tree-wide: fix assorted typos all over the place
[safe/jmp/linux-2.6] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
9  *     - Multituner support
10  *     - video_ioctl2 conversion
11  *     - PAL/M fixes
12  *
13  *  This program is free software; you can redistribute it and/or modify
14  *  it under the terms of the GNU General Public License as published by
15  *  the Free Software Foundation; either version 2 of the License, or
16  *  (at your option) any later version.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License
24  *  along with this program; if not, write to the Free Software
25  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
40
41 #include "cx88.h"
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
44
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
48
49 /* ------------------------------------------------------------------ */
50
51 static unsigned int core_debug;
52 module_param(core_debug,int,0644);
53 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54
55 static unsigned int nicam;
56 module_param(nicam,int,0644);
57 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58
59 static unsigned int nocomb;
60 module_param(nocomb,int,0644);
61 MODULE_PARM_DESC(nocomb,"disable comb filter");
62
63 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
64         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65
66 static unsigned int cx88_devcount;
67 static LIST_HEAD(cx88_devlist);
68 static DEFINE_MUTEX(devlist);
69
70 #define NO_SYNC_LINE (-1U)
71
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73          generated _after_ lpi lines are transferred. */
74 static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
75                             unsigned int offset, u32 sync_line,
76                             unsigned int bpl, unsigned int padding,
77                             unsigned int lines, unsigned int lpi)
78 {
79         struct scatterlist *sg;
80         unsigned int line,todo,sol;
81
82         /* sync instruction */
83         if (sync_line != NO_SYNC_LINE)
84                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
85
86         /* scan lines */
87         sg = sglist;
88         for (line = 0; line < lines; line++) {
89                 while (offset && offset >= sg_dma_len(sg)) {
90                         offset -= sg_dma_len(sg);
91                         sg++;
92                 }
93                 if (lpi && line>0 && !(line % lpi))
94                         sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
95                 else
96                         sol = RISC_SOL;
97                 if (bpl <= sg_dma_len(sg)-offset) {
98                         /* fits into current chunk */
99                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
100                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
101                         offset+=bpl;
102                 } else {
103                         /* scanline needs to be split */
104                         todo = bpl;
105                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|
106                                             (sg_dma_len(sg)-offset));
107                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
108                         todo -= (sg_dma_len(sg)-offset);
109                         offset = 0;
110                         sg++;
111                         while (todo > sg_dma_len(sg)) {
112                                 *(rp++)=cpu_to_le32(RISC_WRITE|
113                                                     sg_dma_len(sg));
114                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
115                                 todo -= sg_dma_len(sg);
116                                 sg++;
117                         }
118                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
119                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                         offset += todo;
121                 }
122                 offset += padding;
123         }
124
125         return rp;
126 }
127
128 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
129                      struct scatterlist *sglist,
130                      unsigned int top_offset, unsigned int bottom_offset,
131                      unsigned int bpl, unsigned int padding, unsigned int lines)
132 {
133         u32 instructions,fields;
134         __le32 *rp;
135         int rc;
136
137         fields = 0;
138         if (UNSET != top_offset)
139                 fields++;
140         if (UNSET != bottom_offset)
141                 fields++;
142
143         /* estimate risc mem: worst case is one write per page border +
144            one write per scan line + syncs + jump (all 2 dwords).  Padding
145            can cause next bpl to start close to a page border.  First DMA
146            region may be smaller than PAGE_SIZE */
147         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
148         instructions += 2;
149         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
150                 return rc;
151
152         /* write risc instructions */
153         rp = risc->cpu;
154         if (UNSET != top_offset)
155                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
156                                      bpl, padding, lines, 0);
157         if (UNSET != bottom_offset)
158                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
159                                      bpl, padding, lines, 0);
160
161         /* save pointer to jmp instruction address */
162         risc->jmp = rp;
163         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
164         return 0;
165 }
166
167 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
168                          struct scatterlist *sglist, unsigned int bpl,
169                          unsigned int lines, unsigned int lpi)
170 {
171         u32 instructions;
172         __le32 *rp;
173         int rc;
174
175         /* estimate risc mem: worst case is one write per page border +
176            one write per scan line + syncs + jump (all 2 dwords).  Here
177            there is no padding and no sync.  First DMA region may be smaller
178            than PAGE_SIZE */
179         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
180         instructions += 1;
181         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
182                 return rc;
183
184         /* write risc instructions */
185         rp = risc->cpu;
186         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187
188         /* save pointer to jmp instruction address */
189         risc->jmp = rp;
190         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
191         return 0;
192 }
193
194 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
195                       u32 reg, u32 mask, u32 value)
196 {
197         __le32 *rp;
198         int rc;
199
200         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
201                 return rc;
202
203         /* write risc instructions */
204         rp = risc->cpu;
205         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
206         *(rp++) = cpu_to_le32(reg);
207         *(rp++) = cpu_to_le32(value);
208         *(rp++) = cpu_to_le32(mask);
209         *(rp++) = cpu_to_le32(RISC_JUMP);
210         *(rp++) = cpu_to_le32(risc->dma);
211         return 0;
212 }
213
214 void
215 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 {
217         struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
218
219         BUG_ON(in_interrupt());
220         videobuf_waiton(&buf->vb,0,0);
221         videobuf_dma_unmap(q, dma);
222         videobuf_dma_free(dma);
223         btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
224         buf->vb.state = VIDEOBUF_NEEDS_INIT;
225 }
226
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout                                             */
229
230 /* we are going to put all thr risc programs into host memory, so we
231  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
232  * use a static memory layout.  That surely will waste memory in case
233  * we don't use all DMA channels at the same time (which will be the
234  * case most of the time).  But that still gives us enough FIFO space
235  * to be able to deal with insane long pci latencies ...
