d004c359244c9b03e2e5e753f5300abc15be8bc1
[safe/jmp/linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_queue_drop_packet_count", IGB_STAT(net_stats.rx_fifo_errors) },
68         { "rx_missed_errors", IGB_STAT(stats.mpc) },
69         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
70         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
71         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
72         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
73         { "tx_window_errors", IGB_STAT(stats.latecol) },
74         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
75         { "tx_deferred_ok", IGB_STAT(stats.dc) },
76         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
77         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
78         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
79         { "tx_restart_queue", IGB_STAT(restart_queue) },
80         { "rx_long_length_errors", IGB_STAT(stats.roc) },
81         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
82         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
83         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
84         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
85         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
86         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
87         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
88         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
89         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
90         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
91         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
92         { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
93         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", IGB_STAT(stats.mgptc) },
95         { "rx_smbus", IGB_STAT(stats.mgprc) },
96         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
97 };
98
99 #define IGB_QUEUE_STATS_LEN \
100         (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
101           (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
102          ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
103           (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
104 #define IGB_GLOBAL_STATS_LEN    \
105         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108         "Register test  (offline)", "Eeprom test    (offline)",
109         "Interrupt test (offline)", "Loopback test  (offline)",
110         "Link test   (on/offline)"
111 };
112 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
113
114 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
115 {
116         struct igb_adapter *adapter = netdev_priv(netdev);
117         struct e1000_hw *hw = &adapter->hw;
118
119         if (hw->phy.media_type == e1000_media_type_copper) {
120
121                 ecmd->supported = (SUPPORTED_10baseT_Half |
122                                    SUPPORTED_10baseT_Full |
123                                    SUPPORTED_100baseT_Half |
124                                    SUPPORTED_100baseT_Full |
125                                    SUPPORTED_1000baseT_Full|
126                                    SUPPORTED_Autoneg |
127                                    SUPPORTED_TP);
128                 ecmd->advertising = ADVERTISED_TP;
129
130                 if (hw->mac.autoneg == 1) {
131                         ecmd->advertising |= ADVERTISED_Autoneg;
132                         /* the e1000 autoneg seems to match ethtool nicely */
133                         ecmd->advertising |= hw->phy.autoneg_advertised;
134                 }
135
136                 ecmd->port = PORT_TP;
137                 ecmd->phy_address = hw->phy.addr;
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144                                      ADVERTISED_FIBRE |
145                                      ADVERTISED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148         }
149
150         ecmd->transceiver = XCVR_INTERNAL;
151
152         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
153
154                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155                                         &adapter->link_speed,
156                                         &adapter->link_duplex);
157                 ecmd->speed = adapter->link_speed;
158
159                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160                  *          and HALF_DUPLEX != DUPLEX_HALF */
161
162                 if (adapter->link_duplex == FULL_DUPLEX)
163                         ecmd->duplex = DUPLEX_FULL;
164                 else
165                         ecmd->duplex = DUPLEX_HALF;
166         } else {
167                 ecmd->speed = -1;
168                 ecmd->duplex = -1;
169         }
170
171         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172         return 0;
173 }
174
175 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
176 {
177         struct igb_adapter *adapter = netdev_priv(netdev);
178         struct e1000_hw *hw = &adapter->hw;
179
180         /* When SoL/IDER sessions are active, autoneg/speed/duplex
181          * cannot be changed */
182         if (igb_check_reset_block(hw)) {
183                 dev_err(&adapter->pdev->dev, "Cannot change link "
184                         "characteristics when SoL/IDER is active.\n");
185                 return -EINVAL;
186         }
187
188         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
189                 msleep(1);
190
191         if (ecmd->autoneg == AUTONEG_ENABLE) {
192                 hw->mac.autoneg = 1;
193                 hw->phy.autoneg_advertised = ecmd->advertising |
194                                              ADVERTISED_TP |
195                                              ADVERTISED_Autoneg;
196                 ecmd->advertising = hw->phy.autoneg_advertised;
197                 if (adapter->fc_autoneg)
198                         hw->fc.requested_mode = e1000_fc_default;
199         } else {
200                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
201                         clear_bit(__IGB_RESETTING, &adapter->state);
202                         return -EINVAL;
203                 }
204         }
205
206         /* reset the link */
207         if (netif_running(adapter->netdev)) {
208                 igb_down(adapter);
209                 igb_up(adapter);
210         } else
211                 igb_reset(adapter);
212
213         clear_bit(__IGB_RESETTING, &adapter->state);
214         return 0;
215 }
216
217 static void igb_get_pauseparam(struct net_device *netdev,
218                                struct ethtool_pauseparam *pause)
219 {
220         struct igb_adapter *adapter = netdev_priv(netdev);
221         struct e1000_hw *hw = &adapter->hw;
222
223         pause->autoneg =
224                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225
226         if (hw->fc.current_mode == e1000_fc_rx_pause)
227                 pause->rx_pause = 1;
228         else if (hw->fc.current_mode == e1000_fc_tx_pause)
229                 pause->tx_pause = 1;
230         else if (hw->fc.current_mode == e1000_fc_full) {
231                 pause->rx_pause = 1;
232                 pause->tx_pause = 1;
233         }
234 }
235
236 static int igb_set_pauseparam(struct net_device *netdev,
237                               struct ethtool_pauseparam *pause)
238 {
239         struct igb_adapter *adapter = netdev_priv(netdev);
240         struct e1000_hw *hw = &adapter->hw;
241         int retval = 0;
242
243         adapter->fc_autoneg = pause->autoneg;
244
245         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
246                 msleep(1);
247
248         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
249                 hw->fc.requested_mode = e1000_fc_default;
250                 if (netif_running(adapter->netdev)) {
251                         igb_down(adapter);
252                         igb_up(adapter);
253                 } else
254                         igb_reset(adapter);
255         } else {
256                 if (pause->rx_pause && pause->tx_pause)
257                         hw->fc.requested_mode = e1000_fc_full;
258                 else if (pause->rx_pause && !pause->tx_pause)
259                         hw->fc.requested_mode = e1000_fc_rx_pause;
260                 else if (!pause->rx_pause && pause->tx_pause)
261                         hw->fc.requested_mode = e1000_fc_tx_pause;
262                 else if (!pause->rx_pause && !pause->tx_pause)
263                         hw->fc.requested_mode = e1000_fc_none;
264
265                 hw->fc.current_mode = hw->fc.requested_mode;
266
267                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
268                           igb_force_mac_fc(hw) : igb_setup_link(hw));
269         }
270
271         clear_bit(__IGB_RESETTING, &adapter->state);
272         return retval;
273 }
274
275 static u32 igb_get_rx_csum(struct net_device *netdev)
276 {
277         struct igb_adapter *adapter = netdev_priv(netdev);
278         return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
279 }
280
281 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282 {
283         struct igb_adapter *adapter = netdev_priv(netdev);
284
285         if (data)
286                 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
287         else
288                 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
289
290         return 0;
291 }
292
293 static u32 igb_get_tx_csum(struct net_device *netdev)
294 {
295         return (netdev->features & NETIF_F_IP_CSUM) != 0;
296 }
297
