fc46a26cb14fab046d417fa35142995bcb48b3d5
[safe/jmp/linux-2.6] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  */
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
36 #include "hfcsusb.h"
37
38 static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69         if (debug & DBG_HFC_CALL_TRACE)
70                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72         if (hw->ctrl_cnt) {
73                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75                 hw->ctrl_urb->transfer_buffer = NULL;
76                 hw->ctrl_urb->transfer_buffer_length = 0;
77                 hw->ctrl_write.wIndex =
78                     cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79                 hw->ctrl_write.wValue =
80                     cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83         }
84 }
85
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92         struct ctrl_buf *buf;
93
94         if (debug & DBG_HFC_CALL_TRACE)
95                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96                         hw->name, __func__, reg, val);
97
98         spin_lock(&hw->ctrl_lock);
99         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE)
100                 return 1;
101         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
102         buf->hfcs_reg = reg;
103         buf->reg_val = val;
104         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
105                 hw->ctrl_in_idx = 0;
106         if (++hw->ctrl_cnt == 1)
107                 ctrl_start_transfer(hw);
108         spin_unlock(&hw->ctrl_lock);
109
110         return 0;
111 }
112
113 /* control completion routine handling background control cmds */
114 static void
115 ctrl_complete(struct urb *urb)
116 {
117         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
118         struct ctrl_buf *buf;
119
120         if (debug & DBG_HFC_CALL_TRACE)
121                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
122
123         urb->dev = hw->dev;
124         if (hw->ctrl_cnt) {
125                 buf = &hw->ctrl_buff[hw->ctrl_out_idx];
126                 hw->ctrl_cnt--; /* decrement actual count */
127                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128                         hw->ctrl_out_idx = 0;   /* pointer wrap */
129
130                 ctrl_start_transfer(hw); /* start next transfer */
131         }
132 }
133
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138         if (set_on) {
139                 if (led_bits < 0)
140                         hw->led_state &= ~abs(led_bits);
141                 else
142                         hw->led_state |= led_bits;
143         } else {
144                 if (led_bits < 0)
145                         hw->led_state |= abs(led_bits);
146                 else
147                         hw->led_state &= ~led_bits;
148         }
149 }
150
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156                 hfcsusb_idtab[hw->vend_idx].driver_info;
157         __u8 tmpled;
158
159         if (driver_info->led_scheme == LED_OFF)
160                 return;
161         tmpled = hw->led_state;
162
163         switch (event) {
164         case LED_POWER_ON:
165                 set_led_bit(hw, driver_info->led_bits[0], 1);
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 set_led_bit(hw, driver_info->led_bits[2], 0);
168                 set_led_bit(hw, driver_info->led_bits[3], 0);
169                 break;
170         case LED_POWER_OFF:
171                 set_led_bit(hw, driver_info->led_bits[0], 0);
172                 set_led_bit(hw, driver_info->led_bits[1], 0);
173                 set_led_bit(hw, driver_info->led_bits[2], 0);
174                 set_led_bit(hw, driver_info->led_bits[3], 0);
175                 break;
176         case LED_S0_ON:
177                 set_led_bit(hw, driver_info->led_bits[1], 1);
178                 break;
179         case LED_S0_OFF:
180                 set_led_bit(hw, driver_info->led_bits[1], 0);
181                 break;
182         case LED_B1_ON:
183                 set_led_bit(hw, driver_info->led_bits[2], 1);
184                 break;
185         case LED_B1_OFF:
186                 set_led_bit(hw, driver_info->led_bits[2], 0);
187                 break;
188         case LED_B2_ON:
189                 set_led_bit(hw, driver_info->led_bits[3], 1);
190                 break;
191         case LED_B2_OFF:
192                 set_led_bit(hw, driver_info->led_bits[3], 0);
193                 break;
194         }
195
196         if (hw->led_state != tmpled) {
197                 if (debug & DBG_HFC_CALL_TRACE)
198                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199                             hw->name, __func__,
200                             HFCUSB_P_DATA, hw->led_state);
201
202                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203         }
204 }
205
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
213         struct hfcsusb          *hw = bch->hw;
214         int                     ret = -EINVAL;
215         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
216         u_long                  flags;
217
218         if (debug & DBG_HFC_CALL_TRACE)
219                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221         switch (hh->prim) {
222         case PH_DATA_REQ:
223                 spin_lock_irqsave(&hw->lock, flags);
224                 ret = bchannel_senddata(bch, skb);
225                 spin_unlock_irqrestore(&hw->lock, flags);
226                 if (debug & DBG_HFC_CALL_TRACE)
227                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228                                 hw->name, __func__, ret);
229                 if (ret > 0) {
230                         /*
231                          * other l1 drivers don't send early confirms on
232                          * transp data, but hfcsusb does because tx_next
233                          * skb is needed in tx_iso_complete()
234                          */
235                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
236                         ret = 0;
237                 }
238                 return ret;
239         case PH_ACTIVATE_REQ:
240                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
241                         hfcsusb_start_endpoint(hw, bch->nr);
242                         ret = hfcsusb_setup_bch(bch, ch->protocol);
243                 } else
244                         ret = 0;
245                 if (!ret)
246                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
247                                 0, NULL, GFP_KERNEL);
248                 break;
249         case PH_DEACTIVATE_REQ:
250                 deactivate_bchannel(bch);
251                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
252                         0, NULL, GFP_KERNEL);
253                 ret = 0;
254                 break;
255         }
256         if (!ret)
257                 dev_kfree_skb(skb);
258         return ret;
259 }
260
261 /*
262  * send full D/B channel status information
263  * as MPH_INFORMATION_IND
264  */
265 static void
266 hfcsusb_ph_info(struct hfcsusb *hw)
267 {
268         struct ph_info *phi;
269         struct dchannel *dch = &hw->dch;
270         int i;
271
272         phi = kzalloc(sizeof(struct ph_info) +
273                 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
274         phi->dch.ch.protocol = hw->protocol;
275         phi->dch.ch.Flags = dch->Flags;
276         phi->dch.state = dch->state;
277         phi->dch.num_bch = dch->dev.nrbchan;
278         for (i = 0; i < dch->dev.nrbchan; i++) {
279                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
280                 phi->bch[i].Flags = hw->bch[i].Flags;
281         }
282         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
283                 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
284                 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
285 }
286
287 /*
288  * Layer2 -> Layer 1 Dchannel data
289  */
290 static int
291 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
292 {
293         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
294         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
295         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
296         struct hfcsusb          *hw = dch->hw;
297         int                     ret = -EINVAL;
298         u_long                  flags;
299
300         switch (hh->prim) {
301         case PH_DATA_REQ:
302                 if (debug & DBG_HFC_CALL_TRACE)
303                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
304                                 hw->name, __func__);
305
306                 spin_lock_irqsave(&hw->lock, flags);
307                 ret = dchannel_senddata(dch, skb);
308                 spin_unlock_irqrestore(&hw->lock, flags);
309                 if (ret > 0) {
310                         ret = 0;
311                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
312                 }
313                 break;
314
315         case PH_ACTIVATE_REQ:
316                 if (debug & DBG_HFC_CALL_TRACE)
317                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
318                                 hw->name, __func__,
319                                 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
320
321                 if (hw->protocol == ISDN_P_NT_S0) {
322                         ret = 0;
323                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
324                                 _queue_data(&dch->dev.D,
325                                         PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
326                                         NULL, GFP_ATOMIC);
327                         } else {
328                                 hfcsusb_ph_command(hw,
329                                         HFC_L1_ACTIVATE_NT);
330                                 test_and_set_bit(FLG_L2_ACTIVATED,
331                                         &dch->Flags);
332                         }
333                 } else {
334                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
335                         ret = l1_event(dch->l1, hh->prim);
336                 }
337                 break;
338
339         case PH_DEACTIVATE_REQ:
340                 if (debug & DBG_HFC_CALL_TRACE)
341                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
342                                 hw->name, __func__);
343                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
344
345                 if (hw->protocol == ISDN_P_NT_S0) {
346                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
347                         spin_lock_irqsave(&hw->lock, flags);
348                         skb_queue_purge(&dch->squeue);
349                         if (dch->tx_skb) {
350                                 dev_kfree_skb(dch->tx_skb);