236  *
237  * FIFO space allocations:
238  *    channel  21    (y video)  - 10.0k
239  *    channel  22    (u video)  -  2.0k
240  *    channel  23    (v video)  -  2.0k
241  *    channel  24    (vbi)      -  4.0k
242  *    channels 25+26 (audio)    -  4.0k
243  *    channel  28    (mpeg)     -  4.0k
244  *    channel  27    (audio rds)-  3.0k
245  *    TOTAL                     = 29.0k
246  *
247  * Every channel has 160 bytes control data (64 bytes instruction
248  * queue and 6 CDT entries), which is close to 2k total.
249  *
250  * Address layout:
251  *    0x0000 - 0x03ff    CMDs / reserved
252  *    0x0400 - 0x0bff    instruction queues + CDs
253  *    0x0c00 -           FIFOs
254  */
255
256 struct sram_channel cx88_sram_channels[] = {
257         [SRAM_CH21] = {
258                 .name       = "video y / packed",
259                 .cmds_start = 0x180040,
260                 .ctrl_start = 0x180400,
261                 .cdt        = 0x180400 + 64,
262                 .fifo_start = 0x180c00,
263                 .fifo_size  = 0x002800,
264                 .ptr1_reg   = MO_DMA21_PTR1,
265                 .ptr2_reg   = MO_DMA21_PTR2,
266                 .cnt1_reg   = MO_DMA21_CNT1,
267                 .cnt2_reg   = MO_DMA21_CNT2,
268         },
269         [SRAM_CH22] = {
270                 .name       = "video u",
271                 .cmds_start = 0x180080,
272                 .ctrl_start = 0x1804a0,
273                 .cdt        = 0x1804a0 + 64,
274                 .fifo_start = 0x183400,
275                 .fifo_size  = 0x000800,
276                 .ptr1_reg   = MO_DMA22_PTR1,
277                 .ptr2_reg   = MO_DMA22_PTR2,
278                 .cnt1_reg   = MO_DMA22_CNT1,
279                 .cnt2_reg   = MO_DMA22_CNT2,
280         },
281         [SRAM_CH23] = {
282                 .name       = "video v",
283                 .cmds_start = 0x1800c0,
284                 .ctrl_start = 0x180540,
285                 .cdt        = 0x180540 + 64,
286                 .fifo_start = 0x183c00,
287                 .fifo_size  = 0x000800,
288                 .ptr1_reg   = MO_DMA23_PTR1,
289                 .ptr2_reg   = MO_DMA23_PTR2,
290                 .cnt1_reg   = MO_DMA23_CNT1,
291                 .cnt2_reg   = MO_DMA23_CNT2,
292         },
293         [SRAM_CH24] = {
294                 .name       = "vbi",
295                 .cmds_start = 0x180100,
296                 .ctrl_start = 0x1805e0,
297                 .cdt        = 0x1805e0 + 64,
298                 .fifo_start = 0x184400,
299                 .fifo_size  = 0x001000,
300                 .ptr1_reg   = MO_DMA24_PTR1,
301                 .ptr2_reg   = MO_DMA24_PTR2,
302                 .cnt1_reg   = MO_DMA24_CNT1,
303                 .cnt2_reg   = MO_DMA24_CNT2,
304         },
305         [SRAM_CH25] = {
306                 .name       = "audio from",
307                 .cmds_start = 0x180140,
308                 .ctrl_start = 0x180680,
309                 .cdt        = 0x180680 + 64,
310                 .fifo_start = 0x185400,
311                 .fifo_size  = 0x001000,
312                 .ptr1_reg   = MO_DMA25_PTR1,
313                 .ptr2_reg   = MO_DMA25_PTR2,
314                 .cnt1_reg   = MO_DMA25_CNT1,
315                 .cnt2_reg   = MO_DMA25_CNT2,
316         },
317         [SRAM_CH26] = {
318                 .name       = "audio to",
319                 .cmds_start = 0x180180,
320                 .ctrl_start = 0x180720,
321                 .cdt        = 0x180680 + 64,  /* same as audio IN */
322                 .fifo_start = 0x185400,       /* same as audio IN */
323                 .fifo_size  = 0x001000,       /* same as audio IN */
324                 .ptr1_reg   = MO_DMA26_PTR1,
325                 .ptr2_reg   = MO_DMA26_PTR2,
326                 .cnt1_reg   = MO_DMA26_CNT1,
327                 .cnt2_reg   = MO_DMA26_CNT2,
328         },
329         [SRAM_CH28] = {
330                 .name       = "mpeg",
331                 .cmds_start = 0x180200,
332                 .ctrl_start = 0x1807C0,
333                 .cdt        = 0x1807C0 + 64,
334                 .fifo_start = 0x186400,
335                 .fifo_size  = 0x001000,
336                 .ptr1_reg   = MO_DMA28_PTR1,
337                 .ptr2_reg   = MO_DMA28_PTR2,
338                 .cnt1_reg   = MO_DMA28_CNT1,
339                 .cnt2_reg   = MO_DMA28_CNT2,
340         },
341         [SRAM_CH27] = {
342                 .name       = "audio rds",