298 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
299 {
300         struct igb_adapter *adapter = netdev_priv(netdev);
301
302         if (data) {
303                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
304                 if (adapter->hw.mac.type == e1000_82576)
305                         netdev->features |= NETIF_F_SCTP_CSUM;
306         } else {
307                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
308                                       NETIF_F_SCTP_CSUM);
309         }
310
311         return 0;
312 }
313
314 static int igb_set_tso(struct net_device *netdev, u32 data)
315 {
316         struct igb_adapter *adapter = netdev_priv(netdev);
317
318         if (data) {
319                 netdev->features |= NETIF_F_TSO;
320                 netdev->features |= NETIF_F_TSO6;
321         } else {
322                 netdev->features &= ~NETIF_F_TSO;
323                 netdev->features &= ~NETIF_F_TSO6;
324         }
325
326         dev_info(&adapter->pdev->dev, "TSO is %s\n",
327                  data ? "Enabled" : "Disabled");
328         return 0;
329 }
330
331 static u32 igb_get_msglevel(struct net_device *netdev)
332 {
333         struct igb_adapter *adapter = netdev_priv(netdev);
334         return adapter->msg_enable;
335 }
336
337 static void igb_set_msglevel(struct net_device *netdev, u32 data)
338 {
339         struct igb_adapter *adapter = netdev_priv(netdev);
340         adapter->msg_enable = data;
341 }
342
343 static int igb_get_regs_len(struct net_device *netdev)
344 {
345 #define IGB_REGS_LEN 551
346         return IGB_REGS_LEN * sizeof(u32);
347 }
348
349 static void igb_get_regs(struct net_device *netdev,
350                          struct ethtool_regs *regs, void *p)
351 {
352         struct igb_adapter *adapter = netdev_priv(netdev);
353         struct e1000_hw *hw = &adapter->hw;
354         u32 *regs_buff = p;
355         u8 i;
356
357         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
358
359         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
360
361         /* General Registers */
362         regs_buff[0] = rd32(E1000_CTRL);
363         regs_buff[1] = rd32(E1000_STATUS);
364         regs_buff[2] = rd32(E1000_CTRL_EXT);
365         regs_buff[3] = rd32(E1000_MDIC);
366         regs_buff[4] = rd32(E1000_SCTL);
367         regs_buff[5] = rd32(E1000_CONNSW);
368         regs_buff[6] = rd32(E1000_VET);
369         regs_buff[7] = rd32(E1000_LEDCTL);
370         regs_buff[8] = rd32(E1000_PBA);
371         regs_buff[9] = rd32(E1000_PBS);
372         regs_buff[10] = rd32(E1000_FRTIMER);
373         regs_buff[11] = rd32(E1000_TCPTIMER);
374
375         /* NVM Register */
376         regs_buff[12] = rd32(E1000_EECD);
377
378         /* Interrupt */
379         /* Reading EICS for EICR because they read the
380          * same but EICS does not clear on read */
381         regs_buff[13] = rd32(E1000_EICS);
382         regs_buff[14] = rd32(E1000_EICS);
383         regs_buff[15] = rd32(E1000_EIMS);
384         regs_buff[16] = rd32(E1000_EIMC);
385         regs_buff[17] = rd32(E1000_EIAC);
386         regs_buff[18] = rd32(E1000_EIAM);
387         /* Reading ICS for ICR because they read the
388          * same but ICS does not clear on read */
389         regs_buff[19] = rd32(E1000_ICS);
390         regs_buff[20] = rd32(E1000_ICS);
391         regs_buff[21] = rd32(E1000_IMS);
392         regs_buff[22] = rd32(E1000_IMC);
393         regs_buff[23] = rd32(E1000_IAC);
394         regs_buff[24] = rd32(E1000_IAM);
395         regs_buff[25] = rd32(E1000_IMIRVP);
396
397         /* Flow Control */
398         regs_buff[26] = rd32(E1000_FCAL);
399         regs_buff[27] = rd32(E1000_FCAH);
400         regs_buff[28] = rd32(E1000_FCTTV);
401         regs_buff[29] = rd32(E1000_FCRTL);
402         regs_buff[30] = rd32(E1000_FCRTH);
403         regs_buff[31] = rd32(E1000_FCRTV);
404
405         /* Receive */
406         regs_buff[32] = rd32(E1000_RCTL);
407         regs_buff[33] = rd32(E1000_RXCSUM);
408         regs_buff[34] = rd32(E1000_RLPML);
409         regs_buff[35] = rd32(E1000_RFCTL);
410         regs_buff[36] = rd32(E1000_MRQC);
411         regs_buff[37] = rd32(E1000_VT_CTL);
412
413         /* Transmit */
414         regs_buff[38] = rd32(E1000_TCTL);
415         regs_buff[39] = rd32(E1000_TCTL_EXT);
416         regs_buff[40] = rd32(E1000_TIPG);
417         regs_buff[41] = rd32(E1000_DTXCTL);
418
419         /* Wake Up */
420         regs_buff[42] = rd32(E1000_WUC);
421         regs_buff[43] = rd32(E1000_WUFC);
422         regs_buff[44] = rd32(E1000_WUS);
423         regs_buff[45] = rd32(E1000_IPAV);
424         regs_buff[46] = rd32(E1000_WUPL);
425
426         /* MAC */
427         regs_buff[47] = rd32(E1000_PCS_CFG0);
428         regs_buff[48] = rd32(E1000_PCS_LCTL);
429         regs_buff[49] = rd32(E1000_PCS_LSTAT);
430         regs_buff[50] = rd32(E1000_PCS_ANADV);
431         regs_buff[51] = rd32(E1000_PCS_LPAB);
432         regs_buff[52] = rd32(E1000_PCS_NPTX);
433         regs_buff[53] = rd32(E1000_PCS_LPABNP);
434
435         /* Statistics */
436         regs_buff[54] = adapter->stats.crcerrs;
437         regs_buff[55] = adapter->stats.algnerrc;
438         regs_buff[56] = adapter->stats.symerrs;
439         regs_buff[57] = adapter->stats.rxerrc;
440         regs_buff[58] = adapter->stats.mpc;
441         regs_buff[59] = adapter->stats.scc;
442         regs_buff[60] = adapter->stats.ecol;
443         regs_buff[61] = adapter->stats.mcc;
444         regs_buff[62] = adapter->stats.latecol;
445         regs_buff[63] = adapter->stats.colc;
446         regs_buff[64] = adapter->stats.dc;
447         regs_buff[65] = adapter->stats.tncrs;
448         regs_buff[66] = adapter->stats.sec;
449         regs_buff[67] = adapter->stats.htdpmc;
450         regs_buff[68] = adapter->stats.rlec;
451         regs_buff[69] = adapter->stats.xonrxc;
452         regs_buff[70] = adapter->stats.xontxc;
453         regs_buff[71] = adapter->stats.xoffrxc;
454         regs_buff[72] = adapter->stats.xofftxc;
455         regs_buff[73] = adapter->stats.fcruc;
456         regs_buff[74] = adapter->stats.prc64;
457         regs_buff[75] = adapter->stats.prc127;
458         regs_buff[76] = adapter->stats.prc255;
459         regs_buff[77] = adapter->stats.prc511;
460         regs_buff[78] = adapter->stats.prc1023;
461         regs_buff[79] = adapter->stats.prc1522;
462         regs_buff[80] = adapter->stats.gprc;
463         regs_buff[81] = adapter->stats.bprc;
464         regs_buff[82] = adapter->stats.mprc;
465         regs_buff[83] = adapter->stats.gptc;
466         regs_buff[84] = adapter->stats.gorc;
467         regs_buff[86] = adapter->stats.gotc;
468         regs_buff[88] = adapter->stats.rnbc;
469         regs_buff[89] = adapter->stats.ruc;
470         regs_buff[90] = adapter->stats.rfc;
471         regs_buff[91] = adapter->stats.roc;
472         regs_buff[92] = adapter->stats.rjc;
473         regs_buff[93] = adapter->stats.mgprc;
474         regs_buff[94] = adapter->stats.mgpdc;
475         regs_buff[95] = adapter->stats.mgptc;
476         regs_buff[96] = adapter->stats.tor;
477         regs_buff[98] = adapter->stats.tot;
478         regs_buff[100] = adapter->stats.tpr;
479         regs_buff[101] = adapter->stats.tpt;
480         regs_buff[102] = adapter->stats.ptc64;
481         regs_buff[103] = adapter->stats.ptc127;
482         regs_buff[104] = adapter->stats.ptc255;
483         regs_buff[105] = adapter->stats.ptc511;
484         regs_buff[106] = adapter->stats.ptc1023;
485         regs_buff[107] = adapter->stats.ptc1522;
486         regs_buff[108] = adapter->stats.mptc;
487         regs_buff[109] = adapter->stats.bptc;
488         regs_buff[110] = adapter->stats.tsctc;
489         regs_buff[111] = adapter->stats.iac;
490         regs_buff[112] = adapter->stats.rpthc;
491         regs_buff[113] = adapter->stats.hgptc;
492         regs_buff[114] = adapter->stats.hgorc;
493         regs_buff[116] = adapter->stats.hgotc;
494         regs_buff[118] = adapter->stats.lenerrs;
495         regs_buff[119] = adapter->stats.scvpc;
496         regs_buff[120] = adapter->stats.hrmpc;
497
498         /* These should probably be added to e1000_regs.h instead */
499         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
500         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
501         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
502         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
503         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
504         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
505         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
506
507         for (i = 0; i < 4; i++)
508                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
509         for (i = 0; i < 4; i++)
510                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
511         for (i = 0; i < 4; i++)
512                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
513         for (i = 0; i < 4; i++)
514                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
515         for (i = 0; i < 4; i++)
516                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
517         for (i = 0; i < 4; i++)
518                 regs_buff[141 + i] = rd32(E1000_RDH(i));
519         for (i = 0; i < 4; i++)
520                 regs_buff[145 + i] = rd32(E1000_RDT(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
523
524         for (i = 0; i < 10; i++)
525                 regs_buff[153 + i] = rd32(E1000_EITR(i));
526         for (i = 0; i < 8; i++)
527                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