351                                 dch->tx_skb = NULL;
352                         }
353                         dch->tx_idx = 0;
354                         if (dch->rx_skb) {
355                                 dev_kfree_skb(dch->rx_skb);
356                                 dch->rx_skb = NULL;
357                         }
358                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
359                         spin_unlock_irqrestore(&hw->lock, flags);
360 #ifdef FIXME
361                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
362                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
363 #endif
364                         ret = 0;
365                 } else
366                         ret = l1_event(dch->l1, hh->prim);
367                 break;
368         case MPH_INFORMATION_REQ:
369                 hfcsusb_ph_info(hw);
370                 ret = 0;
371                 break;
372         }
373
374         return ret;
375 }
376
377 /*
378  * Layer 1 callback function
379  */
380 static int
381 hfc_l1callback(struct dchannel *dch, u_int cmd)
382 {
383         struct hfcsusb *hw = dch->hw;
384
385         if (debug & DBG_HFC_CALL_TRACE)
386                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
387                         hw->name, __func__, cmd);
388
389         switch (cmd) {
390         case INFO3_P8:
391         case INFO3_P10:
392         case HW_RESET_REQ:
393         case HW_POWERUP_REQ:
394                 break;
395
396         case HW_DEACT_REQ:
397                 skb_queue_purge(&dch->squeue);
398                 if (dch->tx_skb) {
399                         dev_kfree_skb(dch->tx_skb);
400                         dch->tx_skb = NULL;
401                 }
402                 dch->tx_idx = 0;
403                 if (dch->rx_skb) {
404                         dev_kfree_skb(dch->rx_skb);
405                         dch->rx_skb = NULL;
406                 }
407                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
408                 break;
409         case PH_ACTIVATE_IND:
410                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
411                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
412                         GFP_ATOMIC);
413                 break;
414         case PH_DEACTIVATE_IND:
415                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
416                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
417                         GFP_ATOMIC);
418                 break;
419         default:
420                 if (dch->debug & DEBUG_HW)
421                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
422                         hw->name, __func__, cmd);
423                 return -1;
424         }
425         hfcsusb_ph_info(hw);
426         return 0;
427 }
428
429 static int
430 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
431     struct channel_req *rq)
432 {
433         int err = 0;
434
435         if (debug & DEBUG_HW_OPEN)
436                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
437                     hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
438                     __builtin_return_address(0));
439         if (rq->protocol == ISDN_P_NONE)
440                 return -EINVAL;
441
442         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
443         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
444         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
445
446         /* E-Channel logging */
447         if (rq->adr.channel == 1) {
448                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
449                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
450                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
451                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
452                                      MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
453                 } else
454                         return -EINVAL;
455         }
456
457         if (!hw->initdone) {
458                 hw->protocol = rq->protocol;
459                 if (rq->protocol == ISDN_P_TE_S0) {
460                         err = create_l1(&hw->dch, hfc_l1callback);
461                         if (err)
462                                 return err;
463                 }
464                 setPortMode(hw);
465                 ch->protocol = rq->protocol;
466                 hw->initdone = 1;
467         } else {
468                 if (rq->protocol != ch->protocol)
469                         return -EPROTONOSUPPORT;
470         }
471
472         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
473             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
474                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
475                     0, NULL, GFP_KERNEL);
476         rq->ch = ch;
477         if (!try_module_get(THIS_MODULE))
478                 printk(KERN_WARNING "%s: %s: cannot get module\n",
479                     hw->name, __func__);
480         return 0;
481 }
482
483 static int
484 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
485 {
486         struct bchannel         *bch;
487
488         if (rq->adr.channel > 2)
489                 return -EINVAL;
490         if (rq->protocol == ISDN_P_NONE)
491                 return -EINVAL;
492
493         if (debug & DBG_HFC_CALL_TRACE)
494                 printk(KERN_DEBUG "%s: %s B%i\n",
495                         hw->name, __func__, rq->adr.channel);
496
497         bch = &hw->bch[rq->adr.channel - 1];
498         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
499                 return -EBUSY; /* b-channel can be only open once */
500         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
501         bch->ch.protocol = rq->protocol;
502         rq->ch = &bch->ch;
503
504         /* start USB endpoint for bchannel */
505         if (rq->adr.channel  == 1)
506                 hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
507         else
508                 hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
509
510         if (!try_module_get(THIS_MODULE))
511                 printk(KERN_WARNING "%s: %s:cannot get module\n",
512                     hw->name, __func__);
513         return 0;
514 }
515
516 static int
517 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
518 {
519         int ret = 0;
520
521         if (debug & DBG_HFC_CALL_TRACE)
522                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
523                     hw->name, __func__, (cq->op), (cq->channel));
524
525         switch (cq->op) {
526         case MISDN_CTRL_GETOP:
527                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
528                          MISDN_CTRL_DISCONNECT;
529                 break;
530         default:
531                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
532                         hw->name, __func__, cq->op);
533                 ret = -EINVAL;
534                 break;
535         }
536         return ret;
537 }
538
539 /*
540  * device control function
541  */
542 static int
543 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
544 {
545         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
546         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
547         struct hfcsusb          *hw = dch->hw;
548         struct channel_req      *rq;
549         int                     err = 0;
550
551         if (dch->debug & DEBUG_HW)
552                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
553                     hw->name, __func__, cmd, arg);
554         switch (cmd) {
555         case OPEN_CHANNEL:
556                 rq = arg;
557                 if ((rq->protocol == ISDN_P_TE_S0) ||
558                     (rq->protocol == ISDN_P_NT_S0))
559                         err = open_dchannel(hw, ch, rq);
560                 else
561                         err = open_bchannel(hw, rq);
562                 if (!err)
563                         hw->open++;
564                 break;
565         case CLOSE_CHANNEL:
566                 hw->open--;
567                 if (debug & DEBUG_HW_OPEN)
568                         printk(KERN_DEBUG
569                                 "%s: %s: dev(%d) close from %p (open %d)\n",
570                                 hw->name, __func__, hw->dch.dev.id,
571                                 __builtin_return_address(0), hw->open);
572                 if (!hw->open) {
573                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
574                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
575                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
576                         handle_led(hw, LED_POWER_ON);
577                 }
578                 module_put(THIS_MODULE);
579                 break;
580         case CONTROL_CHANNEL:
581                 err = channel_ctrl(hw, arg);
582                 break;
583         default:
584                 if (dch->debug & DEBUG_HW)
585                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
586                                 hw->name, __func__, cmd);
587                 return -EINVAL;
588         }
589         return err;
590 }
591
592 /*
593  * S0 TE state change event handler
594  */
595 static void
596 ph_state_te(struct dchannel *dch)
597 {
598         struct hfcsusb *hw = dch->hw;
599
600         if (debug & DEBUG_HW) {
601                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
602                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
603                             HFC_TE_LAYER1_STATES[dch->state]);
604                 else
605                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
606                             hw->name, __func__, dch->state);
607         }
608
609         switch (dch->state) {
610         case 0:
611                 l1_event(dch->l1, HW_RESET_IND);
612                 break;
613         case 3:
614                 l1_event(dch->l1, HW_DEACT_IND);
615                 break;
616         case 5:
617         case 8:
618                 l1_event(dch->l1, ANYSIGNAL);
619                 break;
620         case 6:
621                 l1_event(dch->l1, INFO2);
622                 break;
623         case 7:
624                 l1_event(dch->l1, INFO4_P8);
625                 break;
626         }
627         if (dch->state == 7)
628                 handle_led(hw, LED_S0_ON);
629         else
630                 handle_led(hw, LED_S0_OFF);
631 }
632
633 /*
634  * S0 NT state change event handler
635  */
636 static void
637 ph_state_nt(struct dchannel *dch)
638 {
639         struct hfcsusb *hw = dch->hw;
640
641         if (debug & DEBUG_HW) {
642                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
643                         printk(KERN_DEBUG "%s: %s: %s\n",
644                             hw->name, __func__,
645                             HFC_NT_LAYER1_STATES[dch->state]);
646
647                 else
