a7b6b12c1c05f5590d15b7eb7522a1cc1648f0ab
[safe/jmp/linux-2.6] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2  *
3  * Copyright (c) 2004-2009 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Written by: Michael Chan  (mchan@broadcom.com)
10  */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51
52 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
53 #define BCM_CNIC 1
54 #include "cnic_if.h"
55 #endif
56 #include "bnx2.h"
57 #include "bnx2_fw.h"
58
59 #define DRV_MODULE_NAME         "bnx2"
60 #define PFX DRV_MODULE_NAME     ": "
61 #define DRV_MODULE_VERSION      "2.0.3"
62 #define DRV_MODULE_RELDATE      "Dec 03, 2009"
63 #define FW_MIPS_FILE_06         "bnx2/bnx2-mips-06-5.0.0.j3.fw"
64 #define FW_RV2P_FILE_06         "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09         "bnx2/bnx2-mips-09-5.0.0.j3.fw"
66 #define FW_RV2P_FILE_09_Ax      "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09         "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT  (5*HZ)
73
74 static char version[] __devinitdata =
75         "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
86
87 static int disable_msi = 0;
88
89 module_param(disable_msi, int, 0);
90 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
91
92 typedef enum {
93         BCM5706 = 0,
94         NC370T,
95         NC370I,
96         BCM5706S,
97         NC370F,
98         BCM5708,
99         BCM5708S,
100         BCM5709,
101         BCM5709S,
102         BCM5716,
103         BCM5716S,
104 } board_t;
105
106 /* indexed by board_t, above */
107 static struct {
108         char *name;
109 } board_info[] __devinitdata = {
110         { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111         { "HP NC370T Multifunction Gigabit Server Adapter" },
112         { "HP NC370i Multifunction Gigabit Server Adapter" },
113         { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114         { "HP NC370F Multifunction Gigabit Server Adapter" },
115         { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116         { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117         { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118         { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119         { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120         { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121         };
122
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
124         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125           PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
126         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127           PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
128         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
129           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
130         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
131           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
132         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133           PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
134         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
135           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
136         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
137           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
138         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
139           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
140         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
141           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
142         { PCI_VENDOR_ID_BROADCOM, 0x163b,
143           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
144         { PCI_VENDOR_ID_BROADCOM, 0x163c,
145           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
146         { 0, }
147 };
148
149 static const struct flash_spec flash_table[] =
150 {
151 #define BUFFERED_FLAGS          (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS       (BNX2_NV_WREN)
153         /* Slow EEPROM */
154         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
156          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
157          "EEPROM - slow"},
158         /* Expansion entry 0001 */
159         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
161          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
162          "Entry 0001"},
163         /* Saifun SA25F010 (non-buffered flash) */
164         /* strap, cfg1, & write1 need updates */
165         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
167          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
168          "Non-buffered flash (128kB)"},
169         /* Saifun SA25F020 (non-buffered flash) */
170         /* strap, cfg1, & write1 need updates */
171         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
174          "Non-buffered flash (256kB)"},
175         /* Expansion entry 0100 */
176         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
178          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
179          "Entry 0100"},
180         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
183          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
184          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
188          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
189          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190         /* Saifun SA25F005 (non-buffered flash) */
191         /* strap, cfg1, & write1 need updates */
192         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
195          "Non-buffered flash (64kB)"},
196         /* Fast EEPROM */
197         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
199          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
200          "EEPROM - fast"},
201         /* Expansion entry 1001 */
202         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205          "Entry 1001"},
206         /* Expansion entry 1010 */
207         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
209          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
210          "Entry 1010"},
211         /* ATMEL AT45DB011B (buffered flash) */
212         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
214          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
215          "Buffered flash (128kB)"},
216         /* Expansion entry 1100 */
217         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220          "Entry 1100"},
221         /* Expansion entry 1101 */
222         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
224          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
225          "Entry 1101"},
226         /* Ateml Expansion entry 1110 */
227         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
229          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
230          "Entry 1110 (Atmel)"},
231         /* ATMEL AT45DB021B (buffered flash) */
232         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
234          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
235          "Buffered flash (256kB)"},
236 };
237
238 static const struct flash_spec flash_5709 = {
239         .flags          = BNX2_NV_BUFFERED,
240         .page_bits      = BCM5709_FLASH_PAGE_BITS,
241         .page_size      = BCM5709_FLASH_PAGE_SIZE,
242         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
243         .total_size     = BUFFERED_FLASH_TOTAL_SIZE*2,
244         .name           = "5709 Buffered flash (256kB)",
245 };
246
247 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
248
249 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
250 {
251         u32 diff;
252
253         smp_mb();
254
255         /* The ring uses 256 indices for 255 entries, one of them
256          * needs to be skipped.
257          */
258         diff = txr->tx_prod - txr->tx_cons;
259         if (unlikely(diff >= TX_DESC_CNT)) {
260                 diff &= 0xffff;
261                 if (diff == TX_DESC_CNT)
262                         diff = MAX_TX_DESC_CNT;
263         }
264         return (bp->tx_ring_size - diff);
265 }
266
267 static u32
268 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
269 {
270         u32 val;
271
272         spin_lock_bh(&bp->indirect_lock);
273         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
274         val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
275         spin_unlock_bh(&bp->indirect_lock);
276         return val;
277 }
278
279 static void
280 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
281 {
282         spin_lock_bh(&bp->indirect_lock);
283         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
284         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
285         spin_unlock_bh(&bp->indirect_lock);
286 }
287
288 static void
289 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
290 {
291         bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
292 }
293
294 static u32
295 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
296 {
297         return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
298 }
299
300 static void
301 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
302 {
303         offset += cid_addr;
304         spin_lock_bh(&bp->indirect_lock);
305         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
306                 int i;
307
308                 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
309                 REG_WR(bp, BNX2_CTX_CTX_CTRL,
310                        offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
311                 for (i = 0; i < 5; i++) {
312                         val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
313                         if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
314                                 break;
315                         udelay(5);
316                 }
317         } else {
318                 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
319                 REG_WR(bp, BNX2_CTX_DATA, val);
320         }
321         spin_unlock_bh(&bp->indirect_lock);
322 }
323
324 #ifdef BCM_CNIC
325 static int
326 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
327 {
328         struct bnx2 *bp = netdev_priv(dev);
329         struct drv_ctl_io *io = &info->data.io;
330
331         switch (info->cmd) {
332         case DRV_CTL_IO_WR_CMD:
333                 bnx2_reg_wr_ind(bp, io->offset, io->data);
334                 break;
335         case DRV_CTL_IO_RD_CMD:
336                 io->data = bnx2_reg_rd_ind(bp, io->offset);
337                 break;
338         case DRV_CTL_CTX_WR_CMD:
339                 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
340                 break;
341         default:
342                 return -EINVAL;
343         }
344         return 0;
345 }
346
347 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
348 {
349         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
350         struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
351         int sb_id;
352
353         if (bp->flags & BNX2_FLAG_USING_MSIX) {
354                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
355                 bnapi->cnic_present = 0;
356                 sb_id = bp->irq_nvecs;
357                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
358         } else {
359                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
360                 bnapi->cnic_tag = bnapi->last_status_idx;
361                 bnapi->cnic_present = 1;
362                 sb_id = 0;
363                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
364         }
365
366         cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
367         cp->irq_arr[0].status_blk = (void *)
368                 ((unsigned long) bnapi->status_blk.msi +
369                 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
370         cp->irq_arr[0].status_blk_num = sb_id;
371         cp->num_irq = 1;
372 }
373
374 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
375                               void *data)
376 {
377         struct bnx2 *bp = netdev_priv(dev);
378         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
379
380         if (ops == NULL)
381                 return -EINVAL;
382
383         if (cp->drv_state & CNIC_DRV_STATE_REGD)
384                 return -EBUSY;
385
386         bp->cnic_data = data;
387         rcu_assign_pointer(bp->cnic_ops, ops);
388
389         cp->num_irq = 0;
390         cp->drv_state = CNIC_DRV_STATE_REGD;
391
392         bnx2_setup_cnic_irq_info(bp);
393
394         return 0;
395 }
396
397 static int bnx2_unregister_cnic(struct net_device *dev)
398 {
399         struct bnx2 *bp = netdev_priv(dev);
400         struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
401         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
402
403         mutex_lock(&bp->cnic_lock);
404         cp->drv_state = 0;
405         bnapi->cnic_present = 0;
406         rcu_assign_pointer(bp->cnic_ops, NULL);
407         mutex_unlock(&bp->cnic_lock);
408         synchronize_rcu();
409         return 0;
410 }
411
412 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
413 {
414         struct bnx2 *bp = netdev_priv(dev);
415         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
416
417         cp->drv_owner = THIS_MODULE;
418         cp->chip_id = bp->chip_id;
419         cp->pdev = bp->pdev;
420         cp->io_base = bp->regview;
421         cp->drv_ctl = bnx2_drv_ctl;
422         cp->drv_register_cnic = bnx2_register_cnic;
423         cp->drv_unregister_cnic = bnx2_unregister_cnic;
424
425         return cp;
426 }
427 EXPORT_SYMBOL(bnx2_cnic_probe);
428
429 static void
430 bnx2_cnic_stop(struct bnx2 *bp)
431 {
432         struct cnic_ops *c_ops;
433         struct cnic_ctl_info info;
434
435         mutex_lock(&bp->cnic_lock);
436         c_ops = bp->cnic_ops;
437         if (c_ops) {
438                 info.cmd = CNIC_CTL_STOP_CMD;
439                 c_ops->cnic_ctl(bp->cnic_data, &info);
440         }
441         mutex_unlock(&bp->cnic_lock);
442 }
443
444 static void
445 bnx2_cnic_start(struct bnx2 *bp)
446 {
447         struct cnic_ops *c_ops;
448         struct cnic_ctl_info info;
449
450         mutex_lock(&bp->cnic_lock);
451         c_ops = bp->cnic_ops;
452         if (c_ops) {
453                 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
454                         struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
455
456                         bnapi->cnic_tag = bnapi->last_status_idx;
457                 }
458                 info.cmd = CNIC_CTL_START_CMD;
459                 c_ops->cnic_ctl(bp->cnic_data, &info);
460         }
461         mutex_unlock(&bp->cnic_lock);
462 }
463
464 #else
465
466 static void
467 bnx2_cnic_stop(struct bnx2 *bp)
468 {
469 }
470
471 static void
472 bnx2_cnic_start(struct bnx2 *bp)
473 {
474 }
475
476 #endif
477
478 static int
479 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
480 {
481         u32 val1;
482         int i, ret;
483
484         if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
485                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
486                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
487
488                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
489                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
490
491                 udelay(40);
492         }
493
494         val1 = (bp->phy_addr << 21) | (reg << 16) |
495                 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
496                 BNX2_EMAC_MDIO_COMM_START_BUSY;
497         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
498
499         for (i = 0; i < 50; i++) {
500                 udelay(10);
501
502                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
503                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
504                         udelay(5);
505
506                         val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
507                         val1 &= BNX2_EMAC_MDIO_COMM_DATA;
508
509                         break;
510                 }
511         }
512
513         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
514                 *val = 0x0;
515                 ret = -EBUSY;
516         }
517         else {
518                 *val = val1;
519                 ret = 0;
520         }
521
522         if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
523                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
524                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
525
526                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
527                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
528
529                 udelay(40);
530         }
531
532         return ret;
533 }
534
535 static int
536 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
537 {
538         u32 val1;
539         int i, ret;
540
541         if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
542                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
543                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
544
545                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
546                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
547
548                 udelay(40);
549         }
550
551         val1 = (bp->phy_addr << 21) | (reg << 16) | val |
552                 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
553                 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
554         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
555
556         for (i = 0; i < 50; i++) {
557                 udelay(10);
558
559                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
560                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
561                         udelay(5);
562                         break;
563                 }
564         }
565
566         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
567                 ret = -EBUSY;
568         else
569                 ret = 0;
570
571         if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
572                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
573                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
574
575                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
576                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
577
578                 udelay(40);
579         }
580
581         return ret;
582 }
583
584 static void
585 bnx2_disable_int(struct bnx2 *bp)
586 {
587         int i;
588         struct bnx2_napi *bnapi;
589
590         for (i = 0; i < bp->irq_nvecs; i++) {
591                 bnapi = &bp->bnx2_napi[i];
592                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
593                        BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
594         }
595         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
596 }
597
598 static void
599 bnx2_enable_int(struct bnx2 *bp)
600 {
601         int i;
602         struct bnx2_napi *bnapi;
603
604         for (i = 0; i < bp->irq_nvecs; i++) {
605                 bnapi = &bp->bnx2_napi[i];
606
607                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
608                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
609                        BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
610                        bnapi->last_status_idx);
611
612                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
613                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
614                        bnapi->last_status_idx);
615         }
616         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
617 }
618
619 static void
620 bnx2_disable_int_sync(struct bnx2 *bp)
621 {
622         int i;
623
624         atomic_inc(&bp->intr_sem);
625         if (!netif_running(bp->dev))
626                 return;
627
628         bnx2_disable_int(bp);
629         for (i = 0; i < bp->irq_nvecs; i++)
630                 synchronize_irq(bp->irq_tbl[i].vector);
631 }
632
633 static void
634 bnx2_napi_disable(struct bnx2 *bp)
635 {
636         int i;
637
638         for (i = 0; i < bp->irq_nvecs; i++)
639                 napi_disable(&bp->bnx2_napi[i].napi);
640 }
641
642 static void
643 bnx2_napi_enable(struct bnx2 *bp)
644 {
645         int i;
646
647         for (i = 0; i < bp->irq_nvecs; i++)
648                 napi_enable(&bp->bnx2_napi[i].napi);
649 }
650
651 static void
652 bnx2_netif_stop(struct bnx2 *bp)
653 {
654         bnx2_cnic_stop(bp);
655         if (netif_running(bp->dev)) {
656                 int i;
657
658                 bnx2_napi_disable(bp);
659                 netif_tx_disable(bp->dev);
660                 /* prevent tx timeout */
661                 for (i = 0; i <  bp->dev->num_tx_queues; i++) {
662                         struct netdev_queue *txq;
663
664                         txq = netdev_get_tx_queue(bp->dev, i);
665                         txq->trans_start = jiffies;
666                 }
667         }
668         bnx2_disable_int_sync(bp);
669 }
670
671 static void
672 bnx2_netif_start(struct bnx2 *bp)
673 {
674         if (atomic_dec_and_test(&bp->intr_sem)) {
675                 if (netif_running(bp->dev)) {
676                         netif_tx_wake_all_queues(bp->dev);
677                         bnx2_napi_enable(bp);
678                         bnx2_enable_int(bp);
679                         bnx2_cnic_start(bp);
680                 }
681         }
682 }
683
684 static void
685 bnx2_free_tx_mem(struct bnx2 *bp)
686 {
687         int i;
688
689         for (i = 0; i < bp->num_tx_rings; i++) {
690                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
691                 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
692
693                 if (txr->tx_desc_ring) {
694                         pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
695                                             txr->tx_desc_ring,
696                                             txr->tx_desc_mapping);
697                         txr->tx_desc_ring = NULL;
698                 }
699                 kfree(txr->tx_buf_ring);
700                 txr->tx_buf_ring = NULL;
701         }
702 }
703
704 static void
705 bnx2_free_rx_mem(struct bnx2 *bp)
706 {
707         int i;
708
709         for (i = 0; i < bp->num_rx_rings; i++) {
710                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
711                 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
712                 int j;
713
714                 for (j = 0; j < bp->rx_max_ring; j++) {
715                         if (rxr->rx_desc_ring[j])
716                                 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
717                                                     rxr->rx_desc_ring[j],
718                                                     rxr->rx_desc_mapping[j]);
719                         rxr->rx_desc_ring[j] = NULL;
720                 }
721                 vfree(rxr->rx_buf_ring);
722                 rxr->rx_buf_ring = NULL;
723
724                 for (j = 0; j < bp->rx_max_pg_ring; j++) {
725                         if (rxr->rx_pg_desc_ring[j])
726                                 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
727                                                     rxr->rx_pg_desc_ring[j],
728                                                     rxr->rx_pg_desc_mapping[j]);
729                         rxr->rx_pg_desc_ring[j] = NULL;
730                 }
731                 vfree(rxr->rx_pg_ring);
732                 rxr->rx_pg_ring = NULL;
733         }
734 }
735
736 static int
737 bnx2_alloc_tx_mem(struct bnx2 *bp)
738 {
739         int i;
740
741         for (i = 0; i < bp->num_tx_rings; i++) {
742                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
743                 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
744
745                 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
746                 if (txr->tx_buf_ring == NULL)
747                         return -ENOMEM;
748
749                 txr->tx_desc_ring =
750                         pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
751                                              &txr->tx_desc_mapping);
752                 if (txr->tx_desc_ring == NULL)
753                         return -ENOMEM;
754         }
755         return 0;
756 }
757
758 static int
759 bnx2_alloc_rx_mem(struct bnx2 *bp)
760 {
761         int i;
762
763         for (i = 0; i < bp->num_rx_rings; i++) {
764                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
765                 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
766                 int j;
767
768                 rxr->rx_buf_ring =
769                         vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
770                 if (rxr->rx_buf_ring == NULL)
771                         return -ENOMEM;
772
773                 memset(rxr->rx_buf_ring, 0,
774                        SW_RXBD_RING_SIZE * bp->rx_max_ring);
775
776                 for (j = 0; j < bp->rx_max_ring; j++) {
777                         rxr->rx_desc_ring[j] =
778                                 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
779                                                      &rxr->rx_desc_mapping[j]);
780                         if (rxr->rx_desc_ring[j] == NULL)
781                                 return -ENOMEM;
782
783                 }
784
785                 if (bp->rx_pg_ring_size) {
786                         rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
787                                                   bp->rx_max_pg_ring);
788                         if (rxr->rx_pg_ring == NULL)
789                                 return -ENOMEM;
790
791                         memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
792                                bp->rx_max_pg_ring);
793                 }
794
795                 for (j = 0; j < bp->rx_max_pg_ring; j++) {
796                         rxr->rx_pg_desc_ring[j] =
797                                 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
798                                                 &rxr->rx_pg_desc_mapping[j]);
799                         if (rxr->rx_pg_desc_ring[j] == NULL)
800                                 return -ENOMEM;
801
802                 }
803         }
804         return 0;
805 }
806
807 static void
808 bnx2_free_mem(struct bnx2 *bp)
809 {
810         int i;
811         struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
812
813         bnx2_free_tx_mem(bp);
814         bnx2_free_rx_mem(bp);
815
816         for (i = 0; i < bp->ctx_pages; i++) {
817                 if (bp->ctx_blk[i]) {
818                         pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
819                                             bp->ctx_blk[i],
820                                             bp->ctx_blk_mapping[i]);
821                         bp->ctx_blk[i] = NULL;
822                 }
823         }
824         if (bnapi->status_blk.msi) {
825                 pci_free_consistent(bp->pdev, bp->status_stats_size,
826                                     bnapi->status_blk.msi,
827                                     bp->status_blk_mapping);
828                 bnapi->status_blk.msi = NULL;
829                 bp->stats_blk = NULL;
830         }
831 }
832
833 static int
834 bnx2_alloc_mem(struct bnx2 *bp)
835 {
836         int i, status_blk_size, err;
837         struct bnx2_napi *bnapi;
838         void *status_blk;
839
840         /* Combine status and statistics blocks into one allocation. */
841         status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
842         if (bp->flags & BNX2_FLAG_MSIX_CAP)
843                 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
844                                                  BNX2_SBLK_MSIX_ALIGN_SIZE);
845         bp->status_stats_size = status_blk_size +
846                                 sizeof(struct statistics_block);
847
848         status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
849                                           &bp->status_blk_mapping);
850         if (status_blk == NULL)
851                 goto alloc_mem_err;
852
853         memset(status_blk, 0, bp->status_stats_size);
854
855         bnapi = &bp->bnx2_napi[0];
856         bnapi->status_blk.msi = status_blk;
857         bnapi->hw_tx_cons_ptr =
858                 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
859         bnapi->hw_rx_cons_ptr =
860                 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
861         if (bp->flags & BNX2_FLAG_MSIX_CAP) {
862                 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
863                         struct status_block_msix *sblk;
864
865                         bnapi = &bp->bnx2_napi[i];
866
867                         sblk = (void *) (status_blk +
868                                          BNX2_SBLK_MSIX_ALIGN_SIZE * i);
869                         bnapi->status_blk.msix = sblk;
870                         bnapi->hw_tx_cons_ptr =
871                                 &sblk->status_tx_quick_consumer_index;
872                         bnapi->hw_rx_cons_ptr =
873                                 &sblk->status_rx_quick_consumer_index;
874                         bnapi->int_num = i << 24;
875                 }
876         }
877
878         bp->stats_blk = status_blk + status_blk_size;
879
880         bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
881
882         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
883                 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
884                 if (bp->ctx_pages == 0)
885                         bp->ctx_pages = 1;
886                 for (i = 0; i < bp->ctx_pages; i++) {
887                         bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
888                                                 BCM_PAGE_SIZE,
889                                                 &bp->ctx_blk_mapping[i]);
890                         if (bp->ctx_blk[i] == NULL)
891                                 goto alloc_mem_err;
892                 }
893         }
894
895         err = bnx2_alloc_rx_mem(bp);
896         if (err)
897                 goto alloc_mem_err;
898
899         err = bnx2_alloc_tx_mem(bp);
900         if (err)
901                 goto alloc_mem_err;
902
903         return 0;
904
905 alloc_mem_err:
906         bnx2_free_mem(bp);
907         return -ENOMEM;
908 }
909
910 static void
911 bnx2_report_fw_link(struct bnx2 *bp)
912 {
913         u32 fw_link_status = 0;
914
915         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
916                 return;
917
918         if (bp->link_up) {
919                 u32 bmsr;
920
921                 switch (bp->line_speed) {
922                 case SPEED_10:
923                         if (bp->duplex == DUPLEX_HALF)
924                                 fw_link_status = BNX2_LINK_STATUS_10HALF;
925                         else
926                                 fw_link_status = BNX2_LINK_STATUS_10FULL;
927                         break;
928                 case SPEED_100:
929                         if (bp->duplex == DUPLEX_HALF)
930                                 fw_link_status = BNX2_LINK_STATUS_100HALF;
931                         else
932                                 fw_link_status = BNX2_LINK_STATUS_100FULL;
933                         break;
934                 case SPEED_1000:
935                         if (bp->duplex == DUPLEX_HALF)
936                                 fw_link_status = BNX2_LINK_STATUS_1000HALF;
937                         else
938                                 fw_link_status = BNX2_LINK_STATUS_1000FULL;
939                         break;
940                 case SPEED_2500:
941                         if (bp->duplex == DUPLEX_HALF)
942                                 fw_link_status = BNX2_LINK_STATUS_2500HALF;
943                         else
944                                 fw_link_status = BNX2_LINK_STATUS_2500FULL;
945                         break;
946                 }
947
948                 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
949
950                 if (bp->autoneg) {
951                         fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
952
953                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
954                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
955
956                         if (!(bmsr & BMSR_ANEGCOMPLETE) ||
957                             bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
958                                 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
959                         else
960                                 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
961                 }
962         }
963         else
964                 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
965
966         bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
967 }
968
969 static char *
970 bnx2_xceiver_str(struct bnx2 *bp)
971 {
972         return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
973                 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
974                  "Copper"));
975 }
976
977 static void
978 bnx2_report_link(struct bnx2 *bp)
979 {
980         if (bp->link_up) {
981                 netif_carrier_on(bp->dev);
982                 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
983                        bnx2_xceiver_str(bp));
984
985                 printk("%d Mbps ", bp->line_speed);
986
987                 if (bp->duplex == DUPLEX_FULL)
988                         printk("full duplex");
989                 else
990                         printk("half duplex");
991
992                 if (bp->flow_ctrl) {
993                         if (bp->flow_ctrl & FLOW_CTRL_RX) {
994                                 printk(", receive ");
995                                 if (bp->flow_ctrl & FLOW_CTRL_TX)
996                                         printk("& transmit ");
997                         }
998                         else {
999                                 printk(", transmit ");
1000                         }
1001                         printk("flow control ON");
1002                 }
1003                 printk("\n");
1004         }
1005         else {
1006                 netif_carrier_off(bp->dev);
1007                 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1008                        bnx2_xceiver_str(bp));
1009         }
1010
1011         bnx2_report_fw_link(bp);
1012 }
1013
1014 static void
1015 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1016 {
1017         u32 local_adv, remote_adv;
1018
1019         bp->flow_ctrl = 0;
1020         if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1021                 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1022
1023                 if (bp->duplex == DUPLEX_FULL) {
1024                         bp->flow_ctrl = bp->req_flow_ctrl;
1025                 }
1026                 return;
1027         }
1028
1029         if (bp->duplex != DUPLEX_FULL) {
1030                 return;
1031         }
1032
1033         if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1034             (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1035                 u32 val;
1036
1037                 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1038                 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1039                         bp->flow_ctrl |= FLOW_CTRL_TX;
1040                 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1041                         bp->flow_ctrl |= FLOW_CTRL_RX;
1042                 return;
1043         }
1044
1045         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1046         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1047
1048         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1049                 u32 new_local_adv = 0;
1050                 u32 new_remote_adv = 0;
1051
1052                 if (local_adv & ADVERTISE_1000XPAUSE)
1053                         new_local_adv |= ADVERTISE_PAUSE_CAP;
1054                 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1055                         new_local_adv |= ADVERTISE_PAUSE_ASYM;
1056                 if (remote_adv & ADVERTISE_1000XPAUSE)
1057                         new_remote_adv |= ADVERTISE_PAUSE_CAP;
1058                 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1059                         new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1060
1061                 local_adv = new_local_adv;
1062                 remote_adv = new_remote_adv;
1063         }
1064
1065         /* See Table 28B-3 of 802.3ab-1999 spec. */
1066         if (local_adv & ADVERTISE_PAUSE_CAP) {
1067                 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1068                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
1069                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1070                         }
1071                         else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1072                                 bp->flow_ctrl = FLOW_CTRL_RX;
1073                         }
1074                 }
1075                 else {
1076                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
1077                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1078                         }
1079                 }
1080         }
1081         else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1082                 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1083                         (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1084
1085                         bp->flow_ctrl = FLOW_CTRL_TX;
1086                 }
1087         }
1088 }
1089
1090 static int
1091 bnx2_5709s_linkup(struct bnx2 *bp)
1092 {
1093         u32 val, speed;
1094
1095         bp->link_up = 1;
1096
1097         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1098         bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1099         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1100
1101         if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1102                 bp->line_speed = bp->req_line_speed;
1103                 bp->duplex = bp->req_duplex;
1104                 return 0;
1105         }
1106         speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1107         switch (speed) {
1108                 case MII_BNX2_GP_TOP_AN_SPEED_10:
1109                         bp->line_speed = SPEED_10;
1110                         break;
1111                 case MII_BNX2_GP_TOP_AN_SPEED_100:
1112                         bp->line_speed = SPEED_100;
1113                         break;
1114                 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1115                 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1116                         bp->line_speed = SPEED_1000;
1117                         break;
1118                 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1119                         bp->line_speed = SPEED_2500;
1120                         break;
1121         }
1122         if (val & MII_BNX2_GP_TOP_AN_FD)
1123                 bp->duplex = DUPLEX_FULL;
1124         else
1125                 bp->duplex = DUPLEX_HALF;
1126         return 0;
1127 }
1128
1129 static int
1130 bnx2_5708s_linkup(struct bnx2 *bp)
1131 {
1132         u32 val;
1133
1134         bp->link_up = 1;
1135         bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1136         switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1137                 case BCM5708S_1000X_STAT1_SPEED_10:
1138                         bp->line_speed = SPEED_10;
1139                         break;
1140                 case BCM5708S_1000X_STAT1_SPEED_100:
1141                         bp->line_speed = SPEED_100;
1142                         break;
1143                 case BCM5708S_1000X_STAT1_SPEED_1G:
1144                         bp->line_speed = SPEED_1000;
1145                         break;
1146                 case BCM5708S_1000X_STAT1_SPEED_2G5:
1147                         bp->line_speed = SPEED_2500;
1148                         break;
1149         }
1150         if (val & BCM5708S_1000X_STAT1_FD)
1151                 bp->duplex = DUPLEX_FULL;