528         for (i = 0; i < 8; i++)
529                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
530         for (i = 0; i < 16; i++)
531                 regs_buff[179 + i] = rd32(E1000_RAL(i));
532         for (i = 0; i < 16; i++)
533                 regs_buff[195 + i] = rd32(E1000_RAH(i));
534
535         for (i = 0; i < 4; i++)
536                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[223 + i] = rd32(E1000_TDH(i));
543         for (i = 0; i < 4; i++)
544                 regs_buff[227 + i] = rd32(E1000_TDT(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
547         for (i = 0; i < 4; i++)
548                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
549         for (i = 0; i < 4; i++)
550                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
551         for (i = 0; i < 4; i++)
552                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
553
554         for (i = 0; i < 4; i++)
555                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
556         for (i = 0; i < 4; i++)
557                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
558         for (i = 0; i < 32; i++)
559                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
560         for (i = 0; i < 128; i++)
561                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
562         for (i = 0; i < 128; i++)
563                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
564         for (i = 0; i < 4; i++)
565                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
566
567         regs_buff[547] = rd32(E1000_TDFH);
568         regs_buff[548] = rd32(E1000_TDFT);
569         regs_buff[549] = rd32(E1000_TDFHS);
570         regs_buff[550] = rd32(E1000_TDFPC);
571
572 }
573
574 static int igb_get_eeprom_len(struct net_device *netdev)
575 {
576         struct igb_adapter *adapter = netdev_priv(netdev);
577         return adapter->hw.nvm.word_size * 2;
578 }
579
580 static int igb_get_eeprom(struct net_device *netdev,
581                           struct ethtool_eeprom *eeprom, u8 *bytes)
582 {
583         struct igb_adapter *adapter = netdev_priv(netdev);
584         struct e1000_hw *hw = &adapter->hw;
585         u16 *eeprom_buff;
586         int first_word, last_word;
587         int ret_val = 0;
588         u16 i;
589
590         if (eeprom->len == 0)
591                 return -EINVAL;
592
593         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
594
595         first_word = eeprom->offset >> 1;
596         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
597
598         eeprom_buff = kmalloc(sizeof(u16) *
599                         (last_word - first_word + 1), GFP_KERNEL);
600         if (!eeprom_buff)
601                 return -ENOMEM;
602
603         if (hw->nvm.type == e1000_nvm_eeprom_spi)
604                 ret_val = hw->nvm.ops.read(hw, first_word,
605                                             last_word - first_word + 1,
606                                             eeprom_buff);
607         else {
608                 for (i = 0; i < last_word - first_word + 1; i++) {
609                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
610                                                     &eeprom_buff[i]);
611                         if (ret_val)
612                                 break;
613                 }
614         }
615
616         /* Device's eeprom is always little-endian, word addressable */
617         for (i = 0; i < last_word - first_word + 1; i++)
618                 le16_to_cpus(&eeprom_buff[i]);
619
620         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
621                         eeprom->len);
622         kfree(eeprom_buff);
623
624         return ret_val;
625 }
626
627 static int igb_set_eeprom(struct net_device *netdev,
628                           struct ethtool_eeprom *eeprom, u8 *bytes)
629 {
630         struct igb_adapter *adapter = netdev_priv(netdev);
631         struct e1000_hw *hw = &adapter->hw;
632         u16 *eeprom_buff;
633         void *ptr;
634         int max_len, first_word, last_word, ret_val = 0;
635         u16 i;
636
637         if (eeprom->len == 0)
638                 return -EOPNOTSUPP;
639
640         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
641                 return -EFAULT;
642
643         max_len = hw->nvm.word_size * 2;
644
645         first_word = eeprom->offset >> 1;
646         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
647         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
648         if (!eeprom_buff)
649                 return -ENOMEM;
650
651         ptr = (void *)eeprom_buff;
652
653         if (eeprom->offset & 1) {
654                 /* need read/modify/write of first changed EEPROM word */
655                 /* only the second byte of the word is being modified */
656                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
657                                             &eeprom_buff[0]);
658                 ptr++;
659         }
660         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
661                 /* need read/modify/write of last changed EEPROM word */
662                 /* only the first byte of the word is being modified */
663                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
664                                    &eeprom_buff[last_word - first_word]);
665         }
666
667         /* Device's eeprom is always little-endian, word addressable */
668         for (i = 0; i < last_word - first_word + 1; i++)
669                 le16_to_cpus(&eeprom_buff[i]);
670
671         memcpy(ptr, bytes, eeprom->len);
672
673         for (i = 0; i < last_word - first_word + 1; i++)
674                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
675
676         ret_val = hw->nvm.ops.write(hw, first_word,
677                                      last_word - first_word + 1, eeprom_buff);
678
679         /* Update the checksum over the first part of the EEPROM if needed
680          * and flush shadow RAM for 82573 controllers */
681         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
682                 igb_update_nvm_checksum(hw);
683
684         kfree(eeprom_buff);
685         return ret_val;
686 }
687
688 static void igb_get_drvinfo(struct net_device *netdev,
689                             struct ethtool_drvinfo *drvinfo)
690 {
691         struct igb_adapter *adapter = netdev_priv(netdev);
692         char firmware_version[32];
693         u16 eeprom_data;
694
695         strncpy(drvinfo->driver,  igb_driver_name, 32);
696         strncpy(drvinfo->version, igb_driver_version, 32);
697
698         /* EEPROM image version # is reported as firmware version # for
699          * 82575 controllers */
700         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
701         sprintf(firmware_version, "%d.%d-%d",
702                 (eeprom_data & 0xF000) >> 12,
703                 (eeprom_data & 0x0FF0) >> 4,
704                 eeprom_data & 0x000F);
705
706         strncpy(drvinfo->fw_version, firmware_version, 32);
707         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
708         drvinfo->n_stats = IGB_STATS_LEN;
709         drvinfo->testinfo_len = IGB_TEST_LEN;
710         drvinfo->regdump_len = igb_get_regs_len(netdev);
711         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
712 }
713
714 static void igb_get_ringparam(struct net_device *netdev,
715                               struct ethtool_ringparam *ring)
716 {
717         struct igb_adapter *adapter = netdev_priv(netdev);
718
719         ring->rx_max_pending = IGB_MAX_RXD;
720         ring->tx_max_pending = IGB_MAX_TXD;
721         ring->rx_mini_max_pending = 0;
722         ring->rx_jumbo_max_pending = 0;
723         ring->rx_pending = adapter->rx_ring_count;
724         ring->tx_pending = adapter->tx_ring_count;
725         ring->rx_mini_pending = 0;
726         ring->rx_jumbo_pending = 0;
727 }
728
729 static int igb_set_ringparam(struct net_device *netdev,
730                              struct ethtool_ringparam *ring)
731 {
732         struct igb_adapter *adapter = netdev_priv(netdev);
733         struct igb_ring *temp_ring;
734         int i, err;
735         u32 new_rx_count, new_tx_count;
736
737         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
738                 return -EINVAL;
739
740         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
741         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
742         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
743
744         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
745         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
746         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
747
748         if ((new_tx_count == adapter->tx_ring_count) &&
749             (new_rx_count == adapter->rx_ring_count)) {
750                 /* nothing to do */
751                 return 0;
752         }
753
754         if (adapter->num_tx_queues > adapter->num_rx_queues)
755                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
756         else
757                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
758         if (!temp_ring)
759                 return -ENOMEM;
760
761         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
762                 msleep(1);
763
764         if (netif_running(adapter->netdev))
765                 igb_down(adapter);
766
767         /*
768          * We can't just free everything and then setup again,
769          * because the ISRs in MSI-X mode get passed pointers
770          * to the tx and rx ring structs.