648                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
649                             hw->name, __func__, dch->state);
650         }
651
652         switch (dch->state) {
653         case (1):
654                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
655                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
656                 hw->nt_timer = 0;
657                 hw->timers &= ~NT_ACTIVATION_TIMER;
658                 handle_led(hw, LED_S0_OFF);
659                 break;
660
661         case (2):
662                 if (hw->nt_timer < 0) {
663                         hw->nt_timer = 0;
664                         hw->timers &= ~NT_ACTIVATION_TIMER;
665                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
666                 } else {
667                         hw->timers |= NT_ACTIVATION_TIMER;
668                         hw->nt_timer = NT_T1_COUNT;
669                         /* allow G2 -> G3 transition */
670                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
671                 }
672                 break;
673         case (3):
674                 hw->nt_timer = 0;
675                 hw->timers &= ~NT_ACTIVATION_TIMER;
676                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
677                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
678                         MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
679                 handle_led(hw, LED_S0_ON);
680                 break;
681         case (4):
682                 hw->nt_timer = 0;
683                 hw->timers &= ~NT_ACTIVATION_TIMER;
684                 break;
685         default:
686                 break;
687         }
688         hfcsusb_ph_info(hw);
689 }
690
691 static void
692 ph_state(struct dchannel *dch)
693 {
694         struct hfcsusb *hw = dch->hw;
695
696         if (hw->protocol == ISDN_P_NT_S0)
697                 ph_state_nt(dch);
698         else if (hw->protocol == ISDN_P_TE_S0)
699                 ph_state_te(dch);
700 }
701
702 /*
703  * disable/enable BChannel for desired protocoll
704  */
705 static int
706 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
707 {
708         struct hfcsusb *hw = bch->hw;
709         __u8 conhdlc, sctrl, sctrl_r;
710
711         if (debug & DEBUG_HW)
712                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
713                     hw->name, __func__, bch->state, protocol,
714                     bch->nr);
715
716         /* setup val for CON_HDLC */
717         conhdlc = 0;
718         if (protocol > ISDN_P_NONE)
719                 conhdlc = 8;    /* enable FIFO */
720
721         switch (protocol) {
722         case (-1):      /* used for init */
723                 bch->state = -1;
724                 /* fall trough */
725         case (ISDN_P_NONE):
726                 if (bch->state == ISDN_P_NONE)
727                         return 0; /* already in idle state */
728                 bch->state = ISDN_P_NONE;
729                 clear_bit(FLG_HDLC, &bch->Flags);
730                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
731                 break;
732         case (ISDN_P_B_RAW):
733                 conhdlc |= 2;
734                 bch->state = protocol;
735                 set_bit(FLG_TRANSPARENT, &bch->Flags);
736                 break;
737         case (ISDN_P_B_HDLC):
738                 bch->state = protocol;
739                 set_bit(FLG_HDLC, &bch->Flags);
740                 break;
741         default:
742                 if (debug & DEBUG_HW)
743                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
744                                 hw->name, __func__, protocol);
745                 return -ENOPROTOOPT;
746         }
747
748         if (protocol >= ISDN_P_NONE) {
749                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
750                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
751                 write_reg(hw, HFCUSB_INC_RES_F, 2);
752                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
753                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
754                 write_reg(hw, HFCUSB_INC_RES_F, 2);
755
756                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
757                 sctrl_r = 0x0;
758                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
759                         sctrl |= 1;
760                         sctrl_r |= 1;
761                 }
762                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
763                         sctrl |= 2;
764                         sctrl_r |= 2;
765                 }
766                 write_reg(hw, HFCUSB_SCTRL, sctrl);
767                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
768
769                 if (protocol > ISDN_P_NONE)
770                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
771                 else
772                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
773                                 LED_B2_OFF);
774         }
775         hfcsusb_ph_info(hw);
776         return 0;
777 }
778
779 static void
780 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
781 {
782         if (debug & DEBUG_HW)
783                 printk(KERN_DEBUG "%s: %s: %x\n",
784                    hw->name, __func__, command);
785
786         switch (command) {
787         case HFC_L1_ACTIVATE_TE:
788                 /* force sending sending INFO1 */
789                 write_reg(hw, HFCUSB_STATES, 0x14);
790                 /* start l1 activation */
791                 write_reg(hw, HFCUSB_STATES, 0x04);
792                 break;
793
794         case HFC_L1_FORCE_DEACTIVATE_TE:
795                 write_reg(hw, HFCUSB_STATES, 0x10);
796                 write_reg(hw, HFCUSB_STATES, 0x03);
797                 break;
798
799         case HFC_L1_ACTIVATE_NT:
800                 if (hw->dch.state == 3)
801                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
802                                 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
803                 else
804                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
805                                 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
806                 break;
807
808         case HFC_L1_DEACTIVATE_NT:
809                 write_reg(hw, HFCUSB_STATES,
810                         HFCUSB_DO_ACTION);
811                 break;
812         }
813 }
814
815 /*
816  * Layer 1 B-channel hardware access
817  */
818 static int
819 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
820 {
821         int     ret = 0;
822
823         switch (cq->op) {
824         case MISDN_CTRL_GETOP:
825                 cq->op = MISDN_CTRL_FILL_EMPTY;
826                 break;
827         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
828                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
829                 if (debug & DEBUG_HW_OPEN)
830                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
831                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
832                 break;
833         default:
834                 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
835                 ret = -EINVAL;
836                 break;
837         }
838         return ret;
839 }
840
841 /* collect data from incoming interrupt or isochron USB data */
842 static void
843 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
844         int finish)
845 {
846         struct hfcsusb  *hw = fifo->hw;
847         struct sk_buff  *rx_skb = NULL;
848         int             maxlen = 0;
849         int             fifon = fifo->fifonum;
850         int             i;
851         int             hdlc = 0;
852
853         if (debug & DBG_HFC_CALL_TRACE)
854                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
855                     "dch(%p) bch(%p) ech(%p)\n",
856                     hw->name, __func__, fifon, len,
857                     fifo->dch, fifo->bch, fifo->ech);
858
859         if (!len)
860                 return;
861
862         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
863                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
864                        hw->name, __func__);
865                 return;
866         }
867
868         spin_lock(&hw->lock);
869         if (fifo->dch) {
870                 rx_skb = fifo->dch->rx_skb;
871                 maxlen = fifo->dch->maxlen;
872                 hdlc = 1;
873         }
874         if (fifo->bch) {
875                 rx_skb = fifo->bch->rx_skb;
876                 maxlen = fifo->bch->maxlen;
877                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
878         }
879         if (fifo->ech) {
880                 rx_skb = fifo->ech->rx_skb;
881                 maxlen = fifo->ech->maxlen;
882                 hdlc = 1;
883         }
884
885         if (!rx_skb) {
886                 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
887                 if (rx_skb) {
888                         if (fifo->dch)
889                                 fifo->dch->rx_skb = rx_skb;
890                         if (fifo->bch)
891                                 fifo->bch->rx_skb = rx_skb;
892                         if (fifo->ech)
893                                 fifo->ech->rx_skb = rx_skb;
894                         skb_trim(rx_skb, 0);
895                 } else {
896                         printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
897                             hw->name, __func__);
898                         spin_unlock(&hw->lock);
899                         return;
900                 }
901         }
902
903         if (fifo->dch || fifo->ech) {
904                 /* D/E-Channel SKB range check */
905                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
906                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
907                             "for fifo(%d) HFCUSB_D_RX\n",
908                             hw->name, __func__, fifon);
909                         skb_trim(rx_skb, 0);
910                         spin_unlock(&hw->lock);
911                         return;
912                 }
913         } else if (fifo->bch) {
914                 /* B-Channel SKB range check */
915                 if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
916                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
917                             "for fifo(%d) HFCUSB_B_RX\n",
918                             hw->name, __func__, fifon);
919                         skb_trim(rx_skb, 0);
920                         spin_unlock(&hw->lock);
921                         return;
922                 }
923         }
924
925         memcpy(skb_put(rx_skb, len), data, len);
926
927         if (hdlc) {
928                 /* we have a complete hdlc packet */
929                 if (finish) {
930                         if ((rx_skb->len > 3) &&
