367
368         return ret;
369 }
370
371 /* Main callback for thermal rf gain calibration engine
372  * Check for a new gain reading and schedule an adjustment
373  * if needed.
374  *
375  * TODO: Use sw interrupt to schedule reset if gain_F needs
376  * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378 {
379         u32 data, type;
380         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381
382         ATH5K_TRACE(ah->ah_sc);
383
384         if (ah->ah_rf_banks == NULL ||
385         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386                 return AR5K_RFGAIN_INACTIVE;
387
388         /* No check requested, either engine is inactive
389          * or an adjustment is already requested */
390         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391                 goto done;
392
393         /* Read the PAPD (Peak to Average Power Detector)
394          * register */
395         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396
397         /* No probe is scheduled, read gain_F measurement */
398         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401
402                 /* If tx packet is CCK correct the gain_F measurement
403                  * by cck ofdm gain delta */
404                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406                                 ah->ah_gain.g_current +=
407                                         ee->ee_cck_ofdm_gain_delta;
408                         else
409                                 ah->ah_gain.g_current +=
410                                         AR5K_GAIN_CCK_PROBE_CORR;
411                 }
412
413                 /* Further correct gain_F measurement for
414                  * RF5112A radios */
415                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416                         ath5k_hw_rf_gainf_corr(ah);
417                         ah->ah_gain.g_current =
418                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420                                 0;
421                 }
422
423                 /* Check if measurement is ok and if we need
424                  * to adjust gain, schedule a gain adjustment,
425                  * else switch back to the acive state */
426                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
427                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428                 ath5k_hw_rf_gainf_adjust(ah)) {
429                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430                 } else {
431                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432                 }
433         }
434
435 done:
436         return ah->ah_gain.g_state;
437 }
438
439 /* Write initial rf gain table to set the RF sensitivity
440  * this one works on all RF chips and has nothing to do
441  * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443 {
444         const struct ath5k_ini_rfgain *ath5k_rfg;
445         unsigned int i, size;
446
447         switch (ah->ah_radio) {
448         case AR5K_RF5111:
449                 ath5k_rfg = rfgain_5111;
450                 size = ARRAY_SIZE(rfgain_5111);
451                 break;
452         case AR5K_RF5112:
453                 ath5k_rfg = rfgain_5112;
454                 size = ARRAY_SIZE(rfgain_5112);
455                 break;
456         case AR5K_RF2413:
457                 ath5k_rfg = rfgain_2413;
458                 size = ARRAY_SIZE(rfgain_2413);
459                 break;
460         case AR5K_RF2316:
461                 ath5k_rfg = rfgain_2316;
462                 size = ARRAY_SIZE(rfgain_2316);
463                 break;
464         case AR5K_RF5413:
465                 ath5k_rfg = rfgain_5413;
466                 size = ARRAY_SIZE(rfgain_5413);
467                 break;
468         case AR5K_RF2317:
469         case AR5K_RF2425:
470                 ath5k_rfg = rfgain_2425;
471                 size = ARRAY_SIZE(rfgain_2425);
472                 break;
473         default:
474                 return -EINVAL;
475         }
476
477         switch (freq) {
478         case AR5K_INI_RFGAIN_2GHZ:
479         case AR5K_INI_RFGAIN_5GHZ:
480                 break;
481         default:
482                 return -EINVAL;
483         }
484
485         for (i = 0; i < size; i++) {
486                 AR5K_REG_WAIT(i);
487                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488                         (u32)ath5k_rfg[i].rfg_register);
489         }
490
491         return 0;
492 }
493
494
495
496 /********************\
497 * RF Registers setup *
498 \********************/
499
500
501 /*
502  * Setup RF registers by writing rf buffer on hw
503  */
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505                 unsigned int mode)
506 {
507         const struct ath5k_rf_reg *rf_regs;
508         const struct ath5k_ini_rfbuffer *ini_rfb;
509         const struct ath5k_gain_opt *go = NULL;
510         const struct ath5k_gain_opt_step *g_step;
511         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512         u8 ee_mode = 0;
513         u32 *rfb;
514         int i, obdb = -1, bank = -1;
515
516         switch (ah->ah_radio) {
517         case AR5K_RF5111:
518                 rf_regs = rf_regs_5111;
519                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520                 ini_rfb = rfb_5111;
521                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522                 go = &rfgain_opt_5111;
523                 break;
524         case AR5K_RF5112:
525                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526                         rf_regs = rf_regs_5112a;
527                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528                         ini_rfb = rfb_5112a;
529                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530                 } else {
531                         rf_regs = rf_regs_5112;
532                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533                         ini_rfb = rfb_5112;
534                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535                 }
536                 go = &rfgain_opt_5112;
537                 break;
538         case AR5K_RF2413:
539                 rf_regs = rf_regs_2413;
540                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541                 ini_rfb = rfb_2413;
542                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543                 break;
544         case AR5K_RF2316:
545                 rf_regs = rf_regs_2316;
546                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547                 ini_rfb = rfb_2316;
548                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549                 break;
550         case AR5K_RF5413:
551                 rf_regs = rf_regs_5413;
552                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553                 ini_rfb = rfb_5413;
554                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555                 break;
556         case AR5K_RF2317:
557                 rf_regs = rf_regs_2425;
558                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559                 ini_rfb = rfb_2317;
560                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561                 break;
562         case AR5K_RF2425:
563                 rf_regs = rf_regs_2425;
564                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566                         ini_rfb = rfb_2425;
567                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568                 } else {
569                         ini_rfb = rfb_2417;
570                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571                 }
572                 break;
573         default:
574                 return -EINVAL;
575         }
576
577         /* If it's the first time we set rf buffer, allocate
578          * ah->ah_rf_banks based on ah->ah_rf_banks_size
579          * we set above */
580         if (ah->ah_rf_banks == NULL) {
581                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582                                                                 GFP_KERNEL);
583                 if (ah->ah_rf_banks == NULL) {
584                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
585                         return -ENOMEM;
586                 }
587         }
588
589         /* Copy values to modify them */
590         rfb = ah->ah_rf_banks;
591
592         for (i = 0; i < ah->ah_rf_banks_size; i++) {
593                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595                         return -EINVAL;
596                 }
597
598                 /* Bank changed, write down the offset */
599                 if (bank != ini_rfb[i].rfb_bank) {
600                         bank = ini_rfb[i].rfb_bank;
601                         ah->ah_offset[bank] = i;
602                 }
603
604                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605         }
606
607         /* Set Output and Driver bias current (OB/DB) */
608         if (channel->hw_value & CHANNEL_2GHZ) {
609
610                 if (channel->hw_value & CHANNEL_CCK)
611                         ee_mode = AR5K_EEPROM_MODE_11B;
612                 else
613                         ee_mode = AR5K_EEPROM_MODE_11G;
614
615                 /* For RF511X/RF211X combination we
616                  * use b_OB and b_DB parameters stored
617                  * in eeprom on ee->ee_ob[ee_mode][0]
618                  *
619                  * For all other chips we use OB/DB for 2Ghz
620                  * stored in the b/g modal section just like
621                  * 802.11a on ee->ee_ob[ee_mode][1] */
622                 if ((ah->ah_radio == AR5K_RF5111) ||
623                 (ah->ah_radio == AR5K_RF5112))
624                         obdb = 0;
625                 else
626                         obdb = 1;
627
628                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629                                                 AR5K_RF_OB_2GHZ, true);
630
631                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632                                                 AR5K_RF_DB_2GHZ, true);
633
634         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
636                         (ah->ah_radio == AR5K_RF5111)) {
637
638                 /* For 11a, Turbo and XR we need to choose
639                  * OB/DB based on frequency range */
640                 ee_mode = AR5K_EEPROM_MODE_11A;
641                 obdb =   channel->center_freq >= 5725 ? 3 :
642                         (channel->center_freq >= 5500 ? 2 :
643                         (channel->center_freq >= 5260 ? 1 :
644                          (channel->center_freq > 4000 ? 0 : -1)));
645
646                 if (obdb < 0)
647                         return -EINVAL;
648
649                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650                                                 AR5K_RF_OB_5GHZ, true);
651
652                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653                                                 AR5K_RF_DB_5GHZ, true);
654         }
655
656         g_step = &go->go_step[ah->ah_gain.g_step_idx];
657
658         /* Bank Modifications (chip-specific) */
659         if (ah->ah_radio == AR5K_RF5111) {
660
661                 /* Set gain_F settings according to current step */
662                 if (channel->hw_value & CHANNEL_OFDM) {
663
664                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
666                                         g_step->gos_param[0]);
667
668                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669                                                         AR5K_RF_PWD_90, true);
670
671                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672                                                         AR5K_RF_PWD_84, true);
673
674                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675                                                 AR5K_RF_RFGAIN_SEL, true);
676
677                         /* We programmed gain_F parameters, switch back
678                          * to active state */
679                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680
681                 }
682
683                 /* Bank 6/7 setup */
684
685                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686                                                 AR5K_RF_PWD_XPD, true);
687
688                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689                                                 AR5K_RF_XPD_GAIN, true);
690
691                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692                                                 AR5K_RF_GAIN_I, true);
693
694                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695                                                 AR5K_RF_PLO_SEL, true);
696
697                 /* TODO: Half/quarter channel support */
698         }
699
700         if (ah->ah_radio == AR5K_RF5112) {
701
702                 /* Set gain_F settings according to current step */
703                 if (channel->hw_value & CHANNEL_OFDM) {
704
705                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706                                                 AR5K_RF_MIXGAIN_OVR, true);
707
708                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709                                                 AR5K_RF_PWD_138, true);
710
711                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712                                                 AR5K_RF_PWD_137, true);
713
714                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715                                                 AR5K_RF_PWD_136, true);
716
717                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718                                                 AR5K_RF_PWD_132, true);
719
720                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721                                                 AR5K_RF_PWD_131, true);
722
723                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724                                                 AR5K_RF_PWD_130, true);
725
726                         /* We programmed gain_F parameters, switch back
727                          * to active state */
728                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729                 }
730
731                 /* Bank 6/7 setup */
732
733                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734                                                 AR5K_RF_XPD_SEL, true);
735
736                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737                         /* Rev. 1 supports only one xpd */