1152         else
1153                 bp->duplex = DUPLEX_HALF;
1154
1155         return 0;
1156 }
1157
1158 static int
1159 bnx2_5706s_linkup(struct bnx2 *bp)
1160 {
1161         u32 bmcr, local_adv, remote_adv, common;
1162
1163         bp->link_up = 1;
1164         bp->line_speed = SPEED_1000;
1165
1166         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1167         if (bmcr & BMCR_FULLDPLX) {
1168                 bp->duplex = DUPLEX_FULL;
1169         }
1170         else {
1171                 bp->duplex = DUPLEX_HALF;
1172         }
1173
1174         if (!(bmcr & BMCR_ANENABLE)) {
1175                 return 0;
1176         }
1177
1178         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1179         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1180
1181         common = local_adv & remote_adv;
1182         if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1183
1184                 if (common & ADVERTISE_1000XFULL) {
1185                         bp->duplex = DUPLEX_FULL;
1186                 }
1187                 else {
1188                         bp->duplex = DUPLEX_HALF;
1189                 }
1190         }
1191
1192         return 0;
1193 }
1194
1195 static int
1196 bnx2_copper_linkup(struct bnx2 *bp)
1197 {
1198         u32 bmcr;
1199
1200         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1201         if (bmcr & BMCR_ANENABLE) {
1202                 u32 local_adv, remote_adv, common;
1203
1204                 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1205                 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1206
1207                 common = local_adv & (remote_adv >> 2);
1208                 if (common & ADVERTISE_1000FULL) {
1209                         bp->line_speed = SPEED_1000;
1210                         bp->duplex = DUPLEX_FULL;
1211                 }
1212                 else if (common & ADVERTISE_1000HALF) {
1213                         bp->line_speed = SPEED_1000;
1214                         bp->duplex = DUPLEX_HALF;
1215                 }
1216                 else {
1217                         bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1218                         bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1219
1220                         common = local_adv & remote_adv;
1221                         if (common & ADVERTISE_100FULL) {
1222                                 bp->line_speed = SPEED_100;
1223                                 bp->duplex = DUPLEX_FULL;
1224                         }
1225                         else if (common & ADVERTISE_100HALF) {
1226                                 bp->line_speed = SPEED_100;
1227                                 bp->duplex = DUPLEX_HALF;
1228                         }
1229                         else if (common & ADVERTISE_10FULL) {
1230                                 bp->line_speed = SPEED_10;
1231                                 bp->duplex = DUPLEX_FULL;
1232                         }
1233                         else if (common & ADVERTISE_10HALF) {
1234                                 bp->line_speed = SPEED_10;
1235                                 bp->duplex = DUPLEX_HALF;
1236                         }
1237                         else {
1238                                 bp->line_speed = 0;
1239                                 bp->link_up = 0;
1240                         }
1241                 }
1242         }
1243         else {
1244                 if (bmcr & BMCR_SPEED100) {
1245                         bp->line_speed = SPEED_100;
1246                 }
1247                 else {
1248                         bp->line_speed = SPEED_10;
1249                 }
1250                 if (bmcr & BMCR_FULLDPLX) {
1251                         bp->duplex = DUPLEX_FULL;
1252                 }
1253                 else {
1254                         bp->duplex = DUPLEX_HALF;
1255                 }
1256         }
1257
1258         return 0;
1259 }
1260
1261 static void
1262 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1263 {
1264         u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1265
1266         val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1267         val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1268         val |= 0x02 << 8;
1269
1270         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1271                 u32 lo_water, hi_water;
1272
1273                 if (bp->flow_ctrl & FLOW_CTRL_TX)
1274                         lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1275                 else
1276                         lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1277                 if (lo_water >= bp->rx_ring_size)
1278                         lo_water = 0;
1279
1280                 hi_water = bp->rx_ring_size / 4;
1281
1282                 if (hi_water <= lo_water)
1283                         lo_water = 0;
1284
1285                 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1286                 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1287
1288                 if (hi_water > 0xf)
1289                         hi_water = 0xf;
1290                 else if (hi_water == 0)
1291                         lo_water = 0;
1292                 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1293         }
1294         bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1295 }
1296
1297 static void
1298 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1299 {
1300         int i;
1301         u32 cid;
1302
1303         for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1304                 if (i == 1)
1305                         cid = RX_RSS_CID;
1306                 bnx2_init_rx_context(bp, cid);
1307         }
1308 }
1309
1310 static void
1311 bnx2_set_mac_link(struct bnx2 *bp)
1312 {
1313         u32 val;
1314
1315         REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1316         if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1317                 (bp->duplex == DUPLEX_HALF)) {
1318                 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1319         }
1320
1321         /* Configure the EMAC mode register. */
1322         val = REG_RD(bp, BNX2_EMAC_MODE);
1323
1324         val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1325                 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1326                 BNX2_EMAC_MODE_25G_MODE);
1327
1328         if (bp->link_up) {
1329                 switch (bp->line_speed) {
1330                         case SPEED_10:
1331                                 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1332                                         val |= BNX2_EMAC_MODE_PORT_MII_10M;
1333                                         break;
1334                                 }
1335                                 /* fall through */
1336                         case SPEED_100:
1337                                 val |= BNX2_EMAC_MODE_PORT_MII;
1338                                 break;
1339                         case SPEED_2500:
1340                                 val |= BNX2_EMAC_MODE_25G_MODE;
1341                                 /* fall through */
1342                         case SPEED_1000:
1343                                 val |= BNX2_EMAC_MODE_PORT_GMII;
1344                                 break;
1345                 }
1346         }
1347         else {
1348                 val |= BNX2_EMAC_MODE_PORT_GMII;
1349         }
1350
1351         /* Set the MAC to operate in the appropriate duplex mode. */
1352         if (bp->duplex == DUPLEX_HALF)
1353                 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1354         REG_WR(bp, BNX2_EMAC_MODE, val);
1355
1356         /* Enable/disable rx PAUSE. */
1357         bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1358
1359         if (bp->flow_ctrl & FLOW_CTRL_RX)
1360                 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1361         REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1362
1363         /* Enable/disable tx PAUSE. */
1364         val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1365         val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1366
1367         if (bp->flow_ctrl & FLOW_CTRL_TX)
1368                 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1369         REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1370
1371         /* Acknowledge the interrupt. */
1372         REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1373
1374         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1375                 bnx2_init_all_rx_contexts(bp);
1376 }
1377
1378 static void
1379 bnx2_enable_bmsr1(struct bnx2 *bp)
1380 {
1381         if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1382             (CHIP_NUM(bp) == CHIP_NUM_5709))
1383                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1384                                MII_BNX2_BLK_ADDR_GP_STATUS);
1385 }
1386
1387 static void
1388 bnx2_disable_bmsr1(struct bnx2 *bp)
1389 {
1390         if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1391             (CHIP_NUM(bp) == CHIP_NUM_5709))
1392                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1393                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1394 }
1395
1396 static int
1397 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1398 {
1399         u32 up1;
1400         int ret = 1;
1401
1402         if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1403                 return 0;
1404
1405         if (bp->autoneg & AUTONEG_SPEED)
1406                 bp->advertising |= ADVERTISED_2500baseX_Full;
1407
1408         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1409                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1410
1411         bnx2_read_phy(bp, bp->mii_up1, &up1);
1412         if (!(up1 & BCM5708S_UP1_2G5)) {
1413                 up1 |= BCM5708S_UP1_2G5;
1414                 bnx2_write_phy(bp, bp->mii_up1, up1);
1415                 ret = 0;
1416         }
1417
1418         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1419                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1420                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1421
1422         return ret;
1423 }
1424
1425 static int
1426 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1427 {
1428         u32 up1;
1429         int ret = 0;
1430
1431         if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1432                 return 0;
1433
1434         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1435                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1436
1437         bnx2_read_phy(bp, bp->mii_up1, &up1);
1438         if (up1 & BCM5708S_UP1_2G5) {
1439                 up1 &= ~BCM5708S_UP1_2G5;
1440                 bnx2_write_phy(bp, bp->mii_up1, up1);
1441                 ret = 1;
1442         }
1443
1444         if (CHIP_NUM(bp) == CHIP_NUM_5709)
1445                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1446                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1447
1448         return ret;
1449 }
1450
1451 static void
1452 bnx2_enable_forced_2g5(struct bnx2 *bp)
1453 {
1454         u32 bmcr;
1455
1456         if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1457                 return;
1458
1459         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1460                 u32 val;
1461
1462                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463                                MII_BNX2_BLK_ADDR_SERDES_DIG);
1464                 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1465                 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1466                 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1467                 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1468
1469                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1470                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1471                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1472
1473         } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1474                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1475                 bmcr |= BCM5708S_BMCR_FORCE_2500;
1476         } else {
1477                 return;
1478         }
1479
1480         if (bp->autoneg & AUTONEG_SPEED) {
1481                 bmcr &= ~BMCR_ANENABLE;
1482                 if (bp->req_duplex == DUPLEX_FULL)
1483                         bmcr |= BMCR_FULLDPLX;
1484         }
1485         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1486 }
1487
1488 static void
1489 bnx2_disable_forced_2g5(struct bnx2 *bp)
1490 {
1491         u32 bmcr;
1492
1493         if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1494                 return;
1495
1496         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1497                 u32 val;
1498
1499                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1500                                MII_BNX2_BLK_ADDR_SERDES_DIG);
1501                 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1502                 val &= ~MII_BNX2_SD_MISC1_FORCE;
1503                 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1504
1505                 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1506                                MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1507                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1508
1509         } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1510                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1511                 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1512         } else {
1513                 return;
1514         }
1515
1516         if (bp->autoneg & AUTONEG_SPEED)
1517                 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1518         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1519 }
1520
1521 static void
1522 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1523 {
1524         u32 val;
1525
1526         bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1527         bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1528         if (start)
1529                 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1530         else
1531                 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1532 }
1533
1534 static int
1535 bnx2_set_link(struct bnx2 *bp)
1536 {
1537         u32 bmsr;
1538         u8 link_up;
1539
1540         if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1541                 bp->link_up = 1;
1542                 return 0;
1543         }
1544
1545         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1546                 return 0;
1547
1548         link_up = bp->link_up;
1549
1550         bnx2_enable_bmsr1(bp);
1551         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1552         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1553         bnx2_disable_bmsr1(bp);
1554
1555         if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1556             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1557                 u32 val, an_dbg;
1558
1559                 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1560                         bnx2_5706s_force_link_dn(bp, 0);
1561                         bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1562                 }
1563                 val = REG_RD(bp, BNX2_EMAC_STATUS);
1564
1565                 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1566                 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1567                 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1568
1569                 if ((val & BNX2_EMAC_STATUS_LINK) &&
1570                     !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1571                         bmsr |= BMSR_LSTATUS;
1572                 else
1573                         bmsr &= ~BMSR_LSTATUS;
1574         }
1575
1576         if (bmsr & BMSR_LSTATUS) {
1577                 bp->link_up = 1;
1578
1579                 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1580                         if (CHIP_NUM(bp) == CHIP_NUM_5706)
1581                                 bnx2_5706s_linkup(bp);
1582                         else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1583                                 bnx2_5708s_linkup(bp);
1584                         else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1585                                 bnx2_5709s_linkup(bp);
1586                 }
1587                 else {
1588                         bnx2_copper_linkup(bp);
1589                 }
1590                 bnx2_resolve_flow_ctrl(bp);
1591         }
1592         else {
1593                 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1594                     (bp->autoneg & AUTONEG_SPEED))
1595                         bnx2_disable_forced_2g5(bp);
1596
1597                 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1598                         u32 bmcr;
1599
1600                         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1601                         bmcr |= BMCR_ANENABLE;
1602                         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1603
1604                         bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1605                 }
1606                 bp->link_up = 0;
1607         }
1608
1609         if (bp->link_up != link_up) {
1610                 bnx2_report_link(bp);
1611         }
1612
1613         bnx2_set_mac_link(bp);
1614
1615         return 0;
1616 }
1617
1618 static int
1619 bnx2_reset_phy(struct bnx2 *bp)
1620 {
1621         int i;
1622         u32 reg;
1623
1624         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1625
1626 #define PHY_RESET_MAX_WAIT 100
1627         for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1628                 udelay(10);
1629
1630                 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1631                 if (!(reg & BMCR_RESET)) {
1632                         udelay(20);
1633                         break;
1634                 }
1635         }
1636         if (i == PHY_RESET_MAX_WAIT) {
1637                 return -EBUSY;
1638         }
1639         return 0;
1640 }
1641
1642 static u32
1643 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1644 {
1645         u32 adv = 0;
1646
1647         if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1648                 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1649
1650                 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1651                         adv = ADVERTISE_1000XPAUSE;
1652                 }
1653                 else {
1654                         adv = ADVERTISE_PAUSE_CAP;
1655                 }
1656         }
1657         else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1658                 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1659                         adv = ADVERTISE_1000XPSE_ASYM;
1660                 }
1661                 else {
1662                         adv = ADVERTISE_PAUSE_ASYM;
1663                 }
1664         }
1665         else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1666                 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1667                         adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1668                 }
1669                 else {
1670                         adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1671                 }
1672         }
1673         return adv;
1674 }
1675
1676 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1677
1678 static int
1679 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1680 __releases(&bp->phy_lock)
1681 __acquires(&bp->phy_lock)
1682 {
1683         u32 speed_arg = 0, pause_adv;
1684
1685         pause_adv = bnx2_phy_get_pause_adv(bp);
1686
1687         if (bp->autoneg & AUTONEG_SPEED) {
1688                 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1689                 if (bp->advertising & ADVERTISED_10baseT_Half)
1690                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1691                 if (bp->advertising & ADVERTISED_10baseT_Full)
1692                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1693                 if (bp->advertising & ADVERTISED_100baseT_Half)
1694                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1695                 if (bp->advertising & ADVERTISED_100baseT_Full)
1696                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1697                 if (bp->advertising & ADVERTISED_1000baseT_Full)
1698                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1699                 if (bp->advertising & ADVERTISED_2500baseX_Full)
1700                         speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1701         } else {
1702                 if (bp->req_line_speed == SPEED_2500)
1703                         speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1704                 else if (bp->req_line_speed == SPEED_1000)
1705                         speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1706                 else if (bp->req_line_speed == SPEED_100) {
1707                         if (bp->req_duplex == DUPLEX_FULL)
1708                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1709                         else
1710                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1711                 } else if (bp->req_line_speed == SPEED_10) {
1712                         if (bp->req_duplex == DUPLEX_FULL)
1713                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1714                         else
1715                                 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1716                 }
1717         }
1718
1719         if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1720                 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1721         if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1722                 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1723
1724         if (port == PORT_TP)
1725                 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1726                              BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1727
1728         bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1729
1730         spin_unlock_bh(&bp->phy_lock);
1731         bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1732         spin_lock_bh(&bp->phy_lock);
1733
1734         return 0;
1735 }
1736
1737 static int
1738 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1739 __releases(&bp->phy_lock)
1740 __acquires(&bp->phy_lock)
1741 {
1742         u32 adv, bmcr;
1743         u32 new_adv = 0;
1744
1745         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1746                 return (bnx2_setup_remote_phy(bp, port));
1747
1748         if (!(bp->autoneg & AUTONEG_SPEED)) {
1749                 u32 new_bmcr;
1750                 int force_link_down = 0;
1751
1752                 if (bp->req_line_speed == SPEED_2500) {
1753                         if (!bnx2_test_and_enable_2g5(bp))
1754                                 force_link_down = 1;
1755                 } else if (bp->req_line_speed == SPEED_1000) {
1756                         if (bnx2_test_and_disable_2g5(bp))
1757                                 force_link_down = 1;
1758                 }
1759                 bnx2_read_phy(bp, bp->mii_adv, &adv);
1760                 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1761
1762                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1763                 new_bmcr = bmcr & ~BMCR_ANENABLE;
1764                 new_bmcr |= BMCR_SPEED1000;
1765
1766                 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1767                         if (bp->req_line_speed == SPEED_2500)
1768                                 bnx2_enable_forced_2g5(bp);
1769                         else if (bp->req_line_speed == SPEED_1000) {
1770                                 bnx2_disable_forced_2g5(bp);
1771                                 new_bmcr &= ~0x2000;
1772                         }
1773
1774                 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1775                         if (bp->req_line_speed == SPEED_2500)
1776                                 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1777                         else
1778                                 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1779                 }
1780
1781                 if (bp->req_duplex == DUPLEX_FULL) {
1782                         adv |= ADVERTISE_1000XFULL;
1783                         new_bmcr |= BMCR_FULLDPLX;
1784                 }
1785                 else {
1786                         adv |= ADVERTISE_1000XHALF;
1787                         new_bmcr &= ~BMCR_FULLDPLX;
1788                 }
1789                 if ((new_bmcr != bmcr) || (force_link_down)) {
1790                         /* Force a link down visible on the other side */
1791                         if (bp->link_up) {
1792                                 bnx2_write_phy(bp, bp->mii_adv, adv &
1793                                                ~(ADVERTISE_1000XFULL |
1794                                                  ADVERTISE_1000XHALF));
1795                                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1796                                         BMCR_ANRESTART | BMCR_ANENABLE);
1797
1798                                 bp->link_up = 0;
1799                                 netif_carrier_off(bp->dev);
1800                                 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1801                                 bnx2_report_link(bp);
1802                         }
1803                         bnx2_write_phy(bp, bp->mii_adv, adv);
1804                         bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1805                 } else {
1806                         bnx2_resolve_flow_ctrl(bp);
1807                         bnx2_set_mac_link(bp);
1808                 }
1809                 return 0;
1810         }
1811
1812         bnx2_test_and_enable_2g5(bp);
1813
1814         if (bp->advertising & ADVERTISED_1000baseT_Full)
1815                 new_adv |= ADVERTISE_1000XFULL;
1816
1817         new_adv |= bnx2_phy_get_pause_adv(bp);
1818
1819         bnx2_read_phy(bp, bp->mii_adv, &adv);
1820         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1821
1822         bp->serdes_an_pending = 0;
1823         if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1824                 /* Force a link down visible on the other side */
1825                 if (bp->link_up) {
1826                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1827                         spin_unlock_bh(&bp->phy_lock);
1828                         msleep(20);
1829                         spin_lock_bh(&bp->phy_lock);
1830                 }
1831
1832                 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1833                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1834                         BMCR_ANENABLE);
1835                 /* Speed up link-up time when the link partner
1836                  * does not autonegotiate which is very common
1837                  * in blade servers. Some blade servers use
1838                  * IPMI for kerboard input and it's important
1839                  * to minimize link disruptions. Autoneg. involves
1840                  * exchanging base pages plus 3 next pages and
1841                  * normally completes in about 120 msec.
1842                  */
1843                 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1844                 bp->serdes_an_pending = 1;
1845                 mod_timer(&bp->timer, jiffies + bp->current_interval);
1846         } else {
1847                 bnx2_resolve_flow_ctrl(bp);
1848                 bnx2_set_mac_link(bp);
1849         }
1850
1851         return 0;
1852 }
1853
1854 #define ETHTOOL_ALL_FIBRE_SPEED                                         \
1855         (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ?                  \
1856                 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1857                 (ADVERTISED_1000baseT_Full)
1858
1859 #define ETHTOOL_ALL_COPPER_SPEED                                        \
1860         (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |            \
1861         ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |           \
1862         ADVERTISED_1000baseT_Full)
1863
1864 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1865         ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1866
1867 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1868
1869 static void
1870 bnx2_set_default_remote_link(struct bnx2 *bp)
1871 {
1872         u32 link;
1873
1874         if (bp->phy_port == PORT_TP)
1875                 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1876         else
1877                 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1878
1879         if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1880                 bp->req_line_speed = 0;
1881                 bp->autoneg |= AUTONEG_SPEED;
1882                 bp->advertising = ADVERTISED_Autoneg;
1883                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1884                         bp->advertising |= ADVERTISED_10baseT_Half;
1885                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1886                         bp->advertising |= ADVERTISED_10baseT_Full;
1887                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1888                         bp->advertising |= ADVERTISED_100baseT_Half;
1889                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1890                         bp->advertising |= ADVERTISED_100baseT_Full;
1891                 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1892                         bp->advertising |= ADVERTISED_1000baseT_Full;
1893                 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1894                         bp->advertising |= ADVERTISED_2500baseX_Full;
1895         } else {
1896                 bp->autoneg = 0;
1897                 bp->advertising = 0;
1898                 bp->req_duplex = DUPLEX_FULL;
1899                 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1900                         bp->req_line_speed = SPEED_10;
1901                         if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1902                                 bp->req_duplex = DUPLEX_HALF;
1903                 }
1904                 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1905                         bp->req_line_speed = SPEED_100;
1906                         if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1907                                 bp->req_duplex = DUPLEX_HALF;
1908                 }
1909                 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1910                         bp->req_line_speed = SPEED_1000;
1911                 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1912                         bp->req_line_speed = SPEED_2500;
1913         }
1914 }
1915
1916 static void
1917 bnx2_set_default_link(struct bnx2 *bp)
1918 {
1919         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1920                 bnx2_set_default_remote_link(bp);
1921                 return;
1922         }
1923
1924         bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1925         bp->req_line_speed = 0;
1926         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1927                 u32 reg;
1928
1929                 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1930
1931                 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1932                 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1933                 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1934                         bp->autoneg = 0;
1935                         bp->req_line_speed = bp->line_speed = SPEED_1000;
1936                         bp->req_duplex = DUPLEX_FULL;
1937                 }
1938         } else
1939                 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1940 }
1941
1942 static void
1943 bnx2_send_heart_beat(struct bnx2 *bp)
1944 {
1945         u32 msg;
1946         u32 addr;
1947
1948         spin_lock(&bp->indirect_lock);
1949         msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1950         addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1951         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1952         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1953         spin_unlock(&bp->indirect_lock);
1954 }
1955
1956 static void
1957 bnx2_remote_phy_event(struct bnx2 *bp)
1958 {
1959         u32 msg;
1960         u8 link_up = bp->link_up;
1961         u8 old_port;
1962
1963         msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1964
1965         if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1966                 bnx2_send_heart_beat(bp);
1967
1968         msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1969
1970         if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1971                 bp->link_up = 0;
1972         else {
1973                 u32 speed;
1974
1975                 bp->link_up = 1;
1976                 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1977                 bp->duplex = DUPLEX_FULL;
1978                 switch (speed) {
1979                         case BNX2_LINK_STATUS_10HALF:
1980                                 bp->duplex = DUPLEX_HALF;
1981                         case BNX2_LINK_STATUS_10FULL:
1982                                 bp->line_speed = SPEED_10;
1983                                 break;
1984                         case BNX2_LINK_STATUS_100HALF:
1985                                 bp->duplex = DUPLEX_HALF;
1986                         case BNX2_LINK_STATUS_100BASE_T4:
1987                         case BNX2_LINK_STATUS_100FULL:
1988                                 bp->line_speed = SPEED_100;
1989                                 break;
1990                         case BNX2_LINK_STATUS_1000HALF:
1991                                 bp->duplex = DUPLEX_HALF;
1992                         case BNX2_LINK_STATUS_1000FULL:
1993                                 bp->line_speed = SPEED_1000;
1994                                 break;
1995                         case BNX2_LINK_STATUS_2500HALF:
1996                                 bp->duplex = DUPLEX_HALF;
1997                         case BNX2_LINK_STATUS_2500FULL:
1998                                 bp->line_speed = SPEED_2500;
1999                                 break;
2000                         default:
2001                                 bp->line_speed = 0;
2002                                 break;
2003                 }
2004
2005                 bp->flow_ctrl = 0;
2006                 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2007                     (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2008                         if (bp->duplex == DUPLEX_FULL)
2009                                 bp->flow_ctrl = bp->req_flow_ctrl;
2010                 } else {
2011                         if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2012                                 bp->flow_ctrl |= FLOW_CTRL_TX;
2013                         if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2014                                 bp->flow_ctrl |= FLOW_CTRL_RX;
2015                 }
2016
2017                 old_port = bp->phy_port;
2018                 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2019                         bp->phy_port = PORT_FIBRE;
2020                 else
2021                         bp->phy_port = PORT_TP;
2022
2023                 if (old_port != bp->phy_port)
2024                         bnx2_set_default_link(bp);
2025
2026         }
2027         if (bp->link_up != link_up)
2028                 bnx2_report_link(bp);
2029
2030         bnx2_set_mac_link(bp);
2031 }
2032
2033 static int
2034 bnx2_set_remote_link(struct bnx2 *bp)
2035 {
2036         u32 evt_code;
2037
2038         evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2039         switch (evt_code) {
2040                 case BNX2_FW_EVT_CODE_LINK_EVENT:
2041                         bnx2_remote_phy_event(bp);
2042                         break;
2043                 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2044                 default:
2045                         bnx2_send_heart_beat(bp);
2046                         break;
2047         }
2048         return 0;
2049 }
2050
2051 static int
2052 bnx2_setup_copper_phy(struct bnx2 *bp)
2053 __releases(&bp->phy_lock)
2054 __acquires(&bp->phy_lock)
2055 {
2056         u32 bmcr;
2057         u32 new_bmcr;
2058
2059         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2060
2061         if (bp->autoneg & AUTONEG_SPEED) {
2062                 u32 adv_reg, adv1000_reg;
2063                 u32 new_adv_reg = 0;
2064                 u32 new_adv1000_reg = 0;
2065
2066                 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2067                 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2068                         ADVERTISE_PAUSE_ASYM);
2069
2070                 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2071                 adv1000_reg &= PHY_ALL_1000_SPEED;
2072
2073                 if (bp->advertising & ADVERTISED_10baseT_Half)
2074                         new_adv_reg |= ADVERTISE_10HALF;
2075                 if (bp->advertising & ADVERTISED_10baseT_Full)
2076                         new_adv_reg |= ADVERTISE_10FULL;
2077                 if (bp->advertising & ADVERTISED_100baseT_Half)
2078                         new_adv_reg |= ADVERTISE_100HALF;
2079                 if (bp->advertising & ADVERTISED_100baseT_Full)
2080                         new_adv_reg |= ADVERTISE_100FULL;
2081                 if (bp->advertising & ADVERTISED_1000baseT_Full)
2082                         new_adv1000_reg |= ADVERTISE_1000FULL;
2083
2084                 new_adv_reg |= ADVERTISE_CSMA;
2085
2086                 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2087
2088                 if ((adv1000_reg != new_adv1000_reg) ||
2089                         (adv_reg != new_adv_reg) ||
2090                         ((bmcr & BMCR_ANENABLE) == 0)) {
2091
2092                         bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2093                         bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2094                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2095                                 BMCR_ANENABLE);
2096                 }
2097                 else if (bp->link_up) {
2098                         /* Flow ctrl may have changed from auto to forced */
2099                         /* or vice-versa. */
2100
2101                         bnx2_resolve_flow_ctrl(bp);
2102                         bnx2_set_mac_link(bp);
2103                 }
2104                 return 0;
2105         }
2106
2107         new_bmcr = 0;
2108         if (bp->req_line_speed == SPEED_100) {
2109                 new_bmcr |= BMCR_SPEED100;
2110         }
2111         if (bp->req_duplex == DUPLEX_FULL) {
2112                 new_bmcr |= BMCR_FULLDPLX;
2113         }
2114         if (new_bmcr != bmcr) {
2115                 u32 bmsr;
2116
2117                 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2118                 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2119
2120                 if (bmsr & BMSR_LSTATUS) {
2121                         /* Force link down */
2122                         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2123                         spin_unlock_bh(&bp->phy_lock);
2124                         msleep(50);
2125                         spin_lock_bh(&bp->phy_lock);
2126
2127                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2128                         bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2129                 }
2130
2131                 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2132
2133                 /* Normally, the new speed is setup after the link has
2134                  * gone down and up again. In some cases, link will not go
2135                  * down so we need to set up the new speed here.