343                 .cmds_start = 0x1801C0,
344                 .ctrl_start = 0x180860,
345                 .cdt        = 0x180860 + 64,
346                 .fifo_start = 0x187400,
347                 .fifo_size  = 0x000C00,
348                 .ptr1_reg   = MO_DMA27_PTR1,
349                 .ptr2_reg   = MO_DMA27_PTR2,
350                 .cnt1_reg   = MO_DMA27_CNT1,
351                 .cnt2_reg   = MO_DMA27_CNT2,
352         },
353 };
354
355 int cx88_sram_channel_setup(struct cx88_core *core,
356                             struct sram_channel *ch,
357                             unsigned int bpl, u32 risc)
358 {
359         unsigned int i,lines;
360         u32 cdt;
361
362         bpl   = (bpl + 7) & ~7; /* alignment */
363         cdt   = ch->cdt;
364         lines = ch->fifo_size / bpl;
365         if (lines > 6)
366                 lines = 6;
367         BUG_ON(lines < 2);
368
369         /* write CDT */
370         for (i = 0; i < lines; i++)
371                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
372
373         /* write CMDS */
374         cx_write(ch->cmds_start +  0, risc);
375         cx_write(ch->cmds_start +  4, cdt);
376         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
377         cx_write(ch->cmds_start + 12, ch->ctrl_start);
378         cx_write(ch->cmds_start + 16, 64 >> 2);
379         for (i = 20; i < 64; i += 4)
380                 cx_write(ch->cmds_start + i, 0);
381
382         /* fill registers */
383         cx_write(ch->ptr1_reg, ch->fifo_start);
384         cx_write(ch->ptr2_reg, cdt);
385         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
386         cx_write(ch->cnt2_reg, (lines*16) >> 3);
387
388         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
389         return 0;
390 }
391
392 /* ------------------------------------------------------------------ */
393 /* debug helper code                                                  */
394
395 static int cx88_risc_decode(u32 risc)
396 {
397         static char *instr[16] = {
398                 [ RISC_SYNC    >> 28 ] = "sync",
399                 [ RISC_WRITE   >> 28 ] = "write",
400                 [ RISC_WRITEC  >> 28 ] = "writec",
401                 [ RISC_READ    >> 28 ] = "read",
402                 [ RISC_READC   >> 28 ] = "readc",
403                 [ RISC_JUMP    >> 28 ] = "jump",
404                 [ RISC_SKIP    >> 28 ] = "skip",
405                 [ RISC_WRITERM >> 28 ] = "writerm",
406                 [ RISC_WRITECM >> 28 ] = "writecm",
407                 [ RISC_WRITECR >> 28 ] = "writecr",
408         };
409         static int incr[16] = {
410                 [ RISC_WRITE   >> 28 ] = 2,
411                 [ RISC_JUMP    >> 28 ] = 2,
412                 [ RISC_WRITERM >> 28 ] = 3,
413                 [ RISC_WRITECM >> 28 ] = 3,
414                 [ RISC_WRITECR >> 28 ] = 4,
415         };
416         static char *bits[] = {
417                 "12",   "13",   "14",   "resync",
418                 "cnt0", "cnt1", "18",   "19",
419                 "20",   "21",   "22",   "23",
420                 "irq1", "irq2", "eol",  "sol",
421         };
422         int i;
423
424         printk("0x%08x [ %s", risc,
425                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
426         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
427                 if (risc & (1 << (i + 12)))
428                         printk(" %s",bits[i]);
429         printk(" count=%d ]\n", risc & 0xfff);
430         return incr[risc >> 28] ? incr[risc >> 28] : 1;
431 }
432
433
434 void cx88_sram_channel_dump(struct cx88_core *core,
435                             struct sram_channel *ch)
436 {
437         static char *name[] = {
438                 "initial risc",
439                 "cdt base",
440                 "cdt size",
441                 "iq base",
442                 "iq size",
443                 "risc pc",
444                 "iq wr ptr",
445                 "iq rd ptr",
446                 "cdt current",
447                 "pci target",
448                 "line / byte",
449         };
450         u32 risc;
451         unsigned int i,j,n;
452
453         printk("%s: %s - dma channel status dump\n",
454                core->name,ch->name);
455         for (i = 0; i < ARRAY_SIZE(name); i++)
456                 printk("%s:   cmds: %-12s: 0x%08x\n",
457                        core->name,name[i],
458                        cx_read(ch->cmds_start + 4*i));