931                            (!(rx_skb->data[rx_skb->len - 1]))) {
932                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
933                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
934                                             " new RX len(%i): ",
935                                             hw->name, __func__, fifon,
936                                             rx_skb->len);
937                                         i = 0;
938                                         while (i < rx_skb->len)
939                                                 printk("%02x ",
940                                                     rx_skb->data[i++]);
941                                         printk("\n");
942                                 }
943
944                                 /* remove CRC & status */
945                                 skb_trim(rx_skb, rx_skb->len - 3);
946
947                                 if (fifo->dch)
948                                         recv_Dchannel(fifo->dch);
949                                 if (fifo->bch)
950                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY);
951                                 if (fifo->ech)
952                                         recv_Echannel(fifo->ech,
953                                                      &hw->dch);
954                         } else {
955                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
956                                         printk(KERN_DEBUG
957                                             "%s: CRC or minlen ERROR fifon(%i) "
958                                             "RX len(%i): ",
959                                             hw->name, fifon, rx_skb->len);
960                                         i = 0;
961                                         while (i < rx_skb->len)
962                                                 printk("%02x ",
963                                                     rx_skb->data[i++]);
964                                         printk("\n");
965                                 }
966                                 skb_trim(rx_skb, 0);
967                         }
968                 }
969         } else {
970                 /* deliver transparent data to layer2 */
971                 if (rx_skb->len >= poll)
972                         recv_Bchannel(fifo->bch, MISDN_ID_ANY);
973         }
974         spin_unlock(&hw->lock);
975 }
976
977 static void
978 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
979               void *buf, int num_packets, int packet_size, int interval,
980               usb_complete_t complete, void *context)
981 {
982         int k;
983
984         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
985             complete, context);
986
987         urb->number_of_packets = num_packets;
988         urb->transfer_flags = URB_ISO_ASAP;
989         urb->actual_length = 0;
990         urb->interval = interval;
991
992         for (k = 0; k < num_packets; k++) {
993                 urb->iso_frame_desc[k].offset = packet_size * k;
994                 urb->iso_frame_desc[k].length = packet_size;
995                 urb->iso_frame_desc[k].actual_length = 0;
996         }
997 }
998
999 /* receive completion routine for all ISO tx fifos   */
1000 static void
1001 rx_iso_complete(struct urb *urb)
1002 {
1003         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1004         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1005         struct hfcsusb *hw = fifo->hw;
1006         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1007             status, iso_status, i;
1008         __u8 *buf;
1009         static __u8 eof[8];
1010         __u8 s0_state;
1011
1012         fifon = fifo->fifonum;
1013         status = urb->status;
1014
1015         spin_lock(&hw->lock);
1016         if (fifo->stop_gracefull) {
1017                 fifo->stop_gracefull = 0;
1018                 fifo->active = 0;
1019                 spin_unlock(&hw->lock);
1020                 return;
1021         }
1022         spin_unlock(&hw->lock);
1023
1024         /*
1025          * ISO transfer only partially completed,
1026          * look at individual frame status for details
1027          */
1028         if (status == -EXDEV) {
1029                 if (debug & DEBUG_HW)
1030                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1031                             "urb->status %d, fifonum %d\n",
1032                             hw->name, __func__,  status, fifon);
1033
1034                 /* clear status, so go on with ISO transfers */
1035                 status = 0;
1036         }
1037
1038         s0_state = 0;
1039         if (fifo->active && !status) {
1040                 num_isoc_packets = iso_packets[fifon];
1041                 maxlen = fifo->usb_packet_maxlen;
1042
1043                 for (k = 0; k < num_isoc_packets; ++k) {
1044                         len = urb->iso_frame_desc[k].actual_length;
1045                         offset = urb->iso_frame_desc[k].offset;
1046                         buf = context_iso_urb->buffer + offset;
1047                         iso_status = urb->iso_frame_desc[k].status;
1048
1049                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1050                                 printk(KERN_DEBUG "%s: %s: "
1051                                     "ISO packet %i, status: %i\n",
1052                                     hw->name, __func__, k, iso_status);
1053                         }
1054
1055                         /* USB data log for every D ISO in */
1056                         if ((fifon == HFCUSB_D_RX) &&
1057                             (debug & DBG_HFC_USB_VERBOSE)) {
1058                                 printk(KERN_DEBUG
1059                                     "%s: %s: %d (%d/%d) len(%d) ",
1060                                     hw->name, __func__, urb->start_frame,
1061                                     k, num_isoc_packets-1,
1062                                     len);
1063                                 for (i = 0; i < len; i++)
1064                                         printk("%x ", buf[i]);
1065                                 printk("\n");
1066                         }
1067
1068                         if (!iso_status) {
1069                                 if (fifo->last_urblen != maxlen) {
1070                                         /*
1071                                          * save fifo fill-level threshold bits
1072                                          * to use them later in TX ISO URB
1073                                          * completions
1074                                          */
1075                                         hw->threshold_mask = buf[1];
1076
1077                                         if (fifon == HFCUSB_D_RX)
1078                                                 s0_state = (buf[0] >> 4);
1079
1080                                         eof[fifon] = buf[0] & 1;
1081                                         if (len > 2)
1082                                                 hfcsusb_rx_frame(fifo, buf + 2,
1083                                                         len - 2, (len < maxlen)
1084                                                         ? eof[fifon] : 0);
1085                                 } else
1086                                         hfcsusb_rx_frame(fifo, buf, len,
1087                                                 (len < maxlen) ?
1088                                                 eof[fifon] : 0);
1089                                 fifo->last_urblen = len;
1090                         }
1091                 }
1092
1093                 /* signal S0 layer1 state change */
1094                 if ((s0_state) && (hw->initdone) &&
1095                     (s0_state != hw->dch.state)) {
1096                         hw->dch.state = s0_state;
1097                         schedule_event(&hw->dch, FLG_PHCHANGE);
1098                 }
1099
1100                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1101                               context_iso_urb->buffer, num_isoc_packets,
1102                               fifo->usb_packet_maxlen, fifo->intervall,
1103                               (usb_complete_t)rx_iso_complete, urb->context);
1104                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1105                 if (errcode < 0) {
1106                         if (debug & DEBUG_HW)
1107                                 printk(KERN_DEBUG "%s: %s: error submitting "
1108                                     "ISO URB: %d\n",
1109                                     hw->name, __func__, errcode);
1110                 }
1111         } else {
1112                 if (status && (debug & DBG_HFC_URB_INFO))
1113                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1114                             "urb->status %d, fifonum %d\n",
1115                             hw->name, __func__, status, fifon);
1116         }
1117 }
1118
1119 /* receive completion routine for all interrupt rx fifos */
1120 static void
1121 rx_int_complete(struct urb *urb)
1122 {
1123         int len, status, i;
1124         __u8 *buf, maxlen, fifon;
1125         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1126         struct hfcsusb *hw = fifo->hw;
1127         static __u8 eof[8];
1128
1129         spin_lock(&hw->lock);
1130         if (fifo->stop_gracefull) {
1131                 fifo->stop_gracefull = 0;
1132                 fifo->active = 0;
1133                 spin_unlock(&hw->lock);
1134                 return;
1135         }
1136         spin_unlock(&hw->lock);
1137
1138         fifon = fifo->fifonum;
1139         if ((!fifo->active) || (urb->status)) {
1140                 if (debug & DBG_HFC_URB_ERROR)
1141                         printk(KERN_DEBUG
1142                             "%s: %s: RX-Fifo %i is going down (%i)\n",
1143                             hw->name, __func__, fifon, urb->status);
1144
1145                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1146                 return;
1147         }
1148         len = urb->actual_length;
1149         buf = fifo->buffer;
1150         maxlen = fifo->usb_packet_maxlen;
1151
1152         /* USB data log for every D INT in */
1153         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1154                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1155                     hw->name, __func__, len);
1156                 for (i = 0; i < len; i++)
1157                         printk("%02x ", buf[i]);
1158                 printk("\n");
1159         }
1160
1161         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1162                 /* the threshold mask is in the 2nd status byte */
1163                 hw->threshold_mask = buf[1];
1164
1165                 /* signal S0 layer1 state change */
1166                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1167                         hw->dch.state = (buf[0] >> 4);
1168                         schedule_event(&hw->dch, FLG_PHCHANGE);