2136                  */
2137                 if (bmsr & BMSR_LSTATUS) {
2138                         bp->line_speed = bp->req_line_speed;
2139                         bp->duplex = bp->req_duplex;
2140                         bnx2_resolve_flow_ctrl(bp);
2141                         bnx2_set_mac_link(bp);
2142                 }
2143         } else {
2144                 bnx2_resolve_flow_ctrl(bp);
2145                 bnx2_set_mac_link(bp);
2146         }
2147         return 0;
2148 }
2149
2150 static int
2151 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2152 __releases(&bp->phy_lock)
2153 __acquires(&bp->phy_lock)
2154 {
2155         if (bp->loopback == MAC_LOOPBACK)
2156                 return 0;
2157
2158         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2159                 return (bnx2_setup_serdes_phy(bp, port));
2160         }
2161         else {
2162                 return (bnx2_setup_copper_phy(bp));
2163         }
2164 }
2165
2166 static int
2167 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2168 {
2169         u32 val;
2170
2171         bp->mii_bmcr = MII_BMCR + 0x10;
2172         bp->mii_bmsr = MII_BMSR + 0x10;
2173         bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2174         bp->mii_adv = MII_ADVERTISE + 0x10;
2175         bp->mii_lpa = MII_LPA + 0x10;
2176         bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2177
2178         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2179         bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2180
2181         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2182         if (reset_phy)
2183                 bnx2_reset_phy(bp);
2184
2185         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2186
2187         bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2188         val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2189         val |= MII_BNX2_SD_1000XCTL1_FIBER;
2190         bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2191
2192         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2193         bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2194         if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2195                 val |= BCM5708S_UP1_2G5;
2196         else
2197                 val &= ~BCM5708S_UP1_2G5;
2198         bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2199
2200         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2201         bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2202         val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2203         bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2204
2205         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2206
2207         val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2208               MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2209         bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2210
2211         bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2212
2213         return 0;
2214 }
2215
2216 static int
2217 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2218 {
2219         u32 val;
2220
2221         if (reset_phy)
2222                 bnx2_reset_phy(bp);
2223
2224         bp->mii_up1 = BCM5708S_UP1;
2225
2226         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2227         bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2228         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2229
2230         bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2231         val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2232         bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2233
2234         bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2235         val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2236         bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2237
2238         if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2239                 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2240                 val |= BCM5708S_UP1_2G5;
2241                 bnx2_write_phy(bp, BCM5708S_UP1, val);
2242         }
2243
2244         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2245             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2246             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2247                 /* increase tx signal amplitude */
2248                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2249                                BCM5708S_BLK_ADDR_TX_MISC);
2250                 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2251                 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2252                 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2253                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2254         }
2255
2256         val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2257               BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2258
2259         if (val) {
2260                 u32 is_backplane;
2261
2262                 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2263                 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2264                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2265                                        BCM5708S_BLK_ADDR_TX_MISC);
2266                         bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2267                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2268                                        BCM5708S_BLK_ADDR_DIG);
2269                 }
2270         }
2271         return 0;
2272 }
2273
2274 static int
2275 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2276 {
2277         if (reset_phy)
2278                 bnx2_reset_phy(bp);
2279
2280         bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2281
2282         if (CHIP_NUM(bp) == CHIP_NUM_5706)
2283                 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2284
2285         if (bp->dev->mtu > 1500) {
2286                 u32 val;
2287
2288                 /* Set extended packet length bit */
2289                 bnx2_write_phy(bp, 0x18, 0x7);
2290                 bnx2_read_phy(bp, 0x18, &val);
2291                 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2292
2293                 bnx2_write_phy(bp, 0x1c, 0x6c00);
2294                 bnx2_read_phy(bp, 0x1c, &val);
2295                 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2296         }
2297         else {
2298                 u32 val;
2299
2300                 bnx2_write_phy(bp, 0x18, 0x7);
2301                 bnx2_read_phy(bp, 0x18, &val);
2302                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2303
2304                 bnx2_write_phy(bp, 0x1c, 0x6c00);
2305                 bnx2_read_phy(bp, 0x1c, &val);
2306                 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2307         }
2308
2309         return 0;
2310 }
2311
2312 static int
2313 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2314 {
2315         u32 val;
2316
2317         if (reset_phy)
2318                 bnx2_reset_phy(bp);
2319
2320         if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2321                 bnx2_write_phy(bp, 0x18, 0x0c00);
2322                 bnx2_write_phy(bp, 0x17, 0x000a);
2323                 bnx2_write_phy(bp, 0x15, 0x310b);
2324                 bnx2_write_phy(bp, 0x17, 0x201f);
2325                 bnx2_write_phy(bp, 0x15, 0x9506);
2326                 bnx2_write_phy(bp, 0x17, 0x401f);
2327                 bnx2_write_phy(bp, 0x15, 0x14e2);
2328                 bnx2_write_phy(bp, 0x18, 0x0400);
2329         }
2330
2331         if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2332                 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2333                                MII_BNX2_DSP_EXPAND_REG | 0x8);
2334                 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2335                 val &= ~(1 << 8);
2336                 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2337         }
2338
2339         if (bp->dev->mtu > 1500) {
2340                 /* Set extended packet length bit */
2341                 bnx2_write_phy(bp, 0x18, 0x7);
2342                 bnx2_read_phy(bp, 0x18, &val);
2343                 bnx2_write_phy(bp, 0x18, val | 0x4000);
2344
2345                 bnx2_read_phy(bp, 0x10, &val);
2346                 bnx2_write_phy(bp, 0x10, val | 0x1);
2347         }
2348         else {
2349                 bnx2_write_phy(bp, 0x18, 0x7);
2350                 bnx2_read_phy(bp, 0x18, &val);
2351                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2352
2353                 bnx2_read_phy(bp, 0x10, &val);
2354                 bnx2_write_phy(bp, 0x10, val & ~0x1);
2355         }
2356
2357         /* ethernet@wirespeed */
2358         bnx2_write_phy(bp, 0x18, 0x7007);
2359         bnx2_read_phy(bp, 0x18, &val);
2360         bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2361         return 0;
2362 }
2363
2364
2365 static int
2366 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2367 __releases(&bp->phy_lock)
2368 __acquires(&bp->phy_lock)
2369 {
2370         u32 val;
2371         int rc = 0;
2372
2373         bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2374         bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2375
2376         bp->mii_bmcr = MII_BMCR;
2377         bp->mii_bmsr = MII_BMSR;
2378         bp->mii_bmsr1 = MII_BMSR;
2379         bp->mii_adv = MII_ADVERTISE;
2380         bp->mii_lpa = MII_LPA;
2381
2382         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2383
2384         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2385                 goto setup_phy;
2386
2387         bnx2_read_phy(bp, MII_PHYSID1, &val);
2388         bp->phy_id = val << 16;
2389         bnx2_read_phy(bp, MII_PHYSID2, &val);
2390         bp->phy_id |= val & 0xffff;
2391
2392         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2393                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2394                         rc = bnx2_init_5706s_phy(bp, reset_phy);
2395                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2396                         rc = bnx2_init_5708s_phy(bp, reset_phy);
2397                 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2398                         rc = bnx2_init_5709s_phy(bp, reset_phy);
2399         }
2400         else {
2401                 rc = bnx2_init_copper_phy(bp, reset_phy);
2402         }
2403
2404 setup_phy:
2405         if (!rc)
2406                 rc = bnx2_setup_phy(bp, bp->phy_port);
2407
2408         return rc;
2409 }
2410
2411 static int
2412 bnx2_set_mac_loopback(struct bnx2 *bp)
2413 {
2414         u32 mac_mode;
2415
2416         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2417         mac_mode &= ~BNX2_EMAC_MODE_PORT;
2418         mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2419         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2420         bp->link_up = 1;
2421         return 0;
2422 }
2423
2424 static int bnx2_test_link(struct bnx2 *);
2425
2426 static int
2427 bnx2_set_phy_loopback(struct bnx2 *bp)
2428 {
2429         u32 mac_mode;
2430         int rc, i;
2431
2432         spin_lock_bh(&bp->phy_lock);
2433         rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2434                             BMCR_SPEED1000);
2435         spin_unlock_bh(&bp->phy_lock);
2436         if (rc)
2437                 return rc;
2438
2439         for (i = 0; i < 10; i++) {
2440                 if (bnx2_test_link(bp) == 0)
2441                         break;
2442                 msleep(100);
2443         }
2444
2445         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2446         mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2447                       BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2448                       BNX2_EMAC_MODE_25G_MODE);
2449
2450         mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2451         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2452         bp->link_up = 1;
2453         return 0;
2454 }
2455
2456 static int
2457 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2458 {
2459         int i;
2460         u32 val;
2461
2462         bp->fw_wr_seq++;
2463         msg_data |= bp->fw_wr_seq;
2464
2465         bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2466
2467         if (!ack)
2468                 return 0;
2469
2470         /* wait for an acknowledgement. */
2471         for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2472                 msleep(10);
2473
2474                 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2475
2476                 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2477                         break;
2478         }
2479         if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2480                 return 0;
2481
2482         /* If we timed out, inform the firmware that this is the case. */
2483         if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2484                 if (!silent)
2485                         printk(KERN_ERR PFX "fw sync timeout, reset code = "
2486                                             "%x\n", msg_data);
2487
2488                 msg_data &= ~BNX2_DRV_MSG_CODE;
2489                 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2490
2491                 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2492
2493                 return -EBUSY;
2494         }
2495
2496         if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2497                 return -EIO;
2498
2499         return 0;
2500 }
2501
2502 static int
2503 bnx2_init_5709_context(struct bnx2 *bp)
2504 {
2505         int i, ret = 0;
2506         u32 val;
2507
2508         val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2509         val |= (BCM_PAGE_BITS - 8) << 16;
2510         REG_WR(bp, BNX2_CTX_COMMAND, val);
2511         for (i = 0; i < 10; i++) {
2512                 val = REG_RD(bp, BNX2_CTX_COMMAND);
2513                 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2514                         break;
2515                 udelay(2);
2516         }
2517         if (val & BNX2_CTX_COMMAND_MEM_INIT)
2518                 return -EBUSY;
2519
2520         for (i = 0; i < bp->ctx_pages; i++) {
2521                 int j;
2522
2523                 if (bp->ctx_blk[i])
2524                         memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2525                 else
2526                         return -ENOMEM;
2527
2528                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2529                        (bp->ctx_blk_mapping[i] & 0xffffffff) |
2530                        BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2531                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2532                        (u64) bp->ctx_blk_mapping[i] >> 32);
2533                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2534                        BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2535                 for (j = 0; j < 10; j++) {
2536
2537                         val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2538                         if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2539                                 break;
2540                         udelay(5);
2541                 }
2542                 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2543                         ret = -EBUSY;
2544                         break;
2545                 }
2546         }
2547         return ret;
2548 }
2549
2550 static void
2551 bnx2_init_context(struct bnx2 *bp)
2552 {
2553         u32 vcid;
2554
2555         vcid = 96;
2556         while (vcid) {
2557                 u32 vcid_addr, pcid_addr, offset;
2558                 int i;
2559
2560                 vcid--;
2561
2562                 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2563                         u32 new_vcid;
2564
2565                         vcid_addr = GET_PCID_ADDR(vcid);
2566                         if (vcid & 0x8) {
2567                                 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2568                         }
2569                         else {
2570                                 new_vcid = vcid;
2571                         }
2572                         pcid_addr = GET_PCID_ADDR(new_vcid);
2573                 }
2574                 else {
2575                         vcid_addr = GET_CID_ADDR(vcid);
2576                         pcid_addr = vcid_addr;
2577                 }
2578
2579                 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2580                         vcid_addr += (i << PHY_CTX_SHIFT);
2581                         pcid_addr += (i << PHY_CTX_SHIFT);
2582
2583                         REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2584                         REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2585
2586                         /* Zero out the context. */
2587                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2588                                 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2589                 }
2590         }
2591 }
2592
2593 static int
2594 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2595 {
2596         u16 *good_mbuf;
2597         u32 good_mbuf_cnt;
2598         u32 val;
2599
2600         good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2601         if (good_mbuf == NULL) {
2602                 printk(KERN_ERR PFX "Failed to allocate memory in "
2603                                     "bnx2_alloc_bad_rbuf\n");
2604                 return -ENOMEM;
2605         }
2606
2607         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2608                 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2609
2610         good_mbuf_cnt = 0;
2611
2612         /* Allocate a bunch of mbufs and save the good ones in an array. */
2613         val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2614         while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2615                 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2616                                 BNX2_RBUF_COMMAND_ALLOC_REQ);
2617
2618                 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2619
2620                 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2621
2622                 /* The addresses with Bit 9 set are bad memory blocks. */
2623                 if (!(val & (1 << 9))) {
2624                         good_mbuf[good_mbuf_cnt] = (u16) val;
2625                         good_mbuf_cnt++;
2626                 }
2627
2628                 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2629         }
2630
2631         /* Free the good ones back to the mbuf pool thus discarding
2632          * all the bad ones. */
2633         while (good_mbuf_cnt) {
2634                 good_mbuf_cnt--;
2635
2636                 val = good_mbuf[good_mbuf_cnt];
2637                 val = (val << 9) | val | 1;
2638
2639                 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2640         }
2641         kfree(good_mbuf);
2642         return 0;
2643 }
2644
2645 static void
2646 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2647 {
2648         u32 val;
2649
2650         val = (mac_addr[0] << 8) | mac_addr[1];
2651
2652         REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2653
2654         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2655                 (mac_addr[4] << 8) | mac_addr[5];
2656
2657         REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2658 }
2659
2660 static inline int
2661 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2662 {
2663         dma_addr_t mapping;
2664         struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2665         struct rx_bd *rxbd =
2666                 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2667         struct page *page = alloc_page(GFP_ATOMIC);
2668
2669         if (!page)
2670                 return -ENOMEM;
2671         mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2672                                PCI_DMA_FROMDEVICE);
2673         if (pci_dma_mapping_error(bp->pdev, mapping)) {
2674                 __free_page(page);
2675                 return -EIO;
2676         }
2677
2678         rx_pg->page = page;
2679         pci_unmap_addr_set(rx_pg, mapping, mapping);
2680         rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2681         rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2682         return 0;
2683 }
2684
2685 static void
2686 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2687 {
2688         struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2689         struct page *page = rx_pg->page;
2690
2691         if (!page)
2692                 return;
2693
2694         pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2695                        PCI_DMA_FROMDEVICE);
2696
2697         __free_page(page);
2698         rx_pg->page = NULL;
2699 }
2700
2701 static inline int
2702 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2703 {
2704         struct sk_buff *skb;
2705         struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2706         dma_addr_t mapping;
2707         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2708         unsigned long align;
2709
2710         skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2711         if (skb == NULL) {
2712                 return -ENOMEM;
2713         }
2714
2715         if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2716                 skb_reserve(skb, BNX2_RX_ALIGN - align);
2717
2718         mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2719                 PCI_DMA_FROMDEVICE);
2720         if (pci_dma_mapping_error(bp->pdev, mapping)) {
2721                 dev_kfree_skb(skb);
2722                 return -EIO;
2723         }
2724
2725         rx_buf->skb = skb;
2726         pci_unmap_addr_set(rx_buf, mapping, mapping);
2727
2728         rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2729         rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2730
2731         rxr->rx_prod_bseq += bp->rx_buf_use_size;
2732
2733         return 0;
2734 }
2735
2736 static int
2737 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2738 {
2739         struct status_block *sblk = bnapi->status_blk.msi;
2740         u32 new_link_state, old_link_state;
2741         int is_set = 1;
2742
2743         new_link_state = sblk->status_attn_bits & event;
2744         old_link_state = sblk->status_attn_bits_ack & event;
2745         if (new_link_state != old_link_state) {
2746                 if (new_link_state)
2747                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2748                 else
2749                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2750         } else
2751                 is_set = 0;
2752
2753         return is_set;
2754 }
2755
2756 static void
2757 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2758 {
2759         spin_lock(&bp->phy_lock);
2760
2761         if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2762                 bnx2_set_link(bp);
2763         if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2764                 bnx2_set_remote_link(bp);
2765
2766         spin_unlock(&bp->phy_lock);
2767
2768 }
2769
2770 static inline u16
2771 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2772 {
2773         u16 cons;
2774
2775         /* Tell compiler that status block fields can change. */
2776         barrier();
2777         cons = *bnapi->hw_tx_cons_ptr;
2778         barrier();
2779         if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2780                 cons++;
2781         return cons;
2782 }
2783
2784 static int
2785 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2786 {
2787         struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2788         u16 hw_cons, sw_cons, sw_ring_cons;
2789         int tx_pkt = 0, index;
2790         struct netdev_queue *txq;
2791
2792         index = (bnapi - bp->bnx2_napi);
2793         txq = netdev_get_tx_queue(bp->dev, index);
2794
2795         hw_cons = bnx2_get_hw_tx_cons(bnapi);
2796         sw_cons = txr->tx_cons;
2797
2798         while (sw_cons != hw_cons) {
2799                 struct sw_tx_bd *tx_buf;
2800                 struct sk_buff *skb;
2801                 int i, last;
2802
2803                 sw_ring_cons = TX_RING_IDX(sw_cons);
2804
2805                 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2806                 skb = tx_buf->skb;
2807
2808                 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2809                 prefetch(&skb->end);
2810
2811                 /* partial BD completions possible with TSO packets */
2812                 if (tx_buf->is_gso) {
2813                         u16 last_idx, last_ring_idx;
2814
2815                         last_idx = sw_cons + tx_buf->nr_frags + 1;
2816                         last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2817                         if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2818                                 last_idx++;
2819                         }
2820                         if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2821                                 break;
2822                         }
2823                 }
2824
2825                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
2826                         skb_headlen(skb), PCI_DMA_TODEVICE);
2827
2828                 tx_buf->skb = NULL;
2829                 last = tx_buf->nr_frags;
2830
2831                 for (i = 0; i < last; i++) {
2832                         sw_cons = NEXT_TX_BD(sw_cons);
2833
2834                         pci_unmap_page(bp->pdev,
2835                                 pci_unmap_addr(
2836                                         &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2837                                         mapping),
2838                                 skb_shinfo(skb)->frags[i].size,
2839                                 PCI_DMA_TODEVICE);
2840                 }
2841
2842                 sw_cons = NEXT_TX_BD(sw_cons);
2843
2844                 dev_kfree_skb(skb);
2845                 tx_pkt++;
2846                 if (tx_pkt == budget)
2847                         break;
2848
2849                 if (hw_cons == sw_cons)
2850                         hw_cons = bnx2_get_hw_tx_cons(bnapi);
2851         }
2852
2853         txr->hw_tx_cons = hw_cons;
2854         txr->tx_cons = sw_cons;
2855
2856         /* Need to make the tx_cons update visible to bnx2_start_xmit()
2857          * before checking for netif_tx_queue_stopped().  Without the
2858          * memory barrier, there is a small possibility that bnx2_start_xmit()
2859          * will miss it and cause the queue to be stopped forever.
2860          */
2861         smp_mb();
2862
2863         if (unlikely(netif_tx_queue_stopped(txq)) &&
2864                      (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2865                 __netif_tx_lock(txq, smp_processor_id());
2866                 if ((netif_tx_queue_stopped(txq)) &&
2867                     (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2868                         netif_tx_wake_queue(txq);
2869                 __netif_tx_unlock(txq);
2870         }
2871
2872         return tx_pkt;
2873 }
2874
2875 static void
2876 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2877                         struct sk_buff *skb, int count)
2878 {
2879         struct sw_pg *cons_rx_pg, *prod_rx_pg;
2880         struct rx_bd *cons_bd, *prod_bd;
2881         int i;
2882         u16 hw_prod, prod;
2883         u16 cons = rxr->rx_pg_cons;
2884
2885         cons_rx_pg = &rxr->rx_pg_ring[cons];
2886
2887         /* The caller was unable to allocate a new page to replace the
2888          * last one in the frags array, so we need to recycle that page
2889          * and then free the skb.
2890          */
2891         if (skb) {
2892                 struct page *page;
2893                 struct skb_shared_info *shinfo;
2894
2895                 shinfo = skb_shinfo(skb);
2896                 shinfo->nr_frags--;
2897                 page = shinfo->frags[shinfo->nr_frags].page;
2898                 shinfo->frags[shinfo->nr_frags].page = NULL;
2899
2900                 cons_rx_pg->page = page;
2901                 dev_kfree_skb(skb);
2902         }
2903
2904         hw_prod = rxr->rx_pg_prod;
2905
2906         for (i = 0; i < count; i++) {
2907                 prod = RX_PG_RING_IDX(hw_prod);
2908
2909                 prod_rx_pg = &rxr->rx_pg_ring[prod];
2910                 cons_rx_pg = &rxr->rx_pg_ring[cons];
2911                 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2912                 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2913
2914                 if (prod != cons) {
2915                         prod_rx_pg->page = cons_rx_pg->page;
2916                         cons_rx_pg->page = NULL;
2917                         pci_unmap_addr_set(prod_rx_pg, mapping,
2918                                 pci_unmap_addr(cons_rx_pg, mapping));
2919
2920                         prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2921                         prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2922
2923                 }
2924                 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2925                 hw_prod = NEXT_RX_BD(hw_prod);
2926         }
2927         rxr->rx_pg_prod = hw_prod;
2928         rxr->rx_pg_cons = cons;
2929 }
2930
2931 static inline void
2932 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2933                   struct sk_buff *skb, u16 cons, u16 prod)
2934 {
2935         struct sw_bd *cons_rx_buf, *prod_rx_buf;
2936         struct rx_bd *cons_bd, *prod_bd;
2937
2938         cons_rx_buf = &rxr->rx_buf_ring[cons];
2939         prod_rx_buf = &rxr->rx_buf_ring[prod];
2940
2941         pci_dma_sync_single_for_device(bp->pdev,
2942                 pci_unmap_addr(cons_rx_buf, mapping),
2943                 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2944
2945         rxr->rx_prod_bseq += bp->rx_buf_use_size;
2946
2947         prod_rx_buf->skb = skb;
2948
2949         if (cons == prod)
2950                 return;
2951
2952         pci_unmap_addr_set(prod_rx_buf, mapping,
2953                         pci_unmap_addr(cons_rx_buf, mapping));
2954
2955         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2956         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2957         prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2958         prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2959 }
2960
2961 static int
2962 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2963             unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2964             u32 ring_idx)
2965 {
2966         int err;
2967         u16 prod = ring_idx & 0xffff;
2968
2969         err = bnx2_alloc_rx_skb(bp, rxr, prod);
2970         if (unlikely(err)) {
2971                 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2972                 if (hdr_len) {
2973                         unsigned int raw_len = len + 4;
2974                         int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2975
2976                         bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2977                 }
2978                 return err;
2979         }
2980
2981         skb_reserve(skb, BNX2_RX_OFFSET);
2982         pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2983                          PCI_DMA_FROMDEVICE);
2984
2985         if (hdr_len == 0) {
2986                 skb_put(skb, len);
2987                 return 0;
2988         } else {
2989                 unsigned int i, frag_len, frag_size, pages;
2990                 struct sw_pg *rx_pg;
2991                 u16 pg_cons = rxr->rx_pg_cons;
2992                 u16 pg_prod = rxr->rx_pg_prod;
2993
2994                 frag_size = len + 4 - hdr_len;
2995                 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2996                 skb_put(skb, hdr_len);
2997
2998                 for (i = 0; i < pages; i++) {
2999                         dma_addr_t mapping_old;
3000
3001                         frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3002                         if (unlikely(frag_len <= 4)) {
3003                                 unsigned int tail = 4 - frag_len;
3004
3005                                 rxr->rx_pg_cons = pg_cons;
3006                                 rxr->rx_pg_prod = pg_prod;
3007                                 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3008                                                         pages - i);
3009                                 skb->len -= tail;
3010                                 if (i == 0) {
3011                                         skb->tail -= tail;
3012                                 } else {
3013                                         skb_frag_t *frag =
3014                                                 &skb_shinfo(skb)->frags[i - 1];
3015                                         frag->size -= tail;
3016                                         skb->data_len -= tail;
3017                                         skb->truesize -= tail;
3018                                 }
3019                                 return 0;
3020                         }
3021                         rx_pg = &rxr->rx_pg_ring[pg_cons];
3022
3023                         /* Don't unmap yet.  If we're unable to allocate a new
3024                          * page, we need to recycle the page and the DMA addr.
3025                          */
3026                         mapping_old = pci_unmap_addr(rx_pg, mapping);
3027                         if (i == pages - 1)
3028                                 frag_len -= 4;
3029
3030                         skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3031                         rx_pg->page = NULL;
3032
3033                         err = bnx2_alloc_rx_page(bp, rxr,
3034                                                  RX_PG_RING_IDX(pg_prod));
3035                         if (unlikely(err)) {
3036                                 rxr->rx_pg_cons = pg_cons;
3037                                 rxr->rx_pg_prod = pg_prod;
3038                                 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3039                                                         pages - i);
3040                                 return err;
3041                         }
3042
3043                         pci_unmap_page(bp->pdev, mapping_old,
3044                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
3045
3046                         frag_size -= frag_len;
3047                         skb->data_len += frag_len;
3048                         skb->truesize += frag_len;
3049                         skb->len += frag_len;
3050
3051                         pg_prod = NEXT_RX_BD(pg_prod);
3052                         pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3053                 }
3054                 rxr->rx_pg_prod = pg_prod;
3055                 rxr->rx_pg_cons = pg_cons;
3056         }
3057         return 0;
3058 }
3059
3060 static inline u16
3061 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3062 {
3063         u16 cons;
3064
3065         /* Tell compiler that status block fields can change. */
3066         barrier();
3067         cons = *bnapi->hw_rx_cons_ptr;
3068         barrier();
3069         if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3070                 cons++;
3071         return cons;
3072 }
3073
3074 static int
3075 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3076 {
3077         struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3078         u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3079         struct l2_fhdr *rx_hdr;
3080         int rx_pkt = 0, pg_ring_used = 0;
3081
3082         hw_cons = bnx2_get_hw_rx_cons(bnapi);
3083         sw_cons = rxr->rx_cons;
3084         sw_prod = rxr->rx_prod;
3085
3086         /* Memory barrier necessary as speculative reads of the rx
3087          * buffer can be ahead of the index in the status block
3088          */
3089         rmb();
3090         while (sw_cons != hw_cons) {
3091                 unsigned int len, hdr_len;
3092                 u32 status;
3093                 struct sw_bd *rx_buf;
3094                 struct sk_buff *skb;
3095                 dma_addr_t dma_addr;
3096                 u16 vtag = 0;
3097                 int hw_vlan __maybe_unused = 0;
3098
3099                 sw_ring_cons = RX_RING_IDX(sw_cons);
3100                 sw_ring_prod = RX_RING_IDX(sw_prod);
3101
3102                 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3103                 skb = rx_buf->skb;
3104
3105                 rx_buf->skb = NULL;
3106
3107                 dma_addr = pci_unmap_addr(rx_buf, mapping);
3108
3109                 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3110                         BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3111                         PCI_DMA_FROMDEVICE);
3112
3113                 rx_hdr = (struct l2_fhdr *) skb->data;
3114                 len = rx_hdr->l2_fhdr_pkt_len;
3115                 status = rx_hdr->l2_fhdr_status;
3116
3117                 hdr_len = 0;
3118                 if (status & L2_FHDR_STATUS_SPLIT) {
3119                         hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3120                         pg_ring_used = 1;
3121                 } else if (len > bp->rx_jumbo_thresh) {
3122                         hdr_len = bp->rx_jumbo_thresh;
3123                         pg_ring_used = 1;
3124                 }
3125
3126                 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3127                                        L2_FHDR_ERRORS_PHY_DECODE |
3128                                        L2_FHDR_ERRORS_ALIGNMENT |
3129                                        L2_FHDR_ERRORS_TOO_SHORT |
3130                                        L2_FHDR_ERRORS_GIANT_FRAME))) {
3131
3132                         bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3133                                           sw_ring_prod);
3134                         if (pg_ring_used) {
3135                                 int pages;
3136
3137                                 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3138
3139                                 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3140                         }
3141                         goto next_rx;
3142                 }
3143
3144                 len -= 4;
3145
3146                 if (len <= bp->rx_copy_thresh) {
3147                         struct sk_buff *new_skb;
3148
3149                         new_skb = netdev_alloc_skb(bp->dev, len + 6);
3150                         if (new_skb == NULL) {
3151                                 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3152                                                   sw_ring_prod);
3153                                 goto next_rx;
3154                         }
3155
3156                         /* aligned copy */
3157                         skb_copy_from_linear_data_offset(skb,
3158                                                          BNX2_RX_OFFSET - 6,
3159                                       new_skb->data, len + 6);
3160                         skb_reserve(new_skb, 6);
3161                         skb_put(new_skb, len);
3162
3163                         bnx2_reuse_rx_skb(bp, rxr, skb,
3164                                 sw_ring_cons, sw_ring_prod);
3165
3166                         skb = new_skb;
3167                 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3168                            dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3169                         goto next_rx;
3170
3171                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3172                     !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3173                         vtag = rx_hdr->l2_fhdr_vlan_tag;
3174 #ifdef BCM_VLAN
3175                         if (bp->vlgrp)
3176                                 hw_vlan = 1;
3177                         else
3178 #endif
3179                         {
3180                                 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3181                                         __skb_push(skb, 4);
3182
3183                                 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3184                                 ve->h_vlan_proto = htons(ETH_P_8021Q);
3185                                 ve->h_vlan_TCI = htons(vtag);
3186                                 len += 4;
3187                         }
3188                 }
3189
3190                 skb->protocol = eth_type_trans(skb, bp->dev);
3191
3192                 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3193                         (ntohs(skb->protocol) != 0x8100)) {
3194
3195                         dev_kfree_skb(skb);
3196                         goto next_rx;
3197
3198                 }
3199
3200                 skb->ip_summed = CHECKSUM_NONE;
3201                 if (bp->rx_csum &&
3202                         (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3203                         L2_FHDR_STATUS_UDP_DATAGRAM))) {
3204
3205                         if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3206                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3207                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3208                 }
3209
3210                 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3211
3212 #ifdef BCM_VLAN
3213                 if (hw_vlan)
3214                         vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3215                 else
3216 #endif
3217                         netif_receive_skb(skb);
3218
3219                 rx_pkt++;
3220
3221 next_rx:
3222                 sw_cons = NEXT_RX_BD(sw_cons);
3223                 sw_prod = NEXT_RX_BD(sw_prod);
3224
3225                 if ((rx_pkt == budget))
3226                         break;
3227
3228                 /* Refresh hw_cons to see if there is new work */
3229                 if (sw_cons == hw_cons) {
3230                         hw_cons = bnx2_get_hw_rx_cons(bnapi);
3231                         rmb();
3232                 }
3233         }
3234         rxr->rx_cons = sw_cons;
3235         rxr->rx_prod = sw_prod;
3236
3237         if (pg_ring_used)
3238                 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3239
3240         REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3241
3242         REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3243
3244         mmiowb();
3245
3246         return rx_pkt;
3247
3248 }
3249
3250 /* MSI ISR - The only difference between this and the INTx ISR
3251  * is that the MSI interrupt is always serviced.
3252  */
3253 static irqreturn_t
3254 bnx2_msi(int irq, void *dev_instance)
3255 {
3256         struct bnx2_napi *bnapi = dev_instance;
3257         struct bnx2 *bp = bnapi->bp;
3258
3259         prefetch(bnapi->status_blk.msi);
3260         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3261                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3262                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3263
3264         /* Return here if interrupt is disabled. */
3265         if (unlikely(atomic_read(&bp->intr_sem) != 0))
3266                 return IRQ_HANDLED;
3267
3268         napi_schedule(&bnapi->napi);
3269
3270         return IRQ_HANDLED;
3271 }
3272
3273 static irqreturn_t
3274 bnx2_msi_1shot(int irq, void *dev_instance)
3275 {
3276         struct bnx2_napi *bnapi = dev_instance;
3277         struct bnx2 *bp = bnapi->bp;
3278
3279         prefetch(bnapi->status_blk.msi);
3280
3281         /* Return here if interrupt is disabled. */
3282         if (unlikely(atomic_read(&bp->intr_sem) != 0))
3283                 return IRQ_HANDLED;
3284
3285         napi_schedule(&bnapi->napi);
3286
3287         return IRQ_HANDLED;
3288 }
3289
3290 static irqreturn_t
3291 bnx2_interrupt(int irq, void *dev_instance)
3292 {
3293         struct bnx2_napi *bnapi = dev_instance;
3294         struct bnx2 *bp = bnapi->bp;
3295         struct status_block *sblk = bnapi->status_blk.msi;
3296
3297         /* When using INTx, it is possible for the interrupt to arrive
3298          * at the CPU before the status block posted prior to the
3299          * interrupt. Reading a register will flush the status block.
3300          * When using MSI, the MSI message will always complete after
3301          * the status block write.
3302          */
3303         if ((sblk->status_idx == bnapi->last_status_idx) &&
3304             (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3305              BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3306                 return IRQ_NONE;
3307
3308         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3309                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3310                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3311
3312         /* Read back to deassert IRQ immediately to avoid too many
3313          * spurious interrupts.