459         for (n = 1, i = 0; i < 4; i++) {
460                 risc = cx_read(ch->cmds_start + 4 * (i+11));
461                 printk("%s:   risc%d: ", core->name, i);
462                 if (--n)
463                         printk("0x%08x [ arg #%d ]\n", risc, n);
464                 else
465                         n = cx88_risc_decode(risc);
466         }
467         for (i = 0; i < 16; i += n) {
468                 risc = cx_read(ch->ctrl_start + 4 * i);
469                 printk("%s:   iq %x: ", core->name, i);
470                 n = cx88_risc_decode(risc);
471                 for (j = 1; j < n; j++) {
472                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
473                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
474                                core->name, i+j, risc, j);
475                 }
476         }
477
478         printk("%s: fifo: 0x%08x -> 0x%x\n",
479                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
480         printk("%s: ctrl: 0x%08x -> 0x%x\n",
481                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
482         printk("%s:   ptr1_reg: 0x%08x\n",
483                core->name,cx_read(ch->ptr1_reg));
484         printk("%s:   ptr2_reg: 0x%08x\n",
485                core->name,cx_read(ch->ptr2_reg));
486         printk("%s:   cnt1_reg: 0x%08x\n",
487                core->name,cx_read(ch->cnt1_reg));
488         printk("%s:   cnt2_reg: 0x%08x\n",
489                core->name,cx_read(ch->cnt2_reg));
490 }
491
492 static char *cx88_pci_irqs[32] = {
493         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
494         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
495         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
496         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
497 };
498
499 void cx88_print_irqbits(char *name, char *tag, char **strings,
500                         int len, u32 bits, u32 mask)
501 {
502         unsigned int i;
503
504         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
505         for (i = 0; i < len; i++) {
506                 if (!(bits & (1 << i)))
507                         continue;
508                 if (strings[i])
509                         printk(" %s", strings[i]);
510                 else
511                         printk(" %d", i);
512                 if (!(mask & (1 << i)))
513                         continue;
514                 printk("*");
515         }
516         printk("\n");
517 }
518
519 /* ------------------------------------------------------------------ */
520
521 int cx88_core_irq(struct cx88_core *core, u32 status)
522 {
523         int handled = 0;
524
525         if (status & PCI_INT_IR_SMPINT) {
526                 cx88_ir_irq(core);
527                 handled++;
528         }
529         if (!handled)
530                 cx88_print_irqbits(core->name, "irq pci",
531                                    cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
532                                    status, core->pci_irqmask);
533         return handled;
534 }
535
536 void cx88_wakeup(struct cx88_core *core,
537                  struct cx88_dmaqueue *q, u32 count)
538 {
539         struct cx88_buffer *buf;
540         int bc;
541
542         for (bc = 0;; bc++) {
543                 if (list_empty(&q->active))
544                         break;
545                 buf = list_entry(q->active.next,
546                                  struct cx88_buffer, vb.queue);
547                 /* count comes from the hw and is is 16bit wide --
548                  * this trick handles wrap-arounds correctly for
549                  * up to 32767 buffers in flight... */
550                 if ((s16) (count - buf->count) < 0)
551                         break;
552                 do_gettimeofday(&buf->vb.ts);
553                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
554                         count, buf->count);
555                 buf->vb.state = VIDEOBUF_DONE;
556                 list_del(&buf->vb.queue);
557                 wake_up(&buf->vb.done);
558         }
559         if (list_empty(&q->active)) {
560                 del_timer(&q->timeout);
561         } else {
562                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
563         }
564         if (bc != 1)
565                 dprintk(2, "%s: %d buffers handled (should be 1)\n",
566                         __func__, bc);
