Merge remote branch 'origin/drm-core-next' into test
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int err_most = 47;
867         int err_min = 10000;
868
869         /* eDP has only 2 clock choice, no n/m/p setting */
870         if (HAS_eDP)
871                 return true;
872
873         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
874                 return intel_find_pll_igdng_dp(limit, crtc, target,
875                                                refclk, best_clock);
876
877         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
878                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
879                     LVDS_CLKB_POWER_UP)
880                         clock.p2 = limit->p2.p2_fast;
881                 else
882                         clock.p2 = limit->p2.p2_slow;
883         } else {
884                 if (target < limit->p2.dot_limit)
885                         clock.p2 = limit->p2.p2_slow;
886                 else
887                         clock.p2 = limit->p2.p2_fast;
888         }
889
890         memset(best_clock, 0, sizeof(*best_clock));
891         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892                 /* based on hardware requriment prefer smaller n to precision */
893                 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
894                         /* based on hardware requirment prefere larger m1,m2 */
895                         for (clock.m1 = limit->m1.max;
896                              clock.m1 >= limit->m1.min; clock.m1--) {
897                                 for (clock.m2 = limit->m2.max;
898                                      clock.m2 >= limit->m2.min; clock.m2--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs((10000 - (target*10000/clock.dot)));
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 /* found on first matching */
908                                                 goto out;
909                                         } else if (this_err < err_min) {
910                                                 *best_clock = clock;
911                                                 err_min = this_err;
912                                         }
913                                 }
914                         }
915                 }
916         }
917 out:
918         return true;
919 }
920
921 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
922 static bool
923 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
924                       int target, int refclk, intel_clock_t *best_clock)
925 {
926     intel_clock_t clock;
927     if (target < 200000) {
928         clock.p1 = 2;
929         clock.p2 = 10;
930         clock.n = 2;
931         clock.m1 = 23;
932         clock.m2 = 8;
933     } else {
934         clock.p1 = 1;
935         clock.p2 = 10;
936         clock.n = 1;
937         clock.m1 = 14;
938         clock.m2 = 2;
939     }
940     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
941     clock.p = (clock.p1 * clock.p2);
942     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
943     clock.vco = 0;
944     memcpy(best_clock, &clock, sizeof(intel_clock_t));
945     return true;
946 }
947
948 void
949 intel_wait_for_vblank(struct drm_device *dev)
950 {
951         /* Wait for 20ms, i.e. one cycle at 50hz. */
952         mdelay(20);
953 }
954
955 /* Parameters have changed, update FBC info */
956 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
957 {
958         struct drm_device *dev = crtc->dev;
959         struct drm_i915_private *dev_priv = dev->dev_private;
960         struct drm_framebuffer *fb = crtc->fb;
961         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
962         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964         int plane, i;
965         u32 fbc_ctl, fbc_ctl2;
966
967         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
968
969         if (fb->pitch < dev_priv->cfb_pitch)
970                 dev_priv->cfb_pitch = fb->pitch;
971
972         /* FBC_CTL wants 64B units */
973         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
974         dev_priv->cfb_fence = obj_priv->fence_reg;
975         dev_priv->cfb_plane = intel_crtc->plane;
976         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
977
978         /* Clear old tags */
979         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
980                 I915_WRITE(FBC_TAG + (i * 4), 0);
981
982         /* Set it up... */
983         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
984         if (obj_priv->tiling_mode != I915_TILING_NONE)
985                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
986         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
987         I915_WRITE(FBC_FENCE_OFF, crtc->y);
988
989         /* enable it... */
990         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
991         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
992         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
993         if (obj_priv->tiling_mode != I915_TILING_NONE)
994                 fbc_ctl |= dev_priv->cfb_fence;