1169                 }
1170
1171                 eof[fifon] = buf[0] & 1;
1172                 /* if we have more than the 2 status bytes -> collect data */
1173                 if (len > 2)
1174                         hfcsusb_rx_frame(fifo, buf + 2,
1175                            urb->actual_length - 2,
1176                            (len < maxlen) ? eof[fifon] : 0);
1177         } else {
1178                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1179                                  (len < maxlen) ? eof[fifon] : 0);
1180         }
1181         fifo->last_urblen = urb->actual_length;
1182
1183         status = usb_submit_urb(urb, GFP_ATOMIC);
1184         if (status) {
1185                 if (debug & DEBUG_HW)
1186                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1187                             hw->name, __func__);
1188         }
1189 }
1190
1191 /* transmit completion routine for all ISO tx fifos */
1192 static void
1193 tx_iso_complete(struct urb *urb)
1194 {
1195         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1196         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1197         struct hfcsusb *hw = fifo->hw;
1198         struct sk_buff *tx_skb;
1199         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1200             errcode, hdlc, i;
1201         int *tx_idx;
1202         int frame_complete, fifon, status;
1203         __u8 threshbit;
1204
1205         spin_lock(&hw->lock);
1206         if (fifo->stop_gracefull) {
1207                 fifo->stop_gracefull = 0;
1208                 fifo->active = 0;
1209                 spin_unlock(&hw->lock);
1210                 return;
1211         }
1212
1213         if (fifo->dch) {
1214                 tx_skb = fifo->dch->tx_skb;
1215                 tx_idx = &fifo->dch->tx_idx;
1216                 hdlc = 1;
1217         } else if (fifo->bch) {
1218                 tx_skb = fifo->bch->tx_skb;
1219                 tx_idx = &fifo->bch->tx_idx;
1220                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1221         } else {
1222                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1223                     hw->name, __func__);
1224                 spin_unlock(&hw->lock);
1225                 return;
1226         }
1227
1228         fifon = fifo->fifonum;
1229         status = urb->status;
1230
1231         tx_offset = 0;
1232
1233         /*
1234          * ISO transfer only partially completed,
1235          * look at individual frame status for details
1236          */
1237         if (status == -EXDEV) {
1238                 if (debug & DBG_HFC_URB_ERROR)
1239                         printk(KERN_DEBUG "%s: %s: "
1240                             "-EXDEV (%i) fifon (%d)\n",
1241                             hw->name, __func__, status, fifon);
1242
1243                 /* clear status, so go on with ISO transfers */
1244                 status = 0;
1245         }
1246
1247         if (fifo->active && !status) {
1248                 /* is FifoFull-threshold set for our channel? */
1249                 threshbit = (hw->threshold_mask & (1 << fifon));
1250                 num_isoc_packets = iso_packets[fifon];
1251
1252                 /* predict dataflow to avoid fifo overflow */
1253                 if (fifon >= HFCUSB_D_TX)
1254                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1255                 else
1256                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1257                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1258                               context_iso_urb->buffer, num_isoc_packets,
1259                               fifo->usb_packet_maxlen, fifo->intervall,
1260                               (usb_complete_t)tx_iso_complete, urb->context);
1261                 memset(context_iso_urb->buffer, 0,
1262                        sizeof(context_iso_urb->buffer));
1263                 frame_complete = 0;
1264
1265                 for (k = 0; k < num_isoc_packets; ++k) {
1266                         /* analyze tx success of previous ISO packets */
1267                         if (debug & DBG_HFC_URB_ERROR) {
1268                                 errcode = urb->iso_frame_desc[k].status;
1269                                 if (errcode) {
1270                                         printk(KERN_DEBUG "%s: %s: "
1271                                             "ISO packet %i, status: %i\n",
1272                                              hw->name, __func__, k, errcode);
1273                                 }
1274                         }
1275
1276                         /* Generate next ISO Packets */
1277                         if (tx_skb)
1278                                 remain = tx_skb->len - *tx_idx;
1279                         else
1280                                 remain = 0;
1281
1282                         if (remain > 0) {
1283                                 fifo->bit_line -= sink;
1284                                 current_len = (0 - fifo->bit_line) / 8;
1285                                 if (current_len > 14)
1286                                         current_len = 14;
1287                                 if (current_len < 0)
1288                                         current_len = 0;
1289                                 if (remain < current_len)
1290                                         current_len = remain;
1291
1292                                 /* how much bit do we put on the line? */
1293                                 fifo->bit_line += current_len * 8;
1294
1295                                 context_iso_urb->buffer[tx_offset] = 0;
1296                                 if (current_len == remain) {
1297                                         if (hdlc) {
1298                                                 /* signal frame completion */
1299                                                 context_iso_urb->
1300                                                     buffer[tx_offset] = 1;
1301                                                 /* add 2 byte flags and 16bit
1302                                                  * CRC at end of ISDN frame */
1303                                                 fifo->bit_line += 32;
1304                                         }
1305                                         frame_complete = 1;
1306                                 }
1307
1308                                 /* copy tx data to iso-urb buffer */
1309                                 memcpy(context_iso_urb->buffer + tx_offset + 1,
1310                                        (tx_skb->data + *tx_idx), current_len);
1311                                 *tx_idx += current_len;
1312
1313                                 urb->iso_frame_desc[k].offset = tx_offset;
1314                                 urb->iso_frame_desc[k].length = current_len + 1;
1315
1316                                 /* USB data log for every D ISO out */
1317                                 if ((fifon == HFCUSB_D_RX) &&
1318                                     (debug & DBG_HFC_USB_VERBOSE)) {
1319                                         printk(KERN_DEBUG
1320                                             "%s: %s (%d/%d) offs(%d) len(%d) ",
1321                                             hw->name, __func__,
1322                                             k, num_isoc_packets-1,
1323                                             urb->iso_frame_desc[k].offset,
1324                                             urb->iso_frame_desc[k].length);
1325
1326                                         for (i = urb->iso_frame_desc[k].offset;
1327                                              i < (urb->iso_frame_desc[k].offset
1328                                              + urb->iso_frame_desc[k].length);
1329                                              i++)
1330                                                 printk("%x ",
1331                                                     context_iso_urb->buffer[i]);
1332
1333                                         printk(" skb->len(%i) tx-idx(%d)\n",
1334                                             tx_skb->len, *tx_idx);
1335                                 }
1336
1337                                 tx_offset += (current_len + 1);
1338                         } else {
1339                                 urb->iso_frame_desc[k].offset = tx_offset++;
1340                                 urb->iso_frame_desc[k].length = 1;
1341                                 /* we lower data margin every msec */
1342                                 fifo->bit_line -= sink;
1343                                 if (fifo->bit_line < BITLINE_INF)
1344                                         fifo->bit_line = BITLINE_INF;
1345                         }
1346
1347                         if (frame_complete) {
1348                                 frame_complete = 0;
1349
1350                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1351                                         printk(KERN_DEBUG  "%s: %s: "
1352                                             "fifon(%i) new TX len(%i): ",
1353                                             hw->name, __func__,
1354                                             fifon, tx_skb->len);
1355                                         i = 0;
1356                                         while (i < tx_skb->len)
1357                                                 printk("%02x ",
1358                                                     tx_skb->data[i++]);
1359                                         printk("\n");
1360                                 }
1361
1362                                 dev_kfree_skb(tx_skb);
1363                                 tx_skb = NULL;
1364                                 if (fifo->dch && get_next_dframe(fifo->dch))
1365                                         tx_skb = fifo->dch->tx_skb;
1366                                 else if (fifo->bch &&
1367                                     get_next_bframe(fifo->bch)) {
1368                                         if (test_bit(FLG_TRANSPARENT,
1369                                             &fifo->bch->Flags))
1370                                                 confirm_Bsend(fifo->bch);
1371                                         tx_skb = fifo->bch->tx_skb;
1372                                 }
1373                         }
1374                 }
1375                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1376                 if (errcode < 0) {
1377                         if (debug & DEBUG_HW)
1378                                 printk(KERN_DEBUG
1379                                     "%s: %s: error submitting ISO URB: %d \n",
1380                                     hw->name, __func__, errcode);
1381                 }
1382
1383                 /*
1384                  * abuse DChannel tx iso completion to trigger NT mode state
1385                  * changes tx_iso_complete is assumed to be called every
1386                  * fifo->intervall (ms)