567 }
568
569 void cx88_shutdown(struct cx88_core *core)
570 {
571         /* disable RISC controller + IRQs */
572         cx_write(MO_DEV_CNTRL2, 0);
573
574         /* stop dma transfers */
575         cx_write(MO_VID_DMACNTRL, 0x0);
576         cx_write(MO_AUD_DMACNTRL, 0x0);
577         cx_write(MO_TS_DMACNTRL, 0x0);
578         cx_write(MO_VIP_DMACNTRL, 0x0);
579         cx_write(MO_GPHST_DMACNTRL, 0x0);
580
581         /* stop interrupts */
582         cx_write(MO_PCI_INTMSK, 0x0);
583         cx_write(MO_VID_INTMSK, 0x0);
584         cx_write(MO_AUD_INTMSK, 0x0);
585         cx_write(MO_TS_INTMSK, 0x0);
586         cx_write(MO_VIP_INTMSK, 0x0);
587         cx_write(MO_GPHST_INTMSK, 0x0);
588
589         /* stop capturing */
590         cx_write(VID_CAPTURE_CONTROL, 0);
591 }
592
593 int cx88_reset(struct cx88_core *core)
594 {
595         dprintk(1,"%s\n",__func__);
596         cx88_shutdown(core);
597
598         /* clear irq status */
599         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
600         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
601         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
602
603         /* wait a bit */
604         msleep(100);
605
606         /* init sram */
607         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
608         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
609         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
610         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
611         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
612         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
613         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
614         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
615
616         /* misc init ... */
617         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
618                                    (1 << 12) |   // agc gain
619                                    (1 << 11) |   // adaptibe agc
620                                    (0 << 10) |   // chroma agc
621                                    (0 <<  9) |   // ckillen
622                                    (7)));
623
624         /* setup image format */
625         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
626
627         /* setup FIFO Thresholds */
628         cx_write(MO_PDMA_STHRSH,   0x0807);
629         cx_write(MO_PDMA_DTHRSH,   0x0807);
630
631         /* fixes flashing of image */
632         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
633         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
634
635         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
636         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
637         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
638
639         /* Reset on-board parts */
640         cx_write(MO_SRST_IO, 0);
641         msleep(10);
642         cx_write(MO_SRST_IO, 1);
643
644         return 0;
645 }
646
647 /* ------------------------------------------------------------------ */
648
649 static unsigned int inline norm_swidth(v4l2_std_id norm)
650 {
651         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
652 }
653
654 static unsigned int inline norm_hdelay(v4l2_std_id norm)
655 {
656         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
657 }
658
659 static unsigned int inline norm_vdelay(v4l2_std_id norm)
660 {
661         return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
662 }
663
664 static unsigned int inline norm_fsc8(v4l2_std_id norm)
665 {
666         if (norm & V4L2_STD_PAL_M)
667                 return 28604892;      // 3.575611 MHz
668
669         if (norm & (V4L2_STD_PAL_Nc))
670                 return 28656448;      // 3.582056 MHz
671
672         if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
673                 return 28636360;      // 3.57954545 MHz +/- 10 Hz
674
675         /* SECAM have also different sub carrier for chroma,
676            but step_db and step_dr, at cx88_set_tvnorm already handles that.
677
678            The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
679          */
680
681         return 35468950;      // 4.43361875 MHz +/- 5 Hz
682 }
683
684 static unsigned int inline norm_htotal(v4l2_std_id norm)
685 {
686
687         unsigned int fsc4=norm_fsc8(norm)/2;
688
689         /* returns 4*FSC / vtotal / frames per seconds */
690         return (norm & V4L2_STD_625_50) ?