771          */
772         if (new_tx_count != adapter->tx_ring_count) {
773                 memcpy(temp_ring, adapter->tx_ring,
774                        adapter->num_tx_queues * sizeof(struct igb_ring));
775
776                 for (i = 0; i < adapter->num_tx_queues; i++) {
777                         temp_ring[i].count = new_tx_count;
778                         err = igb_setup_tx_resources(adapter, &temp_ring[i]);
779                         if (err) {
780                                 while (i) {
781                                         i--;
782                                         igb_free_tx_resources(&temp_ring[i]);
783                                 }
784                                 goto err_setup;
785                         }
786                 }
787
788                 for (i = 0; i < adapter->num_tx_queues; i++)
789                         igb_free_tx_resources(&adapter->tx_ring[i]);
790
791                 memcpy(adapter->tx_ring, temp_ring,
792                        adapter->num_tx_queues * sizeof(struct igb_ring));
793
794                 adapter->tx_ring_count = new_tx_count;
795         }
796
797         if (new_rx_count != adapter->rx_ring->count) {
798                 memcpy(temp_ring, adapter->rx_ring,
799                        adapter->num_rx_queues * sizeof(struct igb_ring));
800
801                 for (i = 0; i < adapter->num_rx_queues; i++) {
802                         temp_ring[i].count = new_rx_count;
803                         err = igb_setup_rx_resources(adapter, &temp_ring[i]);
804                         if (err) {
805                                 while (i) {
806                                         i--;
807                                         igb_free_rx_resources(&temp_ring[i]);
808                                 }
809                                 goto err_setup;
810                         }
811
812                 }
813
814                 for (i = 0; i < adapter->num_rx_queues; i++)
815                         igb_free_rx_resources(&adapter->rx_ring[i]);
816
817                 memcpy(adapter->rx_ring, temp_ring,
818                        adapter->num_rx_queues * sizeof(struct igb_ring));
819
820                 adapter->rx_ring_count = new_rx_count;
821         }
822
823         err = 0;
824 err_setup:
825         if (netif_running(adapter->netdev))
826                 igb_up(adapter);
827
828         clear_bit(__IGB_RESETTING, &adapter->state);
829         vfree(temp_ring);
830         return err;
831 }
832
833 /* ethtool register test data */
834 struct igb_reg_test {
835         u16 reg;
836         u16 reg_offset;
837         u16 array_len;
838         u16 test_type;
839         u32 mask;
840         u32 write;
841 };
842
843 /* In the hardware, registers are laid out either singly, in arrays
844  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
845  * most tests take place on arrays or single registers (handled
846  * as a single-element array) and special-case the tables.
847  * Table tests are always pattern tests.
848  *
849  * We also make provision for some required setup steps by specifying
850  * registers to be written without any read-back testing.
851  */
852
853 #define PATTERN_TEST    1
854 #define SET_READ_TEST   2
855 #define WRITE_NO_TEST   3
856 #define TABLE32_TEST    4
857 #define TABLE64_TEST_LO 5
858 #define TABLE64_TEST_HI 6
859
860 /* 82576 reg test */
861 static struct igb_reg_test reg_test_82576[] = {
862         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
864         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
865         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
867         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
869         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
870         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
871         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
872         /* Enable all RX queues before testing. */
873         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
874         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
875         /* RDH is read-only for 82576, only test RDT. */
876         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
877         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
878         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
879         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
880         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
881         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
882         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
883         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
884         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
885         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
886         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
887         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
889         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
890         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
891         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
892         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
893         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
894         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
895         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898         { 0, 0, 0, 0 }
899 };
900
901 /* 82575 register test */
902 static struct igb_reg_test reg_test_82575[] = {
903         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
910         /* Enable all four RX queues before testing. */
911         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
912         /* RDH is read-only for 82575, only test RDT. */
913         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
914         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
915         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
916         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
917         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
918         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
919         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
921         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
922         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
923         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
924         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
925         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
926         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
927         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
928         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929         { 0, 0, 0, 0 }
930 };
931
932 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
933                              int reg, u32 mask, u32 write)
934 {
935         struct e1000_hw *hw = &adapter->hw;
936         u32 pat, val;
937         u32 _test[] =
938                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
939         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
940                 wr32(reg, (_test[pat] & write));
941                 val = rd32(reg);
942                 if (val != (_test[pat] & write & mask)) {
943                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
944                                 "failed: got 0x%08X expected 0x%08X\n",
945                                 reg, val, (_test[pat] & write & mask));
946                         *data = reg;
947                         return 1;
948                 }
949         }
950         return 0;
951 }
952
953 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
954                               int reg, u32 mask, u32 write)
955 {
956         struct e1000_hw *hw = &adapter->hw;
957         u32 val;
958         wr32(reg, write & mask);
959         val = rd32(reg);
960         if ((write & mask) != (val & mask)) {
961                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
962                         " got 0x%08X expected 0x%08X\n", reg,
963                         (val & mask), (write & mask));
964                 *data = reg;
965                 return 1;
966         }
967         return 0;
968 }
969
970 #define REG_PATTERN_TEST(reg, mask, write) \
971         do { \
972                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
973                         return 1; \
974         } while (0)
975
976 #define REG_SET_AND_CHECK(reg, mask, write) \
977         do { \
978                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
979                         return 1; \
980         } while (0)
981
982 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
983 {
984         struct e1000_hw *hw = &adapter->hw;
985         struct igb_reg_test *test;
986         u32 value, before, after;
987         u32 i, toggle;
988
989         toggle = 0x7FFFF3FF;
990
991         switch (adapter->hw.mac.type) {
992         case e1000_82576:
993                 test = reg_test_82576;
994                 break;
995         default:
996                 test = reg_test_82575;
997                 break;
998         }
999
1000         /* Because the status register is such a special case,
1001          * we handle it separately from the rest of the register
1002          * tests.  Some bits are read-only, some toggle, and some
1003          * are writable on newer MACs.
1004          */
1005         before = rd32(E1000_STATUS);
1006         value = (rd32(E1000_STATUS) & toggle);
1007         wr32(E1000_STATUS, toggle);
1008         after = rd32(E1000_STATUS) & toggle;
1009         if (value != after) {
1010                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1011                         "got: 0x%08X expected: 0x%08X\n", after, value);
1012                 *data = 1;
1013                 return 1;
1014         }
1015         /* restore previous status */
1016         wr32(E1000_STATUS, before);
1017
1018         /* Perform the remainder of the register test, looping through
1019          * the test table until we either fail or reach the null entry.