1387                  */
1388                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1389                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1390                         if ((--hw->nt_timer) < 0)
1391                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1392                 }
1393
1394         } else {
1395                 if (status && (debug & DBG_HFC_URB_ERROR))
1396                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1397                             "fifonum=%d\n",
1398                             hw->name, __func__,
1399                             symbolic(urb_errlist, status), status, fifon);
1400         }
1401         spin_unlock(&hw->lock);
1402 }
1403
1404 /*
1405  * allocs urbs and start isoc transfer with two pending urbs to avoid
1406  * gaps in the transfer chain
1407  */
1408 static int
1409 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1410                  usb_complete_t complete, int packet_size)
1411 {
1412         struct hfcsusb *hw = fifo->hw;
1413         int i, k, errcode;
1414
1415         if (debug)
1416                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1417                     hw->name, __func__, fifo->fifonum);
1418
1419         /* allocate Memory for Iso out Urbs */
1420         for (i = 0; i < 2; i++) {
1421                 if (!(fifo->iso[i].urb)) {
1422                         fifo->iso[i].urb =
1423                             usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1424                         if (!(fifo->iso[i].urb)) {
1425                                 printk(KERN_DEBUG
1426                                     "%s: %s: alloc urb for fifo %i failed",
1427                                     hw->name, __func__, fifo->fifonum);
1428                         }
1429                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1430                         fifo->iso[i].indx = i;
1431
1432                         /* Init the first iso */
1433                         if (ISO_BUFFER_SIZE >=
1434                             (fifo->usb_packet_maxlen *
1435                              num_packets_per_urb)) {
1436                                 fill_isoc_urb(fifo->iso[i].urb,
1437                                     fifo->hw->dev, fifo->pipe,
1438                                     fifo->iso[i].buffer,
1439                                     num_packets_per_urb,
1440                                     fifo->usb_packet_maxlen,
1441                                     fifo->intervall, complete,
1442                                     &fifo->iso[i]);
1443                                 memset(fifo->iso[i].buffer, 0,
1444                                        sizeof(fifo->iso[i].buffer));
1445
1446                                 for (k = 0; k < num_packets_per_urb; k++) {
1447                                         fifo->iso[i].urb->
1448                                             iso_frame_desc[k].offset =
1449                                             k * packet_size;
1450                                         fifo->iso[i].urb->
1451                                             iso_frame_desc[k].length =
1452                                             packet_size;
1453                                 }
1454                         } else {
1455                                 printk(KERN_DEBUG
1456                                     "%s: %s: ISO Buffer size to small!\n",
1457                                     hw->name, __func__);
1458                         }
1459                 }
1460                 fifo->bit_line = BITLINE_INF;
1461
1462                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1463                 fifo->active = (errcode >= 0) ? 1 : 0;
1464                 fifo->stop_gracefull = 0;
1465                 if (errcode < 0) {
1466                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1467                             hw->name, __func__,
1468                             symbolic(urb_errlist, errcode), i);
1469                 }
1470         }
1471         return fifo->active;
1472 }
1473
1474 static void
1475 stop_iso_gracefull(struct usb_fifo *fifo)
1476 {
1477         struct hfcsusb *hw = fifo->hw;
1478         int i, timeout;
1479         u_long flags;
1480
1481         for (i = 0; i < 2; i++) {
1482                 spin_lock_irqsave(&hw->lock, flags);
1483                 if (debug)
1484                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1485                                hw->name, __func__, fifo->fifonum, i);
1486                 fifo->stop_gracefull = 1;
1487                 spin_unlock_irqrestore(&hw->lock, flags);
1488         }
1489
1490         for (i = 0; i < 2; i++) {
1491                 timeout = 3;
1492                 while (fifo->stop_gracefull && timeout--)
1493                         schedule_timeout_interruptible((HZ/1000)*16);
1494                 if (debug && fifo->stop_gracefull)
1495                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1496                                 hw->name, __func__, fifo->fifonum, i);
1497         }
1498 }
1499
1500 static void
1501 stop_int_gracefull(struct usb_fifo *fifo)
1502 {
1503         struct hfcsusb *hw = fifo->hw;
1504         int timeout;
1505         u_long flags;
1506
1507         spin_lock_irqsave(&hw->lock, flags);
1508         if (debug)
1509                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1510                        hw->name, __func__, fifo->fifonum);
1511         fifo->stop_gracefull = 1;
1512         spin_unlock_irqrestore(&hw->lock, flags);
1513
1514         timeout = 3;
1515         while (fifo->stop_gracefull && timeout--)
1516                 schedule_timeout_interruptible((HZ/1000)*3);
1517         if (debug && fifo->stop_gracefull)
1518                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1519                        hw->name, __func__, fifo->fifonum);
1520 }
1521
1522 /* start the interrupt transfer for the given fifo */
1523 static void
1524 start_int_fifo(struct usb_fifo *fifo)
1525 {
1526         struct hfcsusb *hw = fifo->hw;
1527         int errcode;
1528
1529         if (debug)
1530                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1531                     hw->name, __func__, fifo->fifonum);
1532
1533         if (!fifo->urb) {
1534                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1535                 if (!fifo->urb)
1536                         return;
1537         }
1538         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1539             fifo->buffer, fifo->usb_packet_maxlen,
1540             (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1541         fifo->active = 1;
1542         fifo->stop_gracefull = 0;
1543         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1544         if (errcode) {
1545                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1546                     hw->name, __func__, errcode);
1547                 fifo->active = 0;
1548         }
1549 }
1550
1551 static void
1552 setPortMode(struct hfcsusb *hw)
1553 {
1554         if (debug & DEBUG_HW)
1555                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1556                    (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1557
1558         if (hw->protocol == ISDN_P_TE_S0) {
1559                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1560                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1561                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1562                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1563                 write_reg(hw, HFCUSB_STATES, 3);
1564         } else {
1565                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1566                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1567                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1568                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1569                 write_reg(hw, HFCUSB_STATES, 1);
1570         }
1571 }
1572
1573 static void
1574 reset_hfcsusb(struct hfcsusb *hw)
1575 {
1576         struct usb_fifo *fifo;
1577         int i;
1578
1579         if (debug & DEBUG_HW)
1580                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1581
1582         /* do Chip reset */
1583         write_reg(hw, HFCUSB_CIRM, 8);
1584
1585         /* aux = output, reset off */
1586         write_reg(hw, HFCUSB_CIRM, 0x10);
1587
1588         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1589         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1590             ((hw->packet_size / 8) << 4));
1591
1592         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1593         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1594
1595         /* enable PCM/GCI master mode */
1596         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1597         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1598
1599         /* init the fifos */
1600         write_reg(hw, HFCUSB_F_THRES,
1601             (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1602
1603         fifo = hw->fifos;
1604         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1605                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1606                 fifo[i].max_size =
1607                     (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1608                 fifo[i].last_urblen = 0;
1609
1610                 /* set 2 bit for D- & E-channel */
1611                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1612
1613                 /* enable all fifos */
1614                 if (i == HFCUSB_D_TX)
1615                         write_reg(hw, HFCUSB_CON_HDLC,
1616                             (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1617                 else
1618                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1619                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1620         }
1621
1622         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1623         handle_led(hw, LED_POWER_ON);
1624 }
1625
1626 /* start USB data pipes dependand on device's endpoint configuration */
1627 static void
1628 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1629 {
1630         /* quick check if endpoint already running */
1631         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1632                 return;
1633         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1634                 return;
1635         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1636                 return;
1637         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1638                 return;
1639
1640         /* start rx endpoints using USB INT IN method */
1641         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1642                 start_int_fifo(hw->fifos + channel*2 + 1);
1643
1644         /* start rx endpoints using USB ISO IN method */