691                                 ((fsc4+312)/625+12)/25 :
692                                 ((fsc4+262)/525*1001+15000)/30000;
693 }
694
695 static unsigned int inline norm_vbipack(v4l2_std_id norm)
696 {
697         return (norm & V4L2_STD_625_50) ? 511 : 400;
698 }
699
700 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
701                    enum v4l2_field field)
702 {
703         unsigned int swidth  = norm_swidth(core->tvnorm);
704         unsigned int sheight = norm_maxh(core->tvnorm);
705         u32 value;
706
707         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
708                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
709                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
710                 v4l2_norm_to_name(core->tvnorm));
711         if (!V4L2_FIELD_HAS_BOTH(field))
712                 height *= 2;
713
714         // recalc H delay and scale registers
715         value = (width * norm_hdelay(core->tvnorm)) / swidth;
716         value &= 0x3fe;
717         cx_write(MO_HDELAY_EVEN,  value);
718         cx_write(MO_HDELAY_ODD,   value);
719         dprintk(1,"set_scale: hdelay  0x%04x (width %d)\n", value,swidth);
720
721         value = (swidth * 4096 / width) - 4096;
722         cx_write(MO_HSCALE_EVEN,  value);
723         cx_write(MO_HSCALE_ODD,   value);
724         dprintk(1,"set_scale: hscale  0x%04x\n", value);
725
726         cx_write(MO_HACTIVE_EVEN, width);
727         cx_write(MO_HACTIVE_ODD,  width);
728         dprintk(1,"set_scale: hactive 0x%04x\n", width);
729
730         // recalc V scale Register (delay is constant)
731         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
732         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
733         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
734
735         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
736         cx_write(MO_VSCALE_EVEN,  value);
737         cx_write(MO_VSCALE_ODD,   value);
738         dprintk(1,"set_scale: vscale  0x%04x\n", value);
739
740         cx_write(MO_VACTIVE_EVEN, sheight);
741         cx_write(MO_VACTIVE_ODD,  sheight);
742         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
743
744         // setup filters
745         value = 0;
746         value |= (1 << 19);        // CFILT (default)
747         if (core->tvnorm & V4L2_STD_SECAM) {
748                 value |= (1 << 15);
749                 value |= (1 << 16);
750         }
751         if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
752                 value |= (1 << 13) | (1 << 5);
753         if (V4L2_FIELD_INTERLACED == field)
754                 value |= (1 << 3); // VINT (interlaced vertical scaling)
755         if (width < 385)
756                 value |= (1 << 0); // 3-tap interpolation
757         if (width < 193)
758                 value |= (1 << 1); // 5-tap interpolation
759         if (nocomb)
760                 value |= (3 << 5); // disable comb filter
761
762         cx_write(MO_FILTER_EVEN,  value);
763         cx_write(MO_FILTER_ODD,   value);
764         dprintk(1,"set_scale: filter  0x%04x\n", value);
765
766         return 0;
767 }
768
769 static const u32 xtal = 28636363;
770
771 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
772 {
773         static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
774         u64 pll;
775         u32 reg;
776         int i;
777
778         if (prescale < 2)
779                 prescale = 2;
780         if (prescale > 5)
781                 prescale = 5;
782
783         pll = ofreq * 8 * prescale * (u64)(1 << 20);
784         do_div(pll,xtal);
785         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
786         if (((reg >> 20) & 0x3f) < 14) {
787                 printk("%s/0: pll out of range\n",core->name);
788                 return -1;
789         }
790
791         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
792                 reg, cx_read(MO_PLL_REG), ofreq);
793         cx_write(MO_PLL_REG, reg);
794         for (i = 0; i < 100; i++) {
795                 reg = cx_read(MO_DEVICE_STATUS);
796                 if (reg & (1<<2)) {
797                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
798                                 prescale,ofreq);
799                         return 0;
800                 }
801                 dprintk(1,"pll not locked yet, waiting ...\n");
802                 msleep(10);
803         }
804         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
805         return -1;
806 }
807
808 int cx88_start_audio_dma(struct cx88_core *core)
809 {
810         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
811         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
812
813         int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size/AUD_RDS_LINES;
814
815         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
816         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
817                 return 0;
818
819         /* setup fifo + format */
820         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
821         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
822         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
823                                 rds_bpl, 0);
824
825         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
826         cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
827
828         /* enable Up, Down and Audio RDS fifo */
829         cx_write(MO_AUD_DMACNTRL, 0x0007);
830
831         return 0;
832 }
833
834 int cx88_stop_audio_dma(struct cx88_core *core)
835 {
836         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
837         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
838                 return 0;
839
840         /* stop dma */
841         cx_write(MO_AUD_DMACNTRL, 0x0000);
842
843         return 0;
844 }
845
846 static int set_tvaudio(struct cx88_core *core)
847 {
848         v4l2_std_id norm = core->tvnorm;
849
850         if (CX88_VMUX_TELEVISION != INPUT(core->input).type)
851                 return 0;
852
853         if (V4L2_STD_PAL_BG & norm) {
854                 core->tvaudio = WW_BG;
855
856         } else if (V4L2_STD_PAL_DK & norm) {
857                 core->tvaudio = WW_DK;
858
859         } else if (V4L2_STD_PAL_I & norm) {
860                 core->tvaudio = WW_I;
861
862         } else if (V4L2_STD_SECAM_L & norm) {
863                 core->tvaudio = WW_L;
864
865         } else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) {
866                 core->tvaudio = WW_BG;
867
868         } else if (V4L2_STD_SECAM_DK & norm) {
869                 core->tvaudio = WW_DK;
870
871         } else if ((V4L2_STD_NTSC_M & norm) ||
872                    (V4L2_STD_PAL_M  & norm)) {
873                 core->tvaudio = WW_BTSC;
874
875         } else if (V4L2_STD_NTSC_M_JP & norm) {
876                 core->tvaudio = WW_EIAJ;
877
878         } else {
879                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
880                        core->name, v4l2_norm_to_name(core->tvnorm));
881                 core->tvaudio = 0;
882                 return 0;
883         }
884
885         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
886         cx88_set_tvaudio(core);
887         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
888
889 /*
890    This should be needed only on cx88-alsa. It seems that some cx88 chips have
891    bugs and does require DMA enabled for it to work.