1020          */
1021         while (test->reg) {
1022                 for (i = 0; i < test->array_len; i++) {
1023                         switch (test->test_type) {
1024                         case PATTERN_TEST:
1025                                 REG_PATTERN_TEST(test->reg +
1026                                                 (i * test->reg_offset),
1027                                                 test->mask,
1028                                                 test->write);
1029                                 break;
1030                         case SET_READ_TEST:
1031                                 REG_SET_AND_CHECK(test->reg +
1032                                                 (i * test->reg_offset),
1033                                                 test->mask,
1034                                                 test->write);
1035                                 break;
1036                         case WRITE_NO_TEST:
1037                                 writel(test->write,
1038                                     (adapter->hw.hw_addr + test->reg)
1039                                         + (i * test->reg_offset));
1040                                 break;
1041                         case TABLE32_TEST:
1042                                 REG_PATTERN_TEST(test->reg + (i * 4),
1043                                                 test->mask,
1044                                                 test->write);
1045                                 break;
1046                         case TABLE64_TEST_LO:
1047                                 REG_PATTERN_TEST(test->reg + (i * 8),
1048                                                 test->mask,
1049                                                 test->write);
1050                                 break;
1051                         case TABLE64_TEST_HI:
1052                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1053                                                 test->mask,
1054                                                 test->write);
1055                                 break;
1056                         }
1057                 }
1058                 test++;
1059         }
1060
1061         *data = 0;
1062         return 0;
1063 }
1064
1065 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1066 {
1067         u16 temp;
1068         u16 checksum = 0;
1069         u16 i;
1070
1071         *data = 0;
1072         /* Read and add up the contents of the EEPROM */
1073         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1074                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1075                     < 0) {
1076                         *data = 1;
1077                         break;
1078                 }
1079                 checksum += temp;
1080         }
1081
1082         /* If Checksum is not Correct return error else test passed */
1083         if ((checksum != (u16) NVM_SUM) && !(*data))
1084                 *data = 2;
1085
1086         return *data;
1087 }
1088
1089 static irqreturn_t igb_test_intr(int irq, void *data)
1090 {
1091         struct net_device *netdev = (struct net_device *) data;
1092         struct igb_adapter *adapter = netdev_priv(netdev);
1093         struct e1000_hw *hw = &adapter->hw;
1094
1095         adapter->test_icr |= rd32(E1000_ICR);
1096
1097         return IRQ_HANDLED;
1098 }
1099
1100 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1101 {
1102         struct e1000_hw *hw = &adapter->hw;
1103         struct net_device *netdev = adapter->netdev;
1104         u32 mask, ics_mask, i = 0, shared_int = true;
1105         u32 irq = adapter->pdev->irq;
1106
1107         *data = 0;
1108
1109         /* Hook up test interrupt handler just for this test */
1110         if (adapter->msix_entries)
1111                 /* NOTE: we don't test MSI-X interrupts here, yet */
1112                 return 0;
1113
1114         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1115                 shared_int = false;
1116                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1117                         *data = 1;
1118                         return -1;
1119                 }
1120         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1121                                 netdev->name, netdev)) {
1122                 shared_int = false;
1123         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1124                  netdev->name, netdev)) {
1125                 *data = 1;
1126                 return -1;
1127         }
1128         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1129                 (shared_int ? "shared" : "unshared"));
1130         /* Disable all the interrupts */
1131         wr32(E1000_IMC, 0xFFFFFFFF);
1132         msleep(10);
1133
1134         /* Define all writable bits for ICS */
1135         switch(hw->mac.type) {
1136         case e1000_82575:
1137                 ics_mask = 0x37F47EDD;
1138                 break;
1139         case e1000_82576:
1140                 ics_mask = 0x77D4FBFD;
1141                 break;
1142         default:
1143                 ics_mask = 0x7FFFFFFF;
1144                 break;
1145         }
1146
1147         /* Test each interrupt */
1148         for (; i < 31; i++) {
1149                 /* Interrupt to test */
1150                 mask = 1 << i;
1151
1152                 if (!(mask & ics_mask))
1153                         continue;
1154
1155                 if (!shared_int) {
1156                         /* Disable the interrupt to be reported in
1157                          * the cause register and then force the same
1158                          * interrupt and see if one gets posted.  If
1159                          * an interrupt was posted to the bus, the
1160                          * test failed.
1161                          */
1162                         adapter->test_icr = 0;
1163
1164                         /* Flush any pending interrupts */
1165                         wr32(E1000_ICR, ~0);
1166
1167                         wr32(E1000_IMC, mask);
1168                         wr32(E1000_ICS, mask);
1169                         msleep(10);
1170
1171                         if (adapter->test_icr & mask) {
1172                                 *data = 3;
1173                                 break;
1174                         }
1175                 }
1176
1177                 /* Enable the interrupt to be reported in
1178                  * the cause register and then force the same
1179                  * interrupt and see if one gets posted.  If
1180                  * an interrupt was not posted to the bus, the
1181                  * test failed.
1182                  */
1183                 adapter->test_icr = 0;
1184
1185                 /* Flush any pending interrupts */
1186                 wr32(E1000_ICR, ~0);
1187
1188                 wr32(E1000_IMS, mask);
1189                 wr32(E1000_ICS, mask);
1190                 msleep(10);
1191
1192                 if (!(adapter->test_icr & mask)) {
1193                         *data = 4;
1194                         break;
1195                 }
1196
1197                 if (!shared_int) {
1198                         /* Disable the other interrupts to be reported in
1199                          * the cause register and then force the other
1200                          * interrupts and see if any get posted.  If
1201                          * an interrupt was posted to the bus, the
1202                          * test failed.
1203                          */
1204                         adapter->test_icr = 0;
1205
1206                         /* Flush any pending interrupts */
1207                         wr32(E1000_ICR, ~0);
1208
1209                         wr32(E1000_IMC, ~mask);
1210                         wr32(E1000_ICS, ~mask);
1211                         msleep(10);
1212
1213                         if (adapter->test_icr & mask) {
1214                                 *data = 5;
1215                                 break;
1216                         }
1217                 }
1218         }
1219
1220         /* Disable all the interrupts */
1221         wr32(E1000_IMC, ~0);
1222         msleep(10);
1223
1224         /* Unhook test interrupt handler */
1225         free_irq(irq, netdev);
1226
1227         return *data;
1228 }
1229
1230 static void igb_free_desc_rings(struct igb_adapter *adapter)
1231 {
1232         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1233         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1234         struct pci_dev *pdev = adapter->pdev;
1235         int i;
1236
1237         if (tx_ring->desc && tx_ring->buffer_info) {
1238                 for (i = 0; i < tx_ring->count; i++) {
1239                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1240                         if (buf->dma)
1241                                 pci_unmap_single(pdev, buf->dma, buf->length,
1242                                                  PCI_DMA_TODEVICE);
1243                         if (buf->skb)
1244                                 dev_kfree_skb(buf->skb);
1245                 }
1246         }
1247
1248         if (rx_ring->desc && rx_ring->buffer_info) {
1249                 for (i = 0; i < rx_ring->count; i++) {
1250                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1251                         if (buf->dma)
1252                                 pci_unmap_single(pdev, buf->dma,
1253                                                  IGB_RXBUFFER_2048,
1254                                                  PCI_DMA_FROMDEVICE);
1255                         if (buf->skb)
1256                                 dev_kfree_skb(buf->skb);
1257                 }
1258         }
1259
1260         if (tx_ring->desc) {
1261                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1262                                     tx_ring->dma);
1263                 tx_ring->desc = NULL;
1264         }
1265         if (rx_ring->desc) {
1266                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1267                                     rx_ring->dma);
1268                 rx_ring->desc = NULL;
1269         }
1270
1271         kfree(tx_ring->buffer_info);
1272         tx_ring->buffer_info = NULL;
1273         kfree(rx_ring->buffer_info);
1274         rx_ring->buffer_info = NULL;
1275
1276         return;
1277 }
1278
1279 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1280 {
1281         struct e1000_hw *hw = &adapter->hw;
1282         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1283         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1284         struct pci_dev *pdev = adapter->pdev;