1645         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1646                 switch (channel) {
1647                 case HFC_CHAN_D:
1648                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1649                                 ISOC_PACKETS_D,
1650                                 (usb_complete_t)rx_iso_complete,
1651                                 16);
1652                         break;
1653                 case HFC_CHAN_E:
1654                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1655                                 ISOC_PACKETS_D,
1656                                 (usb_complete_t)rx_iso_complete,
1657                                 16);
1658                         break;
1659                 case HFC_CHAN_B1:
1660                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1661                                 ISOC_PACKETS_B,
1662                                 (usb_complete_t)rx_iso_complete,
1663                                 16);
1664                         break;
1665                 case HFC_CHAN_B2:
1666                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1667                                 ISOC_PACKETS_B,
1668                                 (usb_complete_t)rx_iso_complete,
1669                                 16);
1670                         break;
1671                 }
1672         }
1673
1674         /* start tx endpoints using USB ISO OUT method */
1675         switch (channel) {
1676         case HFC_CHAN_D:
1677                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1678                         ISOC_PACKETS_B,
1679                         (usb_complete_t)tx_iso_complete, 1);
1680                 break;
1681         case HFC_CHAN_B1:
1682                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1683                         ISOC_PACKETS_D,
1684                         (usb_complete_t)tx_iso_complete, 1);
1685                 break;
1686         case HFC_CHAN_B2:
1687                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1688                         ISOC_PACKETS_B,
1689                         (usb_complete_t)tx_iso_complete, 1);
1690                 break;
1691         }
1692 }
1693
1694 /* stop USB data pipes dependand on device's endpoint configuration */
1695 static void
1696 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1697 {
1698         /* quick check if endpoint currently running */
1699         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1700                 return;
1701         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1702                 return;
1703         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1704                 return;
1705         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1706                 return;
1707
1708         /* rx endpoints using USB INT IN method */
1709         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1710                 stop_int_gracefull(hw->fifos + channel*2 + 1);
1711
1712         /* rx endpoints using USB ISO IN method */
1713         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1714                 stop_iso_gracefull(hw->fifos + channel*2 + 1);
1715
1716         /* tx endpoints using USB ISO OUT method */
1717         if (channel != HFC_CHAN_E)
1718                 stop_iso_gracefull(hw->fifos + channel*2);
1719 }
1720
1721
1722 /* Hardware Initialization */
1723 static int
1724 setup_hfcsusb(struct hfcsusb *hw)
1725 {
1726         int err;
1727         u_char b;
1728
1729         if (debug & DBG_HFC_CALL_TRACE)
1730                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1731
1732         /* check the chip id */
1733         if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1734                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1735                     hw->name, __func__);
1736                 return 1;
1737         }
1738         if (b != HFCUSB_CHIPID) {
1739                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1740                     hw->name, __func__, b);
1741                 return 1;
1742         }
1743
1744         /* first set the needed config, interface and alternate */
1745         err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1746
1747         hw->led_state = 0;
1748
1749         /* init the background machinery for control requests */
1750         hw->ctrl_read.bRequestType = 0xc0;
1751         hw->ctrl_read.bRequest = 1;
1752         hw->ctrl_read.wLength = cpu_to_le16(1);
1753         hw->ctrl_write.bRequestType = 0x40;
1754         hw->ctrl_write.bRequest = 0;
1755         hw->ctrl_write.wLength = 0;
1756         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1757             (u_char *)&hw->ctrl_write, NULL, 0,
1758             (usb_complete_t)ctrl_complete, hw);
1759
1760         reset_hfcsusb(hw);
1761         return 0;
1762 }
1763
1764 static void
1765 release_hw(struct hfcsusb *hw)
1766 {
1767         if (debug & DBG_HFC_CALL_TRACE)
1768                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1769
1770         /*
1771          * stop all endpoints gracefully
1772          * TODO: mISDN_core should generate CLOSE_CHANNEL
1773          *       signals after calling mISDN_unregister_device()
1774          */
1775         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1776         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1777         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1778         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1779                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1780         if (hw->protocol == ISDN_P_TE_S0)
1781                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1782
1783         mISDN_unregister_device(&hw->dch.dev);
1784         mISDN_freebchannel(&hw->bch[1]);
1785         mISDN_freebchannel(&hw->bch[0]);
1786         mISDN_freedchannel(&hw->dch);
1787
1788         if (hw->ctrl_urb) {
1789                 usb_kill_urb(hw->ctrl_urb);
1790                 usb_free_urb(hw->ctrl_urb);
1791                 hw->ctrl_urb = NULL;
1792         }
1793
1794         if (hw->intf)
1795                 usb_set_intfdata(hw->intf, NULL);
1796         list_del(&hw->list);
1797         kfree(hw);
1798         hw = NULL;
1799 }
1800
1801 static void
1802 deactivate_bchannel(struct bchannel *bch)
1803 {
1804         struct hfcsusb *hw = bch->hw;
1805         u_long flags;
1806
1807         if (bch->debug & DEBUG_HW)
1808                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1809                     hw->name, __func__, bch->nr);
1810
1811         spin_lock_irqsave(&hw->lock, flags);
1812         mISDN_clear_bchannel(bch);
1813         spin_unlock_irqrestore(&hw->lock, flags);
1814         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1815         hfcsusb_stop_endpoint(hw, bch->nr);
1816 }
1817
1818 /*
1819  * Layer 1 B-channel hardware access
1820  */
1821 static int
1822 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1823 {
1824         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1825         int             ret = -EINVAL;
1826
1827         if (bch->debug & DEBUG_HW)
1828                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1829
1830         switch (cmd) {
1831         case HW_TESTRX_RAW:
1832         case HW_TESTRX_HDLC:
1833         case HW_TESTRX_OFF:
1834                 ret = -EINVAL;
1835                 break;
1836
1837         case CLOSE_CHANNEL:
1838                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1839                 if (test_bit(FLG_ACTIVE, &bch->Flags))
1840                         deactivate_bchannel(bch);
1841                 ch->protocol = ISDN_P_NONE;
1842                 ch->peer = NULL;
1843                 module_put(THIS_MODULE);
1844                 ret = 0;
1845                 break;
1846         case CONTROL_CHANNEL:
1847                 ret = channel_bctrl(bch, arg);
1848                 break;
1849         default:
1850                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1851                         __func__, cmd);
1852         }
1853         return ret;
1854 }
1855
1856 static int
1857 setup_instance(struct hfcsusb *hw, struct device *parent)
1858 {
1859         u_long  flags;
1860         int     err, i;
1861
1862         if (debug & DBG_HFC_CALL_TRACE)
1863                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1864
1865         spin_lock_init(&hw->ctrl_lock);
1866         spin_lock_init(&hw->lock);
1867
1868         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1869         hw->dch.debug = debug & 0xFFFF;
1870         hw->dch.hw = hw;
1871         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1872         hw->dch.dev.D.send = hfcusb_l2l1D;
1873         hw->dch.dev.D.ctrl = hfc_dctrl;
1874
1875         /* enable E-Channel logging */
1876         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1877                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1878
1879         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1880             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1881         hw->dch.dev.nrbchan = 2;
1882         for (i = 0; i < 2; i++) {
1883                 hw->bch[i].nr = i + 1;
1884                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1885                 hw->bch[i].debug = debug;
1886                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1887                 hw->bch[i].hw = hw;
1888                 hw->bch[i].ch.send = hfcusb_l2l1B;
1889                 hw->bch[i].ch.ctrl = hfc_bctrl;
1890                 hw->bch[i].ch.nr = i + 1;
1891                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1892         }
1893
1894         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1895         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1896         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1897         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1898         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1899         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1900         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1901         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1902
1903         err = setup_hfcsusb(hw);
1904         if (err)
1905                 goto out;
1906
1907         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1908             hfcsusb_cnt + 1);
1909         printk(KERN_INFO "%s: registered as '%s'\n",
1910             DRIVER_NAME, hw->name);
1911
1912         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1913         if (err)
1914                 goto out;
1915
1916         hfcsusb_cnt++;
1917         write_lock_irqsave(&HFClock, flags);
1918         list_add_tail(&hw->list, &HFClist);
1919         write_unlock_irqrestore(&HFClock, flags);
1920         return 0;
1921
1922 out:
1923         mISDN_freebchannel(&hw->bch[1]);
1924         mISDN_freebchannel(&hw->bch[0]);