3314          */
3315         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3316
3317         /* Return here if interrupt is shared and is disabled. */
3318         if (unlikely(atomic_read(&bp->intr_sem) != 0))
3319                 return IRQ_HANDLED;
3320
3321         if (napi_schedule_prep(&bnapi->napi)) {
3322                 bnapi->last_status_idx = sblk->status_idx;
3323                 __napi_schedule(&bnapi->napi);
3324         }
3325
3326         return IRQ_HANDLED;
3327 }
3328
3329 static inline int
3330 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3331 {
3332         struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3333         struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3334
3335         if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3336             (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3337                 return 1;
3338         return 0;
3339 }
3340
3341 #define STATUS_ATTN_EVENTS      (STATUS_ATTN_BITS_LINK_STATE | \
3342                                  STATUS_ATTN_BITS_TIMER_ABORT)
3343
3344 static inline int
3345 bnx2_has_work(struct bnx2_napi *bnapi)
3346 {
3347         struct status_block *sblk = bnapi->status_blk.msi;
3348
3349         if (bnx2_has_fast_work(bnapi))
3350                 return 1;
3351
3352 #ifdef BCM_CNIC
3353         if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3354                 return 1;
3355 #endif
3356
3357         if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3358             (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3359                 return 1;
3360
3361         return 0;
3362 }
3363
3364 static void
3365 bnx2_chk_missed_msi(struct bnx2 *bp)
3366 {
3367         struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3368         u32 msi_ctrl;
3369
3370         if (bnx2_has_work(bnapi)) {
3371                 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3372                 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3373                         return;
3374
3375                 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3376                         REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3377                                ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3378                         REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3379                         bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3380                 }
3381         }
3382
3383         bp->idle_chk_status_idx = bnapi->last_status_idx;
3384 }
3385
3386 #ifdef BCM_CNIC
3387 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3388 {
3389         struct cnic_ops *c_ops;
3390
3391         if (!bnapi->cnic_present)
3392                 return;
3393
3394         rcu_read_lock();
3395         c_ops = rcu_dereference(bp->cnic_ops);
3396         if (c_ops)
3397                 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3398                                                       bnapi->status_blk.msi);
3399         rcu_read_unlock();
3400 }
3401 #endif
3402
3403 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3404 {
3405         struct status_block *sblk = bnapi->status_blk.msi;
3406         u32 status_attn_bits = sblk->status_attn_bits;
3407         u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3408
3409         if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3410             (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3411
3412                 bnx2_phy_int(bp, bnapi);
3413
3414                 /* This is needed to take care of transient status
3415                  * during link changes.
3416                  */
3417                 REG_WR(bp, BNX2_HC_COMMAND,
3418                        bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3419                 REG_RD(bp, BNX2_HC_COMMAND);
3420         }
3421 }
3422
3423 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3424                           int work_done, int budget)
3425 {
3426         struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3427         struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3428
3429         if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3430                 bnx2_tx_int(bp, bnapi, 0);
3431
3432         if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3433                 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3434
3435         return work_done;
3436 }
3437
3438 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3439 {
3440         struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3441         struct bnx2 *bp = bnapi->bp;
3442         int work_done = 0;
3443         struct status_block_msix *sblk = bnapi->status_blk.msix;
3444
3445         while (1) {
3446                 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3447                 if (unlikely(work_done >= budget))
3448                         break;
3449
3450                 bnapi->last_status_idx = sblk->status_idx;
3451                 /* status idx must be read before checking for more work. */
3452                 rmb();
3453                 if (likely(!bnx2_has_fast_work(bnapi))) {
3454
3455                         napi_complete(napi);
3456                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3457                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3458                                bnapi->last_status_idx);
3459                         break;
3460                 }
3461         }
3462         return work_done;
3463 }
3464
3465 static int bnx2_poll(struct napi_struct *napi, int budget)
3466 {
3467         struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3468         struct bnx2 *bp = bnapi->bp;
3469         int work_done = 0;
3470         struct status_block *sblk = bnapi->status_blk.msi;
3471
3472         while (1) {
3473                 bnx2_poll_link(bp, bnapi);
3474
3475                 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3476
3477 #ifdef BCM_CNIC
3478                 bnx2_poll_cnic(bp, bnapi);
3479 #endif
3480
3481                 /* bnapi->last_status_idx is used below to tell the hw how
3482                  * much work has been processed, so we must read it before
3483                  * checking for more work.
3484                  */
3485                 bnapi->last_status_idx = sblk->status_idx;
3486
3487                 if (unlikely(work_done >= budget))
3488                         break;
3489
3490                 rmb();
3491                 if (likely(!bnx2_has_work(bnapi))) {
3492                         napi_complete(napi);
3493                         if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3494                                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3495                                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3496                                        bnapi->last_status_idx);
3497                                 break;
3498                         }
3499                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3500                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3501                                BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3502                                bnapi->last_status_idx);
3503
3504                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3505                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3506                                bnapi->last_status_idx);
3507                         break;
3508                 }
3509         }
3510
3511         return work_done;
3512 }
3513
3514 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3515  * from set_multicast.
3516  */
3517 static void
3518 bnx2_set_rx_mode(struct net_device *dev)
3519 {
3520         struct bnx2 *bp = netdev_priv(dev);
3521         u32 rx_mode, sort_mode;
3522         struct netdev_hw_addr *ha;
3523         int i;
3524
3525         if (!netif_running(dev))
3526                 return;
3527
3528         spin_lock_bh(&bp->phy_lock);
3529
3530         rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3531                                   BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3532         sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3533 #ifdef BCM_VLAN
3534         if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3535                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3536 #else
3537         if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3538                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3539 #endif
3540         if (dev->flags & IFF_PROMISC) {
3541                 /* Promiscuous mode. */
3542                 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3543                 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3544                              BNX2_RPM_SORT_USER0_PROM_VLAN;
3545         }
3546         else if (dev->flags & IFF_ALLMULTI) {
3547                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3548                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3549                                0xffffffff);
3550                 }
3551                 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3552         }
3553         else {
3554                 /* Accept one or more multicast(s). */
3555                 struct dev_mc_list *mclist;
3556                 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3557                 u32 regidx;
3558                 u32 bit;
3559                 u32 crc;
3560
3561                 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3562
3563                 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3564                      i++, mclist = mclist->next) {
3565
3566                         crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3567                         bit = crc & 0xff;
3568                         regidx = (bit & 0xe0) >> 5;
3569                         bit &= 0x1f;
3570                         mc_filter[regidx] |= (1 << bit);
3571                 }
3572
3573                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3574                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3575                                mc_filter[i]);
3576                 }
3577
3578                 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3579         }
3580
3581         if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3582                 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3583                 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3584                              BNX2_RPM_SORT_USER0_PROM_VLAN;
3585         } else if (!(dev->flags & IFF_PROMISC)) {
3586                 /* Add all entries into to the match filter list */
3587                 i = 0;
3588                 netdev_for_each_uc_addr(ha, dev) {
3589                         bnx2_set_mac_addr(bp, ha->addr,
3590                                           i + BNX2_START_UNICAST_ADDRESS_INDEX);
3591                         sort_mode |= (1 <<
3592                                       (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3593                         i++;
3594                 }
3595
3596         }
3597
3598         if (rx_mode != bp->rx_mode) {
3599                 bp->rx_mode = rx_mode;
3600                 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3601         }
3602
3603         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3604         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3605         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3606
3607         spin_unlock_bh(&bp->phy_lock);
3608 }
3609
3610 static int __devinit
3611 check_fw_section(const struct firmware *fw,
3612                  const struct bnx2_fw_file_section *section,
3613                  u32 alignment, bool non_empty)
3614 {
3615         u32 offset = be32_to_cpu(section->offset);
3616         u32 len = be32_to_cpu(section->len);
3617
3618         if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3619                 return -EINVAL;
3620         if ((non_empty && len == 0) || len > fw->size - offset ||
3621             len & (alignment - 1))
3622                 return -EINVAL;
3623         return 0;
3624 }
3625
3626 static int __devinit
3627 check_mips_fw_entry(const struct firmware *fw,
3628                     const struct bnx2_mips_fw_file_entry *entry)
3629 {
3630         if (check_fw_section(fw, &entry->text, 4, true) ||
3631             check_fw_section(fw, &entry->data, 4, false) ||
3632             check_fw_section(fw, &entry->rodata, 4, false))
3633                 return -EINVAL;
3634         return 0;
3635 }
3636
3637 static int __devinit
3638 bnx2_request_firmware(struct bnx2 *bp)
3639 {
3640         const char *mips_fw_file, *rv2p_fw_file;
3641         const struct bnx2_mips_fw_file *mips_fw;
3642         const struct bnx2_rv2p_fw_file *rv2p_fw;
3643         int rc;
3644
3645         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3646                 mips_fw_file = FW_MIPS_FILE_09;
3647                 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3648                     (CHIP_ID(bp) == CHIP_ID_5709_A1))
3649                         rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3650                 else
3651                         rv2p_fw_file = FW_RV2P_FILE_09;
3652         } else {
3653                 mips_fw_file = FW_MIPS_FILE_06;
3654                 rv2p_fw_file = FW_RV2P_FILE_06;
3655         }
3656
3657         rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3658         if (rc) {
3659                 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3660                        mips_fw_file);
3661                 return rc;
3662         }
3663
3664         rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3665         if (rc) {
3666                 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3667                        rv2p_fw_file);
3668                 return rc;
3669         }
3670         mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3671         rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3672         if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3673             check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3674             check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3675             check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3676             check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3677             check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3678                 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3679                        mips_fw_file);
3680                 return -EINVAL;
3681         }
3682         if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3683             check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3684             check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3685                 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3686                        rv2p_fw_file);
3687                 return -EINVAL;
3688         }
3689
3690         return 0;
3691 }
3692
3693 static u32
3694 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3695 {
3696         switch (idx) {
3697         case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3698                 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3699                 rv2p_code |= RV2P_BD_PAGE_SIZE;
3700                 break;
3701         }
3702         return rv2p_code;
3703 }
3704
3705 static int
3706 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3707              const struct bnx2_rv2p_fw_file_entry *fw_entry)
3708 {
3709         u32 rv2p_code_len, file_offset;
3710         __be32 *rv2p_code;
3711         int i;
3712         u32 val, cmd, addr;
3713
3714         rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3715         file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3716
3717         rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3718
3719         if (rv2p_proc == RV2P_PROC1) {
3720                 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3721                 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3722         } else {
3723                 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3724                 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3725         }
3726
3727         for (i = 0; i < rv2p_code_len; i += 8) {
3728                 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3729                 rv2p_code++;
3730                 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3731                 rv2p_code++;
3732
3733                 val = (i / 8) | cmd;
3734                 REG_WR(bp, addr, val);
3735         }
3736
3737         rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3738         for (i = 0; i < 8; i++) {
3739                 u32 loc, code;
3740
3741                 loc = be32_to_cpu(fw_entry->fixup[i]);
3742                 if (loc && ((loc * 4) < rv2p_code_len)) {
3743                         code = be32_to_cpu(*(rv2p_code + loc - 1));
3744                         REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3745                         code = be32_to_cpu(*(rv2p_code + loc));
3746                         code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3747                         REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3748
3749                         val = (loc / 2) | cmd;
3750                         REG_WR(bp, addr, val);
3751                 }
3752         }
3753
3754         /* Reset the processor, un-stall is done later. */
3755         if (rv2p_proc == RV2P_PROC1) {
3756                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3757         }
3758         else {
3759                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3760         }
3761
3762         return 0;
3763 }
3764
3765 static int
3766 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3767             const struct bnx2_mips_fw_file_entry *fw_entry)
3768 {
3769         u32 addr, len, file_offset;
3770         __be32 *data;
3771         u32 offset;
3772         u32 val;
3773
3774         /* Halt the CPU. */
3775         val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3776         val |= cpu_reg->mode_value_halt;
3777         bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3778         bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3779
3780         /* Load the Text area. */
3781         addr = be32_to_cpu(fw_entry->text.addr);
3782         len = be32_to_cpu(fw_entry->text.len);
3783         file_offset = be32_to_cpu(fw_entry->text.offset);
3784         data = (__be32 *)(bp->mips_firmware->data + file_offset);
3785
3786         offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3787         if (len) {
3788                 int j;
3789
3790                 for (j = 0; j < (len / 4); j++, offset += 4)
3791                         bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3792         }
3793
3794         /* Load the Data area. */
3795         addr = be32_to_cpu(fw_entry->data.addr);
3796         len = be32_to_cpu(fw_entry->data.len);
3797         file_offset = be32_to_cpu(fw_entry->data.offset);
3798         data = (__be32 *)(bp->mips_firmware->data + file_offset);
3799
3800         offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3801         if (len) {
3802                 int j;
3803
3804                 for (j = 0; j < (len / 4); j++, offset += 4)
3805                         bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3806         }
3807
3808         /* Load the Read-Only area. */
3809         addr = be32_to_cpu(fw_entry->rodata.addr);
3810         len = be32_to_cpu(fw_entry->rodata.len);
3811         file_offset = be32_to_cpu(fw_entry->rodata.offset);
3812         data = (__be32 *)(bp->mips_firmware->data + file_offset);
3813
3814         offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3815         if (len) {
3816                 int j;
3817
3818                 for (j = 0; j < (len / 4); j++, offset += 4)
3819                         bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3820         }
3821
3822         /* Clear the pre-fetch instruction. */
3823         bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3824
3825         val = be32_to_cpu(fw_entry->start_addr);
3826         bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3827
3828         /* Start the CPU. */
3829         val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3830         val &= ~cpu_reg->mode_value_halt;
3831         bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3832         bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3833
3834         return 0;
3835 }
3836
3837 static int
3838 bnx2_init_cpus(struct bnx2 *bp)
3839 {
3840         const struct bnx2_mips_fw_file *mips_fw =
3841                 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3842         const struct bnx2_rv2p_fw_file *rv2p_fw =
3843                 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3844         int rc;
3845
3846         /* Initialize the RV2P processor. */
3847         load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3848         load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3849
3850         /* Initialize the RX Processor. */
3851         rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3852         if (rc)
3853                 goto init_cpu_err;
3854
3855         /* Initialize the TX Processor. */
3856         rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3857         if (rc)
3858                 goto init_cpu_err;
3859
3860         /* Initialize the TX Patch-up Processor. */
3861         rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3862         if (rc)
3863                 goto init_cpu_err;
3864
3865         /* Initialize the Completion Processor. */
3866         rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3867         if (rc)
3868                 goto init_cpu_err;
3869
3870         /* Initialize the Command Processor. */
3871         rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3872
3873 init_cpu_err:
3874         return rc;
3875 }
3876
3877 static int
3878 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3879 {
3880         u16 pmcsr;
3881
3882         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3883
3884         switch (state) {
3885         case PCI_D0: {
3886                 u32 val;
3887
3888                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3889                         (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3890                         PCI_PM_CTRL_PME_STATUS);
3891
3892                 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3893                         /* delay required during transition out of D3hot */
3894                         msleep(20);
3895
3896                 val = REG_RD(bp, BNX2_EMAC_MODE);
3897                 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3898                 val &= ~BNX2_EMAC_MODE_MPKT;
3899                 REG_WR(bp, BNX2_EMAC_MODE, val);
3900
3901                 val = REG_RD(bp, BNX2_RPM_CONFIG);
3902                 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3903                 REG_WR(bp, BNX2_RPM_CONFIG, val);
3904                 break;
3905         }
3906         case PCI_D3hot: {
3907                 int i;
3908                 u32 val, wol_msg;
3909
3910                 if (bp->wol) {
3911                         u32 advertising;
3912                         u8 autoneg;
3913
3914                         autoneg = bp->autoneg;
3915                         advertising = bp->advertising;
3916
3917                         if (bp->phy_port == PORT_TP) {
3918                                 bp->autoneg = AUTONEG_SPEED;
3919                                 bp->advertising = ADVERTISED_10baseT_Half |
3920                                         ADVERTISED_10baseT_Full |
3921                                         ADVERTISED_100baseT_Half |
3922                                         ADVERTISED_100baseT_Full |
3923                                         ADVERTISED_Autoneg;
3924                         }
3925
3926                         spin_lock_bh(&bp->phy_lock);
3927                         bnx2_setup_phy(bp, bp->phy_port);
3928                         spin_unlock_bh(&bp->phy_lock);
3929
3930                         bp->autoneg = autoneg;
3931                         bp->advertising = advertising;
3932
3933                         bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3934
3935                         val = REG_RD(bp, BNX2_EMAC_MODE);
3936
3937                         /* Enable port mode. */
3938                         val &= ~BNX2_EMAC_MODE_PORT;
3939                         val |= BNX2_EMAC_MODE_MPKT_RCVD |
3940                                BNX2_EMAC_MODE_ACPI_RCVD |
3941                                BNX2_EMAC_MODE_MPKT;
3942                         if (bp->phy_port == PORT_TP)
3943                                 val |= BNX2_EMAC_MODE_PORT_MII;
3944                         else {
3945                                 val |= BNX2_EMAC_MODE_PORT_GMII;
3946                                 if (bp->line_speed == SPEED_2500)
3947                                         val |= BNX2_EMAC_MODE_25G_MODE;
3948                         }
3949
3950                         REG_WR(bp, BNX2_EMAC_MODE, val);
3951
3952                         /* receive all multicast */
3953                         for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3954                                 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3955                                        0xffffffff);
3956                         }
3957                         REG_WR(bp, BNX2_EMAC_RX_MODE,
3958                                BNX2_EMAC_RX_MODE_SORT_MODE);
3959
3960                         val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3961                               BNX2_RPM_SORT_USER0_MC_EN;
3962                         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3963                         REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3964                         REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3965                                BNX2_RPM_SORT_USER0_ENA);
3966
3967                         /* Need to enable EMAC and RPM for WOL. */
3968                         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3969                                BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3970                                BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3971                                BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3972
3973                         val = REG_RD(bp, BNX2_RPM_CONFIG);
3974                         val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3975                         REG_WR(bp, BNX2_RPM_CONFIG, val);
3976
3977                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3978                 }
3979                 else {
3980                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3981                 }
3982
3983                 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3984                         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3985                                      1, 0);
3986
3987                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3988                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3989                     (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3990
3991                         if (bp->wol)
3992                                 pmcsr |= 3;
3993                 }
3994                 else {
3995                         pmcsr |= 3;
3996                 }
3997                 if (bp->wol) {
3998                         pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3999                 }
4000                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4001                                       pmcsr);
4002
4003                 /* No more memory access after this point until
4004                  * device is brought back to D0.
4005                  */
4006                 udelay(50);
4007                 break;
4008         }
4009         default:
4010                 return -EINVAL;
4011         }
4012         return 0;
4013 }
4014
4015 static int
4016 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4017 {
4018         u32 val;
4019         int j;
4020
4021         /* Request access to the flash interface. */
4022         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4023         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4024                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4025                 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4026                         break;
4027
4028                 udelay(5);
4029         }
4030
4031         if (j >= NVRAM_TIMEOUT_COUNT)
4032                 return -EBUSY;
4033
4034         return 0;
4035 }
4036
4037 static int
4038 bnx2_release_nvram_lock(struct bnx2 *bp)
4039 {
4040         int j;
4041         u32 val;
4042
4043         /* Relinquish nvram interface. */
4044         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4045
4046         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4047                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4048                 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4049                         break;
4050
4051                 udelay(5);
4052         }
4053
4054         if (j >= NVRAM_TIMEOUT_COUNT)
4055                 return -EBUSY;
4056
4057         return 0;
4058 }
4059
4060
4061 static int
4062 bnx2_enable_nvram_write(struct bnx2 *bp)
4063 {
4064         u32 val;
4065
4066         val = REG_RD(bp, BNX2_MISC_CFG);
4067         REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4068
4069         if (bp->flash_info->flags & BNX2_NV_WREN) {
4070                 int j;
4071
4072                 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4073                 REG_WR(bp, BNX2_NVM_COMMAND,
4074                        BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4075
4076                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4077                         udelay(5);
4078
4079                         val = REG_RD(bp, BNX2_NVM_COMMAND);
4080                         if (val & BNX2_NVM_COMMAND_DONE)
4081                                 break;
4082                 }
4083
4084                 if (j >= NVRAM_TIMEOUT_COUNT)
4085                         return -EBUSY;
4086         }
4087         return 0;
4088 }
4089
4090 static void
4091 bnx2_disable_nvram_write(struct bnx2 *bp)
4092 {
4093         u32 val;
4094
4095         val = REG_RD(bp, BNX2_MISC_CFG);
4096         REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4097 }
4098
4099
4100 static void
4101 bnx2_enable_nvram_access(struct bnx2 *bp)
4102 {
4103         u32 val;
4104
4105         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4106         /* Enable both bits, even on read. */
4107         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4108                val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4109 }
4110
4111 static void
4112 bnx2_disable_nvram_access(struct bnx2 *bp)
4113 {
4114         u32 val;
4115
4116         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4117         /* Disable both bits, even after read. */
4118         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4119                 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4120                         BNX2_NVM_ACCESS_ENABLE_WR_EN));
4121 }
4122
4123 static int
4124 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4125 {
4126         u32 cmd;
4127         int j;
4128
4129         if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4130                 /* Buffered flash, no erase needed */
4131                 return 0;
4132
4133         /* Build an erase command */
4134         cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4135               BNX2_NVM_COMMAND_DOIT;
4136
4137         /* Need to clear DONE bit separately. */
4138         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4139
4140         /* Address of the NVRAM to read from. */
4141         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4142
4143         /* Issue an erase command. */
4144         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4145
4146         /* Wait for completion. */
4147         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4148                 u32 val;
4149
4150                 udelay(5);
4151
4152                 val = REG_RD(bp, BNX2_NVM_COMMAND);
4153                 if (val & BNX2_NVM_COMMAND_DONE)
4154                         break;
4155         }
4156
4157         if (j >= NVRAM_TIMEOUT_COUNT)
4158                 return -EBUSY;
4159
4160         return 0;
4161 }
4162
4163 static int
4164 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4165 {
4166         u32 cmd;
4167         int j;
4168
4169         /* Build the command word. */
4170         cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4171
4172         /* Calculate an offset of a buffered flash, not needed for 5709. */
4173         if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4174                 offset = ((offset / bp->flash_info->page_size) <<
4175                            bp->flash_info->page_bits) +
4176                           (offset % bp->flash_info->page_size);
4177         }
4178
4179         /* Need to clear DONE bit separately. */
4180         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4181
4182         /* Address of the NVRAM to read from. */
4183         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4184
4185         /* Issue a read command. */
4186         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4187
4188         /* Wait for completion. */
4189         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4190                 u32 val;
4191
4192                 udelay(5);
4193
4194                 val = REG_RD(bp, BNX2_NVM_COMMAND);
4195                 if (val & BNX2_NVM_COMMAND_DONE) {
4196                         __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4197                         memcpy(ret_val, &v, 4);
4198                         break;
4199                 }
4200         }
4201         if (j >= NVRAM_TIMEOUT_COUNT)
4202                 return -EBUSY;
4203
4204         return 0;
4205 }
4206
4207
4208 static int
4209 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4210 {
4211         u32 cmd;
4212         __be32 val32;
4213         int j;
4214
4215         /* Build the command word. */
4216         cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4217
4218         /* Calculate an offset of a buffered flash, not needed for 5709. */
4219         if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4220                 offset = ((offset / bp->flash_info->page_size) <<
4221                           bp->flash_info->page_bits) +
4222                          (offset % bp->flash_info->page_size);
4223         }
4224
4225         /* Need to clear DONE bit separately. */
4226         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4227
4228         memcpy(&val32, val, 4);
4229
4230         /* Write the data. */
4231         REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4232
4233         /* Address of the NVRAM to write to. */
4234         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4235
4236         /* Issue the write command. */
4237         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4238
4239         /* Wait for completion. */
4240         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4241                 udelay(5);
4242
4243                 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4244                         break;
4245         }
4246         if (j >= NVRAM_TIMEOUT_COUNT)
4247                 return -EBUSY;
4248
4249         return 0;
4250 }
4251
4252 static int
4253 bnx2_init_nvram(struct bnx2 *bp)
4254 {
4255         u32 val;
4256         int j, entry_count, rc = 0;
4257         const struct flash_spec *flash;
4258
4259         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4260                 bp->flash_info = &flash_5709;
4261                 goto get_flash_size;
4262         }
4263
4264         /* Determine the selected interface. */
4265         val = REG_RD(bp, BNX2_NVM_CFG1);
4266
4267         entry_count = ARRAY_SIZE(flash_table);
4268
4269         if (val & 0x40000000) {
4270
4271                 /* Flash interface has been reconfigured */
4272                 for (j = 0, flash = &flash_table[0]; j < entry_count;
4273                      j++, flash++) {
4274                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
4275                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4276                                 bp->flash_info = flash;
4277                                 break;
4278                         }
4279                 }
4280         }
4281         else {
4282                 u32 mask;
4283                 /* Not yet been reconfigured */
4284
4285                 if (val & (1 << 23))
4286                         mask = FLASH_BACKUP_STRAP_MASK;
4287                 else
4288                         mask = FLASH_STRAP_MASK;
4289
4290                 for (j = 0, flash = &flash_table[0]; j < entry_count;
4291                         j++, flash++) {
4292
4293                         if ((val & mask) == (flash->strapping & mask)) {
4294                                 bp->flash_info = flash;
4295
4296                                 /* Request access to the flash interface. */
4297                                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4298                                         return rc;
4299
4300                                 /* Enable access to flash interface */
4301                                 bnx2_enable_nvram_access(bp);
4302
4303                                 /* Reconfigure the flash interface */
4304                                 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4305                                 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4306                                 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4307                                 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4308
4309                                 /* Disable access to flash interface */
4310                                 bnx2_disable_nvram_access(bp);
4311                                 bnx2_release_nvram_lock(bp);
4312
4313                                 break;
4314                         }
4315                 }
4316         } /* if (val & 0x40000000) */
4317
4318         if (j == entry_count) {
4319                 bp->flash_info = NULL;
4320                 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4321                 return -ENODEV;
4322         }
4323
4324 get_flash_size:
4325         val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4326         val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4327         if (val)
4328                 bp->flash_size = val;
4329         else
4330                 bp->flash_size = bp->flash_info->total_size;
4331
4332         return rc;
4333 }
4334
4335 static int
4336 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4337                 int buf_size)
4338 {
4339         int rc = 0;
4340         u32 cmd_flags, offset32, len32, extra;
4341
4342         if (buf_size == 0)
4343                 return 0;
4344
4345         /* Request access to the flash interface. */
4346         if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4347                 return rc;
4348
4349         /* Enable access to flash interface */
4350         bnx2_enable_nvram_access(bp);
4351
4352         len32 = buf_size;
4353         offset32 = offset;
4354         extra = 0;
4355
4356         cmd_flags = 0;
4357
4358         if (offset32 & 3) {
4359                 u8 buf[4];
4360                 u32 pre_len;
4361
4362                 offset32 &= ~3;
4363                 pre_len = 4 - (offset & 3);
4364
4365                 if (pre_len >= len32) {
4366                         pre_len = len32;
4367                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
4368                                     BNX2_NVM_COMMAND_LAST;
4369                 }
4370                 else {
4371                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
4372                 }
4373
4374                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4375
4376                 if (rc)
4377                         return rc;
4378
4379                 memcpy(ret_buf, buf + (offset & 3), pre_len);
4380
4381                 offset32 += 4;
4382                 ret_buf += pre_len;
4383                 len32 -= pre_len;
4384         }
4385         if (len32 & 3) {
4386                 extra = 4 - (len32 & 3);
4387                 len32 = (len32 + 4) & ~3;
4388         }
4389
4390         if (len32 == 4) {
4391                 u8 buf[4];
4392
4393                 if (cmd_flags)
4394                         cmd_flags = BNX2_NVM_COMMAND_LAST;
4395                 else
4396                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
4397                                     BNX2_NVM_COMMAND_LAST;
4398
4399                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4400
4401                 memcpy(ret_buf, buf, 4 - extra);
4402         }
4403         else if (len32 > 0) {
4404                 u8 buf[4];
4405
4406                 /* Read the first word. */
4407                 if (cmd_flags)
4408                         cmd_flags = 0;
4409                 else
4410                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
4411
4412                 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4413
4414                 /* Advance to the next dword. */
4415                 offset32 += 4;
4416                 ret_buf += 4;
4417                 len32 -= 4;
4418
4419                 while (len32 > 4 && rc == 0) {
4420                         rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4421
4422                         /* Advance to the next dword. */
4423                         offset32 += 4;
4424                         ret_buf += 4;
4425                         len32 -= 4;
4426                 }
4427
4428                 if (rc)
4429                         return rc;
4430
4431                 cmd_flags = BNX2_NVM_COMMAND_LAST;
4432                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4433
4434                 memcpy(ret_buf, buf, 4 - extra);
4435         }
4436
4437         /* Disable access to flash interface */
4438         bnx2_disable_nvram_access(bp);
4439
4440         bnx2_release_nvram_lock(bp);
4441
4442         return rc;
4443 }
4444
4445 static int
4446 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4447                 int buf_size)
4448 {
4449         u32 written, offset32, len32;
4450         u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4451         int rc = 0;
4452         int align_start, align_end;
4453
4454         buf = data_buf;
4455         offset32 = offset;
4456         len32 = buf_size;
4457         align_start = align_end = 0;
4458
4459         if ((align_start = (offset32 & 3))) {
4460                 offset32 &= ~3;
4461                 len32 += align_start;
4462                 if (len32 < 4)
4463                         len32 = 4;
4464                 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4465                         return rc;
4466         }
4467
4468         if (len32 & 3) {
4469                 align_end = 4 - (len32 & 3);
4470                 len32 += align_end;
4471                 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4472                         return rc;
4473         }
4474
4475         if (align_start || align_end) {
4476                 align_buf = kmalloc(len32, GFP_KERNEL);
4477                 if (align_buf == NULL)
4478                         return -ENOMEM;
4479                 if (align_start) {
4480                         memcpy(align_buf, start, 4);
4481                 }
4482                 if (align_end) {
4483                         memcpy(align_buf + len32 - 4, end, 4);
4484                 }
4485                 memcpy(align_buf + align_start, data_buf, buf_size);
4486                 buf = align_buf;
4487         }
4488
4489         if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4490                 flash_buffer = kmalloc(264, GFP_KERNEL);
4491                 if (flash_buffer == NULL) {
4492                         rc = -ENOMEM;
4493                         goto nvram_write_end;
4494                 }
4495         }
4496
4497         written = 0;
4498         while ((written < len32) && (rc == 0)) {
4499                 u32 page_start, page_end, data_start, data_end;
4500                 u32 addr, cmd_flags;
4501                 int i;
4502
4503                 /* Find the page_start addr */
4504                 page_start = offset32 + written;
4505                 page_start -= (page_start % bp->flash_info->page_size);
4506                 /* Find the page_end addr */
4507                 page_end = page_start + bp->flash_info->page_size;
4508                 /* Find the data_start addr */
4509                 data_start = (written == 0) ? offset32 : page_start;
4510                 /* Find the data_end addr */
4511                 data_end = (page_end > offset32 + len32) ?