1285         struct igb_buffer *buffer_info;
1286         u32 rctl;
1287         int i, ret_val;
1288
1289         /* Setup Tx descriptor ring and Tx buffers */
1290
1291         if (!tx_ring->count)
1292                 tx_ring->count = IGB_DEFAULT_TXD;
1293
1294         tx_ring->buffer_info = kcalloc(tx_ring->count,
1295                                        sizeof(struct igb_buffer),
1296                                        GFP_KERNEL);
1297         if (!tx_ring->buffer_info) {
1298                 ret_val = 1;
1299                 goto err_nomem;
1300         }
1301
1302         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1303         tx_ring->size = ALIGN(tx_ring->size, 4096);
1304         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1305                                              &tx_ring->dma);
1306         if (!tx_ring->desc) {
1307                 ret_val = 2;
1308                 goto err_nomem;
1309         }
1310         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1311
1312         wr32(E1000_TDBAL(0),
1313                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1314         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1315         wr32(E1000_TDLEN(0),
1316                         tx_ring->count * sizeof(union e1000_adv_tx_desc));
1317         wr32(E1000_TDH(0), 0);
1318         wr32(E1000_TDT(0), 0);
1319         wr32(E1000_TCTL,
1320                         E1000_TCTL_PSP | E1000_TCTL_EN |
1321                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1322                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1323
1324         for (i = 0; i < tx_ring->count; i++) {
1325                 union e1000_adv_tx_desc *tx_desc;
1326                 struct sk_buff *skb;
1327                 unsigned int size = 1024;
1328
1329                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1330                 skb = alloc_skb(size, GFP_KERNEL);
1331                 if (!skb) {
1332                         ret_val = 3;
1333                         goto err_nomem;
1334                 }
1335                 skb_put(skb, size);
1336                 buffer_info = &tx_ring->buffer_info[i];
1337                 buffer_info->skb = skb;
1338                 buffer_info->length = skb->len;
1339                 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1340                                                   PCI_DMA_TODEVICE);
1341                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1342                 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1343                                               E1000_ADVTXD_PAYLEN_SHIFT;
1344                 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1345                 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1346                                                           E1000_TXD_CMD_IFCS |
1347                                                           E1000_TXD_CMD_RS |
1348                                                           E1000_ADVTXD_DTYP_DATA |
1349                                                           E1000_ADVTXD_DCMD_DEXT);
1350         }
1351
1352         /* Setup Rx descriptor ring and Rx buffers */
1353
1354         if (!rx_ring->count)
1355                 rx_ring->count = IGB_DEFAULT_RXD;
1356
1357         rx_ring->buffer_info = kcalloc(rx_ring->count,
1358                                        sizeof(struct igb_buffer),
1359                                        GFP_KERNEL);
1360         if (!rx_ring->buffer_info) {
1361                 ret_val = 4;
1362                 goto err_nomem;
1363         }
1364
1365         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1366         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1367                                              &rx_ring->dma);
1368         if (!rx_ring->desc) {
1369                 ret_val = 5;
1370                 goto err_nomem;
1371         }
1372         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1373
1374         rctl = rd32(E1000_RCTL);
1375         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1376         wr32(E1000_RDBAL(0),
1377                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1378         wr32(E1000_RDBAH(0),
1379                         ((u64) rx_ring->dma >> 32));
1380         wr32(E1000_RDLEN(0), rx_ring->size);
1381         wr32(E1000_RDH(0), 0);
1382         wr32(E1000_RDT(0), 0);
1383         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1384         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1385                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1386         wr32(E1000_RCTL, rctl);
1387         wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1388
1389         for (i = 0; i < rx_ring->count; i++) {
1390                 union e1000_adv_rx_desc *rx_desc;
1391                 struct sk_buff *skb;
1392
1393                 buffer_info = &rx_ring->buffer_info[i];
1394                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1395                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1396                                 GFP_KERNEL);
1397                 if (!skb) {
1398                         ret_val = 6;
1399                         goto err_nomem;
1400                 }
1401                 skb_reserve(skb, NET_IP_ALIGN);
1402                 buffer_info->skb = skb;
1403                 buffer_info->dma = pci_map_single(pdev, skb->data,
1404                                                   IGB_RXBUFFER_2048,
1405                                                   PCI_DMA_FROMDEVICE);
1406                 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1407                 memset(skb->data, 0x00, skb->len);
1408         }
1409
1410         return 0;
1411
1412 err_nomem:
1413         igb_free_desc_rings(adapter);
1414         return ret_val;
1415 }
1416
1417 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1418 {
1419         struct e1000_hw *hw = &adapter->hw;
1420
1421         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1422         igb_write_phy_reg(hw, 29, 0x001F);
1423         igb_write_phy_reg(hw, 30, 0x8FFC);
1424         igb_write_phy_reg(hw, 29, 0x001A);
1425         igb_write_phy_reg(hw, 30, 0x8FF0);
1426 }
1427
1428 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1429 {
1430         struct e1000_hw *hw = &adapter->hw;
1431         u32 ctrl_reg = 0;
1432
1433         hw->mac.autoneg = false;
1434
1435         if (hw->phy.type == e1000_phy_m88) {
1436                 /* Auto-MDI/MDIX Off */
1437                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1438                 /* reset to update Auto-MDI/MDIX */
1439                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1440                 /* autoneg off */
1441                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1442         }
1443
1444         ctrl_reg = rd32(E1000_CTRL);
1445
1446         /* force 1000, set loopback */
1447         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1448
1449         /* Now set up the MAC to the same speed/duplex as the PHY. */
1450         ctrl_reg = rd32(E1000_CTRL);
1451         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1452         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1453                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1454                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1455                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1456                      E1000_CTRL_SLU);    /* Set link up enable bit */
1457
1458         if (hw->phy.type == e1000_phy_m88)
1459                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1460
1461         wr32(E1000_CTRL, ctrl_reg);
1462
1463         /* Disable the receiver on the PHY so when a cable is plugged in, the
1464          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1465          */
1466         if (hw->phy.type == e1000_phy_m88)
1467                 igb_phy_disable_receiver(adapter);
1468
1469         udelay(500);
1470
1471         return 0;
1472 }
1473
1474 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1475 {
1476         return igb_integrated_phy_loopback(adapter);
1477 }
1478
1479 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1480 {
1481         struct e1000_hw *hw = &adapter->hw;
1482         u32 reg;
1483
1484         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1485                 reg = rd32(E1000_RCTL);
1486                 reg |= E1000_RCTL_LBM_TCVR;
1487                 wr32(E1000_RCTL, reg);
1488
1489                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1490
1491                 reg = rd32(E1000_CTRL);
1492                 reg &= ~(E1000_CTRL_RFCE |
1493                          E1000_CTRL_TFCE |
1494                          E1000_CTRL_LRST);
1495                 reg |= E1000_CTRL_SLU |
1496                        E1000_CTRL_FD;
1497                 wr32(E1000_CTRL, reg);
1498
1499                 /* Unset switch control to serdes energy detect */
1500                 reg = rd32(E1000_CONNSW);
1501                 reg &= ~E1000_CONNSW_ENRGSRC;
1502                 wr32(E1000_CONNSW, reg);
1503
1504                 /* Set PCS register for forced speed */
1505                 reg = rd32(E1000_PCS_LCTL);
1506                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1507                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1508                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1509                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1510                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1511                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1512                 wr32(E1000_PCS_LCTL, reg);
1513
1514                 return 0;
1515         } else if (hw->phy.media_type == e1000_media_type_copper) {
1516                 return igb_set_phy_loopback(adapter);
1517         }
1518
1519         return 7;
1520 }
1521
1522 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1523 {
1524         struct e1000_hw *hw = &adapter->hw;
1525         u32 rctl;
1526         u16 phy_reg;
1527
1528         rctl = rd32(E1000_RCTL);
1529         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1530         wr32(E1000_RCTL, rctl);
1531
1532         hw->mac.autoneg = true;
1533         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1534         if (phy_reg & MII_CR_LOOPBACK) {
1535                 phy_reg &= ~MII_CR_LOOPBACK;
1536                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1537                 igb_phy_sw_reset(hw);