738                         ath5k_hw_rfb_op(ah, rf_regs,
739                                                 ee->ee_x_gain[ee_mode],
740                                                 AR5K_RF_XPD_GAIN, true);
741
742                 } else {
743                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
744                         if (ee->ee_pd_gains[ee_mode] > 1) {
745                                 ath5k_hw_rfb_op(ah, rf_regs,
746                                                 pdg_curve_to_idx[0],
747                                                 AR5K_RF_PD_GAIN_LO, true);
748                                 ath5k_hw_rfb_op(ah, rf_regs,
749                                                 pdg_curve_to_idx[1],
750                                                 AR5K_RF_PD_GAIN_HI, true);
751                         } else {
752                                 ath5k_hw_rfb_op(ah, rf_regs,
753                                                 pdg_curve_to_idx[0],
754                                                 AR5K_RF_PD_GAIN_LO, true);
755                                 ath5k_hw_rfb_op(ah, rf_regs,
756                                                 pdg_curve_to_idx[0],
757                                                 AR5K_RF_PD_GAIN_HI, true);
758                         }
759
760                         /* Lower synth voltage on Rev 2 */
761                         ath5k_hw_rfb_op(ah, rf_regs, 2,
762                                         AR5K_RF_HIGH_VC_CP, true);
763
764                         ath5k_hw_rfb_op(ah, rf_regs, 2,
765                                         AR5K_RF_MID_VC_CP, true);
766
767                         ath5k_hw_rfb_op(ah, rf_regs, 2,
768                                         AR5K_RF_LOW_VC_CP, true);
769
770                         ath5k_hw_rfb_op(ah, rf_regs, 2,
771                                         AR5K_RF_PUSH_UP, true);
772
773                         /* Decrease power consumption on 5213+ BaseBand */
774                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
776                                                 AR5K_RF_PAD2GND, true);
777
778                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
779                                                 AR5K_RF_XB2_LVL, true);
780
781                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
782                                                 AR5K_RF_XB5_LVL, true);
783
784                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
785                                                 AR5K_RF_PWD_167, true);
786
787                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
788                                                 AR5K_RF_PWD_166, true);
789                         }
790                 }
791
792                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793                                                 AR5K_RF_GAIN_I, true);
794
795                 /* TODO: Half/quarter channel support */
796
797         }
798
799         if (ah->ah_radio == AR5K_RF5413 &&
800         channel->hw_value & CHANNEL_2GHZ) {
801
802                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803                                                                         true);
804
805                 /* Set optimum value for early revisions (on pci-e chips) */
806                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807                 ah->ah_mac_srev < AR5K_SREV_AR5413)
808                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
810
811         }
812
813         /* Write RF banks on hw */
814         for (i = 0; i < ah->ah_rf_banks_size; i++) {
815                 AR5K_REG_WAIT(i);
816                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817         }
818
819         return 0;
820 }
821
822
823 /**************************\
824   PHY/RF channel functions
825 \**************************/
826
827 /*
828  * Check if a channel is supported
829  */
830 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832         /* Check if the channel is in our supported range */
833         if (flags & CHANNEL_2GHZ) {
834                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836                         return true;
837         } else if (flags & CHANNEL_5GHZ)
838                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840                         return true;
841
842         return false;
843 }
844
845 /*
846  * Convertion needed for RF5110
847  */
848 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
849 {
850         u32 athchan;
851
852         /*
853          * Convert IEEE channel/MHz to an internal channel value used
854          * by the AR5210 chipset. This has not been verified with
855          * newer chipsets like the AR5212A who have a completely
856          * different RF/PHY part.
857          */
858         athchan = (ath5k_hw_bitswap(
859                         (ieee80211_frequency_to_channel(
860                                 channel->center_freq) - 24) / 2, 5)
861                                 << 1) | (1 << 6) | 0x1;
862         return athchan;
863 }
864
865 /*
866  * Set channel on RF5110
867  */
868 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
869                 struct ieee80211_channel *channel)
870 {
871         u32 data;
872
873         /*
874          * Set the channel and wait
875          */
876         data = ath5k_hw_rf5110_chan2athchan(channel);
877         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
878         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
879         mdelay(1);
880
881         return 0;
882 }
883
884 /*
885  * Convertion needed for 5111
886  */
887 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888                 struct ath5k_athchan_2ghz *athchan)
889 {
890         int channel;
891
892         /* Cast this value to catch negative channel numbers (>= -19) */
893         channel = (int)ieee;
894
895         /*
896          * Map 2GHz IEEE channel to 5GHz Atheros channel
897          */
898         if (channel <= 13) {
899                 athchan->a2_athchan = 115 + channel;
900                 athchan->a2_flags = 0x46;
901         } else if (channel == 14) {
902                 athchan->a2_athchan = 124;
903                 athchan->a2_flags = 0x44;
904         } else if (channel >= 15 && channel <= 26) {
905                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
906                 athchan->a2_flags = 0x46;
907         } else
908                 return -EINVAL;
909
910         return 0;
911 }
912
913 /*
914  * Set channel on 5111
915  */
916 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
917                 struct ieee80211_channel *channel)
918 {
919         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920         unsigned int ath5k_channel =
921                 ieee80211_frequency_to_channel(channel->center_freq);
922         u32 data0, data1, clock;
923         int ret;
924
925         /*
926          * Set the channel on the RF5111 radio
927          */
928         data0 = data1 = 0;
929
930         if (channel->hw_value & CHANNEL_2GHZ) {
931                 /* Map 2GHz channel to 5GHz Atheros channel ID */
932                 ret = ath5k_hw_rf5111_chan2athchan(
933                         ieee80211_frequency_to_channel(channel->center_freq),
934                         &ath5k_channel_2ghz);
935                 if (ret)
936                         return ret;
937
938                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
939                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
940                     << 5) | (1 << 4);
941         }
942
943         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
944                 clock = 1;
945                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
946                         (clock << 1) | (1 << 10) | 1;
947         } else {
948                 clock = 0;
949                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
950                         << 2) | (clock << 1) | (1 << 10) | 1;
951         }
952
953         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
954                         AR5K_RF_BUFFER);
955         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
956                         AR5K_RF_BUFFER_CONTROL_3);
957
958         return 0;
959 }
960
961 /*
962  * Set channel on 5112 and newer
963  */
964 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
965                 struct ieee80211_channel *channel)
966 {
967         u32 data, data0, data1, data2;
968         u16 c;
969
970         data = data0 = data1 = data2 = 0;
971         c = channel->center_freq;
972
973         if (c < 4800) {
974                 if (!((c - 2224) % 5)) {
975                         data0 = ((2 * (c - 704)) - 3040) / 10;
976                         data1 = 1;
977                 } else if (!((c - 2192) % 5)) {
978                         data0 = ((2 * (c - 672)) - 3040) / 10;
979                         data1 = 0;
980                 } else
981                         return -EINVAL;
982
983                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984         } else if ((c - (c % 5)) != 2 || c > 5435) {
985                 if (!(c % 20) && c >= 5120) {
986                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
987                         data2 = ath5k_hw_bitswap(3, 2);
988                 } else if (!(c % 10)) {
989                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
990                         data2 = ath5k_hw_bitswap(2, 2);
991                 } else if (!(c % 5)) {
992                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
993                         data2 = ath5k_hw_bitswap(1, 2);
994                 } else
995                         return -EINVAL;
996         } else {
997                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
998                 data2 = ath5k_hw_bitswap(0, 2);
999         }
1000
1001         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1002
1003         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * Set the channel on the RF2425
1011  */
1012 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013                 struct ieee80211_channel *channel)
1014 {
1015         u32 data, data0, data2;
1016         u16 c;
1017
1018         data = data0 = data2 = 0;
1019         c = channel->center_freq;
1020
1021         if (c < 4800) {
1022                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1023                 data2 = 0;
1024         /* ? 5GHz ? */
1025         } else if ((c - (c % 5)) != 2 || c > 5435) {
1026                 if (!(c % 20) && c < 5120)
1027                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028                 else if (!(c % 10))
1029                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030                 else if (!(c % 5))
1031                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032                 else
1033                         return -EINVAL;
1034                 data2 = ath5k_hw_bitswap(1, 2);
1035         } else {
1036                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037                 data2 = ath5k_hw_bitswap(0, 2);
1038         }
1039
1040         data = (data0 << 4) | data2 << 2 | 0x1001;
1041
1042         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1044
1045         return 0;
1046 }
1047
1048 /*
1049  * Set a channel on the radio chip
1050  */
1051 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1052 {
1053         int ret;
1054         /*
1055          * Check bounds supported by the PHY (we don't care about regultory
1056          * restrictions at this point). Note: hw_value already has the band
1057          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058          * of the band by that */
1059         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060                 ATH5K_ERR(ah->ah_sc,
1061                         "channel frequency (%u MHz) out of supported "
1062                         "band range\n",
1063                         channel->center_freq);
1064                         return -EINVAL;
1065         }
1066
1067         /*
1068          * Set the channel and wait
1069          */
1070         switch (ah->ah_radio) {
1071         case AR5K_RF5110:
1072                 ret = ath5k_hw_rf5110_channel(ah, channel);
1073                 break;
1074         case AR5K_RF5111:
1075                 ret = ath5k_hw_rf5111_channel(ah, channel);
1076                 break;
1077         case AR5K_RF2425:
1078                 ret = ath5k_hw_rf2425_channel(ah, channel);
1079                 break;
1080         default:
1081                 ret = ath5k_hw_rf5112_channel(ah, channel);
1082                 break;
1083         }
1084
1085         if (ret)
1086                 return ret;
1087
1088         /* Set JAPAN setting for channel 14 */
1089         if (channel->center_freq == 2484) {
1090                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091                                 AR5K_PHY_CCKTXCTL_JAPAN);
1092         } else {
1093                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094                                 AR5K_PHY_CCKTXCTL_WORLD);
1095         }
1096
1097         ah->ah_current_channel = channel;
1098         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099
1100         return 0;
1101 }
1102
1103 /*****************\
1104   PHY calibration
1105 \*****************/
1106
1107 void
1108 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1109 {
1110         /* Calibration interval in jiffies */
1111         unsigned long cal_intval;
1112
1113         cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1114
1115         /* Initialize timestamp if needed */
1116         if (!ah->ah_cal_tstamp)
1117                 ah->ah_cal_tstamp = jiffies;
1118
1119         /* For now we always do full calibration
1120          * Mark software interrupt mask and fire software
1121          * interrupt (bit gets auto-cleared) */
1122         if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123                 ah->ah_cal_tstamp = jiffies;
1124                 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125                 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1126         }
1127
1128 }
1129
1130 /**
1131  * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1132  *
1133  * @ah: struct ath5k_hw pointer we are operating on
1134  * @freq: the channel frequency, just used for error logging
1135  *
1136  * This function performs a noise floor calibration of the PHY and waits for
1137  * it to complete. Then the noise floor value is compared to some maximum
1138  * noise floor we consider valid.