4512                         (offset32 + len32) : page_end;
4513
4514                 /* Request access to the flash interface. */
4515                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4516                         goto nvram_write_end;
4517
4518                 /* Enable access to flash interface */
4519                 bnx2_enable_nvram_access(bp);
4520
4521                 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4522                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4523                         int j;
4524
4525                         /* Read the whole page into the buffer
4526                          * (non-buffer flash only) */
4527                         for (j = 0; j < bp->flash_info->page_size; j += 4) {
4528                                 if (j == (bp->flash_info->page_size - 4)) {
4529                                         cmd_flags |= BNX2_NVM_COMMAND_LAST;
4530                                 }
4531                                 rc = bnx2_nvram_read_dword(bp,
4532                                         page_start + j,
4533                                         &flash_buffer[j],
4534                                         cmd_flags);
4535
4536                                 if (rc)
4537                                         goto nvram_write_end;
4538
4539                                 cmd_flags = 0;
4540                         }
4541                 }
4542
4543                 /* Enable writes to flash interface (unlock write-protect) */
4544                 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4545                         goto nvram_write_end;
4546
4547                 /* Loop to write back the buffer data from page_start to
4548                  * data_start */
4549                 i = 0;
4550                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4551                         /* Erase the page */
4552                         if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4553                                 goto nvram_write_end;
4554
4555                         /* Re-enable the write again for the actual write */
4556                         bnx2_enable_nvram_write(bp);
4557
4558                         for (addr = page_start; addr < data_start;
4559                                 addr += 4, i += 4) {
4560
4561                                 rc = bnx2_nvram_write_dword(bp, addr,
4562                                         &flash_buffer[i], cmd_flags);
4563
4564                                 if (rc != 0)
4565                                         goto nvram_write_end;
4566
4567                                 cmd_flags = 0;
4568                         }
4569                 }
4570
4571                 /* Loop to write the new data from data_start to data_end */
4572                 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4573                         if ((addr == page_end - 4) ||
4574                                 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4575                                  (addr == data_end - 4))) {
4576
4577                                 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4578                         }
4579                         rc = bnx2_nvram_write_dword(bp, addr, buf,
4580                                 cmd_flags);
4581
4582                         if (rc != 0)
4583                                 goto nvram_write_end;
4584
4585                         cmd_flags = 0;
4586                         buf += 4;
4587                 }
4588
4589                 /* Loop to write back the buffer data from data_end
4590                  * to page_end */
4591                 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4592                         for (addr = data_end; addr < page_end;
4593                                 addr += 4, i += 4) {
4594
4595                                 if (addr == page_end-4) {
4596                                         cmd_flags = BNX2_NVM_COMMAND_LAST;
4597                                 }
4598                                 rc = bnx2_nvram_write_dword(bp, addr,
4599                                         &flash_buffer[i], cmd_flags);
4600
4601                                 if (rc != 0)
4602                                         goto nvram_write_end;
4603
4604                                 cmd_flags = 0;
4605                         }
4606                 }
4607
4608                 /* Disable writes to flash interface (lock write-protect) */
4609                 bnx2_disable_nvram_write(bp);
4610
4611                 /* Disable access to flash interface */
4612                 bnx2_disable_nvram_access(bp);
4613                 bnx2_release_nvram_lock(bp);
4614
4615                 /* Increment written */
4616                 written += data_end - data_start;
4617         }
4618
4619 nvram_write_end:
4620         kfree(flash_buffer);
4621         kfree(align_buf);
4622         return rc;
4623 }
4624
4625 static void
4626 bnx2_init_fw_cap(struct bnx2 *bp)
4627 {
4628         u32 val, sig = 0;
4629
4630         bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4631         bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4632
4633         if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4634                 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4635
4636         val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4637         if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4638                 return;
4639
4640         if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4641                 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4642                 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4643         }
4644
4645         if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4646             (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4647                 u32 link;
4648
4649                 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4650
4651                 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4652                 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4653                         bp->phy_port = PORT_FIBRE;
4654                 else
4655                         bp->phy_port = PORT_TP;
4656
4657                 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4658                        BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4659         }
4660
4661         if (netif_running(bp->dev) && sig)
4662                 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4663 }
4664
4665 static void
4666 bnx2_setup_msix_tbl(struct bnx2 *bp)
4667 {
4668         REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4669
4670         REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4671         REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4672 }
4673
4674 static int
4675 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4676 {
4677         u32 val;
4678         int i, rc = 0;
4679         u8 old_port;
4680
4681         /* Wait for the current PCI transaction to complete before
4682          * issuing a reset. */
4683         REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4684                BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4685                BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4686                BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4687                BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4688         val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4689         udelay(5);
4690
4691         /* Wait for the firmware to tell us it is ok to issue a reset. */
4692         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4693
4694         /* Deposit a driver reset signature so the firmware knows that
4695          * this is a soft reset. */
4696         bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4697                       BNX2_DRV_RESET_SIGNATURE_MAGIC);
4698
4699         /* Do a dummy read to force the chip to complete all current transaction
4700          * before we issue a reset. */
4701         val = REG_RD(bp, BNX2_MISC_ID);
4702
4703         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4704                 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4705                 REG_RD(bp, BNX2_MISC_COMMAND);
4706                 udelay(5);
4707
4708                 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4709                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4710
4711                 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4712
4713         } else {
4714                 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4715                       BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4716                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4717
4718                 /* Chip reset. */
4719                 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4720
4721                 /* Reading back any register after chip reset will hang the
4722                  * bus on 5706 A0 and A1.  The msleep below provides plenty
4723                  * of margin for write posting.
4724                  */
4725                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4726                     (CHIP_ID(bp) == CHIP_ID_5706_A1))
4727                         msleep(20);
4728
4729                 /* Reset takes approximate 30 usec */
4730                 for (i = 0; i < 10; i++) {
4731                         val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4732                         if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4733                                     BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4734                                 break;
4735                         udelay(10);
4736                 }
4737
4738                 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4739                            BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4740                         printk(KERN_ERR PFX "Chip reset did not complete\n");
4741                         return -EBUSY;
4742                 }
4743         }
4744
4745         /* Make sure byte swapping is properly configured. */
4746         val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4747         if (val != 0x01020304) {
4748                 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4749                 return -ENODEV;
4750         }
4751
4752         /* Wait for the firmware to finish its initialization. */
4753         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4754         if (rc)
4755                 return rc;
4756
4757         spin_lock_bh(&bp->phy_lock);
4758         old_port = bp->phy_port;
4759         bnx2_init_fw_cap(bp);
4760         if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4761             old_port != bp->phy_port)
4762                 bnx2_set_default_remote_link(bp);
4763         spin_unlock_bh(&bp->phy_lock);
4764
4765         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4766                 /* Adjust the voltage regular to two steps lower.  The default
4767                  * of this register is 0x0000000e. */
4768                 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4769
4770                 /* Remove bad rbuf memory from the free pool. */
4771                 rc = bnx2_alloc_bad_rbuf(bp);
4772         }
4773
4774         if (bp->flags & BNX2_FLAG_USING_MSIX)
4775                 bnx2_setup_msix_tbl(bp);
4776
4777         return rc;
4778 }
4779
4780 static int
4781 bnx2_init_chip(struct bnx2 *bp)
4782 {
4783         u32 val, mtu;
4784         int rc, i;
4785
4786         /* Make sure the interrupt is not active. */
4787         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4788
4789         val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4790               BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4791 #ifdef __BIG_ENDIAN
4792               BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4793 #endif
4794               BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4795               DMA_READ_CHANS << 12 |
4796               DMA_WRITE_CHANS << 16;
4797
4798         val |= (0x2 << 20) | (1 << 11);
4799
4800         if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4801                 val |= (1 << 23);
4802
4803         if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4804             (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4805                 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4806
4807         REG_WR(bp, BNX2_DMA_CONFIG, val);
4808
4809         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4810                 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4811                 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4812                 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4813         }
4814
4815         if (bp->flags & BNX2_FLAG_PCIX) {
4816                 u16 val16;
4817
4818                 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4819                                      &val16);
4820                 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4821                                       val16 & ~PCI_X_CMD_ERO);
4822         }
4823
4824         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4825                BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4826                BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4827                BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4828
4829         /* Initialize context mapping and zero out the quick contexts.  The
4830          * context block must have already been enabled. */
4831         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4832                 rc = bnx2_init_5709_context(bp);
4833                 if (rc)
4834                         return rc;
4835         } else
4836                 bnx2_init_context(bp);
4837
4838         if ((rc = bnx2_init_cpus(bp)) != 0)
4839                 return rc;
4840
4841         bnx2_init_nvram(bp);
4842
4843         bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4844
4845         val = REG_RD(bp, BNX2_MQ_CONFIG);
4846         val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4847         val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4848         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4849                 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4850                 if (CHIP_REV(bp) == CHIP_REV_Ax)
4851                         val |= BNX2_MQ_CONFIG_HALT_DIS;
4852         }
4853
4854         REG_WR(bp, BNX2_MQ_CONFIG, val);
4855
4856         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4857         REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4858         REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4859
4860         val = (BCM_PAGE_BITS - 8) << 24;
4861         REG_WR(bp, BNX2_RV2P_CONFIG, val);
4862
4863         /* Configure page size. */
4864         val = REG_RD(bp, BNX2_TBDR_CONFIG);
4865         val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4866         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4867         REG_WR(bp, BNX2_TBDR_CONFIG, val);
4868
4869         val = bp->mac_addr[0] +
4870               (bp->mac_addr[1] << 8) +
4871               (bp->mac_addr[2] << 16) +
4872               bp->mac_addr[3] +
4873               (bp->mac_addr[4] << 8) +
4874               (bp->mac_addr[5] << 16);
4875         REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4876
4877         /* Program the MTU.  Also include 4 bytes for CRC32. */
4878         mtu = bp->dev->mtu;
4879         val = mtu + ETH_HLEN + ETH_FCS_LEN;
4880         if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4881                 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4882         REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4883
4884         if (mtu < 1500)
4885                 mtu = 1500;
4886
4887         bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4888         bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4889         bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4890
4891         memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4892         for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4893                 bp->bnx2_napi[i].last_status_idx = 0;
4894
4895         bp->idle_chk_status_idx = 0xffff;
4896
4897         bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4898
4899         /* Set up how to generate a link change interrupt. */
4900         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4901
4902         REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4903                (u64) bp->status_blk_mapping & 0xffffffff);
4904         REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4905
4906         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4907                (u64) bp->stats_blk_mapping & 0xffffffff);
4908         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4909                (u64) bp->stats_blk_mapping >> 32);
4910
4911         REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4912                (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4913
4914         REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4915                (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4916
4917         REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4918                (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4919
4920         REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4921
4922         REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4923
4924         REG_WR(bp, BNX2_HC_COM_TICKS,
4925                (bp->com_ticks_int << 16) | bp->com_ticks);
4926
4927         REG_WR(bp, BNX2_HC_CMD_TICKS,
4928                (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4929
4930         if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4931                 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4932         else
4933                 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4934         REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4935
4936         if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4937                 val = BNX2_HC_CONFIG_COLLECT_STATS;
4938         else {
4939                 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4940                       BNX2_HC_CONFIG_COLLECT_STATS;
4941         }
4942
4943         if (bp->irq_nvecs > 1) {
4944                 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4945                        BNX2_HC_MSIX_BIT_VECTOR_VAL);
4946
4947                 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4948         }
4949
4950         if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4951                 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4952
4953         REG_WR(bp, BNX2_HC_CONFIG, val);
4954
4955         for (i = 1; i < bp->irq_nvecs; i++) {
4956                 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4957                            BNX2_HC_SB_CONFIG_1;
4958
4959                 REG_WR(bp, base,
4960                         BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4961                         BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4962                         BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4963
4964                 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4965                         (bp->tx_quick_cons_trip_int << 16) |
4966                          bp->tx_quick_cons_trip);
4967
4968                 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4969                         (bp->tx_ticks_int << 16) | bp->tx_ticks);
4970
4971                 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4972                        (bp->rx_quick_cons_trip_int << 16) |
4973                         bp->rx_quick_cons_trip);
4974
4975                 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4976                         (bp->rx_ticks_int << 16) | bp->rx_ticks);
4977         }
4978
4979         /* Clear internal stats counters. */
4980         REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4981
4982         REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4983
4984         /* Initialize the receive filter. */
4985         bnx2_set_rx_mode(bp->dev);
4986
4987         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4988                 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4989                 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4990                 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4991         }
4992         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4993                           1, 0);
4994
4995         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4996         REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4997
4998         udelay(20);
4999
5000         bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5001
5002         return rc;
5003 }
5004
5005 static void
5006 bnx2_clear_ring_states(struct bnx2 *bp)
5007 {
5008         struct bnx2_napi *bnapi;
5009         struct bnx2_tx_ring_info *txr;
5010         struct bnx2_rx_ring_info *rxr;
5011         int i;
5012
5013         for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5014                 bnapi = &bp->bnx2_napi[i];
5015                 txr = &bnapi->tx_ring;
5016                 rxr = &bnapi->rx_ring;
5017
5018                 txr->tx_cons = 0;
5019                 txr->hw_tx_cons = 0;
5020                 rxr->rx_prod_bseq = 0;
5021                 rxr->rx_prod = 0;
5022                 rxr->rx_cons = 0;
5023                 rxr->rx_pg_prod = 0;
5024                 rxr->rx_pg_cons = 0;
5025         }
5026 }
5027
5028 static void
5029 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5030 {
5031         u32 val, offset0, offset1, offset2, offset3;
5032         u32 cid_addr = GET_CID_ADDR(cid);
5033
5034         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5035                 offset0 = BNX2_L2CTX_TYPE_XI;
5036                 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5037                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5038                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5039         } else {
5040                 offset0 = BNX2_L2CTX_TYPE;
5041                 offset1 = BNX2_L2CTX_CMD_TYPE;
5042                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5043                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5044         }
5045         val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5046         bnx2_ctx_wr(bp, cid_addr, offset0, val);
5047
5048         val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5049         bnx2_ctx_wr(bp, cid_addr, offset1, val);
5050
5051         val = (u64) txr->tx_desc_mapping >> 32;
5052         bnx2_ctx_wr(bp, cid_addr, offset2, val);
5053
5054         val = (u64) txr->tx_desc_mapping & 0xffffffff;
5055         bnx2_ctx_wr(bp, cid_addr, offset3, val);
5056 }
5057
5058 static void
5059 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5060 {
5061         struct tx_bd *txbd;
5062         u32 cid = TX_CID;
5063         struct bnx2_napi *bnapi;
5064         struct bnx2_tx_ring_info *txr;
5065
5066         bnapi = &bp->bnx2_napi[ring_num];
5067         txr = &bnapi->tx_ring;
5068
5069         if (ring_num == 0)
5070                 cid = TX_CID;
5071         else
5072                 cid = TX_TSS_CID + ring_num - 1;
5073
5074         bp->tx_wake_thresh = bp->tx_ring_size / 2;
5075
5076         txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5077
5078         txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5079         txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5080
5081         txr->tx_prod = 0;
5082         txr->tx_prod_bseq = 0;
5083
5084         txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5085         txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5086
5087         bnx2_init_tx_context(bp, cid, txr);
5088 }
5089
5090 static void
5091 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5092                      int num_rings)
5093 {
5094         int i;
5095         struct rx_bd *rxbd;
5096
5097         for (i = 0; i < num_rings; i++) {
5098                 int j;
5099
5100                 rxbd = &rx_ring[i][0];
5101                 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5102                         rxbd->rx_bd_len = buf_size;
5103                         rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5104                 }
5105                 if (i == (num_rings - 1))
5106                         j = 0;
5107                 else
5108                         j = i + 1;
5109                 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5110                 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5111         }
5112 }
5113
5114 static void
5115 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5116 {
5117         int i;
5118         u16 prod, ring_prod;
5119         u32 cid, rx_cid_addr, val;
5120         struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5121         struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5122
5123         if (ring_num == 0)
5124                 cid = RX_CID;
5125         else
5126                 cid = RX_RSS_CID + ring_num - 1;
5127
5128         rx_cid_addr = GET_CID_ADDR(cid);
5129
5130         bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5131                              bp->rx_buf_use_size, bp->rx_max_ring);
5132
5133         bnx2_init_rx_context(bp, cid);
5134
5135         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5136                 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5137                 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5138         }
5139
5140         bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5141         if (bp->rx_pg_ring_size) {
5142                 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5143                                      rxr->rx_pg_desc_mapping,
5144                                      PAGE_SIZE, bp->rx_max_pg_ring);
5145                 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5146                 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5147                 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5148                        BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5149
5150                 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5151                 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5152
5153                 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5154                 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5155
5156                 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5157                         REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5158         }
5159
5160         val = (u64) rxr->rx_desc_mapping[0] >> 32;
5161         bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5162
5163         val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5164         bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5165
5166         ring_prod = prod = rxr->rx_pg_prod;
5167         for (i = 0; i < bp->rx_pg_ring_size; i++) {
5168                 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
5169                         printk(KERN_WARNING PFX "%s: init'ed rx page ring %d "
5170                                                 "with %d/%d pages only\n",
5171                                bp->dev->name, ring_num, i, bp->rx_pg_ring_size);
5172                         break;
5173                 }
5174                 prod = NEXT_RX_BD(prod);
5175                 ring_prod = RX_PG_RING_IDX(prod);
5176         }
5177         rxr->rx_pg_prod = prod;
5178
5179         ring_prod = prod = rxr->rx_prod;
5180         for (i = 0; i < bp->rx_ring_size; i++) {
5181                 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
5182                         printk(KERN_WARNING PFX "%s: init'ed rx ring %d with "
5183                                                 "%d/%d skbs only\n",
5184                                bp->dev->name, ring_num, i, bp->rx_ring_size);
5185                         break;
5186                 }
5187                 prod = NEXT_RX_BD(prod);
5188                 ring_prod = RX_RING_IDX(prod);
5189         }
5190         rxr->rx_prod = prod;
5191
5192         rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5193         rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5194         rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5195
5196         REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5197         REG_WR16(bp, rxr->rx_bidx_addr, prod);
5198
5199         REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5200 }
5201
5202 static void
5203 bnx2_init_all_rings(struct bnx2 *bp)
5204 {
5205         int i;
5206         u32 val;
5207
5208         bnx2_clear_ring_states(bp);
5209
5210         REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5211         for (i = 0; i < bp->num_tx_rings; i++)
5212                 bnx2_init_tx_ring(bp, i);
5213
5214         if (bp->num_tx_rings > 1)
5215                 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5216                        (TX_TSS_CID << 7));
5217
5218         REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5219         bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5220
5221         for (i = 0; i < bp->num_rx_rings; i++)
5222                 bnx2_init_rx_ring(bp, i);
5223
5224         if (bp->num_rx_rings > 1) {
5225                 u32 tbl_32;
5226                 u8 *tbl = (u8 *) &tbl_32;
5227
5228                 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5229                                 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5230
5231                 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5232                         tbl[i % 4] = i % (bp->num_rx_rings - 1);
5233                         if ((i % 4) == 3)
5234                                 bnx2_reg_wr_ind(bp,
5235                                                 BNX2_RXP_SCRATCH_RSS_TBL + i,
5236                                                 cpu_to_be32(tbl_32));
5237                 }
5238
5239                 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5240                       BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5241
5242                 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5243
5244         }
5245 }
5246
5247 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5248 {
5249         u32 max, num_rings = 1;
5250
5251         while (ring_size > MAX_RX_DESC_CNT) {
5252                 ring_size -= MAX_RX_DESC_CNT;
5253                 num_rings++;
5254         }
5255         /* round to next power of 2 */
5256         max = max_size;
5257         while ((max & num_rings) == 0)
5258                 max >>= 1;
5259
5260         if (num_rings != max)
5261                 max <<= 1;
5262
5263         return max;
5264 }
5265
5266 static void
5267 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5268 {
5269         u32 rx_size, rx_space, jumbo_size;
5270
5271         /* 8 for CRC and VLAN */
5272         rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5273
5274         rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5275                 sizeof(struct skb_shared_info);
5276
5277         bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5278         bp->rx_pg_ring_size = 0;
5279         bp->rx_max_pg_ring = 0;
5280         bp->rx_max_pg_ring_idx = 0;
5281         if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5282                 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5283
5284                 jumbo_size = size * pages;
5285                 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5286                         jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5287
5288                 bp->rx_pg_ring_size = jumbo_size;
5289                 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5290                                                         MAX_RX_PG_RINGS);
5291                 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5292                 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5293                 bp->rx_copy_thresh = 0;
5294         }
5295
5296         bp->rx_buf_use_size = rx_size;
5297         /* hw alignment */
5298         bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5299         bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5300         bp->rx_ring_size = size;
5301         bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5302         bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5303 }
5304
5305 static void
5306 bnx2_free_tx_skbs(struct bnx2 *bp)
5307 {
5308         int i;
5309
5310         for (i = 0; i < bp->num_tx_rings; i++) {
5311                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5312                 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5313                 int j;
5314
5315                 if (txr->tx_buf_ring == NULL)
5316                         continue;
5317
5318                 for (j = 0; j < TX_DESC_CNT; ) {
5319                         struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5320                         struct sk_buff *skb = tx_buf->skb;
5321                         int k, last;
5322
5323                         if (skb == NULL) {
5324                                 j++;
5325                                 continue;
5326                         }
5327
5328                         pci_unmap_single(bp->pdev,
5329                                          pci_unmap_addr(tx_buf, mapping),
5330                                          skb_headlen(skb),
5331                                          PCI_DMA_TODEVICE);
5332
5333                         tx_buf->skb = NULL;
5334
5335                         last = tx_buf->nr_frags;
5336                         j++;
5337                         for (k = 0; k < last; k++, j++) {
5338                                 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5339                                 pci_unmap_page(bp->pdev,
5340                                         pci_unmap_addr(tx_buf, mapping),
5341                                         skb_shinfo(skb)->frags[k].size,
5342                                         PCI_DMA_TODEVICE);
5343                         }
5344                         dev_kfree_skb(skb);
5345                 }
5346         }
5347 }
5348
5349 static void
5350 bnx2_free_rx_skbs(struct bnx2 *bp)
5351 {
5352         int i;
5353
5354         for (i = 0; i < bp->num_rx_rings; i++) {
5355                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5356                 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5357                 int j;
5358
5359                 if (rxr->rx_buf_ring == NULL)
5360                         return;
5361
5362                 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5363                         struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5364                         struct sk_buff *skb = rx_buf->skb;
5365
5366                         if (skb == NULL)
5367                                 continue;
5368
5369                         pci_unmap_single(bp->pdev,
5370                                          pci_unmap_addr(rx_buf, mapping),
5371                                          bp->rx_buf_use_size,
5372                                          PCI_DMA_FROMDEVICE);
5373
5374                         rx_buf->skb = NULL;
5375
5376                         dev_kfree_skb(skb);
5377                 }
5378                 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5379                         bnx2_free_rx_page(bp, rxr, j);
5380         }
5381 }
5382
5383 static void
5384 bnx2_free_skbs(struct bnx2 *bp)
5385 {
5386         bnx2_free_tx_skbs(bp);
5387         bnx2_free_rx_skbs(bp);
5388 }
5389
5390 static int
5391 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5392 {
5393         int rc;
5394
5395         rc = bnx2_reset_chip(bp, reset_code);
5396         bnx2_free_skbs(bp);
5397         if (rc)
5398                 return rc;
5399
5400         if ((rc = bnx2_init_chip(bp)) != 0)
5401                 return rc;
5402
5403         bnx2_init_all_rings(bp);
5404         return 0;
5405 }
5406
5407 static int
5408 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5409 {
5410         int rc;
5411
5412         if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5413                 return rc;
5414
5415         spin_lock_bh(&bp->phy_lock);
5416         bnx2_init_phy(bp, reset_phy);
5417         bnx2_set_link(bp);
5418         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5419                 bnx2_remote_phy_event(bp);
5420         spin_unlock_bh(&bp->phy_lock);
5421         return 0;
5422 }
5423
5424 static int
5425 bnx2_shutdown_chip(struct bnx2 *bp)
5426 {
5427         u32 reset_code;
5428
5429         if (bp->flags & BNX2_FLAG_NO_WOL)
5430                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5431         else if (bp->wol)
5432                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5433         else
5434                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5435
5436         return bnx2_reset_chip(bp, reset_code);
5437 }
5438
5439 static int
5440 bnx2_test_registers(struct bnx2 *bp)
5441 {
5442         int ret;
5443         int i, is_5709;
5444         static const struct {
5445                 u16   offset;
5446                 u16   flags;
5447 #define BNX2_FL_NOT_5709        1
5448                 u32   rw_mask;
5449                 u32   ro_mask;
5450         } reg_tbl[] = {
5451                 { 0x006c, 0, 0x00000000, 0x0000003f },
5452                 { 0x0090, 0, 0xffffffff, 0x00000000 },
5453                 { 0x0094, 0, 0x00000000, 0x00000000 },
5454
5455                 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5456                 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5457                 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5458                 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5459                 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5460                 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5461                 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5462                 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5463                 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5464
5465                 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5466                 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5467                 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5468                 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5469                 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5470                 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5471
5472                 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5473                 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5474                 { 0x0c08, BNX2_FL_NOT_5709,  0x0f0ff073, 0x00000000 },
5475
5476                 { 0x1000, 0, 0x00000000, 0x00000001 },
5477                 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5478
5479                 { 0x1408, 0, 0x01c00800, 0x00000000 },
5480                 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5481                 { 0x14a8, 0, 0x00000000, 0x000001ff },
5482                 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5483                 { 0x14b0, 0, 0x00000002, 0x00000001 },
5484                 { 0x14b8, 0, 0x00000000, 0x00000000 },
5485                 { 0x14c0, 0, 0x00000000, 0x00000009 },
5486                 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5487                 { 0x14cc, 0, 0x00000000, 0x00000001 },
5488                 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5489
5490                 { 0x1800, 0, 0x00000000, 0x00000001 },
5491                 { 0x1804, 0, 0x00000000, 0x00000003 },
5492
5493                 { 0x2800, 0, 0x00000000, 0x00000001 },
5494                 { 0x2804, 0, 0x00000000, 0x00003f01 },
5495                 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5496                 { 0x2810, 0, 0xffff0000, 0x00000000 },
5497                 { 0x2814, 0, 0xffff0000, 0x00000000 },
5498                 { 0x2818, 0, 0xffff0000, 0x00000000 },
5499                 { 0x281c, 0, 0xffff0000, 0x00000000 },
5500                 { 0x2834, 0, 0xffffffff, 0x00000000 },
5501                 { 0x2840, 0, 0x00000000, 0xffffffff },
5502                 { 0x2844, 0, 0x00000000, 0xffffffff },
5503                 { 0x2848, 0, 0xffffffff, 0x00000000 },
5504                 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5505
5506                 { 0x2c00, 0, 0x00000000, 0x00000011 },
5507                 { 0x2c04, 0, 0x00000000, 0x00030007 },
5508
5509                 { 0x3c00, 0, 0x00000000, 0x00000001 },
5510                 { 0x3c04, 0, 0x00000000, 0x00070000 },
5511                 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5512                 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5513                 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5514                 { 0x3c14, 0, 0x00000000, 0xffffffff },
5515                 { 0x3c18, 0, 0x00000000, 0xffffffff },
5516                 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5517                 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5518
5519                 { 0x5004, 0, 0x00000000, 0x0000007f },
5520                 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5521
5522                 { 0x5c00, 0, 0x00000000, 0x00000001 },
5523                 { 0x5c04, 0, 0x00000000, 0x0003000f },
5524                 { 0x5c08, 0, 0x00000003, 0x00000000 },
5525                 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5526                 { 0x5c10, 0, 0x00000000, 0xffffffff },
5527                 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5528                 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5529                 { 0x5c88, 0, 0x00000000, 0x00077373 },
5530                 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5531
5532                 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5533                 { 0x680c, 0, 0xffffffff, 0x00000000 },
5534                 { 0x6810, 0, 0xffffffff, 0x00000000 },
5535                 { 0x6814, 0, 0xffffffff, 0x00000000 },
5536                 { 0x6818, 0, 0xffffffff, 0x00000000 },
5537                 { 0x681c, 0, 0xffffffff, 0x00000000 },
5538                 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5539                 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5540                 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5541                 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5542                 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5543                 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5544                 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5545                 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5546                 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5547                 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5548                 { 0x684c, 0, 0xffffffff, 0x00000000 },