995         I915_WRITE(FBC_CONTROL, fbc_ctl);
996
997         DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
998                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
999 }
1000
1001 void i8xx_disable_fbc(struct drm_device *dev)
1002 {
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         u32 fbc_ctl;
1005
1006         if (!I915_HAS_FBC(dev))
1007                 return;
1008
1009         /* Disable compression */
1010         fbc_ctl = I915_READ(FBC_CONTROL);
1011         fbc_ctl &= ~FBC_CTL_EN;
1012         I915_WRITE(FBC_CONTROL, fbc_ctl);
1013
1014         /* Wait for compressing bit to clear */
1015         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1016                 ; /* nothing */
1017
1018         intel_wait_for_vblank(dev);
1019
1020         DRM_DEBUG("disabled FBC\n");
1021 }
1022
1023 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1024 {
1025         struct drm_device *dev = crtc->dev;
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1029 }
1030
1031 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1032 {
1033         struct drm_device *dev = crtc->dev;
1034         struct drm_i915_private *dev_priv = dev->dev_private;
1035         struct drm_framebuffer *fb = crtc->fb;
1036         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1037         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1039         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1040                      DPFC_CTL_PLANEB);
1041         unsigned long stall_watermark = 200;
1042         u32 dpfc_ctl;
1043
1044         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1045         dev_priv->cfb_fence = obj_priv->fence_reg;
1046         dev_priv->cfb_plane = intel_crtc->plane;
1047
1048         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1049         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1050                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1051                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1052         } else {
1053                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1054         }
1055
1056         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1057         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1058                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1059                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1060         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1061
1062         /* enable it... */
1063         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1064
1065         DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1066 }
1067
1068 void g4x_disable_fbc(struct drm_device *dev)
1069 {
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         u32 dpfc_ctl;
1072
1073         /* Disable compression */
1074         dpfc_ctl = I915_READ(DPFC_CONTROL);
1075         dpfc_ctl &= ~DPFC_CTL_EN;
1076         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1077         intel_wait_for_vblank(dev);
1078
1079         DRM_DEBUG("disabled FBC\n");
1080 }
1081
1082 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1083 {
1084         struct drm_device *dev = crtc->dev;
1085         struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1088 }
1089
1090 /**
1091  * intel_update_fbc - enable/disable FBC as needed
1092  * @crtc: CRTC to point the compressor at
1093  * @mode: mode in use
1094  *
1095  * Set up the framebuffer compression hardware at mode set time.  We
1096  * enable it if possible:
1097  *   - plane A only (on pre-965)
1098  *   - no pixel mulitply/line duplication
1099  *   - no alpha buffer discard
1100  *   - no dual wide
1101  *   - framebuffer <= 2048 in width, 1536 in height
1102  *
1103  * We can't assume that any compression will take place (worst case),
1104  * so the compressed buffer has to be the same size as the uncompressed
1105  * one.  It also must reside (along with the line length buffer) in
1106  * stolen memory.
1107  *
1108  * We need to enable/disable FBC on a global basis.
1109  */
1110 static void intel_update_fbc(struct drm_crtc *crtc,
1111                              struct drm_display_mode *mode)
1112 {
1113         struct drm_device *dev = crtc->dev;
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         struct drm_framebuffer *fb = crtc->fb;
1116         struct intel_framebuffer *intel_fb;
1117         struct drm_i915_gem_object *obj_priv;
1118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119         int plane = intel_crtc->plane;
1120
1121         if (!i915_powersave)
1122                 return;
1123
1124         if (!dev_priv->display.fbc_enabled ||
1125             !dev_priv->display.enable_fbc ||
1126             !dev_priv->display.disable_fbc)
1127                 return;
1128
1129         if (!crtc->fb)
1130                 return;
1131
1132         intel_fb = to_intel_framebuffer(fb);
1133         obj_priv = intel_fb->obj->driver_private;
1134
1135         /*
1136          * If FBC is already on, we just have to verify that we can
1137          * keep it that way...