1139  *
1140  * Note that this is different from what the madwifi HAL does: it reads the
1141  * noise floor and afterwards initiates the calibration. Since the noise floor
1142  * calibration can take some time to finish, depending on the current channel
1143  * use, that avoids the occasional timeout warnings we are seeing now.
1144  *
1145  * See the following link for an Atheros patent on noise floor calibration:
1146  * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1147  * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1148  *
1149  * XXX: Since during noise floor calibration antennas are detached according to
1150  * the patent, we should stop tx queues here.
1151  */
1152 int
1153 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1154 {
1155         int ret;
1156         unsigned int i;
1157         s32 noise_floor;
1158
1159         /*
1160          * Enable noise floor calibration
1161          */
1162         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1163                                 AR5K_PHY_AGCCTL_NF);
1164
1165         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1166                         AR5K_PHY_AGCCTL_NF, 0, false);
1167         if (ret) {
1168                 ATH5K_ERR(ah->ah_sc,
1169                         "noise floor calibration timeout (%uMHz)\n", freq);
1170                 return -EAGAIN;
1171         }
1172
1173         /* Wait until the noise floor is calibrated and read the value */
1174         for (i = 20; i > 0; i--) {
1175                 mdelay(1);
1176                 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1177                 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1178                 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1179                         noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1180
1181                         if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1182                                 break;
1183                 }
1184         }
1185
1186         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1187                 "noise floor %d\n", noise_floor);
1188
1189         if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1190                 ATH5K_ERR(ah->ah_sc,
1191                         "noise floor calibration failed (%uMHz)\n", freq);
1192                 return -EAGAIN;
1193         }
1194
1195         ah->ah_noise_floor = noise_floor;
1196
1197         return 0;
1198 }
1199
1200 /*
1201  * Perform a PHY calibration on RF5110
1202  * -Fix BPSK/QAM Constellation (I/Q correction)
1203  * -Calculate Noise Floor
1204  */
1205 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1206                 struct ieee80211_channel *channel)
1207 {
1208         u32 phy_sig, phy_agc, phy_sat, beacon;
1209         int ret;
1210
1211         /*
1212          * Disable beacons and RX/TX queues, wait
1213          */
1214         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1215                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1216         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1217         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1218
1219         mdelay(2);
1220
1221         /*
1222          * Set the channel (with AGC turned off)
1223          */
1224         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1225         udelay(10);
1226         ret = ath5k_hw_channel(ah, channel);
1227
1228         /*
1229          * Activate PHY and wait
1230          */
1231         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1232         mdelay(1);
1233
1234         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1235
1236         if (ret)
1237                 return ret;
1238
1239         /*
1240          * Calibrate the radio chip
1241          */
1242
1243         /* Remember normal state */
1244         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1245         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1246         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1247
1248         /* Update radio registers */
1249         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1250                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1251
1252         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1253                         AR5K_PHY_AGCCOARSE_LO)) |
1254                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1255                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1256
1257         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1258                         AR5K_PHY_ADCSAT_THR)) |
1259                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1260                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1261
1262         udelay(20);
1263
1264         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1265         udelay(10);
1266         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1267         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1268
1269         mdelay(1);
1270
1271         /*
1272          * Enable calibration and wait until completion
1273          */
1274         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1275
1276         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1277                         AR5K_PHY_AGCCTL_CAL, 0, false);
1278
1279         /* Reset to normal state */
1280         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1281         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1282         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1283
1284         if (ret) {
1285                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1286                                 channel->center_freq);
1287                 return ret;
1288         }
1289
1290         ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1291
1292         /*
1293          * Re-enable RX/TX and beacons
1294          */
1295         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1296                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1297         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1298
1299         return 0;
1300 }
1301
1302 /*
1303  * Perform a PHY calibration on RF5111/5112 and newer chips
1304  */
1305 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1306                 struct ieee80211_channel *channel)
1307 {
1308         u32 i_pwr, q_pwr;
1309         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1310         int i;
1311         ATH5K_TRACE(ah->ah_sc);
1312
1313         if (!ah->ah_calibration ||
1314                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1315                 goto done;
1316
1317         /* Calibration has finished, get the results and re-run */
1318         for (i = 0; i <= 10; i++) {
1319                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1320                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1321                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1322         }
1323
1324         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1325         q_coffd = q_pwr >> 7;
1326
1327         /* No correction */
1328         if (i_coffd == 0 || q_coffd == 0)
1329                 goto done;
1330
1331         i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1332
1333         /* Boundary check */
1334         if (i_coff > 31)
1335                 i_coff = 31;
1336         if (i_coff < -32)
1337                 i_coff = -32;
1338
1339         q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1340
1341         /* Boundary check */
1342         if (q_coff > 15)
1343                 q_coff = 15;
1344         if (q_coff < -16)
1345                 q_coff = -16;
1346
1347         /* Commit new I/Q value */
1348         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1349                 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1350
1351         /* Re-enable calibration -if we don't we'll commit
1352          * the same values again and again */
1353         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1354                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1355         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1356
1357 done:
1358
1359         /* TODO: Separate noise floor calibration from I/Q calibration
1360          * since noise floor calibration interrupts rx path while I/Q
1361          * calibration doesn't. We don't need to run noise floor calibration
1362          * as often as I/Q calibration.*/
1363         ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1364
1365         /* Initiate a gain_F calibration */
1366         ath5k_hw_request_rfgain_probe(ah);
1367
1368         return 0;
1369 }
1370
1371 /*
1372  * Perform a PHY calibration
1373  */
1374 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1375                 struct ieee80211_channel *channel)
1376 {
1377         int ret;
1378
1379         if (ah->ah_radio == AR5K_RF5110)
1380                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1381         else
1382                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1383
1384         return ret;
1385 }
1386
1387 /***************************\
1388 * Spur mitigation functions *
1389 \***************************/
1390
1391 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1392                                 struct ieee80211_channel *channel)
1393 {
1394         u8 refclk_freq;
1395
1396         if ((ah->ah_radio == AR5K_RF5112) ||
1397         (ah->ah_radio == AR5K_RF5413) ||
1398         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1399                 refclk_freq = 40;
1400         else
1401                 refclk_freq = 32;
1402
1403         if ((channel->center_freq % refclk_freq != 0) &&
1404         ((channel->center_freq % refclk_freq < 10) ||
1405         (channel->center_freq % refclk_freq > 22)))
1406                 return true;
1407         else
1408                 return false;
1409 }
1410
1411 void
1412 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1413                                 struct ieee80211_channel *channel)
1414 {
1415         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1416         u32 mag_mask[4] = {0, 0, 0, 0};
1417         u32 pilot_mask[2] = {0, 0};
1418         /* Note: fbin values are scaled up by 2 */
1419         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1420         s32 spur_delta_phase, spur_freq_sigma_delta;
1421         s32 spur_offset, num_symbols_x16;
1422         u8 num_symbol_offsets, i, freq_band;
1423
1424         /* Convert current frequency to fbin value (the same way channels
1425          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1426          * up by 2 so we can compare it later */
1427         if (channel->hw_value & CHANNEL_2GHZ) {
1428                 chan_fbin = (channel->center_freq - 2300) * 10;
1429                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1430         } else {
1431                 chan_fbin = (channel->center_freq - 4900) * 10;
1432                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1433         }
1434
1435         /* Check if any spur_chan_fbin from EEPROM is
1436          * within our current channel's spur detection range */
1437         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1438         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1439         /* XXX: Half/Quarter channels ?*/
1440         if (channel->hw_value & CHANNEL_TURBO)
1441                 spur_detection_window *= 2;
1442
1443         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1444                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1445
1446                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1447                  * so it's zero if we got nothing from EEPROM */
1448                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1449                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1450                         break;
1451                 }
1452
1453                 if ((chan_fbin - spur_detection_window <=
1454                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1455                 (chan_fbin + spur_detection_window >=
1456                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1457                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1458                         break;
1459                 }
1460         }
1461
1462         /* We need to enable spur filter for this channel */
1463         if (spur_chan_fbin) {
1464                 spur_offset = spur_chan_fbin - chan_fbin;
1465                 /*
1466                  * Calculate deltas:
1467                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1468                  * spur_delta_phase -> spur_offset / chip_freq << 11
1469                  * Note: Both values have 100KHz resolution
1470                  */
1471                 /* XXX: Half/Quarter rate channels ? */
1472                 switch (channel->hw_value) {
1473                 case CHANNEL_A:
1474                         /* Both sample_freq and chip_freq are 40MHz */
1475                         spur_delta_phase = (spur_offset << 17) / 25;
1476                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1477                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1478                         break;
1479                 case CHANNEL_G:
1480                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1481                          * (for b compatibility) */
1482                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1483                         spur_delta_phase = (spur_offset << 17) / 25;
1484                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1485                         break;
1486                 case CHANNEL_T:
1487                 case CHANNEL_TG:
1488                         /* Both sample_freq and chip_freq are 80MHz */
1489                         spur_delta_phase = (spur_offset << 16) / 25;
1490                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1491                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1492                         break;
1493                 default:
1494                         return;
1495                 }
1496
1497                 /* Calculate pilot and magnitude masks */
1498
1499                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1500                  * and divide by symbol_width to find how many symbols we have
1501                  * Note: number of symbols is scaled up by 16 */
1502                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1503
1504                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1505                 if (!(num_symbols_x16 & 0xF))
1506                         /* _X_ */
1507                         num_symbol_offsets = 3;
1508                 else
1509                         /* _xx_ */
1510                         num_symbol_offsets = 4;
1511
1512                 for (i = 0; i < num_symbol_offsets; i++) {
1513
1514                         /* Calculate pilot mask */
1515                         s32 curr_sym_off =
1516                                 (num_symbols_x16 / 16) + i + 25;
1517
1518                         /* Pilot magnitude mask seems to be a way to
1519                          * declare the boundaries for our detection
1520                          * window or something, it's 2 for the middle
1521                          * value(s) where the symbol is expected to be
1522                          * and 1 on the boundary values */
1523                         u8 plt_mag_map =
1524                                 (i == 0 || i == (num_symbol_offsets - 1))