5549                 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5550                 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5551                 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5552                 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5553                 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5554                 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5555
5556                 { 0xffff, 0, 0x00000000, 0x00000000 },
5557         };
5558
5559         ret = 0;
5560         is_5709 = 0;
5561         if (CHIP_NUM(bp) == CHIP_NUM_5709)
5562                 is_5709 = 1;
5563
5564         for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5565                 u32 offset, rw_mask, ro_mask, save_val, val;
5566                 u16 flags = reg_tbl[i].flags;
5567
5568                 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5569                         continue;
5570
5571                 offset = (u32) reg_tbl[i].offset;
5572                 rw_mask = reg_tbl[i].rw_mask;
5573                 ro_mask = reg_tbl[i].ro_mask;
5574
5575                 save_val = readl(bp->regview + offset);
5576
5577                 writel(0, bp->regview + offset);
5578
5579                 val = readl(bp->regview + offset);
5580                 if ((val & rw_mask) != 0) {
5581                         goto reg_test_err;
5582                 }
5583
5584                 if ((val & ro_mask) != (save_val & ro_mask)) {
5585                         goto reg_test_err;
5586                 }
5587
5588                 writel(0xffffffff, bp->regview + offset);
5589
5590                 val = readl(bp->regview + offset);
5591                 if ((val & rw_mask) != rw_mask) {
5592                         goto reg_test_err;
5593                 }
5594
5595                 if ((val & ro_mask) != (save_val & ro_mask)) {
5596                         goto reg_test_err;
5597                 }
5598
5599                 writel(save_val, bp->regview + offset);
5600                 continue;
5601
5602 reg_test_err:
5603                 writel(save_val, bp->regview + offset);
5604                 ret = -ENODEV;
5605                 break;
5606         }
5607         return ret;
5608 }
5609
5610 static int
5611 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5612 {
5613         static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5614                 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5615         int i;
5616
5617         for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5618                 u32 offset;
5619
5620                 for (offset = 0; offset < size; offset += 4) {
5621
5622                         bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5623
5624                         if (bnx2_reg_rd_ind(bp, start + offset) !=
5625                                 test_pattern[i]) {
5626                                 return -ENODEV;
5627                         }
5628                 }
5629         }
5630         return 0;
5631 }
5632
5633 static int
5634 bnx2_test_memory(struct bnx2 *bp)
5635 {
5636         int ret = 0;
5637         int i;
5638         static struct mem_entry {
5639                 u32   offset;
5640                 u32   len;
5641         } mem_tbl_5706[] = {
5642                 { 0x60000,  0x4000 },
5643                 { 0xa0000,  0x3000 },
5644                 { 0xe0000,  0x4000 },
5645                 { 0x120000, 0x4000 },
5646                 { 0x1a0000, 0x4000 },
5647                 { 0x160000, 0x4000 },
5648                 { 0xffffffff, 0    },
5649         },
5650         mem_tbl_5709[] = {
5651                 { 0x60000,  0x4000 },
5652                 { 0xa0000,  0x3000 },
5653                 { 0xe0000,  0x4000 },
5654                 { 0x120000, 0x4000 },
5655                 { 0x1a0000, 0x4000 },
5656                 { 0xffffffff, 0    },
5657         };
5658         struct mem_entry *mem_tbl;
5659
5660         if (CHIP_NUM(bp) == CHIP_NUM_5709)
5661                 mem_tbl = mem_tbl_5709;
5662         else
5663                 mem_tbl = mem_tbl_5706;
5664
5665         for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5666                 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5667                         mem_tbl[i].len)) != 0) {
5668                         return ret;
5669                 }
5670         }
5671
5672         return ret;
5673 }
5674
5675 #define BNX2_MAC_LOOPBACK       0
5676 #define BNX2_PHY_LOOPBACK       1
5677
5678 static int
5679 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5680 {
5681         unsigned int pkt_size, num_pkts, i;
5682         struct sk_buff *skb, *rx_skb;
5683         unsigned char *packet;
5684         u16 rx_start_idx, rx_idx;
5685         dma_addr_t map;
5686         struct tx_bd *txbd;
5687         struct sw_bd *rx_buf;
5688         struct l2_fhdr *rx_hdr;
5689         int ret = -ENODEV;
5690         struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5691         struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5692         struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5693
5694         tx_napi = bnapi;
5695
5696         txr = &tx_napi->tx_ring;
5697         rxr = &bnapi->rx_ring;
5698         if (loopback_mode == BNX2_MAC_LOOPBACK) {
5699                 bp->loopback = MAC_LOOPBACK;
5700                 bnx2_set_mac_loopback(bp);
5701         }
5702         else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5703                 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5704                         return 0;
5705
5706                 bp->loopback = PHY_LOOPBACK;
5707                 bnx2_set_phy_loopback(bp);
5708         }
5709         else
5710                 return -EINVAL;
5711
5712         pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5713         skb = netdev_alloc_skb(bp->dev, pkt_size);
5714         if (!skb)
5715                 return -ENOMEM;
5716         packet = skb_put(skb, pkt_size);
5717         memcpy(packet, bp->dev->dev_addr, 6);
5718         memset(packet + 6, 0x0, 8);
5719         for (i = 14; i < pkt_size; i++)
5720                 packet[i] = (unsigned char) (i & 0xff);
5721
5722         map = pci_map_single(bp->pdev, skb->data, pkt_size,
5723                 PCI_DMA_TODEVICE);
5724         if (pci_dma_mapping_error(bp->pdev, map)) {
5725                 dev_kfree_skb(skb);
5726                 return -EIO;
5727         }
5728
5729         REG_WR(bp, BNX2_HC_COMMAND,
5730                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5731
5732         REG_RD(bp, BNX2_HC_COMMAND);
5733
5734         udelay(5);
5735         rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5736
5737         num_pkts = 0;
5738
5739         txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5740
5741         txbd->tx_bd_haddr_hi = (u64) map >> 32;
5742         txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5743         txbd->tx_bd_mss_nbytes = pkt_size;
5744         txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5745
5746         num_pkts++;
5747         txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5748         txr->tx_prod_bseq += pkt_size;
5749
5750         REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5751         REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5752
5753         udelay(100);
5754
5755         REG_WR(bp, BNX2_HC_COMMAND,
5756                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5757
5758         REG_RD(bp, BNX2_HC_COMMAND);
5759
5760         udelay(5);
5761
5762         pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
5763         dev_kfree_skb(skb);
5764
5765         if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5766                 goto loopback_test_done;
5767
5768         rx_idx = bnx2_get_hw_rx_cons(bnapi);
5769         if (rx_idx != rx_start_idx + num_pkts) {
5770                 goto loopback_test_done;
5771         }
5772
5773         rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5774         rx_skb = rx_buf->skb;
5775
5776         rx_hdr = (struct l2_fhdr *) rx_skb->data;
5777         skb_reserve(rx_skb, BNX2_RX_OFFSET);
5778
5779         pci_dma_sync_single_for_cpu(bp->pdev,
5780                 pci_unmap_addr(rx_buf, mapping),
5781                 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5782
5783         if (rx_hdr->l2_fhdr_status &
5784                 (L2_FHDR_ERRORS_BAD_CRC |
5785                 L2_FHDR_ERRORS_PHY_DECODE |
5786                 L2_FHDR_ERRORS_ALIGNMENT |
5787                 L2_FHDR_ERRORS_TOO_SHORT |
5788                 L2_FHDR_ERRORS_GIANT_FRAME)) {
5789
5790                 goto loopback_test_done;
5791         }
5792
5793         if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5794                 goto loopback_test_done;
5795         }
5796
5797         for (i = 14; i < pkt_size; i++) {
5798                 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5799                         goto loopback_test_done;
5800                 }
5801         }
5802
5803         ret = 0;
5804
5805 loopback_test_done:
5806         bp->loopback = 0;
5807         return ret;
5808 }
5809
5810 #define BNX2_MAC_LOOPBACK_FAILED        1
5811 #define BNX2_PHY_LOOPBACK_FAILED        2
5812 #define BNX2_LOOPBACK_FAILED            (BNX2_MAC_LOOPBACK_FAILED |     \
5813                                          BNX2_PHY_LOOPBACK_FAILED)
5814
5815 static int
5816 bnx2_test_loopback(struct bnx2 *bp)
5817 {
5818         int rc = 0;
5819
5820         if (!netif_running(bp->dev))
5821                 return BNX2_LOOPBACK_FAILED;
5822
5823         bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5824         spin_lock_bh(&bp->phy_lock);
5825         bnx2_init_phy(bp, 1);
5826         spin_unlock_bh(&bp->phy_lock);
5827         if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5828                 rc |= BNX2_MAC_LOOPBACK_FAILED;
5829         if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5830                 rc |= BNX2_PHY_LOOPBACK_FAILED;
5831         return rc;
5832 }
5833
5834 #define NVRAM_SIZE 0x200
5835 #define CRC32_RESIDUAL 0xdebb20e3
5836
5837 static int
5838 bnx2_test_nvram(struct bnx2 *bp)
5839 {
5840         __be32 buf[NVRAM_SIZE / 4];
5841         u8 *data = (u8 *) buf;
5842         int rc = 0;
5843         u32 magic, csum;
5844
5845         if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5846                 goto test_nvram_done;
5847
5848         magic = be32_to_cpu(buf[0]);
5849         if (magic != 0x669955aa) {
5850                 rc = -ENODEV;
5851                 goto test_nvram_done;
5852         }
5853
5854         if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5855                 goto test_nvram_done;
5856
5857         csum = ether_crc_le(0x100, data);
5858         if (csum != CRC32_RESIDUAL) {
5859                 rc = -ENODEV;
5860                 goto test_nvram_done;
5861         }
5862
5863         csum = ether_crc_le(0x100, data + 0x100);
5864         if (csum != CRC32_RESIDUAL) {
5865                 rc = -ENODEV;
5866         }
5867
5868 test_nvram_done:
5869         return rc;
5870 }
5871
5872 static int
5873 bnx2_test_link(struct bnx2 *bp)
5874 {
5875         u32 bmsr;
5876
5877         if (!netif_running(bp->dev))
5878                 return -ENODEV;
5879
5880         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5881                 if (bp->link_up)
5882                         return 0;
5883                 return -ENODEV;
5884         }
5885         spin_lock_bh(&bp->phy_lock);
5886         bnx2_enable_bmsr1(bp);
5887         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5888         bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5889         bnx2_disable_bmsr1(bp);
5890         spin_unlock_bh(&bp->phy_lock);
5891
5892         if (bmsr & BMSR_LSTATUS) {
5893                 return 0;
5894         }
5895         return -ENODEV;
5896 }
5897
5898 static int
5899 bnx2_test_intr(struct bnx2 *bp)
5900 {
5901         int i;
5902         u16 status_idx;
5903
5904         if (!netif_running(bp->dev))
5905                 return -ENODEV;
5906
5907         status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5908
5909         /* This register is not touched during run-time. */
5910         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5911         REG_RD(bp, BNX2_HC_COMMAND);
5912
5913         for (i = 0; i < 10; i++) {
5914                 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5915                         status_idx) {
5916
5917                         break;
5918                 }
5919
5920                 msleep_interruptible(10);
5921         }
5922         if (i < 10)
5923                 return 0;
5924
5925         return -ENODEV;
5926 }
5927
5928 /* Determining link for parallel detection. */
5929 static int
5930 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5931 {
5932         u32 mode_ctl, an_dbg, exp;
5933
5934         if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5935                 return 0;
5936
5937         bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5938         bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5939
5940         if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5941                 return 0;
5942
5943         bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5944         bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5945         bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5946
5947         if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5948                 return 0;
5949
5950         bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5951         bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5952         bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5953
5954         if (exp & MII_EXPAND_REG1_RUDI_C)       /* receiving CONFIG */
5955                 return 0;
5956
5957         return 1;
5958 }
5959
5960 static void
5961 bnx2_5706_serdes_timer(struct bnx2 *bp)
5962 {
5963         int check_link = 1;
5964
5965         spin_lock(&bp->phy_lock);
5966         if (bp->serdes_an_pending) {
5967                 bp->serdes_an_pending--;
5968                 check_link = 0;
5969         } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5970                 u32 bmcr;
5971
5972                 bp->current_interval = BNX2_TIMER_INTERVAL;
5973
5974                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5975
5976                 if (bmcr & BMCR_ANENABLE) {
5977                         if (bnx2_5706_serdes_has_link(bp)) {
5978                                 bmcr &= ~BMCR_ANENABLE;
5979                                 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5980                                 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5981                                 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5982                         }
5983                 }
5984         }
5985         else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5986                  (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5987                 u32 phy2;
5988
5989                 bnx2_write_phy(bp, 0x17, 0x0f01);
5990                 bnx2_read_phy(bp, 0x15, &phy2);
5991                 if (phy2 & 0x20) {
5992                         u32 bmcr;
5993
5994                         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5995                         bmcr |= BMCR_ANENABLE;
5996                         bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5997
5998                         bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5999                 }
6000         } else
6001                 bp->current_interval = BNX2_TIMER_INTERVAL;
6002
6003         if (check_link) {
6004                 u32 val;
6005
6006                 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6007                 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6008                 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6009
6010                 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6011                         if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6012                                 bnx2_5706s_force_link_dn(bp, 1);
6013                                 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6014                         } else
6015                                 bnx2_set_link(bp);
6016                 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6017                         bnx2_set_link(bp);
6018         }
6019         spin_unlock(&bp->phy_lock);
6020 }
6021
6022 static void
6023 bnx2_5708_serdes_timer(struct bnx2 *bp)
6024 {
6025         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6026                 return;
6027
6028         if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6029                 bp->serdes_an_pending = 0;
6030                 return;
6031         }
6032
6033         spin_lock(&bp->phy_lock);
6034         if (bp->serdes_an_pending)
6035                 bp->serdes_an_pending--;
6036         else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6037                 u32 bmcr;
6038
6039                 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6040                 if (bmcr & BMCR_ANENABLE) {
6041                         bnx2_enable_forced_2g5(bp);
6042                         bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6043                 } else {
6044                         bnx2_disable_forced_2g5(bp);
6045                         bp->serdes_an_pending = 2;
6046                         bp->current_interval = BNX2_TIMER_INTERVAL;
6047                 }
6048
6049         } else
6050                 bp->current_interval = BNX2_TIMER_INTERVAL;
6051
6052         spin_unlock(&bp->phy_lock);
6053 }
6054
6055 static void
6056 bnx2_timer(unsigned long data)
6057 {
6058         struct bnx2 *bp = (struct bnx2 *) data;
6059
6060         if (!netif_running(bp->dev))
6061                 return;
6062
6063         if (atomic_read(&bp->intr_sem) != 0)
6064                 goto bnx2_restart_timer;
6065
6066         if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6067              BNX2_FLAG_USING_MSI)
6068                 bnx2_chk_missed_msi(bp);
6069
6070         bnx2_send_heart_beat(bp);
6071
6072         bp->stats_blk->stat_FwRxDrop =
6073                 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6074
6075         /* workaround occasional corrupted counters */
6076         if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6077                 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6078                                             BNX2_HC_COMMAND_STATS_NOW);
6079
6080         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6081                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6082                         bnx2_5706_serdes_timer(bp);
6083                 else
6084                         bnx2_5708_serdes_timer(bp);
6085         }
6086
6087 bnx2_restart_timer:
6088         mod_timer(&bp->timer, jiffies + bp->current_interval);
6089 }
6090
6091 static int
6092 bnx2_request_irq(struct bnx2 *bp)
6093 {
6094         unsigned long flags;
6095         struct bnx2_irq *irq;
6096         int rc = 0, i;
6097
6098         if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6099                 flags = 0;
6100         else
6101                 flags = IRQF_SHARED;
6102
6103         for (i = 0; i < bp->irq_nvecs; i++) {
6104                 irq = &bp->irq_tbl[i];
6105                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6106                                  &bp->bnx2_napi[i]);
6107                 if (rc)
6108                         break;
6109                 irq->requested = 1;
6110         }
6111         return rc;
6112 }
6113
6114 static void
6115 bnx2_free_irq(struct bnx2 *bp)
6116 {
6117         struct bnx2_irq *irq;
6118         int i;
6119
6120         for (i = 0; i < bp->irq_nvecs; i++) {
6121                 irq = &bp->irq_tbl[i];
6122                 if (irq->requested)
6123                         free_irq(irq->vector, &bp->bnx2_napi[i]);
6124                 irq->requested = 0;
6125         }
6126         if (bp->flags & BNX2_FLAG_USING_MSI)
6127                 pci_disable_msi(bp->pdev);
6128         else if (bp->flags & BNX2_FLAG_USING_MSIX)
6129                 pci_disable_msix(bp->pdev);
6130
6131         bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6132 }
6133
6134 static void
6135 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6136 {
6137         int i, rc;
6138         struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6139         struct net_device *dev = bp->dev;
6140         const int len = sizeof(bp->irq_tbl[0].name);
6141
6142         bnx2_setup_msix_tbl(bp);
6143         REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6144         REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6145         REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6146
6147         /*  Need to flush the previous three writes to ensure MSI-X
6148          *  is setup properly */
6149         REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6150
6151         for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6152                 msix_ent[i].entry = i;
6153                 msix_ent[i].vector = 0;
6154         }
6155
6156         rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6157         if (rc != 0)
6158                 return;
6159
6160         bp->irq_nvecs = msix_vecs;
6161         bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6162         for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6163                 bp->irq_tbl[i].vector = msix_ent[i].vector;
6164                 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6165                 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6166         }
6167 }
6168
6169 static void
6170 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6171 {
6172         int cpus = num_online_cpus();
6173         int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6174
6175         bp->irq_tbl[0].handler = bnx2_interrupt;
6176         strcpy(bp->irq_tbl[0].name, bp->dev->name);
6177         bp->irq_nvecs = 1;
6178         bp->irq_tbl[0].vector = bp->pdev->irq;
6179
6180         if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6181                 bnx2_enable_msix(bp, msix_vecs);
6182
6183         if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6184             !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6185                 if (pci_enable_msi(bp->pdev) == 0) {
6186                         bp->flags |= BNX2_FLAG_USING_MSI;
6187                         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6188                                 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6189                                 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6190                         } else
6191                                 bp->irq_tbl[0].handler = bnx2_msi;
6192
6193                         bp->irq_tbl[0].vector = bp->pdev->irq;
6194                 }
6195         }
6196
6197         bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6198         bp->dev->real_num_tx_queues = bp->num_tx_rings;
6199
6200         bp->num_rx_rings = bp->irq_nvecs;
6201 }
6202
6203 /* Called with rtnl_lock */
6204 static int
6205 bnx2_open(struct net_device *dev)
6206 {
6207         struct bnx2 *bp = netdev_priv(dev);
6208         int rc;
6209
6210         netif_carrier_off(dev);
6211
6212         bnx2_set_power_state(bp, PCI_D0);
6213         bnx2_disable_int(bp);
6214
6215         bnx2_setup_int_mode(bp, disable_msi);
6216         bnx2_napi_enable(bp);
6217         rc = bnx2_alloc_mem(bp);
6218         if (rc)
6219                 goto open_err;
6220
6221         rc = bnx2_request_irq(bp);
6222         if (rc)
6223                 goto open_err;
6224
6225         rc = bnx2_init_nic(bp, 1);
6226         if (rc)
6227                 goto open_err;
6228
6229         mod_timer(&bp->timer, jiffies + bp->current_interval);
6230
6231         atomic_set(&bp->intr_sem, 0);
6232
6233         memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6234
6235         bnx2_enable_int(bp);
6236
6237         if (bp->flags & BNX2_FLAG_USING_MSI) {
6238                 /* Test MSI to make sure it is working
6239                  * If MSI test fails, go back to INTx mode
6240                  */
6241                 if (bnx2_test_intr(bp) != 0) {
6242                         printk(KERN_WARNING PFX "%s: No interrupt was generated"
6243                                " using MSI, switching to INTx mode. Please"
6244                                " report this failure to the PCI maintainer"
6245                                " and include system chipset information.\n",
6246                                bp->dev->name);
6247
6248                         bnx2_disable_int(bp);
6249                         bnx2_free_irq(bp);
6250
6251                         bnx2_setup_int_mode(bp, 1);
6252
6253                         rc = bnx2_init_nic(bp, 0);
6254
6255                         if (!rc)
6256                                 rc = bnx2_request_irq(bp);
6257
6258                         if (rc) {
6259                                 del_timer_sync(&bp->timer);
6260                                 goto open_err;
6261                         }
6262                         bnx2_enable_int(bp);
6263                 }
6264         }
6265         if (bp->flags & BNX2_FLAG_USING_MSI)
6266                 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6267         else if (bp->flags & BNX2_FLAG_USING_MSIX)
6268                 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6269
6270         netif_tx_start_all_queues(dev);
6271
6272         return 0;
6273
6274 open_err:
6275         bnx2_napi_disable(bp);
6276         bnx2_free_skbs(bp);
6277         bnx2_free_irq(bp);
6278         bnx2_free_mem(bp);
6279         return rc;
6280 }
6281
6282 static void
6283 bnx2_reset_task(struct work_struct *work)
6284 {
6285         struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6286
6287         rtnl_lock();
6288         if (!netif_running(bp->dev)) {
6289                 rtnl_unlock();
6290                 return;
6291         }
6292
6293         bnx2_netif_stop(bp);
6294
6295         bnx2_init_nic(bp, 1);
6296
6297         atomic_set(&bp->intr_sem, 1);
6298         bnx2_netif_start(bp);
6299         rtnl_unlock();
6300 }
6301
6302 static void
6303 bnx2_dump_state(struct bnx2 *bp)
6304 {
6305         struct net_device *dev = bp->dev;
6306
6307         printk(KERN_ERR PFX "%s DEBUG: intr_sem[%x]\n", dev->name,
6308                 atomic_read(&bp->intr_sem));
6309         printk(KERN_ERR PFX "%s DEBUG: EMAC_TX_STATUS[%08x] "
6310                             "RPM_MGMT_PKT_CTRL[%08x]\n", dev->name,
6311                 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6312                 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6313         printk(KERN_ERR PFX "%s DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6314                 dev->name, bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
6315                 bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
6316         printk(KERN_ERR PFX "%s DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6317                 dev->name, REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6318         if (bp->flags & BNX2_FLAG_USING_MSIX)
6319                 printk(KERN_ERR PFX "%s DEBUG: PBA[%08x]\n", dev->name,
6320                         REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6321 }
6322
6323 static void
6324 bnx2_tx_timeout(struct net_device *dev)
6325 {
6326         struct bnx2 *bp = netdev_priv(dev);
6327
6328         bnx2_dump_state(bp);
6329
6330         /* This allows the netif to be shutdown gracefully before resetting */
6331         schedule_work(&bp->reset_task);
6332 }
6333
6334 #ifdef BCM_VLAN
6335 /* Called with rtnl_lock */
6336 static void
6337 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6338 {
6339         struct bnx2 *bp = netdev_priv(dev);
6340
6341         if (netif_running(dev))
6342                 bnx2_netif_stop(bp);
6343
6344         bp->vlgrp = vlgrp;
6345
6346         if (!netif_running(dev))
6347                 return;
6348
6349         bnx2_set_rx_mode(dev);
6350         if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6351                 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6352
6353         bnx2_netif_start(bp);
6354 }
6355 #endif
6356
6357 /* Called with netif_tx_lock.
6358  * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6359  * netif_wake_queue().
6360  */
6361 static netdev_tx_t
6362 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6363 {
6364         struct bnx2 *bp = netdev_priv(dev);
6365         dma_addr_t mapping;
6366         struct tx_bd *txbd;
6367         struct sw_tx_bd *tx_buf;
6368         u32 len, vlan_tag_flags, last_frag, mss;
6369         u16 prod, ring_prod;
6370         int i;
6371         struct bnx2_napi *bnapi;
6372         struct bnx2_tx_ring_info *txr;
6373         struct netdev_queue *txq;
6374
6375         /*  Determine which tx ring we will be placed on */
6376         i = skb_get_queue_mapping(skb);
6377         bnapi = &bp->bnx2_napi[i];
6378         txr = &bnapi->tx_ring;
6379         txq = netdev_get_tx_queue(dev, i);
6380
6381         if (unlikely(bnx2_tx_avail(bp, txr) <
6382             (skb_shinfo(skb)->nr_frags + 1))) {
6383                 netif_tx_stop_queue(txq);
6384                 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6385                         dev->name);
6386
6387                 return NETDEV_TX_BUSY;
6388         }
6389         len = skb_headlen(skb);
6390         prod = txr->tx_prod;
6391         ring_prod = TX_RING_IDX(prod);
6392
6393         vlan_tag_flags = 0;
6394         if (skb->ip_summed == CHECKSUM_PARTIAL) {
6395                 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6396         }
6397
6398 #ifdef BCM_VLAN
6399         if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6400                 vlan_tag_flags |=
6401                         (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6402         }
6403 #endif
6404         if ((mss = skb_shinfo(skb)->gso_size)) {
6405                 u32 tcp_opt_len;
6406                 struct iphdr *iph;
6407
6408                 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6409
6410                 tcp_opt_len = tcp_optlen(skb);
6411
6412                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6413                         u32 tcp_off = skb_transport_offset(skb) -
6414                                       sizeof(struct ipv6hdr) - ETH_HLEN;
6415
6416                         vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6417                                           TX_BD_FLAGS_SW_FLAGS;
6418                         if (likely(tcp_off == 0))
6419                                 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6420                         else {
6421                                 tcp_off >>= 3;
6422                                 vlan_tag_flags |= ((tcp_off & 0x3) <<
6423                                                    TX_BD_FLAGS_TCP6_OFF0_SHL) |
6424                                                   ((tcp_off & 0x10) <<
6425                                                    TX_BD_FLAGS_TCP6_OFF4_SHL);
6426                                 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6427                         }
6428                 } else {
6429                         iph = ip_hdr(skb);
6430                         if (tcp_opt_len || (iph->ihl > 5)) {
6431                                 vlan_tag_flags |= ((iph->ihl - 5) +
6432                                                    (tcp_opt_len >> 2)) << 8;
6433                         }
6434                 }
6435         } else
6436                 mss = 0;
6437
6438         mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
6439         if (pci_dma_mapping_error(bp->pdev, mapping)) {
6440                 dev_kfree_skb(skb);
6441                 return NETDEV_TX_OK;
6442         }
6443
6444         tx_buf = &txr->tx_buf_ring[ring_prod];
6445         tx_buf->skb = skb;
6446         pci_unmap_addr_set(tx_buf, mapping, mapping);
6447
6448         txbd = &txr->tx_desc_ring[ring_prod];
6449
6450         txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6451         txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6452         txbd->tx_bd_mss_nbytes = len | (mss << 16);
6453         txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6454
6455         last_frag = skb_shinfo(skb)->nr_frags;
6456         tx_buf->nr_frags = last_frag;
6457         tx_buf->is_gso = skb_is_gso(skb);
6458
6459         for (i = 0; i < last_frag; i++) {
6460                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6461
6462                 prod = NEXT_TX_BD(prod);
6463                 ring_prod = TX_RING_IDX(prod);
6464                 txbd = &txr->tx_desc_ring[ring_prod];
6465
6466                 len = frag->size;
6467                 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
6468                         len, PCI_DMA_TODEVICE);
6469                 if (pci_dma_mapping_error(bp->pdev, mapping))
6470                         goto dma_error;
6471                 pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6472                                    mapping);
6473
6474                 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6475                 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6476                 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6477                 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6478
6479         }
6480         txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6481
6482         prod = NEXT_TX_BD(prod);
6483         txr->tx_prod_bseq += skb->len;
6484
6485         REG_WR16(bp, txr->tx_bidx_addr, prod);
6486         REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6487
6488         mmiowb();
6489
6490         txr->tx_prod = prod;
6491
6492         if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6493                 netif_tx_stop_queue(txq);
6494                 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6495                         netif_tx_wake_queue(txq);
6496         }
6497
6498         return NETDEV_TX_OK;
6499 dma_error:
6500         /* save value of frag that failed */
6501         last_frag = i;
6502
6503         /* start back at beginning and unmap skb */
6504         prod = txr->tx_prod;
6505         ring_prod = TX_RING_IDX(prod);
6506         tx_buf = &txr->tx_buf_ring[ring_prod];
6507         tx_buf->skb = NULL;
6508         pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6509                          skb_headlen(skb), PCI_DMA_TODEVICE);
6510
6511         /* unmap remaining mapped pages */
6512         for (i = 0; i < last_frag; i++) {
6513                 prod = NEXT_TX_BD(prod);
6514                 ring_prod = TX_RING_IDX(prod);
6515                 tx_buf = &txr->tx_buf_ring[ring_prod];
6516                 pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6517                                skb_shinfo(skb)->frags[i].size,
6518                                PCI_DMA_TODEVICE);
6519         }
6520
6521         dev_kfree_skb(skb);
6522         return NETDEV_TX_OK;
6523 }
6524
6525 /* Called with rtnl_lock */
6526 static int
6527 bnx2_close(struct net_device *dev)
6528 {
6529         struct bnx2 *bp = netdev_priv(dev);
6530
6531         cancel_work_sync(&bp->reset_task);
6532
6533         bnx2_disable_int_sync(bp);
6534         bnx2_napi_disable(bp);
6535         del_timer_sync(&bp->timer);
6536         bnx2_shutdown_chip(bp);
6537         bnx2_free_irq(bp);
6538         bnx2_free_skbs(bp);
6539         bnx2_free_mem(bp);
6540         bp->link_up = 0;
6541         netif_carrier_off(bp->dev);
6542         bnx2_set_power_state(bp, PCI_D3hot);
6543         return 0;
6544 }
6545
6546 static void
6547 bnx2_save_stats(struct bnx2 *bp)
6548 {
6549         u32 *hw_stats = (u32 *) bp->stats_blk;
6550         u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6551         int i;
6552
6553         /* The 1st 10 counters are 64-bit counters */
6554         for (i = 0; i < 20; i += 2) {
6555                 u32 hi;
6556                 u64 lo;
6557
6558                 hi = *(temp_stats + i) + *(hw_stats + i);
6559                 lo = *(temp_stats + i + 1) + *(hw_stats + i + 1);
6560                 if (lo > 0xffffffff)
6561                         hi++;
6562                 *(temp_stats + i) = hi;
6563                 *(temp_stats + i + 1) = lo & 0xffffffff;
6564         }
6565
6566         for ( ; i < sizeof(struct statistics_block) / 4; i++)
6567                 *(temp_stats + i) = *(temp_stats + i) + *(hw_stats + i);
6568 }
6569
6570 #define GET_64BIT_NET_STATS64(ctr)                              \
6571         (unsigned long) ((unsigned long) (ctr##_hi) << 32) +    \
6572         (unsigned long) (ctr##_lo)
6573
6574 #define GET_64BIT_NET_STATS32(ctr)                              \
6575         (ctr##_lo)
6576
6577 #if (BITS_PER_LONG == 64)
6578 #define GET_64BIT_NET_STATS(ctr)                                \
6579         GET_64BIT_NET_STATS64(bp->stats_blk->ctr) +             \
6580         GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6581 #else
6582 #define GET_64BIT_NET_STATS(ctr)                                \
6583         GET_64BIT_NET_STATS32(bp->stats_blk->ctr) +             \
6584         GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
6585 #endif
6586
6587 #define GET_32BIT_NET_STATS(ctr)                                \
6588         (unsigned long) (bp->stats_blk->ctr +                   \
6589                          bp->temp_stats_blk->ctr)
6590
6591 static struct net_device_stats *
6592 bnx2_get_stats(struct net_device *dev)
6593 {
6594         struct bnx2 *bp = netdev_priv(dev);
6595         struct net_device_stats *net_stats = &dev->stats;
6596
6597         if (bp->stats_blk == NULL) {
6598                 return net_stats;
6599         }
6600         net_stats->rx_packets =
6601                 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6602                 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6603                 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6604
6605         net_stats->tx_packets =
6606                 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6607                 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6608                 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6609
6610         net_stats->rx_bytes =
6611                 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6612
6613         net_stats->tx_bytes =
6614                 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6615
6616         net_stats->multicast =
6617                 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
6618
6619         net_stats->collisions =
6620                 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6621
6622         net_stats->rx_length_errors =
6623                 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6624                 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6625
6626         net_stats->rx_over_errors =
6627                 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6628                 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6629
6630         net_stats->rx_frame_errors =
6631                 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6632
6633         net_stats->rx_crc_errors =
6634                 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6635
6636         net_stats->rx_errors = net_stats->rx_length_errors +
6637                 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6638                 net_stats->rx_crc_errors;
6639
6640         net_stats->tx_aborted_errors =
6641                 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6642                 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6643
6644         if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6645             (CHIP_ID(bp) == CHIP_ID_5708_A0))
6646                 net_stats->tx_carrier_errors = 0;
6647         else {
6648                 net_stats->tx_carrier_errors =
6649                         GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6650         }
6651
6652         net_stats->tx_errors =
6653                 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6654                 net_stats->tx_aborted_errors +
6655                 net_stats->tx_carrier_errors;
6656
6657         net_stats->rx_missed_errors =
6658                 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6659                 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6660                 GET_32BIT_NET_STATS(stat_FwRxDrop);
6661
6662         return net_stats;
6663 }
6664
6665 /* All ethtool functions called with rtnl_lock */
6666
6667 static int
6668 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6669 {
6670         struct bnx2 *bp = netdev_priv(dev);
6671         int support_serdes = 0, support_copper = 0;
6672
6673         cmd->supported = SUPPORTED_Autoneg;
6674         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6675                 support_serdes = 1;
6676                 support_copper = 1;
6677         } else if (bp->phy_port == PORT_FIBRE)
6678                 support_serdes = 1;
6679         else
6680                 support_copper = 1;
6681
6682         if (support_serdes) {
6683                 cmd->supported |= SUPPORTED_1000baseT_Full |
6684                         SUPPORTED_FIBRE;
6685                 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6686                         cmd->supported |= SUPPORTED_2500baseX_Full;
6687
6688         }
6689         if (support_copper) {
6690                 cmd->supported |= SUPPORTED_10baseT_Half |
6691                         SUPPORTED_10baseT_Full |
6692                         SUPPORTED_100baseT_Half |
6693                         SUPPORTED_100baseT_Full |
6694                         SUPPORTED_1000baseT_Full |
6695                         SUPPORTED_TP;
6696
6697         }
6698
6699         spin_lock_bh(&bp->phy_lock);
6700         cmd->port = bp->phy_port;
6701         cmd->advertising = bp->advertising;
6702
6703         if (bp->autoneg & AUTONEG_SPEED) {
6704                 cmd->autoneg = AUTONEG_ENABLE;
6705         }
6706         else {
6707                 cmd->autoneg = AUTONEG_DISABLE;
6708         }
6709
6710         if (netif_carrier_ok(dev)) {
6711                 cmd->speed = bp->line_speed;
6712                 cmd->duplex = bp->duplex;
6713         }
6714         else {
6715                 cmd->speed = -1;
6716                 cmd->duplex = -1;
6717         }
6718         spin_unlock_bh(&bp->phy_lock);
6719
6720         cmd->transceiver = XCVR_INTERNAL;
6721         cmd->phy_address = bp->phy_addr;
6722
6723         return 0;
6724 }
6725
6726 static int
6727 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6728 {
6729         struct bnx2 *bp = netdev_priv(dev);
6730         u8 autoneg = bp->autoneg;
6731         u8 req_duplex = bp->req_duplex;
6732         u16 req_line_speed = bp->req_line_speed;
6733         u32 advertising = bp->advertising;
6734         int err = -EINVAL;
6735
6736         spin_lock_bh(&bp->phy_lock);
6737
6738         if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6739                 goto err_out_unlock;
6740
6741         if (cmd->port != bp->phy_port &&
6742             !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6743                 goto err_out_unlock;
6744
6745         /* If device is down, we can store the settings only if the user
6746          * is setting the currently active port.