1138          * Need to disable if:
1139          *   - changing FBC params (stride, fence, mode)
1140          *   - new fb is too large to fit in compressed buffer
1141          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1142          */
1143         if (intel_fb->obj->size > dev_priv->cfb_size) {
1144                 DRM_DEBUG("framebuffer too large, disabling compression\n");
1145                 goto out_disable;
1146         }
1147         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1148             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1149                 DRM_DEBUG("mode incompatible with compression, disabling\n");
1150                 goto out_disable;
1151         }
1152         if ((mode->hdisplay > 2048) ||
1153             (mode->vdisplay > 1536)) {
1154                 DRM_DEBUG("mode too large for compression, disabling\n");
1155                 goto out_disable;
1156         }
1157         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1158                 DRM_DEBUG("plane not 0, disabling compression\n");
1159                 goto out_disable;
1160         }
1161         if (obj_priv->tiling_mode != I915_TILING_X) {
1162                 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1163                 goto out_disable;
1164         }
1165
1166         if (dev_priv->display.fbc_enabled(crtc)) {
1167                 /* We can re-enable it in this case, but need to update pitch */
1168                 if (fb->pitch > dev_priv->cfb_pitch)
1169                         dev_priv->display.disable_fbc(dev);
1170                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1171                         dev_priv->display.disable_fbc(dev);
1172                 if (plane != dev_priv->cfb_plane)
1173                         dev_priv->display.disable_fbc(dev);
1174         }
1175
1176         if (!dev_priv->display.fbc_enabled(crtc)) {
1177                 /* Now try to turn it back on if possible */
1178                 dev_priv->display.enable_fbc(crtc, 500);
1179         }
1180
1181         return;
1182
1183 out_disable:
1184         DRM_DEBUG("unsupported config, disabling FBC\n");
1185         /* Multiple disables should be harmless */
1186         if (dev_priv->display.fbc_enabled(crtc))
1187                 dev_priv->display.disable_fbc(dev);
1188 }
1189
1190 static int
1191 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1192                     struct drm_framebuffer *old_fb)
1193 {
1194         struct drm_device *dev = crtc->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         struct drm_i915_master_private *master_priv;
1197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1198         struct intel_framebuffer *intel_fb;
1199         struct drm_i915_gem_object *obj_priv;
1200         struct drm_gem_object *obj;
1201         int pipe = intel_crtc->pipe;
1202         int plane = intel_crtc->plane;
1203         unsigned long Start, Offset;
1204         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1205         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1206         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1207         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1208         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1209         u32 dspcntr, alignment;
1210         int ret;
1211
1212         /* no fb bound */
1213         if (!crtc->fb) {
1214                 DRM_DEBUG("No FB bound\n");
1215                 return 0;
1216         }
1217
1218         switch (plane) {
1219         case 0:
1220         case 1:
1221                 break;
1222         default:
1223                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1224                 return -EINVAL;
1225         }
1226
1227         intel_fb = to_intel_framebuffer(crtc->fb);
1228         obj = intel_fb->obj;
1229         obj_priv = obj->driver_private;
1230
1231         switch (obj_priv->tiling_mode) {
1232         case I915_TILING_NONE:
1233                 alignment = 64 * 1024;
1234                 break;
1235         case I915_TILING_X:
1236                 /* pin() will align the object as required by fence */
1237                 alignment = 0;
1238                 break;
1239         case I915_TILING_Y:
1240                 /* FIXME: Is this true? */
1241                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1242                 return -EINVAL;
1243         default:
1244                 BUG();
1245         }
1246
1247         mutex_lock(&dev->struct_mutex);
1248         ret = i915_gem_object_pin(obj, alignment);
1249         if (ret != 0) {
1250                 mutex_unlock(&dev->struct_mutex);
1251                 return ret;
1252         }
1253
1254         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1255         if (ret != 0) {
1256                 i915_gem_object_unpin(obj);
1257                 mutex_unlock(&dev->struct_mutex);
1258                 return ret;
1259         }
1260
1261         /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1262          * whereas 965+ only requires a fence if using framebuffer compression.
1263          * For simplicity, we always install a fence as the cost is not that onerous.