1525                                                                 ? 1 : 2;
1526
1527                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1528                                 if (curr_sym_off <= 25)
1529                                         pilot_mask[0] |= 1 << curr_sym_off;
1530                                 else if (curr_sym_off >= 27)
1531                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1532                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1533                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1534
1535                         /* Calculate magnitude mask (for viterbi decoder) */
1536                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1537                                 mag_mask[0] |=
1538                                         plt_mag_map << (curr_sym_off + 1) * 2;
1539                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1540                                 mag_mask[1] |=
1541                                         plt_mag_map << (curr_sym_off - 15) * 2;
1542                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1543                                 mag_mask[2] |=
1544                                         plt_mag_map << (curr_sym_off - 31) * 2;
1545                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1546                                 mag_mask[3] |=
1547                                         plt_mag_map << (curr_sym_off - 47) * 2;
1548
1549                 }
1550
1551                 /* Write settings on hw to enable spur filter */
1552                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1553                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1554                 /* XXX: Self correlator also ? */
1555                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1556                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1557                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1558                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1559
1560                 /* Set delta phase and freq sigma delta */
1561                 ath5k_hw_reg_write(ah,
1562                                 AR5K_REG_SM(spur_delta_phase,
1563                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1564                                 AR5K_REG_SM(spur_freq_sigma_delta,
1565                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1566                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1567                                 AR5K_PHY_TIMING_11);
1568
1569                 /* Write pilot masks */
1570                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1571                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1572                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1573                                         pilot_mask[1]);
1574
1575                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1576                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1577                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1578                                         pilot_mask[1]);
1579
1580                 /* Write magnitude masks */
1581                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1582                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1583                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1584                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1585                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1586                                         mag_mask[3]);
1587
1588                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1589                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1590                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1591                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1592                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1593                                         mag_mask[3]);
1594
1595         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1596         AR5K_PHY_IQ_SPUR_FILT_EN) {
1597                 /* Clean up spur mitigation settings and disable fliter */
1598                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1599                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1600                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1601                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1602                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1603                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1604                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1605
1606                 /* Clear pilot masks */
1607                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1608                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1609                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1610                                         0);
1611
1612                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1613                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1614                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1615                                         0);
1616
1617                 /* Clear magnitude masks */
1618                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1619                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1620                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1621                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1623                                         0);
1624
1625                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1626                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1627                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1628                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1629                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1630                                         0);
1631         }
1632 }
1633
1634 /********************\
1635   Misc PHY functions
1636 \********************/
1637
1638 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1639 {
1640         ATH5K_TRACE(ah->ah_sc);
1641         /*Just a try M.F.*/
1642         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * Get the PHY Chip revision
1649  */
1650 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1651 {
1652         unsigned int i;
1653         u32 srev;
1654         u16 ret;
1655
1656         ATH5K_TRACE(ah->ah_sc);
1657
1658         /*
1659          * Set the radio chip access register
1660          */
1661         switch (chan) {
1662         case CHANNEL_2GHZ:
1663                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1664                 break;
1665         case CHANNEL_5GHZ:
1666                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1667                 break;
1668         default:
1669                 return 0;
1670         }
1671
1672         mdelay(2);
1673
1674         /* ...wait until PHY is ready and read the selected radio revision */
1675         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1676
1677         for (i = 0; i < 8; i++)
1678                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1679
1680         if (ah->ah_version == AR5K_AR5210) {
1681                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1682                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1683         } else {
1684                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1685                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1686                                 ((srev & 0x0f) << 4), 8);
1687         }
1688
1689         /* Reset to the 5GHz mode */
1690         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1691
1692         return ret;
1693 }
1694
1695 /*****************\
1696 * Antenna control *
1697 \*****************/
1698
1699 void /*TODO:Boundary check*/
1700 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1701 {
1702         ATH5K_TRACE(ah->ah_sc);
1703
1704         if (ah->ah_version != AR5K_AR5210)
1705                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1706 }
1707
1708 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1709 {
1710         ATH5K_TRACE(ah->ah_sc);
1711
1712         if (ah->ah_version != AR5K_AR5210)
1713                 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1714
1715         return false; /*XXX: What do we return for 5210 ?*/
1716 }
1717
1718 /*
1719  * Enable/disable fast rx antenna diversity
1720  */
1721 static void
1722 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1723 {
1724         switch (ee_mode) {
1725         case AR5K_EEPROM_MODE_11G:
1726                 /* XXX: This is set to
1727                  * disabled on initvals !!! */
1728         case AR5K_EEPROM_MODE_11A:
1729                 if (enable)
1730                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1731                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1732                 else
1733                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1734                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1735                 break;
1736         case AR5K_EEPROM_MODE_11B:
1737                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1738                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1739                 break;
1740         default:
1741                 return;
1742         }
1743
1744         if (enable) {
1745                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1746                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1747
1748                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1749                                         AR5K_PHY_FAST_ANT_DIV_EN);
1750         } else {
1751                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1752                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1753
1754                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1755                                         AR5K_PHY_FAST_ANT_DIV_EN);
1756         }
1757 }
1758
1759 /*
1760  * Set antenna operating mode
1761  */
1762 void
1763 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1764 {
1765         struct ieee80211_channel *channel = ah->ah_current_channel;
1766         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1767         bool use_def_for_sg;
1768         u8 def_ant, tx_ant, ee_mode;
1769         u32 sta_id1 = 0;
1770
1771         def_ant = ah->ah_def_ant;
1772
1773         ATH5K_TRACE(ah->ah_sc);
1774
1775         switch (channel->hw_value & CHANNEL_MODES) {
1776         case CHANNEL_A:
1777         case CHANNEL_T:
1778         case CHANNEL_XR:
1779                 ee_mode = AR5K_EEPROM_MODE_11A;
1780                 break;
1781         case CHANNEL_G:
1782         case CHANNEL_TG:
1783                 ee_mode = AR5K_EEPROM_MODE_11G;
1784                 break;
1785         case CHANNEL_B:
1786                 ee_mode = AR5K_EEPROM_MODE_11B;
1787                 break;
1788         default:
1789                 ATH5K_ERR(ah->ah_sc,
1790                         "invalid channel: %d\n", channel->center_freq);
1791                 return;
1792         }
1793
1794         switch (ant_mode) {
1795         case AR5K_ANTMODE_DEFAULT:
1796                 tx_ant = 0;
1797                 use_def_for_tx = false;
1798                 update_def_on_tx = false;
1799                 use_def_for_rts = false;
1800                 use_def_for_sg = false;
1801                 fast_div = true;
1802                 break;
1803         case AR5K_ANTMODE_FIXED_A:
1804                 def_ant = 1;
1805                 tx_ant = 0;
1806                 use_def_for_tx = true;
1807                 update_def_on_tx = false;
1808                 use_def_for_rts = true;
1809                 use_def_for_sg = true;
1810                 fast_div = false;
1811                 break;
1812         case AR5K_ANTMODE_FIXED_B:
1813                 def_ant = 2;
1814                 tx_ant = 0;
1815                 use_def_for_tx = true;
1816                 update_def_on_tx = false;
1817                 use_def_for_rts = true;
1818                 use_def_for_sg = true;
1819                 fast_div = false;
1820                 break;
1821         case AR5K_ANTMODE_SINGLE_AP:
1822                 def_ant = 1;    /* updated on tx */
1823                 tx_ant = 0;
1824                 use_def_for_tx = true;
1825                 update_def_on_tx = true;
1826                 use_def_for_rts = true;
1827                 use_def_for_sg = true;
1828                 fast_div = true;
1829                 break;
1830         case AR5K_ANTMODE_SECTOR_AP:
1831                 tx_ant = 1;     /* variable */
1832                 use_def_for_tx = false;
1833                 update_def_on_tx = false;
1834                 use_def_for_rts = true;
1835                 use_def_for_sg = false;
1836                 fast_div = false;
1837                 break;
1838         case AR5K_ANTMODE_SECTOR_STA:
1839                 tx_ant = 1;     /* variable */
1840                 use_def_for_tx = true;
1841                 update_def_on_tx = false;
1842                 use_def_for_rts = true;
1843                 use_def_for_sg = false;
1844                 fast_div = true;
1845                 break;
1846         case AR5K_ANTMODE_DEBUG:
1847                 def_ant = 1;
1848                 tx_ant = 2;
1849                 use_def_for_tx = false;
1850                 update_def_on_tx = false;
1851                 use_def_for_rts = false;
1852                 use_def_for_sg = false;
1853                 fast_div = false;
1854                 break;
1855         default:
1856                 return;
1857         }
1858
1859         ah->ah_tx_ant = tx_ant;
1860         ah->ah_ant_mode = ant_mode;
1861
1862         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1863         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1864         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1865         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1866
1867         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1868
1869         if (sta_id1)
1870                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1871
1872         /* Note: set diversity before default antenna
1873          * because it won't work correctly */
1874         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1875         ath5k_hw_set_def_antenna(ah, def_ant);
1876 }
1877
1878
1879 /****************\
1880 * TX power setup *
1881 \****************/
1882
1883 /*
1884  * Helper functions
1885  */
1886
1887 /*
1888  * Do linear interpolation between two given (x, y) points
1889  */
1890 static s16
1891 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1892                                         s16 y_left, s16 y_right)
1893 {
1894         s16 ratio, result;
1895
1896         /* Avoid divide by zero and skip interpolation
1897          * if we have the same point */
1898         if ((x_left == x_right) || (y_left == y_right))
1899                 return y_left;
1900
1901         /*
1902          * Since we use ints and not fps, we need to scale up in
1903          * order to get a sane ratio value (or else we 'll eg. get
1904          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1905          * to have some accuracy both for 0.5 and 0.25 steps.