6747          */
6748         if (!netif_running(dev) && cmd->port != bp->phy_port)
6749                 goto err_out_unlock;
6750
6751         if (cmd->autoneg == AUTONEG_ENABLE) {
6752                 autoneg |= AUTONEG_SPEED;
6753
6754                 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6755
6756                 /* allow advertising 1 speed */
6757                 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6758                         (cmd->advertising == ADVERTISED_10baseT_Full) ||
6759                         (cmd->advertising == ADVERTISED_100baseT_Half) ||
6760                         (cmd->advertising == ADVERTISED_100baseT_Full)) {
6761
6762                         if (cmd->port == PORT_FIBRE)
6763                                 goto err_out_unlock;
6764
6765                         advertising = cmd->advertising;
6766
6767                 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6768                         if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6769                             (cmd->port == PORT_TP))
6770                                 goto err_out_unlock;
6771                 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6772                         advertising = cmd->advertising;
6773                 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6774                         goto err_out_unlock;
6775                 else {
6776                         if (cmd->port == PORT_FIBRE)
6777                                 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6778                         else
6779                                 advertising = ETHTOOL_ALL_COPPER_SPEED;
6780                 }
6781                 advertising |= ADVERTISED_Autoneg;
6782         }
6783         else {
6784                 if (cmd->port == PORT_FIBRE) {
6785                         if ((cmd->speed != SPEED_1000 &&
6786                              cmd->speed != SPEED_2500) ||
6787                             (cmd->duplex != DUPLEX_FULL))
6788                                 goto err_out_unlock;
6789
6790                         if (cmd->speed == SPEED_2500 &&
6791                             !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6792                                 goto err_out_unlock;
6793                 }
6794                 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6795                         goto err_out_unlock;
6796
6797                 autoneg &= ~AUTONEG_SPEED;
6798                 req_line_speed = cmd->speed;
6799                 req_duplex = cmd->duplex;
6800                 advertising = 0;
6801         }
6802
6803         bp->autoneg = autoneg;
6804         bp->advertising = advertising;
6805         bp->req_line_speed = req_line_speed;
6806         bp->req_duplex = req_duplex;
6807
6808         err = 0;
6809         /* If device is down, the new settings will be picked up when it is
6810          * brought up.
6811          */
6812         if (netif_running(dev))
6813                 err = bnx2_setup_phy(bp, cmd->port);
6814
6815 err_out_unlock:
6816         spin_unlock_bh(&bp->phy_lock);
6817
6818         return err;
6819 }
6820
6821 static void
6822 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6823 {
6824         struct bnx2 *bp = netdev_priv(dev);
6825
6826         strcpy(info->driver, DRV_MODULE_NAME);
6827         strcpy(info->version, DRV_MODULE_VERSION);
6828         strcpy(info->bus_info, pci_name(bp->pdev));
6829         strcpy(info->fw_version, bp->fw_version);
6830 }
6831
6832 #define BNX2_REGDUMP_LEN                (32 * 1024)
6833
6834 static int
6835 bnx2_get_regs_len(struct net_device *dev)
6836 {
6837         return BNX2_REGDUMP_LEN;
6838 }
6839
6840 static void
6841 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6842 {
6843         u32 *p = _p, i, offset;
6844         u8 *orig_p = _p;
6845         struct bnx2 *bp = netdev_priv(dev);
6846         u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6847                                  0x0800, 0x0880, 0x0c00, 0x0c10,
6848                                  0x0c30, 0x0d08, 0x1000, 0x101c,
6849                                  0x1040, 0x1048, 0x1080, 0x10a4,
6850                                  0x1400, 0x1490, 0x1498, 0x14f0,
6851                                  0x1500, 0x155c, 0x1580, 0x15dc,
6852                                  0x1600, 0x1658, 0x1680, 0x16d8,
6853                                  0x1800, 0x1820, 0x1840, 0x1854,
6854                                  0x1880, 0x1894, 0x1900, 0x1984,
6855                                  0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6856                                  0x1c80, 0x1c94, 0x1d00, 0x1d84,
6857                                  0x2000, 0x2030, 0x23c0, 0x2400,
6858                                  0x2800, 0x2820, 0x2830, 0x2850,
6859                                  0x2b40, 0x2c10, 0x2fc0, 0x3058,
6860                                  0x3c00, 0x3c94, 0x4000, 0x4010,
6861                                  0x4080, 0x4090, 0x43c0, 0x4458,
6862                                  0x4c00, 0x4c18, 0x4c40, 0x4c54,
6863                                  0x4fc0, 0x5010, 0x53c0, 0x5444,
6864                                  0x5c00, 0x5c18, 0x5c80, 0x5c90,
6865                                  0x5fc0, 0x6000, 0x6400, 0x6428,
6866                                  0x6800, 0x6848, 0x684c, 0x6860,
6867                                  0x6888, 0x6910, 0x8000 };
6868
6869         regs->version = 0;
6870
6871         memset(p, 0, BNX2_REGDUMP_LEN);
6872
6873         if (!netif_running(bp->dev))
6874                 return;
6875
6876         i = 0;
6877         offset = reg_boundaries[0];
6878         p += offset;
6879         while (offset < BNX2_REGDUMP_LEN) {
6880                 *p++ = REG_RD(bp, offset);
6881                 offset += 4;
6882                 if (offset == reg_boundaries[i + 1]) {
6883                         offset = reg_boundaries[i + 2];
6884                         p = (u32 *) (orig_p + offset);
6885                         i += 2;
6886                 }
6887         }
6888 }
6889
6890 static void
6891 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6892 {
6893         struct bnx2 *bp = netdev_priv(dev);
6894
6895         if (bp->flags & BNX2_FLAG_NO_WOL) {
6896                 wol->supported = 0;
6897                 wol->wolopts = 0;
6898         }
6899         else {
6900                 wol->supported = WAKE_MAGIC;
6901                 if (bp->wol)
6902                         wol->wolopts = WAKE_MAGIC;
6903                 else
6904                         wol->wolopts = 0;
6905         }
6906         memset(&wol->sopass, 0, sizeof(wol->sopass));
6907 }
6908
6909 static int
6910 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6911 {
6912         struct bnx2 *bp = netdev_priv(dev);
6913
6914         if (wol->wolopts & ~WAKE_MAGIC)
6915                 return -EINVAL;
6916
6917         if (wol->wolopts & WAKE_MAGIC) {
6918                 if (bp->flags & BNX2_FLAG_NO_WOL)
6919                         return -EINVAL;
6920
6921                 bp->wol = 1;
6922         }
6923         else {
6924                 bp->wol = 0;
6925         }
6926         return 0;
6927 }
6928
6929 static int
6930 bnx2_nway_reset(struct net_device *dev)
6931 {
6932         struct bnx2 *bp = netdev_priv(dev);
6933         u32 bmcr;
6934
6935         if (!netif_running(dev))
6936                 return -EAGAIN;
6937
6938         if (!(bp->autoneg & AUTONEG_SPEED)) {
6939                 return -EINVAL;
6940         }
6941
6942         spin_lock_bh(&bp->phy_lock);
6943
6944         if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6945                 int rc;
6946
6947                 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6948                 spin_unlock_bh(&bp->phy_lock);
6949                 return rc;
6950         }
6951
6952         /* Force a link down visible on the other side */
6953         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6954                 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6955                 spin_unlock_bh(&bp->phy_lock);
6956
6957                 msleep(20);
6958
6959                 spin_lock_bh(&bp->phy_lock);
6960
6961                 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6962                 bp->serdes_an_pending = 1;
6963                 mod_timer(&bp->timer, jiffies + bp->current_interval);
6964         }
6965
6966         bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6967         bmcr &= ~BMCR_LOOPBACK;
6968         bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6969
6970         spin_unlock_bh(&bp->phy_lock);
6971
6972         return 0;
6973 }
6974
6975 static u32
6976 bnx2_get_link(struct net_device *dev)
6977 {
6978         struct bnx2 *bp = netdev_priv(dev);
6979
6980         return bp->link_up;
6981 }
6982
6983 static int
6984 bnx2_get_eeprom_len(struct net_device *dev)
6985 {
6986         struct bnx2 *bp = netdev_priv(dev);
6987
6988         if (bp->flash_info == NULL)
6989                 return 0;
6990
6991         return (int) bp->flash_size;
6992 }
6993
6994 static int
6995 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6996                 u8 *eebuf)
6997 {
6998         struct bnx2 *bp = netdev_priv(dev);
6999         int rc;
7000
7001         if (!netif_running(dev))
7002                 return -EAGAIN;
7003
7004         /* parameters already validated in ethtool_get_eeprom */
7005
7006         rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7007
7008         return rc;
7009 }
7010
7011 static int
7012 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7013                 u8 *eebuf)
7014 {
7015         struct bnx2 *bp = netdev_priv(dev);
7016         int rc;
7017
7018         if (!netif_running(dev))
7019                 return -EAGAIN;
7020
7021         /* parameters already validated in ethtool_set_eeprom */
7022
7023         rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7024
7025         return rc;
7026 }
7027
7028 static int
7029 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7030 {
7031         struct bnx2 *bp = netdev_priv(dev);
7032
7033         memset(coal, 0, sizeof(struct ethtool_coalesce));
7034
7035         coal->rx_coalesce_usecs = bp->rx_ticks;
7036         coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7037         coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7038         coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7039
7040         coal->tx_coalesce_usecs = bp->tx_ticks;
7041         coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7042         coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7043         coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7044
7045         coal->stats_block_coalesce_usecs = bp->stats_ticks;
7046
7047         return 0;
7048 }
7049
7050 static int
7051 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7052 {
7053         struct bnx2 *bp = netdev_priv(dev);
7054
7055         bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7056         if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7057
7058         bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7059         if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7060
7061         bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7062         if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7063
7064         bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7065         if (bp->rx_quick_cons_trip_int > 0xff)
7066                 bp->rx_quick_cons_trip_int = 0xff;
7067
7068         bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7069         if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7070
7071         bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7072         if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7073
7074         bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7075         if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7076
7077         bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7078         if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7079                 0xff;
7080
7081         bp->stats_ticks = coal->stats_block_coalesce_usecs;
7082         if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7083                 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7084                         bp->stats_ticks = USEC_PER_SEC;
7085         }
7086         if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7087                 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7088         bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7089
7090         if (netif_running(bp->dev)) {
7091                 bnx2_netif_stop(bp);
7092                 bnx2_init_nic(bp, 0);
7093                 bnx2_netif_start(bp);
7094         }
7095
7096         return 0;
7097 }
7098
7099 static void
7100 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7101 {
7102         struct bnx2 *bp = netdev_priv(dev);
7103
7104         ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7105         ering->rx_mini_max_pending = 0;
7106         ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7107
7108         ering->rx_pending = bp->rx_ring_size;
7109         ering->rx_mini_pending = 0;
7110         ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7111
7112         ering->tx_max_pending = MAX_TX_DESC_CNT;
7113         ering->tx_pending = bp->tx_ring_size;
7114 }
7115
7116 static int
7117 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7118 {
7119         if (netif_running(bp->dev)) {
7120                 /* Reset will erase chipset stats; save them */
7121                 bnx2_save_stats(bp);
7122
7123                 bnx2_netif_stop(bp);
7124                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7125                 bnx2_free_skbs(bp);
7126                 bnx2_free_mem(bp);
7127         }
7128
7129         bnx2_set_rx_ring_size(bp, rx);
7130         bp->tx_ring_size = tx;
7131
7132         if (netif_running(bp->dev)) {
7133                 int rc;
7134
7135                 rc = bnx2_alloc_mem(bp);
7136                 if (!rc)
7137                         rc = bnx2_init_nic(bp, 0);
7138
7139                 if (rc) {
7140                         bnx2_napi_enable(bp);
7141                         dev_close(bp->dev);
7142                         return rc;
7143                 }
7144                 bnx2_netif_start(bp);
7145         }
7146         return 0;
7147 }
7148
7149 static int
7150 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7151 {
7152         struct bnx2 *bp = netdev_priv(dev);
7153         int rc;
7154
7155         if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7156                 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7157                 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7158
7159                 return -EINVAL;
7160         }
7161         rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7162         return rc;
7163 }
7164
7165 static void
7166 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7167 {
7168         struct bnx2 *bp = netdev_priv(dev);
7169
7170         epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7171         epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7172         epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7173 }
7174
7175 static int
7176 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7177 {
7178         struct bnx2 *bp = netdev_priv(dev);
7179
7180         bp->req_flow_ctrl = 0;
7181         if (epause->rx_pause)
7182                 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7183         if (epause->tx_pause)
7184                 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7185
7186         if (epause->autoneg) {
7187                 bp->autoneg |= AUTONEG_FLOW_CTRL;
7188         }
7189         else {
7190                 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7191         }
7192
7193         if (netif_running(dev)) {
7194                 spin_lock_bh(&bp->phy_lock);
7195                 bnx2_setup_phy(bp, bp->phy_port);
7196                 spin_unlock_bh(&bp->phy_lock);
7197         }
7198
7199         return 0;
7200 }
7201
7202 static u32
7203 bnx2_get_rx_csum(struct net_device *dev)
7204 {
7205         struct bnx2 *bp = netdev_priv(dev);
7206
7207         return bp->rx_csum;
7208 }
7209
7210 static int
7211 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7212 {
7213         struct bnx2 *bp = netdev_priv(dev);
7214
7215         bp->rx_csum = data;
7216         return 0;
7217 }
7218
7219 static int
7220 bnx2_set_tso(struct net_device *dev, u32 data)
7221 {
7222         struct bnx2 *bp = netdev_priv(dev);
7223
7224         if (data) {
7225                 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7226                 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7227                         dev->features |= NETIF_F_TSO6;
7228         } else
7229                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7230                                    NETIF_F_TSO_ECN);
7231         return 0;
7232 }
7233
7234 static struct {
7235         char string[ETH_GSTRING_LEN];
7236 } bnx2_stats_str_arr[] = {
7237         { "rx_bytes" },
7238         { "rx_error_bytes" },
7239         { "tx_bytes" },
7240         { "tx_error_bytes" },
7241         { "rx_ucast_packets" },
7242         { "rx_mcast_packets" },
7243         { "rx_bcast_packets" },
7244         { "tx_ucast_packets" },
7245         { "tx_mcast_packets" },
7246         { "tx_bcast_packets" },
7247         { "tx_mac_errors" },
7248         { "tx_carrier_errors" },
7249         { "rx_crc_errors" },
7250         { "rx_align_errors" },
7251         { "tx_single_collisions" },
7252         { "tx_multi_collisions" },
7253         { "tx_deferred" },
7254         { "tx_excess_collisions" },
7255         { "tx_late_collisions" },
7256         { "tx_total_collisions" },
7257         { "rx_fragments" },
7258         { "rx_jabbers" },
7259         { "rx_undersize_packets" },
7260         { "rx_oversize_packets" },
7261         { "rx_64_byte_packets" },
7262         { "rx_65_to_127_byte_packets" },
7263         { "rx_128_to_255_byte_packets" },
7264         { "rx_256_to_511_byte_packets" },
7265         { "rx_512_to_1023_byte_packets" },
7266         { "rx_1024_to_1522_byte_packets" },
7267         { "rx_1523_to_9022_byte_packets" },
7268         { "tx_64_byte_packets" },
7269         { "tx_65_to_127_byte_packets" },
7270         { "tx_128_to_255_byte_packets" },
7271         { "tx_256_to_511_byte_packets" },
7272         { "tx_512_to_1023_byte_packets" },
7273         { "tx_1024_to_1522_byte_packets" },
7274         { "tx_1523_to_9022_byte_packets" },
7275         { "rx_xon_frames" },
7276         { "rx_xoff_frames" },
7277         { "tx_xon_frames" },
7278         { "tx_xoff_frames" },
7279         { "rx_mac_ctrl_frames" },
7280         { "rx_filtered_packets" },
7281         { "rx_ftq_discards" },
7282         { "rx_discards" },
7283         { "rx_fw_discards" },
7284 };
7285
7286 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7287                         sizeof(bnx2_stats_str_arr[0]))
7288
7289 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7290
7291 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7292     STATS_OFFSET32(stat_IfHCInOctets_hi),
7293     STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7294     STATS_OFFSET32(stat_IfHCOutOctets_hi),
7295     STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7296     STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7297     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7298     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7299     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7300     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7301     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7302     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7303     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7304     STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7305     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7306     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7307     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7308     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7309     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7310     STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7311     STATS_OFFSET32(stat_EtherStatsCollisions),
7312     STATS_OFFSET32(stat_EtherStatsFragments),
7313     STATS_OFFSET32(stat_EtherStatsJabbers),
7314     STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7315     STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7316     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7317     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7318     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7319     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7320     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7321     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7322     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7323     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7324     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7325     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7326     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7327     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7328     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7329     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7330     STATS_OFFSET32(stat_XonPauseFramesReceived),
7331     STATS_OFFSET32(stat_XoffPauseFramesReceived),
7332     STATS_OFFSET32(stat_OutXonSent),
7333     STATS_OFFSET32(stat_OutXoffSent),
7334     STATS_OFFSET32(stat_MacControlFramesReceived),
7335     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7336     STATS_OFFSET32(stat_IfInFTQDiscards),
7337     STATS_OFFSET32(stat_IfInMBUFDiscards),
7338     STATS_OFFSET32(stat_FwRxDrop),
7339 };
7340
7341 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7342  * skipped because of errata.