1264          */
1265         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1266             obj_priv->tiling_mode != I915_TILING_NONE) {
1267                 ret = i915_gem_object_get_fence_reg(obj);
1268                 if (ret != 0) {
1269                         i915_gem_object_unpin(obj);
1270                         mutex_unlock(&dev->struct_mutex);
1271                         return ret;
1272                 }
1273         }
1274
1275         dspcntr = I915_READ(dspcntr_reg);
1276         /* Mask out pixel format bits in case we change it */
1277         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1278         switch (crtc->fb->bits_per_pixel) {
1279         case 8:
1280                 dspcntr |= DISPPLANE_8BPP;
1281                 break;
1282         case 16:
1283                 if (crtc->fb->depth == 15)
1284                         dspcntr |= DISPPLANE_15_16BPP;
1285                 else
1286                         dspcntr |= DISPPLANE_16BPP;
1287                 break;
1288         case 24:
1289         case 32:
1290                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1291                 break;
1292         default:
1293                 DRM_ERROR("Unknown color depth\n");
1294                 i915_gem_object_unpin(obj);
1295                 mutex_unlock(&dev->struct_mutex);
1296                 return -EINVAL;
1297         }
1298         if (IS_I965G(dev)) {
1299                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1300                         dspcntr |= DISPPLANE_TILED;
1301                 else
1302                         dspcntr &= ~DISPPLANE_TILED;
1303         }
1304
1305         if (IS_IGDNG(dev))
1306                 /* must disable */
1307                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1308
1309         I915_WRITE(dspcntr_reg, dspcntr);
1310
1311         Start = obj_priv->gtt_offset;
1312         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1313
1314         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1315         I915_WRITE(dspstride, crtc->fb->pitch);
1316         if (IS_I965G(dev)) {
1317                 I915_WRITE(dspbase, Offset);
1318                 I915_READ(dspbase);
1319                 I915_WRITE(dspsurf, Start);
1320                 I915_READ(dspsurf);
1321                 I915_WRITE(dsptileoff, (y << 16) | x);
1322         } else {
1323                 I915_WRITE(dspbase, Start + Offset);
1324                 I915_READ(dspbase);
1325         }
1326
1327         if ((IS_I965G(dev) || plane == 0))
1328                 intel_update_fbc(crtc, &crtc->mode);
1329
1330         intel_wait_for_vblank(dev);
1331
1332         if (old_fb) {
1333                 intel_fb = to_intel_framebuffer(old_fb);
1334                 obj_priv = intel_fb->obj->driver_private;
1335                 i915_gem_object_unpin(intel_fb->obj);
1336         }
1337         intel_increase_pllclock(crtc, true);
1338
1339         mutex_unlock(&dev->struct_mutex);
1340
1341         if (!dev->primary->master)
1342                 return 0;
1343
1344         master_priv = dev->primary->master->driver_priv;
1345         if (!master_priv->sarea_priv)
1346                 return 0;
1347
1348         if (pipe) {
1349                 master_priv->sarea_priv->pipeB_x = x;
1350                 master_priv->sarea_priv->pipeB_y = y;
1351         } else {
1352                 master_priv->sarea_priv->pipeA_x = x;
1353                 master_priv->sarea_priv->pipeA_y = y;
1354         }
1355
1356         return 0;
1357 }
1358
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device *dev)
1361 {
1362         struct drm_i915_private *dev_priv = dev->dev_private;
1363         u8 sr1;
1364         u32 vga_reg;
1365
1366         if (IS_IGDNG(dev))
1367                 vga_reg = CPU_VGACNTRL;
1368         else
1369                 vga_reg = VGACNTRL;
1370
1371         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1372                 return;
1373
1374         I915_WRITE8(VGA_SR_INDEX, 1);
1375         sr1 = I915_READ8(VGA_SR_DATA);
1376         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1377         udelay(100);
1378
1379         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1380 }
1381
1382 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1383 {
1384         struct drm_device *dev = crtc->dev;
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         u32 dpa_ctl;
1387
1388         DRM_DEBUG("\n");
1389         dpa_ctl = I915_READ(DP_A);
1390         dpa_ctl &= ~DP_PLL_ENABLE;
1391         I915_WRITE(DP_A, dpa_ctl);
1392 }
1393
1394 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1395 {
1396         struct drm_device *dev = crtc->dev;
1397         struct drm_i915_private *dev_priv = dev->dev_private;
1398         u32 dpa_ctl;
1399
1400         dpa_ctl = I915_READ(DP_A);
1401         dpa_ctl |= DP_PLL_ENABLE;
1402         I915_WRITE(DP_A, dpa_ctl);
1403         udelay(200);
1404 }
1405
1406
1407 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1408 {
1409         struct drm_device *dev = crtc->dev;
1410         struct drm_i915_private *dev_priv = dev->dev_private;
1411         u32 dpa_ctl;
1412
1413         DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1414         dpa_ctl = I915_READ(DP_A);
1415         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1416
1417         if (clock < 200000) {
1418                 u32 temp;
1419                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1420                 /* workaround for 160Mhz:
1421                    1) program 0x4600c bits 15:0 = 0x8124
1422                    2) program 0x46010 bit 0 = 1
1423                    3) program 0x46034 bit 24 = 1
1424                    4) program 0x64000 bit 14 = 1
1425                    */
1426                 temp = I915_READ(0x4600c);
1427                 temp &= 0xffff0000;