1906          */
1907         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1908
1909         /* Now scale down to be in range */
1910         result = y_left + (ratio * (target - x_left) / 100);
1911
1912         return result;
1913 }
1914
1915 /*
1916  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1917  *
1918  * Since we have the top of the curve and we draw the line below
1919  * until we reach 1 (1 pcdac step) we need to know which point
1920  * (x value) that is so that we don't go below y axis and have negative
1921  * pcdac values when creating the curve, or fill the table with zeroes.
1922  */
1923 static s16
1924 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1925                                 const s16 *pwrL, const s16 *pwrR)
1926 {
1927         s8 tmp;
1928         s16 min_pwrL, min_pwrR;
1929         s16 pwr_i;
1930
1931         /* Some vendors write the same pcdac value twice !!! */
1932         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1933                 return max(pwrL[0], pwrR[0]);
1934
1935         if (pwrL[0] == pwrL[1])
1936                 min_pwrL = pwrL[0];
1937         else {
1938                 pwr_i = pwrL[0];
1939                 do {
1940                         pwr_i--;
1941                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1942                                                         pwrL[0], pwrL[1],
1943                                                         stepL[0], stepL[1]);
1944                 } while (tmp > 1);
1945
1946                 min_pwrL = pwr_i;
1947         }
1948
1949         if (pwrR[0] == pwrR[1])
1950                 min_pwrR = pwrR[0];
1951         else {
1952                 pwr_i = pwrR[0];
1953                 do {
1954                         pwr_i--;
1955                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1956                                                         pwrR[0], pwrR[1],
1957                                                         stepR[0], stepR[1]);
1958                 } while (tmp > 1);
1959
1960                 min_pwrR = pwr_i;
1961         }
1962
1963         /* Keep the right boundary so that it works for both curves */
1964         return max(min_pwrL, min_pwrR);
1965 }
1966
1967 /*
1968  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1969  * Power to PCDAC curve.
1970  *
1971  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1972  * steps (offsets) on y axis. Power can go up to 31.5dB and max
1973  * PCDAC/PDADC step for each curve is 64 but we can write more than
1974  * one curves on hw so we can go up to 128 (which is the max step we
1975  * can write on the final table).
1976  *
1977  * We write y values (PCDAC/PDADC steps) on hw.
1978  */
1979 static void
1980 ath5k_create_power_curve(s16 pmin, s16 pmax,
1981                         const s16 *pwr, const u8 *vpd,
1982                         u8 num_points,
1983                         u8 *vpd_table, u8 type)
1984 {
1985         u8 idx[2] = { 0, 1 };
1986         s16 pwr_i = 2*pmin;
1987         int i;
1988
1989         if (num_points < 2)
1990                 return;
1991
1992         /* We want the whole line, so adjust boundaries
1993          * to cover the entire power range. Note that
1994          * power values are already 0.25dB so no need
1995          * to multiply pwr_i by 2 */
1996         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1997                 pwr_i = pmin;
1998                 pmin = 0;
1999                 pmax = 63;
2000         }
2001
2002         /* Find surrounding turning points (TPs)
2003          * and interpolate between them */
2004         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2005         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2006
2007                 /* We passed the right TP, move to the next set of TPs
2008                  * if we pass the last TP, extrapolate above using the last
2009                  * two TPs for ratio */
2010                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2011                         idx[0]++;
2012                         idx[1]++;
2013                 }
2014
2015                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2016                                                 pwr[idx[0]], pwr[idx[1]],
2017                                                 vpd[idx[0]], vpd[idx[1]]);
2018
2019                 /* Increase by 0.5dB
2020                  * (0.25 dB units) */
2021                 pwr_i += 2;
2022         }
2023 }
2024
2025 /*
2026  * Get the surrounding per-channel power calibration piers
2027  * for a given frequency so that we can interpolate between
2028  * them and come up with an apropriate dataset for our current
2029  * channel.
2030  */
2031 static void
2032 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2033                         struct ieee80211_channel *channel,
2034                         struct ath5k_chan_pcal_info **pcinfo_l,
2035                         struct ath5k_chan_pcal_info **pcinfo_r)
2036 {
2037         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2038         struct ath5k_chan_pcal_info *pcinfo;
2039         u8 idx_l, idx_r;
2040         u8 mode, max, i;
2041         u32 target = channel->center_freq;
2042
2043         idx_l = 0;
2044         idx_r = 0;
2045
2046         if (!(channel->hw_value & CHANNEL_OFDM)) {
2047                 pcinfo = ee->ee_pwr_cal_b;
2048                 mode = AR5K_EEPROM_MODE_11B;
2049         } else if (channel->hw_value & CHANNEL_2GHZ) {
2050                 pcinfo = ee->ee_pwr_cal_g;
2051                 mode = AR5K_EEPROM_MODE_11G;
2052         } else {
2053                 pcinfo = ee->ee_pwr_cal_a;
2054                 mode = AR5K_EEPROM_MODE_11A;
2055         }
2056         max = ee->ee_n_piers[mode] - 1;
2057
2058         /* Frequency is below our calibrated
2059          * range. Use the lowest power curve
2060          * we have */
2061         if (target < pcinfo[0].freq) {
2062                 idx_l = idx_r = 0;
2063                 goto done;
2064         }
2065
2066         /* Frequency is above our calibrated
2067          * range. Use the highest power curve
2068          * we have */
2069         if (target > pcinfo[max].freq) {
2070                 idx_l = idx_r = max;
2071                 goto done;
2072         }
2073
2074         /* Frequency is inside our calibrated
2075          * channel range. Pick the surrounding
2076          * calibration piers so that we can
2077          * interpolate */
2078         for (i = 0; i <= max; i++) {
2079
2080                 /* Frequency matches one of our calibration
2081                  * piers, no need to interpolate, just use
2082                  * that calibration pier */
2083                 if (pcinfo[i].freq == target) {
2084                         idx_l = idx_r = i;
2085                         goto done;
2086                 }
2087
2088                 /* We found a calibration pier that's above
2089                  * frequency, use this pier and the previous
2090                  * one to interpolate */
2091                 if (target < pcinfo[i].freq) {
2092                         idx_r = i;
2093                         idx_l = idx_r - 1;
2094                         goto done;
2095                 }
2096         }
2097
2098 done:
2099         *pcinfo_l = &pcinfo[idx_l];
2100         *pcinfo_r = &pcinfo[idx_r];
2101
2102         return;
2103 }
2104
2105 /*
2106  * Get the surrounding per-rate power calibration data
2107  * for a given frequency and interpolate between power
2108  * values to set max target power supported by hw for
2109  * each rate.