7343  */
7344 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7345         8,0,8,8,8,8,8,8,8,8,
7346         4,0,4,4,4,4,4,4,4,4,
7347         4,4,4,4,4,4,4,4,4,4,
7348         4,4,4,4,4,4,4,4,4,4,
7349         4,4,4,4,4,4,4,
7350 };
7351
7352 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7353         8,0,8,8,8,8,8,8,8,8,
7354         4,4,4,4,4,4,4,4,4,4,
7355         4,4,4,4,4,4,4,4,4,4,
7356         4,4,4,4,4,4,4,4,4,4,
7357         4,4,4,4,4,4,4,
7358 };
7359
7360 #define BNX2_NUM_TESTS 6
7361
7362 static struct {
7363         char string[ETH_GSTRING_LEN];
7364 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7365         { "register_test (offline)" },
7366         { "memory_test (offline)" },
7367         { "loopback_test (offline)" },
7368         { "nvram_test (online)" },
7369         { "interrupt_test (online)" },
7370         { "link_test (online)" },
7371 };
7372
7373 static int
7374 bnx2_get_sset_count(struct net_device *dev, int sset)
7375 {
7376         switch (sset) {
7377         case ETH_SS_TEST:
7378                 return BNX2_NUM_TESTS;
7379         case ETH_SS_STATS:
7380                 return BNX2_NUM_STATS;
7381         default:
7382                 return -EOPNOTSUPP;
7383         }
7384 }
7385
7386 static void
7387 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7388 {
7389         struct bnx2 *bp = netdev_priv(dev);
7390
7391         bnx2_set_power_state(bp, PCI_D0);
7392
7393         memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7394         if (etest->flags & ETH_TEST_FL_OFFLINE) {
7395                 int i;
7396
7397                 bnx2_netif_stop(bp);
7398                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7399                 bnx2_free_skbs(bp);
7400
7401                 if (bnx2_test_registers(bp) != 0) {
7402                         buf[0] = 1;
7403                         etest->flags |= ETH_TEST_FL_FAILED;
7404                 }
7405                 if (bnx2_test_memory(bp) != 0) {
7406                         buf[1] = 1;
7407                         etest->flags |= ETH_TEST_FL_FAILED;
7408                 }
7409                 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7410                         etest->flags |= ETH_TEST_FL_FAILED;
7411
7412                 if (!netif_running(bp->dev))
7413                         bnx2_shutdown_chip(bp);
7414                 else {
7415                         bnx2_init_nic(bp, 1);
7416                         bnx2_netif_start(bp);
7417                 }
7418
7419                 /* wait for link up */
7420                 for (i = 0; i < 7; i++) {
7421                         if (bp->link_up)
7422                                 break;
7423                         msleep_interruptible(1000);
7424                 }
7425         }
7426
7427         if (bnx2_test_nvram(bp) != 0) {
7428                 buf[3] = 1;
7429                 etest->flags |= ETH_TEST_FL_FAILED;
7430         }
7431         if (bnx2_test_intr(bp) != 0) {
7432                 buf[4] = 1;
7433                 etest->flags |= ETH_TEST_FL_FAILED;
7434         }
7435
7436         if (bnx2_test_link(bp) != 0) {
7437                 buf[5] = 1;
7438                 etest->flags |= ETH_TEST_FL_FAILED;
7439
7440         }
7441         if (!netif_running(bp->dev))
7442                 bnx2_set_power_state(bp, PCI_D3hot);
7443 }
7444
7445 static void
7446 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7447 {
7448         switch (stringset) {
7449         case ETH_SS_STATS:
7450                 memcpy(buf, bnx2_stats_str_arr,
7451                         sizeof(bnx2_stats_str_arr));
7452                 break;
7453         case ETH_SS_TEST:
7454                 memcpy(buf, bnx2_tests_str_arr,
7455                         sizeof(bnx2_tests_str_arr));
7456                 break;
7457         }
7458 }
7459
7460 static void
7461 bnx2_get_ethtool_stats(struct net_device *dev,
7462                 struct ethtool_stats *stats, u64 *buf)
7463 {
7464         struct bnx2 *bp = netdev_priv(dev);
7465         int i;
7466         u32 *hw_stats = (u32 *) bp->stats_blk;
7467         u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7468         u8 *stats_len_arr = NULL;
7469
7470         if (hw_stats == NULL) {
7471                 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7472                 return;
7473         }
7474
7475         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7476             (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7477             (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7478             (CHIP_ID(bp) == CHIP_ID_5708_A0))
7479                 stats_len_arr = bnx2_5706_stats_len_arr;
7480         else
7481                 stats_len_arr = bnx2_5708_stats_len_arr;
7482
7483         for (i = 0; i < BNX2_NUM_STATS; i++) {
7484                 unsigned long offset;
7485
7486                 if (stats_len_arr[i] == 0) {
7487                         /* skip this counter */
7488                         buf[i] = 0;
7489                         continue;
7490                 }
7491
7492                 offset = bnx2_stats_offset_arr[i];
7493                 if (stats_len_arr[i] == 4) {
7494                         /* 4-byte counter */
7495                         buf[i] = (u64) *(hw_stats + offset) +
7496                                  *(temp_stats + offset);
7497                         continue;
7498                 }
7499                 /* 8-byte counter */
7500                 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7501                          *(hw_stats + offset + 1) +
7502                          (((u64) *(temp_stats + offset)) << 32) +
7503                          *(temp_stats + offset + 1);
7504         }
7505 }
7506
7507 static int
7508 bnx2_phys_id(struct net_device *dev, u32 data)
7509 {
7510         struct bnx2 *bp = netdev_priv(dev);
7511         int i;
7512         u32 save;
7513
7514         bnx2_set_power_state(bp, PCI_D0);
7515
7516         if (data == 0)
7517                 data = 2;
7518
7519         save = REG_RD(bp, BNX2_MISC_CFG);
7520         REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7521
7522         for (i = 0; i < (data * 2); i++) {
7523                 if ((i % 2) == 0) {
7524                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7525                 }
7526                 else {
7527                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7528                                 BNX2_EMAC_LED_1000MB_OVERRIDE |
7529                                 BNX2_EMAC_LED_100MB_OVERRIDE |
7530                                 BNX2_EMAC_LED_10MB_OVERRIDE |
7531                                 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7532                                 BNX2_EMAC_LED_TRAFFIC);
7533                 }
7534                 msleep_interruptible(500);
7535                 if (signal_pending(current))
7536                         break;
7537         }
7538         REG_WR(bp, BNX2_EMAC_LED, 0);
7539         REG_WR(bp, BNX2_MISC_CFG, save);
7540
7541         if (!netif_running(dev))
7542                 bnx2_set_power_state(bp, PCI_D3hot);
7543
7544         return 0;
7545 }
7546
7547 static int
7548 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7549 {
7550         struct bnx2 *bp = netdev_priv(dev);
7551
7552         if (CHIP_NUM(bp) == CHIP_NUM_5709)
7553                 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7554         else
7555                 return (ethtool_op_set_tx_csum(dev, data));
7556 }
7557
7558 static const struct ethtool_ops bnx2_ethtool_ops = {
7559         .get_settings           = bnx2_get_settings,
7560         .set_settings           = bnx2_set_settings,
7561         .get_drvinfo            = bnx2_get_drvinfo,
7562         .get_regs_len           = bnx2_get_regs_len,
7563         .get_regs               = bnx2_get_regs,
7564         .get_wol                = bnx2_get_wol,
7565         .set_wol                = bnx2_set_wol,
7566         .nway_reset             = bnx2_nway_reset,
7567         .get_link               = bnx2_get_link,
7568         .get_eeprom_len         = bnx2_get_eeprom_len,
7569         .get_eeprom             = bnx2_get_eeprom,
7570         .set_eeprom             = bnx2_set_eeprom,
7571         .get_coalesce           = bnx2_get_coalesce,
7572         .set_coalesce           = bnx2_set_coalesce,
7573         .get_ringparam          = bnx2_get_ringparam,
7574         .set_ringparam          = bnx2_set_ringparam,
7575         .get_pauseparam         = bnx2_get_pauseparam,
7576         .set_pauseparam         = bnx2_set_pauseparam,
7577         .get_rx_csum            = bnx2_get_rx_csum,
7578         .set_rx_csum            = bnx2_set_rx_csum,
7579         .set_tx_csum            = bnx2_set_tx_csum,
7580         .set_sg                 = ethtool_op_set_sg,
7581         .set_tso                = bnx2_set_tso,
7582         .self_test              = bnx2_self_test,
7583         .get_strings            = bnx2_get_strings,
7584         .phys_id                = bnx2_phys_id,
7585         .get_ethtool_stats      = bnx2_get_ethtool_stats,
7586         .get_sset_count         = bnx2_get_sset_count,
7587 };
7588
7589 /* Called with rtnl_lock */
7590 static int
7591 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7592 {
7593         struct mii_ioctl_data *data = if_mii(ifr);
7594         struct bnx2 *bp = netdev_priv(dev);
7595         int err;
7596
7597         switch(cmd) {
7598         case SIOCGMIIPHY:
7599                 data->phy_id = bp->phy_addr;
7600
7601                 /* fallthru */
7602         case SIOCGMIIREG: {
7603                 u32 mii_regval;
7604
7605                 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7606                         return -EOPNOTSUPP;
7607
7608                 if (!netif_running(dev))
7609                         return -EAGAIN;
7610
7611                 spin_lock_bh(&bp->phy_lock);
7612                 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7613                 spin_unlock_bh(&bp->phy_lock);
7614
7615                 data->val_out = mii_regval;
7616
7617                 return err;
7618         }
7619
7620         case SIOCSMIIREG:
7621                 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7622                         return -EOPNOTSUPP;
7623
7624                 if (!netif_running(dev))
7625                         return -EAGAIN;
7626
7627                 spin_lock_bh(&bp->phy_lock);
7628                 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7629                 spin_unlock_bh(&bp->phy_lock);
7630
7631                 return err;
7632
7633         default:
7634                 /* do nothing */
7635                 break;
7636         }
7637         return -EOPNOTSUPP;
7638 }
7639
7640 /* Called with rtnl_lock */
7641 static int
7642 bnx2_change_mac_addr(struct net_device *dev, void *p)
7643 {
7644         struct sockaddr *addr = p;
7645         struct bnx2 *bp = netdev_priv(dev);
7646
7647         if (!is_valid_ether_addr(addr->sa_data))
7648                 return -EINVAL;
7649
7650         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7651         if (netif_running(dev))
7652                 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7653
7654         return 0;
7655 }
7656
7657 /* Called with rtnl_lock */
7658 static int
7659 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7660 {
7661         struct bnx2 *bp = netdev_priv(dev);
7662
7663         if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7664                 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7665                 return -EINVAL;
7666
7667         dev->mtu = new_mtu;
7668         return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7669 }
7670
7671 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7672 static void
7673 poll_bnx2(struct net_device *dev)
7674 {
7675         struct bnx2 *bp = netdev_priv(dev);
7676         int i;
7677
7678         for (i = 0; i < bp->irq_nvecs; i++) {
7679                 disable_irq(bp->irq_tbl[i].vector);
7680                 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7681                 enable_irq(bp->irq_tbl[i].vector);
7682         }
7683 }
7684 #endif
7685
7686 static void __devinit
7687 bnx2_get_5709_media(struct bnx2 *bp)
7688 {
7689         u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7690         u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7691         u32 strap;
7692
7693         if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7694                 return;
7695         else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7696                 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7697                 return;
7698         }
7699
7700         if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7701                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7702         else
7703                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7704
7705         if (PCI_FUNC(bp->pdev->devfn) == 0) {
7706                 switch (strap) {
7707                 case 0x4:
7708                 case 0x5:
7709                 case 0x6:
7710                         bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7711                         return;
7712                 }
7713         } else {
7714                 switch (strap) {
7715                 case 0x1:
7716                 case 0x2:
7717                 case 0x4:
7718                         bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7719                         return;
7720                 }
7721         }
7722 }
7723
7724 static void __devinit
7725 bnx2_get_pci_speed(struct bnx2 *bp)
7726 {
7727         u32 reg;
7728
7729         reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7730         if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7731                 u32 clkreg;
7732
7733                 bp->flags |= BNX2_FLAG_PCIX;
7734
7735                 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7736
7737                 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7738                 switch (clkreg) {
7739                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7740                         bp->bus_speed_mhz = 133;
7741                         break;
7742
7743                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7744                         bp->bus_speed_mhz = 100;
7745                         break;
7746
7747                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7748                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7749                         bp->bus_speed_mhz = 66;
7750                         break;
7751
7752                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7753                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7754                         bp->bus_speed_mhz = 50;
7755                         break;
7756
7757                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7758                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7759                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7760                         bp->bus_speed_mhz = 33;
7761                         break;
7762                 }
7763         }
7764         else {
7765                 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7766                         bp->bus_speed_mhz = 66;
7767                 else
7768                         bp->bus_speed_mhz = 33;
7769         }
7770
7771         if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7772                 bp->flags |= BNX2_FLAG_PCI_32BIT;
7773
7774 }
7775
7776 static void __devinit
7777 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7778 {
7779         int rc, i, v0_len = 0;
7780         u8 *data;
7781         u8 *v0_str = NULL;
7782         bool mn_match = false;
7783
7784 #define BNX2_VPD_NVRAM_OFFSET   0x300
7785 #define BNX2_VPD_LEN            128
7786 #define BNX2_MAX_VER_SLEN       30
7787
7788         data = kmalloc(256, GFP_KERNEL);
7789         if (!data)
7790                 return;
7791
7792         rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7793                              BNX2_VPD_LEN);
7794         if (rc)
7795                 goto vpd_done;
7796
7797         for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7798                 data[i] = data[i + BNX2_VPD_LEN + 3];
7799                 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7800                 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7801                 data[i + 3] = data[i + BNX2_VPD_LEN];
7802         }
7803
7804         for (i = 0; i <= BNX2_VPD_LEN - 3; ) {
7805                 unsigned char val = data[i];
7806                 unsigned int block_end;
7807
7808                 if (val == 0x82 || val == 0x91) {
7809                         i = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
7810                         continue;
7811                 }
7812
7813                 if (val != 0x90)
7814                         goto vpd_done;
7815
7816                 block_end = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
7817                 i += 3;
7818
7819                 if (block_end > BNX2_VPD_LEN)
7820                         goto vpd_done;
7821
7822                 while (i < (block_end - 2)) {
7823                         int len = data[i + 2];
7824
7825                         if (i + 3 + len > block_end)
7826                                 goto vpd_done;
7827
7828                         if (data[i] == 'M' && data[i + 1] == 'N') {
7829                                 if (len != 4 ||
7830                                     memcmp(&data[i + 3], "1028", 4))
7831                                         goto vpd_done;
7832                                 mn_match = true;
7833
7834                         } else if (data[i] == 'V' && data[i + 1] == '0') {
7835                                 if (len > BNX2_MAX_VER_SLEN)
7836                                         goto vpd_done;
7837
7838                                 v0_len = len;
7839                                 v0_str = &data[i + 3];
7840                         }
7841                         i += 3 + len;
7842
7843                         if (mn_match && v0_str) {
7844                                 memcpy(bp->fw_version, v0_str, v0_len);
7845                                 bp->fw_version[v0_len] = ' ';
7846                                 goto vpd_done;
7847                         }
7848                 }
7849                 goto vpd_done;
7850         }
7851
7852 vpd_done:
7853         kfree(data);
7854 }
7855
7856 static int __devinit
7857 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7858 {
7859         struct bnx2 *bp;
7860         unsigned long mem_len;
7861         int rc, i, j;
7862         u32 reg;
7863         u64 dma_mask, persist_dma_mask;
7864
7865         SET_NETDEV_DEV(dev, &pdev->dev);
7866         bp = netdev_priv(dev);
7867
7868         bp->flags = 0;
7869         bp->phy_flags = 0;
7870
7871         bp->temp_stats_blk =
7872                 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7873
7874         if (bp->temp_stats_blk == NULL) {
7875                 rc = -ENOMEM;
7876                 goto err_out;
7877         }
7878
7879         /* enable device (incl. PCI PM wakeup), and bus-mastering */
7880         rc = pci_enable_device(pdev);
7881         if (rc) {
7882                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7883                 goto err_out;
7884         }
7885
7886         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7887                 dev_err(&pdev->dev,
7888                         "Cannot find PCI device base address, aborting.\n");
7889                 rc = -ENODEV;
7890                 goto err_out_disable;
7891         }
7892
7893         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7894         if (rc) {
7895                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7896                 goto err_out_disable;
7897         }
7898
7899         pci_set_master(pdev);
7900         pci_save_state(pdev);
7901
7902         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7903         if (bp->pm_cap == 0) {
7904                 dev_err(&pdev->dev,
7905                         "Cannot find power management capability, aborting.\n");
7906                 rc = -EIO;
7907                 goto err_out_release;
7908         }
7909
7910         bp->dev = dev;
7911         bp->pdev = pdev;
7912
7913         spin_lock_init(&bp->phy_lock);
7914         spin_lock_init(&bp->indirect_lock);
7915 #ifdef BCM_CNIC
7916         mutex_init(&bp->cnic_lock);
7917 #endif
7918         INIT_WORK(&bp->reset_task, bnx2_reset_task);
7919
7920         dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7921         mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7922         dev->mem_end = dev->mem_start + mem_len;
7923         dev->irq = pdev->irq;
7924
7925         bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7926
7927         if (!bp->regview) {
7928                 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7929                 rc = -ENOMEM;
7930                 goto err_out_release;
7931         }
7932
7933         /* Configure byte swap and enable write to the reg_window registers.
7934          * Rely on CPU to do target byte swapping on big endian systems
7935          * The chip's target access swapping will not swap all accesses
7936          */
7937         pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7938                                BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7939                                BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7940
7941         bnx2_set_power_state(bp, PCI_D0);
7942
7943         bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7944
7945         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7946                 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7947                         dev_err(&pdev->dev,
7948                                 "Cannot find PCIE capability, aborting.\n");
7949                         rc = -EIO;
7950                         goto err_out_unmap;
7951                 }
7952                 bp->flags |= BNX2_FLAG_PCIE;
7953                 if (CHIP_REV(bp) == CHIP_REV_Ax)
7954                         bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7955         } else {
7956                 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7957                 if (bp->pcix_cap == 0) {
7958                         dev_err(&pdev->dev,
7959                                 "Cannot find PCIX capability, aborting.\n");
7960                         rc = -EIO;
7961                         goto err_out_unmap;
7962                 }
7963                 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7964         }
7965
7966         if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7967                 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7968                         bp->flags |= BNX2_FLAG_MSIX_CAP;
7969         }
7970
7971         if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7972                 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7973                         bp->flags |= BNX2_FLAG_MSI_CAP;
7974         }
7975
7976         /* 5708 cannot support DMA addresses > 40-bit.  */
7977         if (CHIP_NUM(bp) == CHIP_NUM_5708)
7978                 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7979         else
7980                 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7981
7982         /* Configure DMA attributes. */
7983         if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7984                 dev->features |= NETIF_F_HIGHDMA;
7985                 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7986                 if (rc) {
7987                         dev_err(&pdev->dev,
7988                                 "pci_set_consistent_dma_mask failed, aborting.\n");
7989                         goto err_out_unmap;
7990                 }
7991         } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7992                 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7993                 goto err_out_unmap;
7994         }
7995
7996         if (!(bp->flags & BNX2_FLAG_PCIE))
7997                 bnx2_get_pci_speed(bp);
7998
7999         /* 5706A0 may falsely detect SERR and PERR. */
8000         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8001                 reg = REG_RD(bp, PCI_COMMAND);
8002                 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8003                 REG_WR(bp, PCI_COMMAND, reg);
8004         }
8005         else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8006                 !(bp->flags & BNX2_FLAG_PCIX)) {
8007
8008                 dev_err(&pdev->dev,
8009                         "5706 A1 can only be used in a PCIX bus, aborting.\n");
8010                 goto err_out_unmap;
8011         }
8012
8013         bnx2_init_nvram(bp);
8014
8015         reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8016
8017         if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8018             BNX2_SHM_HDR_SIGNATURE_SIG) {
8019                 u32 off = PCI_FUNC(pdev->devfn) << 2;
8020
8021                 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8022         } else
8023                 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8024
8025         /* Get the permanent MAC address.  First we need to make sure the
8026          * firmware is actually running.
8027          */
8028         reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8029
8030         if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8031             BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8032                 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
8033                 rc = -ENODEV;
8034                 goto err_out_unmap;
8035         }
8036
8037         bnx2_read_vpd_fw_ver(bp);
8038
8039         j = strlen(bp->fw_version);
8040         reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8041         for (i = 0; i < 3 && j < 24; i++) {
8042                 u8 num, k, skip0;
8043
8044                 if (i == 0) {
8045                         bp->fw_version[j++] = 'b';
8046                         bp->fw_version[j++] = 'c';
8047                         bp->fw_version[j++] = ' ';
8048                 }
8049                 num = (u8) (reg >> (24 - (i * 8)));
8050                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8051                         if (num >= k || !skip0 || k == 1) {
8052                                 bp->fw_version[j++] = (num / k) + '0';
8053                                 skip0 = 0;
8054                         }
8055                 }
8056                 if (i != 2)
8057                         bp->fw_version[j++] = '.';
8058         }
8059         reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8060         if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8061                 bp->wol = 1;
8062
8063         if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8064                 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8065
8066                 for (i = 0; i < 30; i++) {
8067                         reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8068                         if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8069                                 break;
8070                         msleep(10);
8071                 }
8072         }
8073         reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8074         reg &= BNX2_CONDITION_MFW_RUN_MASK;
8075         if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8076             reg != BNX2_CONDITION_MFW_RUN_NONE) {
8077                 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8078
8079                 if (j < 32)
8080                         bp->fw_version[j++] = ' ';
8081                 for (i = 0; i < 3 && j < 28; i++) {
8082                         reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8083                         reg = swab32(reg);
8084                         memcpy(&bp->fw_version[j], &reg, 4);
8085                         j += 4;
8086                 }
8087         }
8088
8089         reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8090         bp->mac_addr[0] = (u8) (reg >> 8);
8091         bp->mac_addr[1] = (u8) reg;
8092
8093         reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8094         bp->mac_addr[2] = (u8) (reg >> 24);
8095         bp->mac_addr[3] = (u8) (reg >> 16);
8096         bp->mac_addr[4] = (u8) (reg >> 8);
8097         bp->mac_addr[5] = (u8) reg;
8098
8099         bp->tx_ring_size = MAX_TX_DESC_CNT;
8100         bnx2_set_rx_ring_size(bp, 255);
8101
8102         bp->rx_csum = 1;
8103
8104         bp->tx_quick_cons_trip_int = 2;
8105         bp->tx_quick_cons_trip = 20;
8106         bp->tx_ticks_int = 18;
8107         bp->tx_ticks = 80;
8108
8109         bp->rx_quick_cons_trip_int = 2;
8110         bp->rx_quick_cons_trip = 12;
8111         bp->rx_ticks_int = 18;
8112         bp->rx_ticks = 18;
8113
8114         bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8115
8116         bp->current_interval = BNX2_TIMER_INTERVAL;
8117
8118         bp->phy_addr = 1;
8119
8120         /* Disable WOL support if we are running on a SERDES chip. */
8121         if (CHIP_NUM(bp) == CHIP_NUM_5709)
8122                 bnx2_get_5709_media(bp);
8123         else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8124                 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8125
8126         bp->phy_port = PORT_TP;
8127         if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8128                 bp->phy_port = PORT_FIBRE;
8129                 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8130                 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8131                         bp->flags |= BNX2_FLAG_NO_WOL;
8132                         bp->wol = 0;
8133                 }
8134                 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8135                         /* Don't do parallel detect on this board because of
8136                          * some board problems.  The link will not go down
8137                          * if we do parallel detect.
8138                          */
8139                         if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8140                             pdev->subsystem_device == 0x310c)
8141                                 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8142                 } else {
8143                         bp->phy_addr = 2;
8144                         if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8145                                 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8146                 }
8147         } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8148                    CHIP_NUM(bp) == CHIP_NUM_5708)
8149                 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8150         else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8151                  (CHIP_REV(bp) == CHIP_REV_Ax ||
8152                   CHIP_REV(bp) == CHIP_REV_Bx))
8153                 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8154
8155         bnx2_init_fw_cap(bp);
8156
8157         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8158             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8159             (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8160             !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8161                 bp->flags |= BNX2_FLAG_NO_WOL;
8162                 bp->wol = 0;
8163         }
8164
8165         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8166                 bp->tx_quick_cons_trip_int =
8167                         bp->tx_quick_cons_trip;
8168                 bp->tx_ticks_int = bp->tx_ticks;
8169                 bp->rx_quick_cons_trip_int =
8170                         bp->rx_quick_cons_trip;
8171                 bp->rx_ticks_int = bp->rx_ticks;
8172                 bp->comp_prod_trip_int = bp->comp_prod_trip;
8173                 bp->com_ticks_int = bp->com_ticks;
8174                 bp->cmd_ticks_int = bp->cmd_ticks;
8175         }
8176
8177         /* Disable MSI on 5706 if AMD 8132 bridge is found.
8178          *
8179          * MSI is defined to be 32-bit write.  The 5706 does 64-bit MSI writes
8180          * with byte enables disabled on the unused 32-bit word.  This is legal
8181          * but causes problems on the AMD 8132 which will eventually stop
8182          * responding after a while.
8183          *
8184          * AMD believes this incompatibility is unique to the 5706, and
8185          * prefers to locally disable MSI rather than globally disabling it.
8186          */
8187         if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8188                 struct pci_dev *amd_8132 = NULL;
8189
8190                 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8191                                                   PCI_DEVICE_ID_AMD_8132_BRIDGE,
8192                                                   amd_8132))) {
8193
8194                         if (amd_8132->revision >= 0x10 &&
8195                             amd_8132->revision <= 0x13) {
8196                                 disable_msi = 1;
8197                                 pci_dev_put(amd_8132);
8198                                 break;
8199                         }
8200                 }
8201         }
8202
8203         bnx2_set_default_link(bp);
8204         bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8205
8206         init_timer(&bp->timer);
8207         bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8208         bp->timer.data = (unsigned long) bp;
8209         bp->timer.function = bnx2_timer;
8210
8211         return 0;
8212
8213 err_out_unmap:
8214         if (bp->regview) {
8215                 iounmap(bp->regview);
8216                 bp->regview = NULL;
8217         }
8218
8219 err_out_release:
8220         pci_release_regions(pdev);
8221
8222 err_out_disable:
8223         pci_disable_device(pdev);
8224         pci_set_drvdata(pdev, NULL);
8225
8226 err_out:
8227         return rc;
8228 }
8229
8230 static char * __devinit
8231 bnx2_bus_string(struct bnx2 *bp, char *str)
8232 {
8233         char *s = str;
8234
8235         if (bp->flags & BNX2_FLAG_PCIE) {
8236                 s += sprintf(s, "PCI Express");
8237         } else {
8238                 s += sprintf(s, "PCI");
8239                 if (bp->flags & BNX2_FLAG_PCIX)
8240                         s += sprintf(s, "-X");
8241                 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8242                         s += sprintf(s, " 32-bit");
8243                 else
8244                         s += sprintf(s, " 64-bit");
8245                 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8246         }
8247         return str;
8248 }
8249
8250 static void __devinit
8251 bnx2_init_napi(struct bnx2 *bp)
8252 {
8253         int i;
8254
8255         for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8256                 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8257                 int (*poll)(struct napi_struct *, int);
8258
8259                 if (i == 0)
8260                         poll = bnx2_poll;
8261                 else
8262                         poll = bnx2_poll_msix;
8263
8264                 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8265                 bnapi->bp = bp;
8266         }
8267 }
8268
8269 static const struct net_device_ops bnx2_netdev_ops = {
8270         .ndo_open               = bnx2_open,
8271         .ndo_start_xmit         = bnx2_start_xmit,
8272         .ndo_stop               = bnx2_close,
8273         .ndo_get_stats          = bnx2_get_stats,
8274         .ndo_set_rx_mode        = bnx2_set_rx_mode,
8275         .ndo_do_ioctl           = bnx2_ioctl,
8276         .ndo_validate_addr      = eth_validate_addr,
8277         .ndo_set_mac_address    = bnx2_change_mac_addr,
8278         .ndo_change_mtu         = bnx2_change_mtu,
8279         .ndo_tx_timeout         = bnx2_tx_timeout,
8280 #ifdef BCM_VLAN
8281         .ndo_vlan_rx_register   = bnx2_vlan_rx_register,
8282 #endif
8283 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8284         .ndo_poll_controller    = poll_bnx2,
8285 #endif
8286 };
8287
8288 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8289 {
8290 #ifdef BCM_VLAN
8291         dev->vlan_features |= flags;
8292 #endif
8293 }
8294
8295 static int __devinit
8296 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8297 {
8298         static int version_printed = 0;
8299         struct net_device *dev = NULL;
8300         struct bnx2 *bp;
8301         int rc;
8302         char str[40];
8303
8304         if (version_printed++ == 0)
8305                 printk(KERN_INFO "%s", version);
8306
8307         /* dev zeroed in init_etherdev */
8308         dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8309
8310         if (!dev)
8311                 return -ENOMEM;
8312
8313         rc = bnx2_init_board(pdev, dev);
8314         if (rc < 0) {
8315                 free_netdev(dev);
8316                 return rc;
8317         }
8318
8319         dev->netdev_ops = &bnx2_netdev_ops;
8320         dev->watchdog_timeo = TX_TIMEOUT;
8321         dev->ethtool_ops = &bnx2_ethtool_ops;
8322
8323         bp = netdev_priv(dev);
8324         bnx2_init_napi(bp);
8325
8326         pci_set_drvdata(pdev, dev);
8327
8328         rc = bnx2_request_firmware(bp);
8329         if (rc)
8330                 goto error;
8331
8332         memcpy(dev->dev_addr, bp->mac_addr, 6);
8333         memcpy(dev->perm_addr, bp->mac_addr, 6);
8334
8335         dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8336         vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8337         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8338                 dev->features |= NETIF_F_IPV6_CSUM;
8339                 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8340         }
8341 #ifdef BCM_VLAN
8342         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8343 #endif
8344         dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8345         vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8346         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8347                 dev->features |= NETIF_F_TSO6;
8348                 vlan_features_add(dev, NETIF_F_TSO6);
8349         }
8350         if ((rc = register_netdev(dev))) {
8351                 dev_err(&pdev->dev, "Cannot register net device\n");
8352                 goto error;
8353         }
8354
8355         printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8356                 "IRQ %d, node addr %pM\n",
8357                 dev->name,
8358                 board_info[ent->driver_data].name,
8359                 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8360                 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8361                 bnx2_bus_string(bp, str),
8362                 dev->base_addr,
8363                 bp->pdev->irq, dev->dev_addr);
8364
8365         return 0;
8366
8367 error:
8368         if (bp->mips_firmware)
8369                 release_firmware(bp->mips_firmware);
8370         if (bp->rv2p_firmware)
8371                 release_firmware(bp->rv2p_firmware);
8372
8373         if (bp->regview)
8374                 iounmap(bp->regview);
8375         pci_release_regions(pdev);
8376         pci_disable_device(pdev);
8377         pci_set_drvdata(pdev, NULL);
8378         free_netdev(dev);
8379         return rc;
8380 }
8381
8382 static void __devexit
8383 bnx2_remove_one(struct pci_dev *pdev)
8384 {
8385         struct net_device *dev = pci_get_drvdata(pdev);
8386         struct bnx2 *bp = netdev_priv(dev);
8387
8388         flush_scheduled_work();
8389
8390         unregister_netdev(dev);
8391
8392         if (bp->mips_firmware)
8393                 release_firmware(bp->mips_firmware);
8394         if (bp->rv2p_firmware)
8395                 release_firmware(bp->rv2p_firmware);
8396
8397         if (bp->regview)
8398                 iounmap(bp->regview);
8399
8400         kfree(bp->temp_stats_blk);
8401
8402         free_netdev(dev);
8403         pci_release_regions(pdev);
8404         pci_disable_device(pdev);
8405         pci_set_drvdata(pdev, NULL);
8406 }
8407
8408 static int
8409 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8410 {
8411         struct net_device *dev = pci_get_drvdata(pdev);
8412         struct bnx2 *bp = netdev_priv(dev);
8413
8414         /* PCI register 4 needs to be saved whether netif_running() or not.
8415          * MSI address and data need to be saved if using MSI and
8416          * netif_running().
8417          */
8418         pci_save_state(pdev);
8419         if (!netif_running(dev))
8420                 return 0;
8421
8422         flush_scheduled_work();
8423         bnx2_netif_stop(bp);
8424         netif_device_detach(dev);
8425         del_timer_sync(&bp->timer);
8426         bnx2_shutdown_chip(bp);
8427         bnx2_free_skbs(bp);
8428         bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8429         return 0;
8430 }
8431
8432 static int
8433 bnx2_resume(struct pci_dev *pdev)
8434 {
8435         struct net_device *dev = pci_get_drvdata(pdev);
8436         struct bnx2 *bp = netdev_priv(dev);
8437
8438         pci_restore_state(pdev);
8439         if (!netif_running(dev))
8440                 return 0;
8441
8442         bnx2_set_power_state(bp, PCI_D0);
8443         netif_device_attach(dev);
8444         bnx2_init_nic(bp, 1);
8445         bnx2_netif_start(bp);
8446         return 0;
8447 }
8448
8449 /**
8450  * bnx2_io_error_detected - called when PCI error is detected
8451  * @pdev: Pointer to PCI device
8452  * @state: The current pci connection state
8453  *
8454  * This function is called after a PCI bus error affecting
8455  * this device has been detected.
8456  */
8457 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8458                                                pci_channel_state_t state)
8459 {
8460         struct net_device *dev = pci_get_drvdata(pdev);
8461         struct bnx2 *bp = netdev_priv(dev);
8462
8463         rtnl_lock();
8464         netif_device_detach(dev);
8465
8466         if (state == pci_channel_io_perm_failure) {
8467                 rtnl_unlock();
8468                 return PCI_ERS_RESULT_DISCONNECT;
8469         }
8470
8471         if (netif_running(dev)) {
8472                 bnx2_netif_stop(bp);
8473                 del_timer_sync(&bp->timer);
8474                 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8475         }
8476
8477         pci_disable_device(pdev);
8478         rtnl_unlock();
8479
8480         /* Request a slot slot reset. */
8481         return PCI_ERS_RESULT_NEED_RESET;
8482 }
8483
8484 /**
8485  * bnx2_io_slot_reset - called after the pci bus has been reset.
8486  * @pdev: Pointer to PCI device
8487  *
8488  * Restart the card from scratch, as if from a cold-boot.
8489  */
8490 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8491 {
8492         struct net_device *dev = pci_get_drvdata(pdev);
8493         struct bnx2 *bp = netdev_priv(dev);
8494
8495         rtnl_lock();
8496         if (pci_enable_device(pdev)) {
8497                 dev_err(&pdev->dev,
8498                         "Cannot re-enable PCI device after reset.\n");
8499                 rtnl_unlock();
8500                 return PCI_ERS_RESULT_DISCONNECT;
8501         }
8502         pci_set_master(pdev);
8503         pci_restore_state(pdev);
8504         pci_save_state(pdev);
8505
8506         if (netif_running(dev)) {
8507                 bnx2_set_power_state(bp, PCI_D0);
8508                 bnx2_init_nic(bp, 1);
8509         }
8510
8511         rtnl_unlock();
8512         return PCI_ERS_RESULT_RECOVERED;
8513 }
8514
8515 /**
8516  * bnx2_io_resume - called when traffic can start flowing again.
8517  * @pdev: Pointer to PCI device
8518  *
8519  * This callback is called when the error recovery driver tells us that
8520  * its OK to resume normal operation.
8521  */
8522 static void bnx2_io_resume(struct pci_dev *pdev)
8523 {
8524         struct net_device *dev = pci_get_drvdata(pdev);
8525         struct bnx2 *bp = netdev_priv(dev);
8526
8527         rtnl_lock();
8528         if (netif_running(dev))
8529                 bnx2_netif_start(bp);
8530
8531         netif_device_attach(dev);
8532         rtnl_unlock();
8533 }
8534
8535 static struct pci_error_handlers bnx2_err_handler = {
8536         .error_detected = bnx2_io_error_detected,
8537         .slot_reset     = bnx2_io_slot_reset,
8538         .resume         = bnx2_io_resume,
8539 };
8540
8541 static struct pci_driver bnx2_pci_driver = {
8542         .name           = DRV_MODULE_NAME,
8543         .id_table       = bnx2_pci_tbl,
8544         .probe          = bnx2_init_one,
8545         .remove         = __devexit_p(bnx2_remove_one),
8546         .suspend        = bnx2_suspend,
8547         .resume         = bnx2_resume,
8548         .err_handler    = &bnx2_err_handler,
8549 };
8550
8551 static int __init bnx2_init(void)
8552 {
8553         return pci_register_driver(&bnx2_pci_driver);
8554 }
8555
8556 static void __exit bnx2_cleanup(void)
8557 {
8558         pci_unregister_driver(&bnx2_pci_driver);
8559 }
8560
8561 module_init(bnx2_init);
8562 module_exit(bnx2_cleanup);
8563
8564
8565