1428                 I915_WRITE(0x4600c, temp | 0x8124);
1429
1430                 temp = I915_READ(0x46010);
1431                 I915_WRITE(0x46010, temp | 1);
1432
1433                 temp = I915_READ(0x46034);
1434                 I915_WRITE(0x46034, temp | (1 << 24));
1435         } else {
1436                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1437         }
1438         I915_WRITE(DP_A, dpa_ctl);
1439
1440         udelay(500);
1441 }
1442
1443 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1444 {
1445         struct drm_device *dev = crtc->dev;
1446         struct drm_i915_private *dev_priv = dev->dev_private;
1447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1448         int pipe = intel_crtc->pipe;
1449         int plane = intel_crtc->plane;
1450         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1451         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1452         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1453         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1454         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1455         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1456         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1457         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1458         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1459         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1460         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1461         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1462         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1463         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1464         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1465         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1466         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1467         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1468         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1469         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1470         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1471         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1472         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1473         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1474         u32 temp;
1475         int tries = 5, j, n;
1476
1477         /* XXX: When our outputs are all unaware of DPMS modes other than off
1478          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1479          */
1480         switch (mode) {
1481         case DRM_MODE_DPMS_ON:
1482         case DRM_MODE_DPMS_STANDBY:
1483         case DRM_MODE_DPMS_SUSPEND:
1484                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1485                 if (HAS_eDP) {
1486                         /* enable eDP PLL */
1487                         igdng_enable_pll_edp(crtc);
1488                 } else {
1489                         /* enable PCH DPLL */
1490                         temp = I915_READ(pch_dpll_reg);
1491                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1492                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1493                                 I915_READ(pch_dpll_reg);
1494                         }
1495
1496                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497                         temp = I915_READ(fdi_rx_reg);
1498                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1499                                         FDI_SEL_PCDCLK |
1500                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1501                         I915_READ(fdi_rx_reg);
1502                         udelay(200);
1503
1504                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1505                         temp = I915_READ(fdi_tx_reg);
1506                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1507                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1508                                 I915_READ(fdi_tx_reg);
1509                                 udelay(100);
1510                         }
1511                 }
1512
1513                 /* Enable panel fitting for LVDS */
1514                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1515                         temp = I915_READ(pf_ctl_reg);
1516                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1517
1518                         /* currently full aspect */
1519                         I915_WRITE(pf_win_pos, 0);
1520
1521                         I915_WRITE(pf_win_size,
1522                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1523                                    (dev_priv->panel_fixed_mode->vdisplay));
1524                 }
1525
1526                 /* Enable CPU pipe */
1527                 temp = I915_READ(pipeconf_reg);
1528                 if ((temp & PIPEACONF_ENABLE) == 0) {
1529                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1530                         I915_READ(pipeconf_reg);
1531                         udelay(100);
1532                 }
1533
1534                 /* configure and enable CPU plane */
1535                 temp = I915_READ(dspcntr_reg);
1536                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1537                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1538                         /* Flush the plane changes */
1539                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1540                 }
1541
1542                 if (!HAS_eDP) {
1543                         /* enable CPU FDI TX and PCH FDI RX */
1544                         temp = I915_READ(fdi_tx_reg);
1545                         temp |= FDI_TX_ENABLE;
1546                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1547                         temp &= ~FDI_LINK_TRAIN_NONE;