2110  */
2111 static void
2112 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2113                         struct ieee80211_channel *channel,
2114                         struct ath5k_rate_pcal_info *rates)
2115 {
2116         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2117         struct ath5k_rate_pcal_info *rpinfo;
2118         u8 idx_l, idx_r;
2119         u8 mode, max, i;
2120         u32 target = channel->center_freq;
2121
2122         idx_l = 0;
2123         idx_r = 0;
2124
2125         if (!(channel->hw_value & CHANNEL_OFDM)) {
2126                 rpinfo = ee->ee_rate_tpwr_b;
2127                 mode = AR5K_EEPROM_MODE_11B;
2128         } else if (channel->hw_value & CHANNEL_2GHZ) {
2129                 rpinfo = ee->ee_rate_tpwr_g;
2130                 mode = AR5K_EEPROM_MODE_11G;
2131         } else {
2132                 rpinfo = ee->ee_rate_tpwr_a;
2133                 mode = AR5K_EEPROM_MODE_11A;
2134         }
2135         max = ee->ee_rate_target_pwr_num[mode] - 1;
2136
2137         /* Get the surrounding calibration
2138          * piers - same as above */
2139         if (target < rpinfo[0].freq) {
2140                 idx_l = idx_r = 0;
2141                 goto done;
2142         }
2143
2144         if (target > rpinfo[max].freq) {
2145                 idx_l = idx_r = max;
2146                 goto done;
2147         }
2148
2149         for (i = 0; i <= max; i++) {
2150
2151                 if (rpinfo[i].freq == target) {
2152                         idx_l = idx_r = i;
2153                         goto done;
2154                 }
2155
2156                 if (target < rpinfo[i].freq) {
2157                         idx_r = i;
2158                         idx_l = idx_r - 1;
2159                         goto done;
2160                 }
2161         }
2162
2163 done:
2164         /* Now interpolate power value, based on the frequency */
2165         rates->freq = target;
2166
2167         rates->target_power_6to24 =
2168                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2169                                         rpinfo[idx_r].freq,
2170                                         rpinfo[idx_l].target_power_6to24,
2171                                         rpinfo[idx_r].target_power_6to24);
2172
2173         rates->target_power_36 =
2174                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2175                                         rpinfo[idx_r].freq,
2176                                         rpinfo[idx_l].target_power_36,
2177                                         rpinfo[idx_r].target_power_36);
2178
2179         rates->target_power_48 =
2180                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2181                                         rpinfo[idx_r].freq,
2182                                         rpinfo[idx_l].target_power_48,
2183                                         rpinfo[idx_r].target_power_48);
2184
2185         rates->target_power_54 =
2186                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2187                                         rpinfo[idx_r].freq,
2188                                         rpinfo[idx_l].target_power_54,
2189                                         rpinfo[idx_r].target_power_54);
2190 }
2191
2192 /*
2193  * Get the max edge power for this channel if
2194  * we have such data from EEPROM's Conformance Test
2195  * Limits (CTL), and limit max power if needed.
2196  */
2197 static void
2198 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2199                         struct ieee80211_channel *channel)
2200 {
2201         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2202         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2204         u8 *ctl_val = ee->ee_ctl;
2205         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2206         s16 edge_pwr = 0;
2207         u8 rep_idx;
2208         u8 i, ctl_mode;
2209         u8 ctl_idx = 0xFF;
2210         u32 target = channel->center_freq;
2211
2212         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2213
2214         switch (channel->hw_value & CHANNEL_MODES) {
2215         case CHANNEL_A:
2216                 ctl_mode |= AR5K_CTL_11A;
2217                 break;
2218         case CHANNEL_G:
2219                 ctl_mode |= AR5K_CTL_11G;
2220                 break;
2221         case CHANNEL_B:
2222                 ctl_mode |= AR5K_CTL_11B;
2223                 break;
2224         case CHANNEL_T:
2225                 ctl_mode |= AR5K_CTL_TURBO;
2226                 break;
2227         case CHANNEL_TG:
2228                 ctl_mode |= AR5K_CTL_TURBOG;
2229                 break;
2230         case CHANNEL_XR:
2231                 /* Fall through */
2232         default:
2233                 return;
2234         }
2235
2236         for (i = 0; i < ee->ee_ctls; i++) {
2237                 if (ctl_val[i] == ctl_mode) {
2238                         ctl_idx = i;
2239                         break;
2240                 }
2241         }
2242
2243         /* If we have a CTL dataset available grab it and find the
2244          * edge power for our frequency */
2245         if (ctl_idx == 0xFF)
2246                 return;
2247
2248         /* Edge powers are sorted by frequency from lower
2249          * to higher. Each CTL corresponds to 8 edge power
2250          * measurements. */
2251         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2252
2253         /* Don't do boundaries check because we
2254          * might have more that one bands defined
2255          * for this mode */
2256
2257         /* Get the edge power that's closer to our
2258          * frequency */
2259         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2260                 rep_idx += i;
2261                 if (target <= rep[rep_idx].freq)
2262                         edge_pwr = (s16) rep[rep_idx].edge;
2263         }
2264
2265         if (edge_pwr)
2266                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2267 }
2268
2269
2270 /*
2271  * Power to PCDAC table functions
2272  */
2273
2274 /*
2275  * Fill Power to PCDAC table on RF5111
2276  *
2277  * No further processing is needed for RF5111, the only thing we have to
2278  * do is fill the values below and above calibration range since eeprom data
2279  * may not cover the entire PCDAC table.
2280  */
2281 static void
2282 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2283                                                         s16 *table_max)
2284 {
2285         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2286         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2287         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2288         s16     min_pwr, max_pwr;
2289
2290         /* Get table boundaries */
2291         min_pwr = table_min[0];
2292         pcdac_0 = pcdac_tmp[0];
2293
2294         max_pwr = table_max[0];
2295         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2296
2297         /* Extrapolate below minimum using pcdac_0 */
2298         pcdac_i = 0;
2299         for (i = 0; i < min_pwr; i++)
2300                 pcdac_out[pcdac_i++] = pcdac_0;
2301
2302         /* Copy values from pcdac_tmp */
2303         pwr_idx = min_pwr;
2304         for (i = 0 ; pwr_idx <= max_pwr &&
2305         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2306                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2307                 pwr_idx++;
2308         }
2309
2310         /* Extrapolate above maximum */
2311         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2312                 pcdac_out[pcdac_i++] = pcdac_n;
2313
2314 }
2315
2316 /*
2317  * Combine available XPD Curves and fill Linear Power to PCDAC table
2318  * on RF5112
2319  *
2320  * RFX112 can have up to 2 curves (one for low txpower range and one for
2321  * higher txpower range). We need to put them both on pcdac_out and place
2322  * them in the correct location. In case we only have one curve available
2323  * just fit it on pcdac_out (it's supposed to cover the entire range of
2324  * available pwr levels since it's always the higher power curve). Extrapolate
2325  * below and above final table if needed.
2326  */
2327 static void
2328 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2329                                                 s16 *table_max, u8 pdcurves)
2330 {
2331         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2332         u8      *pcdac_low_pwr;
2333         u8      *pcdac_high_pwr;
2334         u8      *pcdac_tmp;
2335         u8      pwr;
2336         s16     max_pwr_idx;
2337         s16     min_pwr_idx;
2338         s16     mid_pwr_idx = 0;
2339         /* Edge flag turs on the 7nth bit on the PCDAC
2340          * to delcare the higher power curve (force values
2341          * to be greater than 64). If we only have one curve
2342          * we don't need to set this, if we have 2 curves and
2343          * fill the table backwards this can also be used to
2344          * switch from higher power curve to lower power curve */
2345         u8      edge_flag;
2346         int     i;
2347
2348         /* When we have only one curve available
2349          * that's the higher power curve. If we have
2350          * two curves the first is the high power curve
2351          * and the next is the low power curve. */
2352         if (pdcurves > 1) {
2353                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2354                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2355                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2356                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2357
2358                 /* If table size goes beyond 31.5dB, keep the
2359                  * upper 31.5dB range when setting tx power.
2360                  * Note: 126 = 31.5 dB in quarter dB steps */
2361                 if (table_max[0] - table_min[1] > 126)
2362                         min_pwr_idx = table_max[0] - 126;
2363                 else
2364                         min_pwr_idx = table_min[1];
2365
2366                 /* Since we fill table backwards
2367                  * start from high power curve */
2368                 pcdac_tmp = pcdac_high_pwr;
2369
2370                 edge_flag = 0x40;
2371 #if 0
2372                 /* If both min and max power limits are in lower
2373                  * power curve's range, only use the low power curve.
2374                  * TODO: min/max levels are related to target
2375                  * power values requested from driver/user
2376                  * XXX: Is this really needed ? */
2377                 if (min_pwr < table_max[1] &&
2378                 max_pwr < table_max[1]) {
2379                         edge_flag = 0;
2380                         pcdac_tmp = pcdac_low_pwr;
2381                         max_pwr_idx = (table_max[1] - table_min[1])/2;
2382                 }
2383 #endif
2384         } else {
2385                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2386                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2387                 min_pwr_idx = table_min[0];
2388                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2389                 pcdac_tmp = pcdac_high_pwr;
2390                 edge_flag = 0;
2391         }
2392
2393         /* This is used when setting tx power*/
2394         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2395
2396         /* Fill Power to PCDAC table backwards */
2397         pwr = max_pwr_idx;
2398         for (i = 63; i >= 0; i--) {
2399                 /* Entering lower power range, reset
2400                  * edge flag and set pcdac_tmp to lower
2401                  * power curve.*/
2402                 if (edge_flag == 0x40 &&
2403                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2404                         edge_flag = 0x00;
2405                         pcdac_tmp = pcdac_low_pwr;
2406                         pwr = mid_pwr_idx/2;
2407                 }
2408
2409                 /* Don't go below 1, extrapolate below if we have
2410                  * already swithced to the lower power curve -or
2411                  * we only have one curve and edge_flag is zero
2412                  * anyway */
2413                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2414                         while (i >= 0) {
2415                                 pcdac_out[i] = pcdac_out[i + 1];
2416                                 i--;
2417                         }
2418                         break;
2419                 }
2420
2421                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2422
2423                 /* Extrapolate above if pcdac is greater than
2424                  * 126 -this can happen because we OR pcdac_out
2425                  * value with edge_flag on high power curve */
2426                 if (pcdac_out[i] > 126)
2427                         pcdac_out[i] = 126;
2428
2429                 /* Decrease by a 0.5dB step */
2430                 pwr--;
2431         }
2432 }
2433
2434 /* Write PCDAC values on hw */
2435 static void
2436 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2437 {
2438         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2439         int     i;
2440
2441         /*
2442          * Write TX power values
2443          */
2444         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2445                 ath5k_hw_reg_write(ah,
2446                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2447                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2448                         AR5K_PHY_PCDAC_TXPOWER(i));
2449         }
2450 }
2451
2452
2453 /*
2454  * Power to PDADC table functions
2455  */
2456
2457 /*
2458  * Set the gain boundaries and create final Power to PDADC table
2459  *
2460  * We can have up to 4 pd curves, we need to do a simmilar process
2461  * as we do for RF5112. This time we don't have an edge_flag but we
2462  * set the gain boundaries on a separate register.