892  */
893         cx88_start_audio_dma(core);
894         return 0;
895 }
896
897
898
899 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
900 {
901         u32 fsc8;
902         u32 adc_clock;
903         u32 vdec_clock;
904         u32 step_db,step_dr;
905         u64 tmp64;
906         u32 bdelay,agcdelay,htotal;
907         u32 cxiformat, cxoformat;
908
909         core->tvnorm = norm;
910         fsc8       = norm_fsc8(norm);
911         adc_clock  = xtal;
912         vdec_clock = fsc8;
913         step_db    = fsc8;
914         step_dr    = fsc8;
915
916         if (norm & V4L2_STD_NTSC_M_JP) {
917                 cxiformat = VideoFormatNTSCJapan;
918                 cxoformat = 0x181f0008;
919         } else if (norm & V4L2_STD_NTSC_443) {
920                 cxiformat = VideoFormatNTSC443;
921                 cxoformat = 0x181f0008;
922         } else if (norm & V4L2_STD_PAL_M) {
923                 cxiformat = VideoFormatPALM;
924                 cxoformat = 0x1c1f0008;
925         } else if (norm & V4L2_STD_PAL_N) {
926                 cxiformat = VideoFormatPALN;
927                 cxoformat = 0x1c1f0008;
928         } else if (norm & V4L2_STD_PAL_Nc) {
929                 cxiformat = VideoFormatPALNC;
930                 cxoformat = 0x1c1f0008;
931         } else if (norm & V4L2_STD_PAL_60) {
932                 cxiformat = VideoFormatPAL60;
933                 cxoformat = 0x181f0008;
934         } else if (norm & V4L2_STD_NTSC) {
935                 cxiformat = VideoFormatNTSC;
936                 cxoformat = 0x181f0008;
937         } else if (norm & V4L2_STD_SECAM) {
938                 step_db = 4250000 * 8;
939                 step_dr = 4406250 * 8;
940
941                 cxiformat = VideoFormatSECAM;
942                 cxoformat = 0x181f0008;
943         } else { /* PAL */
944                 cxiformat = VideoFormatPAL;
945                 cxoformat = 0x181f0008;
946         }
947
948         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
949                 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
950                 step_db, step_dr);
951         set_pll(core,2,vdec_clock);
952
953         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
954                 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
955         /* Chroma AGC must be disabled if SECAM is used, we enable it
956            by default on PAL and NTSC */
957         cx_andor(MO_INPUT_FORMAT, 0x40f,
958                  norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
959
960         // FIXME: as-is from DScaler
961         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
962                 cxoformat, cx_read(MO_OUTPUT_FORMAT));
963         cx_write(MO_OUTPUT_FORMAT, cxoformat);
964
965         // MO_SCONV_REG = adc clock / video dec clock * 2^17
966         tmp64  = adc_clock * (u64)(1 << 17);
967         do_div(tmp64, vdec_clock);
968         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
969                 (u32)tmp64, cx_read(MO_SCONV_REG));
970         cx_write(MO_SCONV_REG, (u32)tmp64);
971
972         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
973         tmp64  = step_db * (u64)(1 << 22);
974         do_div(tmp64, vdec_clock);
975         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
976                 (u32)tmp64, cx_read(MO_SUB_STEP));
977         cx_write(MO_SUB_STEP, (u32)tmp64);
978
979         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
980         tmp64  = step_dr * (u64)(1 << 22);
981         do_div(tmp64, vdec_clock);
982         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
983                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
984         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
985
986         // bdelay + agcdelay
987         bdelay   = vdec_clock * 65 / 20000000 + 21;
988         agcdelay = vdec_clock * 68 / 20000000 + 15;
989         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
990                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
991         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
992
993         // htotal
994         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
995         do_div(tmp64, fsc8);
996         htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