1548                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1549                         I915_WRITE(fdi_tx_reg, temp);
1550                         I915_READ(fdi_tx_reg);
1551
1552                         temp = I915_READ(fdi_rx_reg);
1553                         temp &= ~FDI_LINK_TRAIN_NONE;
1554                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1555                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556                         I915_READ(fdi_rx_reg);
1557
1558                         udelay(150);
1559
1560                         /* Train FDI. */
1561                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1562                            for train result */
1563                         temp = I915_READ(fdi_rx_imr_reg);
1564                         temp &= ~FDI_RX_SYMBOL_LOCK;
1565                         temp &= ~FDI_RX_BIT_LOCK;
1566                         I915_WRITE(fdi_rx_imr_reg, temp);
1567                         I915_READ(fdi_rx_imr_reg);
1568                         udelay(150);
1569
1570                         temp = I915_READ(fdi_rx_iir_reg);
1571                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1572
1573                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1574                                 for (j = 0; j < tries; j++) {
1575                                         temp = I915_READ(fdi_rx_iir_reg);
1576                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1577                                         if (temp & FDI_RX_BIT_LOCK)
1578                                                 break;
1579                                         udelay(200);
1580                                 }
1581                                 if (j != tries)
1582                                         I915_WRITE(fdi_rx_iir_reg,
1583                                                         temp | FDI_RX_BIT_LOCK);
1584                                 else
1585                                         DRM_DEBUG("train 1 fail\n");
1586                         } else {
1587                                 I915_WRITE(fdi_rx_iir_reg,
1588                                                 temp | FDI_RX_BIT_LOCK);
1589                                 DRM_DEBUG("train 1 ok 2!\n");
1590                         }
1591                         temp = I915_READ(fdi_tx_reg);
1592                         temp &= ~FDI_LINK_TRAIN_NONE;
1593                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1594                         I915_WRITE(fdi_tx_reg, temp);
1595
1596                         temp = I915_READ(fdi_rx_reg);
1597                         temp &= ~FDI_LINK_TRAIN_NONE;
1598                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1599                         I915_WRITE(fdi_rx_reg, temp);
1600
1601                         udelay(150);
1602
1603                         temp = I915_READ(fdi_rx_iir_reg);
1604                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1605
1606                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1607                                 for (j = 0; j < tries; j++) {
1608                                         temp = I915_READ(fdi_rx_iir_reg);
1609                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1610                                         if (temp & FDI_RX_SYMBOL_LOCK)
1611                                                 break;
1612                                         udelay(200);
1613                                 }
1614                                 if (j != tries) {
1615                                         I915_WRITE(fdi_rx_iir_reg,
1616                                                         temp | FDI_RX_SYMBOL_LOCK);
1617                                         DRM_DEBUG("train 2 ok 1!\n");
1618                                 } else
1619                                         DRM_DEBUG("train 2 fail\n");
1620                         } else {
1621                                 I915_WRITE(fdi_rx_iir_reg,
1622                                                 temp | FDI_RX_SYMBOL_LOCK);
1623                                 DRM_DEBUG("train 2 ok 2!\n");
1624                         }
1625                         DRM_DEBUG("train done\n");
1626
1627                         /* set transcoder timing */
1628                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1629                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1630                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1631
1632                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1633                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1634                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1635
1636                         /* enable PCH transcoder */
1637                         temp = I915_READ(transconf_reg);
1638                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1639                         I915_READ(transconf_reg);
1640
1641                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1642                                 ;
1643
1644                         /* enable normal */
1645
1646                         temp = I915_READ(fdi_tx_reg);
1647                         temp &= ~FDI_LINK_TRAIN_NONE;
1648                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1649                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1650                         I915_READ(fdi_tx_reg);
1651
1652                         temp = I915_READ(fdi_rx_reg);
1653                         temp &= ~FDI_LINK_TRAIN_NONE;
1654                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1655                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1656                         I915_READ(fdi_rx_reg);
1657