1538         }
1539 }
1540
1541 static void igb_create_lbtest_frame(struct sk_buff *skb,
1542                                     unsigned int frame_size)
1543 {
1544         memset(skb->data, 0xFF, frame_size);
1545         frame_size &= ~1;
1546         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1547         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1548         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1549 }
1550
1551 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1552 {
1553         frame_size &= ~1;
1554         if (*(skb->data + 3) == 0xFF)
1555                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1556                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1557                         return 0;
1558         return 13;
1559 }
1560
1561 static int igb_run_loopback_test(struct igb_adapter *adapter)
1562 {
1563         struct e1000_hw *hw = &adapter->hw;
1564         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566         struct pci_dev *pdev = adapter->pdev;
1567         int i, j, k, l, lc, good_cnt;
1568         int ret_val = 0;
1569         unsigned long time;
1570
1571         wr32(E1000_RDT(0), rx_ring->count - 1);
1572
1573         /* Calculate the loop count based on the largest descriptor ring
1574          * The idea is to wrap the largest ring a number of times using 64
1575          * send/receive pairs during each loop
1576          */
1577
1578         if (rx_ring->count <= tx_ring->count)
1579                 lc = ((tx_ring->count / 64) * 2) + 1;
1580         else
1581                 lc = ((rx_ring->count / 64) * 2) + 1;
1582
1583         k = l = 0;
1584         for (j = 0; j <= lc; j++) { /* loop count loop */
1585                 for (i = 0; i < 64; i++) { /* send the packets */
1586                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1587                                                 1024);
1588                         pci_dma_sync_single_for_device(pdev,
1589                                 tx_ring->buffer_info[k].dma,
1590                                 tx_ring->buffer_info[k].length,
1591                                 PCI_DMA_TODEVICE);
1592                         k++;
1593                         if (k == tx_ring->count)
1594                                 k = 0;
1595                 }
1596                 wr32(E1000_TDT(0), k);
1597                 msleep(200);
1598                 time = jiffies; /* set the start time for the receive */
1599                 good_cnt = 0;
1600                 do { /* receive the sent packets */
1601                         pci_dma_sync_single_for_cpu(pdev,
1602                                         rx_ring->buffer_info[l].dma,
1603                                         IGB_RXBUFFER_2048,
1604                                         PCI_DMA_FROMDEVICE);
1605
1606                         ret_val = igb_check_lbtest_frame(
1607                                              rx_ring->buffer_info[l].skb, 1024);
1608                         if (!ret_val)
1609                                 good_cnt++;
1610                         l++;
1611                         if (l == rx_ring->count)
1612                                 l = 0;
1613                         /* time + 20 msecs (200 msecs on 2.4) is more than
1614                          * enough time to complete the receives, if it's
1615                          * exceeded, break and error off
1616                          */
1617                 } while (good_cnt < 64 && jiffies < (time + 20));
1618                 if (good_cnt != 64) {
1619                         ret_val = 13; /* ret_val is the same as mis-compare */
1620                         break;
1621                 }
1622                 if (jiffies >= (time + 20)) {
1623                         ret_val = 14; /* error code for time out error */
1624                         break;
1625                 }
1626         } /* end loop count loop */
1627         return ret_val;
1628 }
1629
1630 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1631 {
1632         /* PHY loopback cannot be performed if SoL/IDER
1633          * sessions are active */
1634         if (igb_check_reset_block(&adapter->hw)) {
1635                 dev_err(&adapter->pdev->dev,
1636                         "Cannot do PHY loopback test "
1637                         "when SoL/IDER is active.\n");
1638                 *data = 0;
1639                 goto out;
1640         }
1641         *data = igb_setup_desc_rings(adapter);
1642         if (*data)
1643                 goto out;
1644         *data = igb_setup_loopback_test(adapter);
1645         if (*data)
1646                 goto err_loopback;
1647         *data = igb_run_loopback_test(adapter);
1648         igb_loopback_cleanup(adapter);
1649
1650 err_loopback:
1651         igb_free_desc_rings(adapter);
1652 out:
1653         return *data;
1654 }
1655
1656 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659         *data = 0;
1660         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1661                 int i = 0;
1662                 hw->mac.serdes_has_link = false;
1663
1664                 /* On some blade server designs, link establishment
1665                  * could take as long as 2-3 minutes */
1666                 do {
1667                         hw->mac.ops.check_for_link(&adapter->hw);
1668                         if (hw->mac.serdes_has_link)
1669                                 return *data;
1670                         msleep(20);
1671                 } while (i++ < 3750);
1672
1673                 *data = 1;
1674         } else {
1675                 hw->mac.ops.check_for_link(&adapter->hw);
1676                 if (hw->mac.autoneg)
1677                         msleep(4000);
1678
1679                 if (!(rd32(E1000_STATUS) &
1680                       E1000_STATUS_LU))
1681                         *data = 1;
1682         }
1683         return *data;
1684 }
1685
1686 static void igb_diag_test(struct net_device *netdev,
1687                           struct ethtool_test *eth_test, u64 *data)
1688 {
1689         struct igb_adapter *adapter = netdev_priv(netdev);
1690         u16 autoneg_advertised;
1691         u8 forced_speed_duplex, autoneg;
1692         bool if_running = netif_running(netdev);
1693
1694         set_bit(__IGB_TESTING, &adapter->state);
1695         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1696                 /* Offline tests */
1697
1698                 /* save speed, duplex, autoneg settings */
1699                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1700                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1701                 autoneg = adapter->hw.mac.autoneg;
1702
1703                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1704
1705                 /* Link test performed before hardware reset so autoneg doesn't
1706                  * interfere with test result */
1707                 if (igb_link_test(adapter, &data[4]))
1708                         eth_test->flags |= ETH_TEST_FL_FAILED;
1709
1710                 if (if_running)
1711                         /* indicate we're in test mode */
1712                         dev_close(netdev);
1713                 else
1714                         igb_reset(adapter);
1715
1716                 if (igb_reg_test(adapter, &data[0]))
1717                         eth_test->flags |= ETH_TEST_FL_FAILED;
1718
1719                 igb_reset(adapter);
1720                 if (igb_eeprom_test(adapter, &data[1]))
1721                         eth_test->flags |= ETH_TEST_FL_FAILED;
1722
1723                 igb_reset(adapter);
1724                 if (igb_intr_test(adapter, &data[2]))
1725                         eth_test->flags |= ETH_TEST_FL_FAILED;
1726
1727                 igb_reset(adapter);
1728                 if (igb_loopback_test(adapter, &data[3]))
1729                         eth_test->flags |= ETH_TEST_FL_FAILED;
1730
1731                 /* restore speed, duplex, autoneg settings */
1732                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1733                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1734                 adapter->hw.mac.autoneg = autoneg;
1735
1736                 /* force this routine to wait until autoneg complete/timeout */
1737                 adapter->hw.phy.autoneg_wait_to_complete = true;
1738                 igb_reset(adapter);
1739                 adapter->hw.phy.autoneg_wait_to_complete = false;
1740
1741                 clear_bit(__IGB_TESTING, &adapter->state);
1742                 if (if_running)
1743                         dev_open(netdev);
1744         } else {
1745                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1746                 /* Online tests */
1747                 if (igb_link_test(adapter, &data[4]))
1748                         eth_test->flags |= ETH_TEST_FL_FAILED;
1749
1750                 /* Online tests aren't run; pass by default */
1751                 data[0] = 0;
1752                 data[1] = 0;
1753                 data[2] = 0;
1754                 data[3] = 0;
1755
1756                 clear_bit(__IGB_TESTING, &adapter->state);
1757         }
1758         msleep_interruptible(4 * 1000);
1759 }
1760
1761 static int igb_wol_exclusion(struct igb_adapter *adapter,
1762                              struct ethtool_wolinfo *wol)
1763 {
1764         struct e1000_hw *hw = &adapter->hw;
1765         int retval = 1; /* fail by default */
1766
1767         switch (hw->device_id) {
1768         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1769                 /* WoL not supported */
1770                 wol->supported = 0;
1771                 break;
1772         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1773         case E1000_DEV_ID_82576_FIBER:
1774         case E1000_DEV_ID_82576_SERDES:
1775                 /* Wake events not supported on port B */
1776                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1777                         wol->supported = 0;
1778                         break;
1779                 }
1780                 /* return success for non excluded adapter ports */
1781                 retval = 0;
1782                 break;
1783         case E1000_DEV_ID_82576_QUAD_COPPER:
1784                 /* quad port adapters only support WoL on port A */
1785                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1786                         wol->supported = 0;
1787                         break;
1788                 }
1789                 /* return success for non excluded adapter ports */