997         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
998                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
999         cx_write(MO_HTOTAL, htotal);
1000
1001         // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
1002         // the effective vbi offset ~244 samples, the same as the Bt8x8
1003         cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
1004
1005         // this is needed as well to set all tvnorm parameter
1006         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
1007
1008         // audio
1009         set_tvaudio(core);
1010
1011         // tell i2c chips
1012         call_all(core, core, s_std, norm);
1013
1014         // done
1015         return 0;
1016 }
1017
1018 /* ------------------------------------------------------------------ */
1019
1020 struct video_device *cx88_vdev_init(struct cx88_core *core,
1021                                     struct pci_dev *pci,
1022                                     struct video_device *template,
1023                                     char *type)
1024 {
1025         struct video_device *vfd;
1026
1027         vfd = video_device_alloc();
1028         if (NULL == vfd)
1029                 return NULL;
1030         *vfd = *template;
1031         vfd->v4l2_dev = &core->v4l2_dev;
1032         vfd->parent = &pci->dev;
1033         vfd->release = video_device_release;
1034         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1035                  core->name, type, core->board.name);
1036         return vfd;
1037 }
1038
1039 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1040 {
1041         struct cx88_core *core;
1042
1043         mutex_lock(&devlist);
1044         list_for_each_entry(core, &cx88_devlist, devlist) {
1045                 if (pci->bus->number != core->pci_bus)
1046                         continue;
1047                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1048                         continue;
1049
1050                 if (0 != cx88_get_resources(core, pci)) {
1051                         mutex_unlock(&devlist);
1052                         return NULL;
1053                 }
1054                 atomic_inc(&core->refcount);
1055                 mutex_unlock(&devlist);
1056                 return core;
1057         }
1058
1059         core = cx88_core_create(pci, cx88_devcount);
1060         if (NULL != core) {
1061                 cx88_devcount++;
1062                 list_add_tail(&core->devlist, &cx88_devlist);
1063         }
1064
1065         mutex_unlock(&devlist);
1066         return core;
1067 }
1068
1069 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1070 {
1071         release_mem_region(pci_resource_start(pci,0),
1072                            pci_resource_len(pci,0));
1073
1074         if (!atomic_dec_and_test(&core->refcount))
1075                 return;
1076
1077         mutex_lock(&devlist);
1078         cx88_ir_fini(core);
1079         if (0 == core->i2c_rc) {
1080                 if (core->i2c_rtc)
1081                         i2c_unregister_device(core->i2c_rtc);
1082                 i2c_del_adapter(&core->i2c_adap);
1083         }
1084         list_del(&core->devlist);
1085         iounmap(core->lmmio);
1086         cx88_devcount--;
1087         mutex_unlock(&devlist);
1088         v4l2_device_unregister(&core->v4l2_dev);
1089         kfree(core);
1090 }
1091
1092 /* ------------------------------------------------------------------ */
1093
1094 EXPORT_SYMBOL(cx88_print_irqbits);
1095
1096 EXPORT_SYMBOL(cx88_core_irq);
1097 EXPORT_SYMBOL(cx88_wakeup);
1098 EXPORT_SYMBOL(cx88_reset);
1099 EXPORT_SYMBOL(cx88_shutdown);
1100
1101 EXPORT_SYMBOL(cx88_risc_buffer);
1102 EXPORT_SYMBOL(cx88_risc_databuffer);
1103 EXPORT_SYMBOL(cx88_risc_stopper);
1104 EXPORT_SYMBOL(cx88_free_buffer);
1105
1106 EXPORT_SYMBOL(cx88_sram_channels);
1107 EXPORT_SYMBOL(cx88_sram_channel_setup);
1108 EXPORT_SYMBOL(cx88_sram_channel_dump);
1109
1110 EXPORT_SYMBOL(cx88_set_tvnorm);
1111 EXPORT_SYMBOL(cx88_set_scale);
1112
1113 EXPORT_SYMBOL(cx88_vdev_init);
1114 EXPORT_SYMBOL(cx88_core_get);
1115 EXPORT_SYMBOL(cx88_core_put);
1116
1117 EXPORT_SYMBOL(cx88_ir_start);
1118 EXPORT_SYMBOL(cx88_ir_stop);
1119
1120 /*
1121  * Local variables:
1122  * c-basic-offset: 8
1123  * End:
1124  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1125  */