1658                         /* wait one idle pattern time */
1659                         udelay(100);
1660
1661                 }
1662
1663                 intel_crtc_load_lut(crtc);
1664
1665         break;
1666         case DRM_MODE_DPMS_OFF:
1667                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1668
1669                 i915_disable_vga(dev);
1670
1671                 /* Disable display plane */
1672                 temp = I915_READ(dspcntr_reg);
1673                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1674                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1675                         /* Flush the plane changes */
1676                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1677                         I915_READ(dspbase_reg);
1678                 }
1679
1680                 /* disable cpu pipe, disable after all planes disabled */
1681                 temp = I915_READ(pipeconf_reg);
1682                 if ((temp & PIPEACONF_ENABLE) != 0) {
1683                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1684                         I915_READ(pipeconf_reg);
1685                         n = 0;
1686                         /* wait for cpu pipe off, pipe state */
1687                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1688                                 n++;
1689                                 if (n < 60) {
1690                                         udelay(500);
1691                                         continue;
1692                                 } else {
1693                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1694                                         break;
1695                                 }
1696                         }
1697                 } else
1698                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1699
1700                 if (HAS_eDP) {
1701                         igdng_disable_pll_edp(crtc);
1702                 }
1703
1704                 /* disable CPU FDI tx and PCH FDI rx */
1705                 temp = I915_READ(fdi_tx_reg);
1706                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1707                 I915_READ(fdi_tx_reg);
1708
1709                 temp = I915_READ(fdi_rx_reg);
1710                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1711                 I915_READ(fdi_rx_reg);
1712
1713                 udelay(100);
1714
1715                 /* still set train pattern 1 */
1716                 temp = I915_READ(fdi_tx_reg);
1717                 temp &= ~FDI_LINK_TRAIN_NONE;
1718                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1719                 I915_WRITE(fdi_tx_reg, temp);
1720
1721                 temp = I915_READ(fdi_rx_reg);
1722                 temp &= ~FDI_LINK_TRAIN_NONE;
1723                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724                 I915_WRITE(fdi_rx_reg, temp);
1725
1726                 udelay(100);
1727
1728                 /* disable PCH transcoder */
1729                 temp = I915_READ(transconf_reg);
1730                 if ((temp & TRANS_ENABLE) != 0) {
1731                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1732                         I915_READ(transconf_reg);
1733                         n = 0;
1734                         /* wait for PCH transcoder off, transcoder state */
1735                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1736                                 n++;
1737                                 if (n < 60) {
1738                                         udelay(500);
1739                                         continue;
1740                                 } else {
1741                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1742                                         break;
1743                                 }
1744                         }
1745                 }
1746
1747                 /* disable PCH DPLL */
1748                 temp = I915_READ(pch_dpll_reg);
1749                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1750                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1751                         I915_READ(pch_dpll_reg);
1752                 }
1753
1754                 temp = I915_READ(fdi_rx_reg);
1755                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1756                         temp &= ~FDI_SEL_PCDCLK;
1757                         temp &= ~FDI_RX_PLL_ENABLE;
1758                         I915_WRITE(fdi_rx_reg, temp);
1759                         I915_READ(fdi_rx_reg);
1760                 }
1761
1762                 /* Disable CPU FDI TX PLL */
1763                 temp = I915_READ(fdi_tx_reg);
1764                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1765                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1766                         I915_READ(fdi_tx_reg);
1767                         udelay(100);
1768                 }
1769
1770                 /* Disable PF */
1771                 temp = I915_READ(pf_ctl_reg);
1772                 if ((temp & PF_ENABLE) != 0) {
1773                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1774                         I915_READ(pf_ctl_reg);
1775                 }
1776                 I915_WRITE(pf_win_size, 0);
1777
1778                 /* Wait for the clocks to turn off. */
1779                 udelay(150);
1780                 break;
1781         }
1782 }
1783
1784 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1785 {
1786         struct drm_device *dev = crtc->dev;
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1789         int pipe = intel_crtc->pipe;
1790         int plane = intel_crtc->plane;
1791         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1792         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1793         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1794         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1795         u32 temp;