1925         mISDN_freedchannel(&hw->dch);
1926         kfree(hw);
1927         return err;
1928 }
1929
1930 static int
1931 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1932 {
1933         struct hfcsusb                  *hw;
1934         struct usb_device               *dev = interface_to_usbdev(intf);
1935         struct usb_host_interface       *iface = intf->cur_altsetting;
1936         struct usb_host_interface       *iface_used = NULL;
1937         struct usb_host_endpoint        *ep;
1938         struct hfcsusb_vdata            *driver_info;
1939         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1940             probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1941             ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1942             alt_used = 0;
1943
1944         vend_idx = 0xffff;
1945         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1946                 if ((le16_to_cpu(dev->descriptor.idVendor)
1947                        == hfcsusb_idtab[i].idVendor) &&
1948                     (le16_to_cpu(dev->descriptor.idProduct)
1949                        == hfcsusb_idtab[i].idProduct)) {
1950                         vend_idx = i;
1951                         continue;
1952                 }
1953         }
1954
1955         printk(KERN_DEBUG
1956             "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1957             __func__, ifnum, iface->desc.bAlternateSetting,
1958             intf->minor, vend_idx);
1959
1960         if (vend_idx == 0xffff) {
1961                 printk(KERN_WARNING
1962                     "%s: no valid vendor found in USB descriptor\n",
1963                     __func__);
1964                 return -EIO;
1965         }
1966         /* if vendor and product ID is OK, start probing alternate settings */
1967         alt_idx = 0;
1968         small_match = -1;
1969
1970         /* default settings */
1971         iso_packet_size = 16;
1972         packet_size = 64;
1973
1974         while (alt_idx < intf->num_altsetting) {
1975                 iface = intf->altsetting + alt_idx;
1976                 probe_alt_setting = iface->desc.bAlternateSetting;
1977                 cfg_used = 0;
1978
1979                 while (validconf[cfg_used][0]) {
1980                         cfg_found = 1;
1981                         vcf = validconf[cfg_used];
1982                         ep = iface->endpoint;
1983                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1984
1985                         /* check for all endpoints in this alternate setting */
1986                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1987                                 ep_addr = ep->desc.bEndpointAddress;
1988
1989                                 /* get endpoint base */
1990                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1991                                 if (ep_addr & 0x80)
1992                                         idx++;
1993                                 attr = ep->desc.bmAttributes;
1994
1995                                 if (cmptbl[idx] != EP_NOP) {
1996                                         if (cmptbl[idx] == EP_NUL)
1997                                                 cfg_found = 0;
1998                                         if (attr == USB_ENDPOINT_XFER_INT
1999                                                 && cmptbl[idx] == EP_INT)
2000                                                 cmptbl[idx] = EP_NUL;
2001                                         if (attr == USB_ENDPOINT_XFER_BULK
2002                                                 && cmptbl[idx] == EP_BLK)
2003                                                 cmptbl[idx] = EP_NUL;
2004                                         if (attr == USB_ENDPOINT_XFER_ISOC
2005                                                 && cmptbl[idx] == EP_ISO)
2006                                                 cmptbl[idx] = EP_NUL;
2007
2008                                         if (attr == USB_ENDPOINT_XFER_INT &&
2009                                                 ep->desc.bInterval < vcf[17]) {
2010                                                 cfg_found = 0;
2011                                         }
2012                                 }
2013                                 ep++;
2014                         }
2015
2016                         for (i = 0; i < 16; i++)
2017                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2018                                         cfg_found = 0;
2019
2020                         if (cfg_found) {
2021                                 if (small_match < cfg_used) {
2022                                         small_match = cfg_used;
2023                                         alt_used = probe_alt_setting;
2024                                         iface_used = iface;
2025                                 }
2026                         }
2027                         cfg_used++;
2028                 }
2029                 alt_idx++;
2030         }       /* (alt_idx < intf->num_altsetting) */
2031
2032         /* not found a valid USB Ta Endpoint config */
2033         if (small_match == -1)
2034                 return -EIO;
2035
2036         iface = iface_used;
2037         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2038         if (!hw)
2039                 return -ENOMEM; /* got no mem */
2040         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2041
2042         ep = iface->endpoint;
2043         vcf = validconf[small_match];
2044
2045         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2046                 struct usb_fifo *f;
2047
2048                 ep_addr = ep->desc.bEndpointAddress;
2049                 /* get endpoint base */
2050                 idx = ((ep_addr & 0x7f) - 1) * 2;
2051                 if (ep_addr & 0x80)
2052                         idx++;
2053                 f = &hw->fifos[idx & 7];
2054
2055                 /* init Endpoints */
2056                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2057                         ep++;
2058                         continue;
2059                 }
2060                 switch (ep->desc.bmAttributes) {
2061                 case USB_ENDPOINT_XFER_INT:
2062                         f->pipe = usb_rcvintpipe(dev,
2063                                 ep->desc.bEndpointAddress);
2064                         f->usb_transfer_mode = USB_INT;
2065                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066                         break;
2067                 case USB_ENDPOINT_XFER_BULK:
2068                         if (ep_addr & 0x80)
2069                                 f->pipe = usb_rcvbulkpipe(dev,
2070                                         ep->desc.bEndpointAddress);
2071                         else
2072                                 f->pipe = usb_sndbulkpipe(dev,
2073                                         ep->desc.bEndpointAddress);
2074                         f->usb_transfer_mode = USB_BULK;
2075                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2076                         break;
2077                 case USB_ENDPOINT_XFER_ISOC:
2078                         if (ep_addr & 0x80)
2079                                 f->pipe = usb_rcvisocpipe(dev,
2080                                         ep->desc.bEndpointAddress);
2081                         else
2082                                 f->pipe = usb_sndisocpipe(dev,
2083                                         ep->desc.bEndpointAddress);
2084                         f->usb_transfer_mode = USB_ISOC;
2085                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2086                         break;
2087                 default:
2088                         f->pipe = 0;
2089                 }
2090
2091                 if (f->pipe) {
2092                         f->fifonum = idx & 7;
2093                         f->hw = hw;
2094                         f->usb_packet_maxlen =
2095                             le16_to_cpu(ep->desc.wMaxPacketSize);
2096                         f->intervall = ep->desc.bInterval;
2097                 }
2098                 ep++;
2099         }
2100         hw->dev = dev; /* save device */
2101         hw->if_used = ifnum; /* save used interface */
2102         hw->alt_used = alt_used; /* and alternate config */
2103         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2104         hw->cfg_used = vcf[16]; /* store used config */
2105         hw->vend_idx = vend_idx; /* store found vendor */
2106         hw->packet_size = packet_size;
2107         hw->iso_packet_size = iso_packet_size;
2108
2109         /* create the control pipes needed for register access */
2110         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2111         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2112         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2113
2114         driver_info =
2115                 (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2116         printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2117             hw->name, __func__, driver_info->vend_name,
2118             conf_str[small_match], ifnum, alt_used);
2119
2120         if (setup_instance(hw, dev->dev.parent))
2121                 return -EIO;
2122
2123         hw->intf = intf;
2124         usb_set_intfdata(hw->intf, hw);
2125         return 0;
2126 }
2127
2128 /* function called when an active device is removed */
2129 static void
2130 hfcsusb_disconnect(struct usb_interface *intf)
2131 {
2132         struct hfcsusb *hw = usb_get_intfdata(intf);
2133         struct hfcsusb *next;
2134         int cnt = 0;
2135
2136         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2137
2138         handle_led(hw, LED_POWER_OFF);
2139         release_hw(hw);
2140
2141         list_for_each_entry_safe(hw, next, &HFClist, list)
2142                 cnt++;
2143         if (!cnt)
2144                 hfcsusb_cnt = 0;
2145
2146         usb_set_intfdata(intf, NULL);
2147 }
2148
2149 static struct usb_driver hfcsusb_drv = {
2150         .name = DRIVER_NAME,
2151         .id_table = hfcsusb_idtab,
2152         .probe = hfcsusb_probe,
2153         .disconnect = hfcsusb_disconnect,
2154 };
2155
2156 static int __init
2157 hfcsusb_init(void)
2158 {
2159         printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2160             hfcsusb_rev, debug, poll);
2161
2162         if (usb_register(&hfcsusb_drv)) {
2163                 printk(KERN_INFO DRIVER_NAME
2164                     ": Unable to register hfcsusb module at usb stack\n");
2165                 return -ENODEV;
2166         }
2167
2168         return 0;
2169 }
2170
2171 static void __exit
2172 hfcsusb_cleanup(void)
2173 {
2174         if (debug & DBG_HFC_CALL_TRACE)
2175                 printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2176
2177         /* unregister Hardware */
2178         usb_deregister(&hfcsusb_drv);   /* release our driver */
2179 }
2180
2181 module_init(hfcsusb_init);
2182 module_exit(hfcsusb_cleanup);