2463  */
2464 static void
2465 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2466                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2467 {
2468         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2469         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2470         u8 *pdadc_tmp;
2471         s16 pdadc_0;
2472         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2473         u8 pd_gain_overlap;
2474
2475         /* Note: Register value is initialized on initvals
2476          * there is no feedback from hw.
2477          * XXX: What about pd_gain_overlap from EEPROM ? */
2478         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2479                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2480
2481         /* Create final PDADC table */
2482         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2483                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2484
2485                 if (pdg == pdcurves - 1)
2486                         /* 2 dB boundary stretch for last
2487                          * (higher power) curve */
2488                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2489                 else
2490                         /* Set gain boundary in the middle
2491                          * between this curve and the next one */
2492                         gain_boundaries[pdg] =
2493                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2494
2495                 /* Sanity check in case our 2 db stretch got out of
2496                  * range. */
2497                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2498                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2499
2500                 /* For the first curve (lower power)
2501                  * start from 0 dB */
2502                 if (pdg == 0)
2503                         pdadc_0 = 0;
2504                 else
2505                         /* For the other curves use the gain overlap */
2506                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2507                                                         pd_gain_overlap;
2508
2509                 /* Force each power step to be at least 0.5 dB */
2510                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2511                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2512                 else
2513                         pwr_step = 1;
2514
2515                 /* If pdadc_0 is negative, we need to extrapolate
2516                  * below this pdgain by a number of pwr_steps */
2517                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2518                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2519                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2520                         pdadc_0++;
2521                 }
2522
2523                 /* Set last pwr level, using gain boundaries */
2524                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2525                 /* Limit it to be inside pwr range */
2526                 table_size = pwr_max[pdg] - pwr_min[pdg];
2527                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2528
2529                 /* Fill pdadc_out table */
2530                 while (pdadc_0 < max_idx)
2531                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2532
2533                 /* Need to extrapolate above this pdgain? */
2534                 if (pdadc_n <= max_idx)
2535                         continue;
2536
2537                 /* Force each power step to be at least 0.5 dB */
2538                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2539                         pwr_step = pdadc_tmp[table_size - 1] -
2540                                                 pdadc_tmp[table_size - 2];
2541                 else
2542                         pwr_step = 1;
2543
2544                 /* Extrapolate above */
2545                 while ((pdadc_0 < (s16) pdadc_n) &&
2546                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2547                         s16 tmp = pdadc_tmp[table_size - 1] +
2548                                         (pdadc_0 - max_idx) * pwr_step;
2549                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2550                         pdadc_0++;
2551                 }
2552         }
2553
2554         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2555                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2556                 pdg++;
2557         }
2558
2559         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2560                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2561                 pdadc_i++;
2562         }
2563
2564         /* Set gain boundaries */
2565         ath5k_hw_reg_write(ah,
2566                 AR5K_REG_SM(pd_gain_overlap,
2567                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2568                 AR5K_REG_SM(gain_boundaries[0],
2569                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2570                 AR5K_REG_SM(gain_boundaries[1],
2571                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2572                 AR5K_REG_SM(gain_boundaries[2],
2573                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2574                 AR5K_REG_SM(gain_boundaries[3],
2575                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2576                 AR5K_PHY_TPC_RG5);
2577
2578         /* Used for setting rate power table */
2579         ah->ah_txpower.txp_min_idx = pwr_min[0];
2580
2581 }
2582
2583 /* Write PDADC values on hw */
2584 static void
2585 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2586                         u8 pdcurves, u8 *pdg_to_idx)
2587 {
2588         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2589         u32 reg;
2590         u8 i;
2591
2592         /* Select the right pdgain curves */
2593
2594         /* Clear current settings */
2595         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2596         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2597                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2598                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2599                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2600
2601         /*
2602          * Use pd_gains curve from eeprom
2603          *
2604          * This overrides the default setting from initvals
2605          * in case some vendors (e.g. Zcomax) don't use the default
2606          * curves. If we don't honor their settings we 'll get a
2607          * 5dB (1 * gain overlap ?) drop.
2608          */
2609         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2610
2611         switch (pdcurves) {
2612         case 3:
2613                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2614                 /* Fall through */
2615         case 2:
2616                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2617                 /* Fall through */
2618         case 1:
2619                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2620                 break;
2621         }
2622         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2623
2624         /*
2625          * Write TX power values
2626          */
2627         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2628                 ath5k_hw_reg_write(ah,
2629                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2630                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2631                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2632                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2633                         AR5K_PHY_PDADC_TXPOWER(i));
2634         }
2635 }
2636
2637
2638 /*
2639  * Common code for PCDAC/PDADC tables
2640  */
2641
2642 /*
2643  * This is the main function that uses all of the above
2644  * to set PCDAC/PDADC table on hw for the current channel.
2645  * This table is used for tx power calibration on the basband,
2646  * without it we get weird tx power levels and in some cases
2647  * distorted spectral mask
2648  */
2649 static int
2650 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2651                         struct ieee80211_channel *channel,
2652                         u8 ee_mode, u8 type)
2653 {
2654         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2655         struct ath5k_chan_pcal_info *pcinfo_L;
2656         struct ath5k_chan_pcal_info *pcinfo_R;
2657         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2658         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2659         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2660         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2661         u8 *tmpL;
2662         u8 *tmpR;
2663         u32 target = channel->center_freq;
2664         int pdg, i;
2665
2666         /* Get surounding freq piers for this channel */
2667         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2668                                                 &pcinfo_L,
2669                                                 &pcinfo_R);
2670
2671         /* Loop over pd gain curves on
2672          * surounding freq piers by index */
2673         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2674
2675                 /* Fill curves in reverse order
2676                  * from lower power (max gain)
2677                  * to higher power. Use curve -> idx
2678                  * backmaping we did on eeprom init */
2679                 u8 idx = pdg_curve_to_idx[pdg];
2680
2681                 /* Grab the needed curves by index */
2682                 pdg_L = &pcinfo_L->pd_curves[idx];
2683                 pdg_R = &pcinfo_R->pd_curves[idx];
2684
2685                 /* Initialize the temp tables */
2686                 tmpL = ah->ah_txpower.tmpL[pdg];
2687                 tmpR = ah->ah_txpower.tmpR[pdg];
2688
2689                 /* Set curve's x boundaries and create
2690                  * curves so that they cover the same
2691                  * range (if we don't do that one table
2692                  * will have values on some range and the
2693                  * other one won't have any so interpolation
2694                  * will fail) */
2695                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2696                                         pdg_R->pd_pwr[0]) / 2;
2697
2698                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2699                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2700
2701                 /* Now create the curves on surrounding channels
2702                  * and interpolate if needed to get the final
2703                  * curve for this gain on this channel */
2704                 switch (type) {
2705                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2706                         /* Override min/max so that we don't loose
2707                          * accuracy (don't divide by 2) */
2708                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2709                                                 pdg_R->pd_pwr[0]);
2710
2711                         table_max[pdg] =
2712                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2713                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2714
2715                         /* Override minimum so that we don't get
2716                          * out of bounds while extrapolating
2717                          * below. Don't do this when we have 2
2718                          * curves and we are on the high power curve
2719                          * because table_min is ok in this case */
2720                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2721
2722                                 table_min[pdg] =
2723                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2724                                                                 pdg_R->pd_step,
2725                                                                 pdg_L->pd_pwr,
2726                                                                 pdg_R->pd_pwr);
2727
2728                                 /* Don't go too low because we will
2729                                  * miss the upper part of the curve.
2730                                  * Note: 126 = 31.5dB (max power supported)
2731                                  * in 0.25dB units */
2732                                 if (table_max[pdg] - table_min[pdg] > 126)
2733                                         table_min[pdg] = table_max[pdg] - 126;
2734                         }
2735
2736                         /* Fall through */
2737                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2738                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2739
2740                         ath5k_create_power_curve(table_min[pdg],
2741                                                 table_max[pdg],
2742                                                 pdg_L->pd_pwr,
2743                                                 pdg_L->pd_step,
2744                                                 pdg_L->pd_points, tmpL, type);
2745
2746                         /* We are in a calibration
2747                          * pier, no need to interpolate
2748                          * between freq piers */
2749                         if (pcinfo_L == pcinfo_R)
2750                                 continue;
2751
2752                         ath5k_create_power_curve(table_min[pdg],
2753                                                 table_max[pdg],
2754                                                 pdg_R->pd_pwr,
2755                                                 pdg_R->pd_step,
2756                                                 pdg_R->pd_points, tmpR, type);
2757                         break;
2758                 default:
2759                         return -EINVAL;
2760                 }
2761
2762                 /* Interpolate between curves
2763                  * of surounding freq piers to
2764                  * get the final curve for this
2765                  * pd gain. Re-use tmpL for interpolation
2766                  * output */
2767                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2768                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2769                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2770                                                         (s16) pcinfo_L->freq,
2771                                                         (s16) pcinfo_R->freq,
2772                                                         (s16) tmpL[i],
2773                                                         (s16) tmpR[i]);
2774                 }
2775         }
2776
2777         /* Now we have a set of curves for this
2778          * channel on tmpL (x range is table_max - table_min
2779          * and y values are tmpL[pdg][]) sorted in the same
2780          * order as EEPROM (because we've used the backmaping).