1790                 retval = 0;
1791                 break;
1792         default:
1793                 /* dual port cards only support WoL on port A from now on
1794                  * unless it was enabled in the eeprom for port B
1795                  * so exclude FUNC_1 ports from having WoL enabled */
1796                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1797                     !adapter->eeprom_wol) {
1798                         wol->supported = 0;
1799                         break;
1800                 }
1801
1802                 retval = 0;
1803         }
1804
1805         return retval;
1806 }
1807
1808 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1809 {
1810         struct igb_adapter *adapter = netdev_priv(netdev);
1811
1812         wol->supported = WAKE_UCAST | WAKE_MCAST |
1813                          WAKE_BCAST | WAKE_MAGIC;
1814         wol->wolopts = 0;
1815
1816         /* this function will set ->supported = 0 and return 1 if wol is not
1817          * supported by this hardware */
1818         if (igb_wol_exclusion(adapter, wol) ||
1819             !device_can_wakeup(&adapter->pdev->dev))
1820                 return;
1821
1822         /* apply any specific unsupported masks here */
1823         switch (adapter->hw.device_id) {
1824         default:
1825                 break;
1826         }
1827
1828         if (adapter->wol & E1000_WUFC_EX)
1829                 wol->wolopts |= WAKE_UCAST;
1830         if (adapter->wol & E1000_WUFC_MC)
1831                 wol->wolopts |= WAKE_MCAST;
1832         if (adapter->wol & E1000_WUFC_BC)
1833                 wol->wolopts |= WAKE_BCAST;
1834         if (adapter->wol & E1000_WUFC_MAG)
1835                 wol->wolopts |= WAKE_MAGIC;
1836
1837         return;
1838 }
1839
1840 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1841 {
1842         struct igb_adapter *adapter = netdev_priv(netdev);
1843
1844         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1845                 return -EOPNOTSUPP;
1846
1847         if (igb_wol_exclusion(adapter, wol) ||
1848             !device_can_wakeup(&adapter->pdev->dev))
1849                 return wol->wolopts ? -EOPNOTSUPP : 0;
1850
1851         /* these settings will always override what we currently have */
1852         adapter->wol = 0;
1853
1854         if (wol->wolopts & WAKE_UCAST)
1855                 adapter->wol |= E1000_WUFC_EX;
1856         if (wol->wolopts & WAKE_MCAST)
1857                 adapter->wol |= E1000_WUFC_MC;
1858         if (wol->wolopts & WAKE_BCAST)
1859                 adapter->wol |= E1000_WUFC_BC;
1860         if (wol->wolopts & WAKE_MAGIC)
1861                 adapter->wol |= E1000_WUFC_MAG;
1862
1863         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1864
1865         return 0;
1866 }
1867
1868 /* bit defines for adapter->led_status */
1869 #define IGB_LED_ON              0
1870
1871 static int igb_phys_id(struct net_device *netdev, u32 data)
1872 {
1873         struct igb_adapter *adapter = netdev_priv(netdev);
1874         struct e1000_hw *hw = &adapter->hw;
1875
1876         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1877                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1878
1879         igb_blink_led(hw);
1880         msleep_interruptible(data * 1000);
1881
1882         igb_led_off(hw);
1883         clear_bit(IGB_LED_ON, &adapter->led_status);
1884         igb_cleanup_led(hw);
1885
1886         return 0;
1887 }
1888
1889 static int igb_set_coalesce(struct net_device *netdev,
1890                             struct ethtool_coalesce *ec)
1891 {
1892         struct igb_adapter *adapter = netdev_priv(netdev);
1893         struct e1000_hw *hw = &adapter->hw;
1894         int i;
1895
1896         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1897             ((ec->rx_coalesce_usecs > 3) &&
1898              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1899             (ec->rx_coalesce_usecs == 2))
1900                 return -EINVAL;
1901
1902         /* convert to rate of irq's per second */
1903         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1904                 adapter->itr_setting = ec->rx_coalesce_usecs;
1905                 adapter->itr = IGB_START_ITR;
1906         } else {
1907                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1908                 adapter->itr = adapter->itr_setting;
1909         }
1910
1911         for (i = 0; i < adapter->num_rx_queues; i++)
1912                 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1913
1914         return 0;
1915 }
1916
1917 static int igb_get_coalesce(struct net_device *netdev,
1918                             struct ethtool_coalesce *ec)
1919 {
1920         struct igb_adapter *adapter = netdev_priv(netdev);
1921
1922         if (adapter->itr_setting <= 3)
1923                 ec->rx_coalesce_usecs = adapter->itr_setting;
1924         else
1925                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1926
1927         return 0;
1928 }
1929
1930
1931 static int igb_nway_reset(struct net_device *netdev)
1932 {
1933         struct igb_adapter *adapter = netdev_priv(netdev);
1934         if (netif_running(netdev))
1935                 igb_reinit_locked(adapter);
1936         return 0;
1937 }
1938
1939 static int igb_get_sset_count(struct net_device *netdev, int sset)
1940 {
1941         switch (sset) {
1942         case ETH_SS_STATS:
1943                 return IGB_STATS_LEN;
1944         case ETH_SS_TEST:
1945                 return IGB_TEST_LEN;
1946         default:
1947                 return -ENOTSUPP;
1948         }
1949 }
1950
1951 static void igb_get_ethtool_stats(struct net_device *netdev,
1952                                   struct ethtool_stats *stats, u64 *data)
1953 {
1954         struct igb_adapter *adapter = netdev_priv(netdev);
1955         u64 *queue_stat;
1956         int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1957         int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1958         int j;
1959         int i;
1960
1961         igb_update_stats(adapter);
1962         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1963                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1964                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1965                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1966         }
1967         for (j = 0; j < adapter->num_tx_queues; j++) {
1968                 int k;
1969                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1970                 for (k = 0; k < stat_count_tx; k++)
1971                         data[i + k] = queue_stat[k];
1972                 i += k;
1973         }
1974         for (j = 0; j < adapter->num_rx_queues; j++) {
1975                 int k;
1976                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1977                 for (k = 0; k < stat_count_rx; k++)
1978                         data[i + k] = queue_stat[k];
1979                 i += k;
1980         }
1981 }
1982
1983 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1984 {
1985         struct igb_adapter *adapter = netdev_priv(netdev);
1986         u8 *p = data;
1987         int i;
1988
1989         switch (stringset) {
1990         case ETH_SS_TEST:
1991                 memcpy(data, *igb_gstrings_test,
1992                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1993                 break;
1994         case ETH_SS_STATS:
1995                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1996                         memcpy(p, igb_gstrings_stats[i].stat_string,
1997                                ETH_GSTRING_LEN);
1998                         p += ETH_GSTRING_LEN;
1999                 }
2000                 for (i = 0; i < adapter->num_tx_queues; i++) {
2001                         sprintf(p, "tx_queue_%u_packets", i);
2002                         p += ETH_GSTRING_LEN;
2003                         sprintf(p, "tx_queue_%u_bytes", i);
2004                         p += ETH_GSTRING_LEN;
2005                 }
2006                 for (i = 0; i < adapter->num_rx_queues; i++) {
2007                         sprintf(p, "rx_queue_%u_packets", i);
2008                         p += ETH_GSTRING_LEN;
2009                         sprintf(p, "rx_queue_%u_bytes", i);
2010                         p += ETH_GSTRING_LEN;
2011                         sprintf(p, "rx_queue_%u_drops", i);
2012                         p += ETH_GSTRING_LEN;
2013                 }
2014 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2015                 break;
2016         }
2017 }
2018
2019 static const struct ethtool_ops igb_ethtool_ops = {
2020         .get_settings           = igb_get_settings,
2021         .set_settings           = igb_set_settings,
2022         .get_drvinfo            = igb_get_drvinfo,
2023         .get_regs_len           = igb_get_regs_len,
2024         .get_regs               = igb_get_regs,
2025         .get_wol                = igb_get_wol,
2026         .set_wol                = igb_set_wol,
2027         .get_msglevel           = igb_get_msglevel,
2028         .set_msglevel           = igb_set_msglevel,
2029         .nway_reset             = igb_nway_reset,
2030         .get_link               = ethtool_op_get_link,
2031         .get_eeprom_len         = igb_get_eeprom_len,
2032         .get_eeprom             = igb_get_eeprom,
2033         .set_eeprom             = igb_set_eeprom,
2034         .get_ringparam          = igb_get_ringparam,
2035         .set_ringparam          = igb_set_ringparam,
2036         .get_pauseparam         = igb_get_pauseparam,
2037         .set_pauseparam         = igb_set_pauseparam,
2038         .get_rx_csum            = igb_get_rx_csum,
2039         .set_rx_csum            = igb_set_rx_csum,
2040         .get_tx_csum            = igb_get_tx_csum,
2041         .set_tx_csum            = igb_set_tx_csum,
2042         .get_sg                 = ethtool_op_get_sg,
2043         .set_sg                 = ethtool_op_set_sg,
2044         .get_tso                = ethtool_op_get_tso,
2045         .set_tso                = igb_set_tso,
2046         .self_test              = igb_diag_test,
2047         .get_strings            = igb_get_strings,
2048         .phys_id                = igb_phys_id,
2049         .get_sset_count         = igb_get_sset_count,
2050         .get_ethtool_stats      = igb_get_ethtool_stats,
2051         .get_coalesce           = igb_get_coalesce,
2052         .set_coalesce           = igb_set_coalesce,
2053 };
2054
2055 void igb_set_ethtool_ops(struct net_device *netdev)
2056 {
2057         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2058 }