2781          * So for RF5112 it's from higher power to lower power
2782          * and for RF2413 it's from lower power to higher power.
2783          * For RF5111 we only have one curve. */
2784
2785         /* Fill min and max power levels for this
2786          * channel by interpolating the values on
2787          * surounding channels to complete the dataset */
2788         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2789                                         (s16) pcinfo_L->freq,
2790                                         (s16) pcinfo_R->freq,
2791                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2792
2793         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2794                                         (s16) pcinfo_L->freq,
2795                                         (s16) pcinfo_R->freq,
2796                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2797
2798         /* We are ready to go, fill PCDAC/PDADC
2799          * table and write settings on hardware */
2800         switch (type) {
2801         case AR5K_PWRTABLE_LINEAR_PCDAC:
2802                 /* For RF5112 we can have one or two curves
2803                  * and each curve covers a certain power lvl
2804                  * range so we need to do some more processing */
2805                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2806                                                 ee->ee_pd_gains[ee_mode]);
2807
2808                 /* Set txp.offset so that we can
2809                  * match max power value with max
2810                  * table index */
2811                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2812
2813                 /* Write settings on hw */
2814                 ath5k_setup_pcdac_table(ah);
2815                 break;
2816         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2817                 /* We are done for RF5111 since it has only
2818                  * one curve, just fit the curve on the table */
2819                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2820
2821                 /* No rate powertable adjustment for RF5111 */
2822                 ah->ah_txpower.txp_min_idx = 0;
2823                 ah->ah_txpower.txp_offset = 0;
2824
2825                 /* Write settings on hw */
2826                 ath5k_setup_pcdac_table(ah);
2827                 break;
2828         case AR5K_PWRTABLE_PWR_TO_PDADC:
2829                 /* Set PDADC boundaries and fill
2830                  * final PDADC table */
2831                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2832                                                 ee->ee_pd_gains[ee_mode]);
2833
2834                 /* Write settings on hw */
2835                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2836
2837                 /* Set txp.offset, note that table_min
2838                  * can be negative */
2839                 ah->ah_txpower.txp_offset = table_min[0];
2840                 break;
2841         default:
2842                 return -EINVAL;
2843         }
2844
2845         return 0;
2846 }
2847
2848
2849 /*
2850  * Per-rate tx power setting
2851  *
2852  * This is the code that sets the desired tx power (below
2853  * maximum) on hw for each rate (we also have TPC that sets
2854  * power per packet). We do that by providing an index on the
2855  * PCDAC/PDADC table we set up.
2856  */
2857
2858 /*
2859  * Set rate power table
2860  *
2861  * For now we only limit txpower based on maximum tx power
2862  * supported by hw (what's inside rate_info). We need to limit
2863  * this even more, based on regulatory domain etc.
2864  *
2865  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2866  * and is indexed as follows:
2867  * rates[0] - rates[7] -> OFDM rates
2868  * rates[8] - rates[14] -> CCK rates
2869  * rates[15] -> XR rates (they all have the same power)
2870  */
2871 static void
2872 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2873                         struct ath5k_rate_pcal_info *rate_info,
2874                         u8 ee_mode)
2875 {
2876         unsigned int i;
2877         u16 *rates;
2878
2879         /* max_pwr is power level we got from driver/user in 0.5dB
2880          * units, switch to 0.25dB units so we can compare */
2881         max_pwr *= 2;
2882         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2883
2884         /* apply rate limits */
2885         rates = ah->ah_txpower.txp_rates_power_table;
2886
2887         /* OFDM rates 6 to 24Mb/s */
2888         for (i = 0; i < 5; i++)
2889                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2890
2891         /* Rest OFDM rates */
2892         rates[5] = min(rates[0], rate_info->target_power_36);
2893         rates[6] = min(rates[0], rate_info->target_power_48);
2894         rates[7] = min(rates[0], rate_info->target_power_54);
2895
2896         /* CCK rates */
2897         /* 1L */
2898         rates[8] = min(rates[0], rate_info->target_power_6to24);
2899         /* 2L */
2900         rates[9] = min(rates[0], rate_info->target_power_36);
2901         /* 2S */
2902         rates[10] = min(rates[0], rate_info->target_power_36);
2903         /* 5L */
2904         rates[11] = min(rates[0], rate_info->target_power_48);
2905         /* 5S */
2906         rates[12] = min(rates[0], rate_info->target_power_48);
2907         /* 11L */
2908         rates[13] = min(rates[0], rate_info->target_power_54);
2909         /* 11S */
2910         rates[14] = min(rates[0], rate_info->target_power_54);
2911
2912         /* XR rates */
2913         rates[15] = min(rates[0], rate_info->target_power_6to24);
2914
2915         /* CCK rates have different peak to average ratio
2916          * so we have to tweak their power so that gainf
2917          * correction works ok. For this we use OFDM to
2918          * CCK delta from eeprom */
2919         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2920         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2921                 for (i = 8; i <= 15; i++)
2922                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2923
2924         /* Now that we have all rates setup use table offset to
2925          * match the power range set by user with the power indices
2926          * on PCDAC/PDADC table */
2927         for (i = 0; i < 16; i++) {
2928                 rates[i] += ah->ah_txpower.txp_offset;
2929                 /* Don't get out of bounds */
2930                 if (rates[i] > 63)
2931                         rates[i] = 63;
2932         }
2933
2934         /* Min/max in 0.25dB units */
2935         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2936         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2937         ah->ah_txpower.txp_ofdm = rates[7];
2938 }
2939
2940
2941 /*
2942  * Set transmition power
2943  */
2944 int
2945 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2946                 u8 ee_mode, u8 txpower)
2947 {
2948         struct ath5k_rate_pcal_info rate_info;
2949         u8 type;
2950         int ret;
2951
2952         ATH5K_TRACE(ah->ah_sc);
2953         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2954                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2955                 return -EINVAL;
2956         }
2957         if (txpower == 0)
2958                 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2959
2960         /* Reset TX power values */
2961         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2962         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2963         ah->ah_txpower.txp_min_pwr = 0;
2964         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2965
2966         /* Initialize TX power table */
2967         switch (ah->ah_radio) {
2968         case AR5K_RF5111:
2969                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2970                 break;
2971         case AR5K_RF5112:
2972                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2973                 break;
2974         case AR5K_RF2413:
2975         case AR5K_RF5413:
2976         case AR5K_RF2316:
2977         case AR5K_RF2317:
2978         case AR5K_RF2425:
2979                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2980                 break;
2981         default:
2982                 return -EINVAL;
2983         }
2984
2985         /* FIXME: Only on channel/mode change */
2986         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2987         if (ret)
2988                 return ret;
2989
2990         /* Limit max power if we have a CTL available */
2991         ath5k_get_max_ctl_power(ah, channel);
2992
2993         /* FIXME: Tx power limit for this regdomain
2994          * XXX: Mac80211/CRDA will do that anyway ? */
2995
2996         /* FIXME: Antenna reduction stuff */
2997
2998         /* FIXME: Limit power on turbo modes */
2999
3000         /* FIXME: TPC scale reduction */
3001
3002         /* Get surounding channels for per-rate power table
3003          * calibration */
3004         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3005
3006         /* Setup rate power table */
3007         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3008
3009         /* Write rate power table on hw */
3010         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3011                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3012                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3013
3014         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3015                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3016                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3017
3018         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3019                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3020                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3021
3022         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3023                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3024                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3025
3026         /* FIXME: TPC support */
3027         if (ah->ah_txpower.txp_tpc) {
3028                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3029                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3030
3031                 ath5k_hw_reg_write(ah,
3032                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3033                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3034                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3035                         AR5K_TPC);
3036         } else {
3037                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3038                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3039         }
3040
3041         return 0;
3042 }
3043
3044 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3045 {
3046         /*Just a try M.F.*/
3047         struct ieee80211_channel *channel = ah->ah_current_channel;
3048         u8 ee_mode;
3049
3050         ATH5K_TRACE(ah->ah_sc);
3051
3052         switch (channel->hw_value & CHANNEL_MODES) {
3053         case CHANNEL_A:
3054         case CHANNEL_T:
3055         case CHANNEL_XR:
3056                 ee_mode = AR5K_EEPROM_MODE_11A;
3057                 break;
3058         case CHANNEL_G:
3059         case CHANNEL_TG:
3060                 ee_mode = AR5K_EEPROM_MODE_11G;
3061                 break;
3062         case CHANNEL_B:
3063                 ee_mode = AR5K_EEPROM_MODE_11B;
3064                 break;
3065         default:
3066                 ATH5K_ERR(ah->ah_sc,
3067                         "invalid channel: %d\n", channel->center_freq);
3068                 return -EINVAL;
3069         }
3070
3071         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3072                 "changing txpower to %d\n", txpower);
3073
3074         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3075 }
3076
3077 #undef _ATH5K_PHY