1796
1797         /* XXX: When our outputs are all unaware of DPMS modes other than off
1798          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1799          */
1800         switch (mode) {
1801         case DRM_MODE_DPMS_ON:
1802         case DRM_MODE_DPMS_STANDBY:
1803         case DRM_MODE_DPMS_SUSPEND:
1804                 intel_update_watermarks(dev);
1805
1806                 /* Enable the DPLL */
1807                 temp = I915_READ(dpll_reg);
1808                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1809                         I915_WRITE(dpll_reg, temp);
1810                         I915_READ(dpll_reg);
1811                         /* Wait for the clocks to stabilize. */
1812                         udelay(150);
1813                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1814                         I915_READ(dpll_reg);
1815                         /* Wait for the clocks to stabilize. */
1816                         udelay(150);
1817                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1818                         I915_READ(dpll_reg);
1819                         /* Wait for the clocks to stabilize. */
1820                         udelay(150);
1821                 }
1822
1823                 /* Enable the pipe */
1824                 temp = I915_READ(pipeconf_reg);
1825                 if ((temp & PIPEACONF_ENABLE) == 0)
1826                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1827
1828                 /* Enable the plane */
1829                 temp = I915_READ(dspcntr_reg);
1830                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1831                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1832                         /* Flush the plane changes */
1833                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1834                 }
1835
1836                 intel_crtc_load_lut(crtc);
1837
1838                 if ((IS_I965G(dev) || plane == 0))
1839                         intel_update_fbc(crtc, &crtc->mode);
1840
1841                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1842                 //intel_crtc_dpms_video(crtc, true); TODO
1843         break;
1844         case DRM_MODE_DPMS_OFF:
1845                 intel_update_watermarks(dev);
1846                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1847                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1848
1849                 if (dev_priv->cfb_plane == plane &&
1850                     dev_priv->display.disable_fbc)
1851                         dev_priv->display.disable_fbc(dev);
1852
1853                 /* Disable the VGA plane that we never use */
1854                 i915_disable_vga(dev);
1855
1856                 /* Disable display plane */
1857                 temp = I915_READ(dspcntr_reg);
1858                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1859                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1860                         /* Flush the plane changes */
1861                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1862                         I915_READ(dspbase_reg);
1863                 }
1864
1865                 if (!IS_I9XX(dev)) {
1866                         /* Wait for vblank for the disable to take effect */
1867                         intel_wait_for_vblank(dev);
1868                 }
1869
1870                 /* Next, disable display pipes */
1871                 temp = I915_READ(pipeconf_reg);
1872                 if ((temp & PIPEACONF_ENABLE) != 0) {
1873                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1874                         I915_READ(pipeconf_reg);
1875                 }
1876
1877                 /* Wait for vblank for the disable to take effect. */
1878                 intel_wait_for_vblank(dev);
1879
1880                 temp = I915_READ(dpll_reg);
1881                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1882                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1883                         I915_READ(dpll_reg);
1884                 }
1885
1886                 /* Wait for the clocks to turn off. */
1887                 udelay(150);
1888                 break;
1889         }
1890 }
1891
1892 /**
1893  * Sets the power management mode of the pipe and plane.
1894  *
1895  * This code should probably grow support for turning the cursor off and back
1896  * on appropriately at the same time as we're turning the pipe off/on.
1897  */
1898 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1899 {
1900         struct drm_device *dev = crtc->dev;
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         struct drm_i915_master_private *master_priv;
1903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1904         int pipe = intel_crtc->pipe;
1905         bool enabled;
1906
1907         dev_priv->display.dpms(crtc, mode);
1908
1909         intel_crtc->dpms_mode = mode;
1910
1911         if (!dev->primary->master)
1912                 return;
1913
1914         master_priv = dev->primary->master->driver_priv;
1915         if (!master_priv->sarea_priv)
1916                 return;
1917
1918         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1919
1920         switch (pipe) {
1921         case 0:
1922                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1923                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1924                 break;
1925         case 1:
1926                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1927                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1928                 break;
1929         default:
1930                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1931                 break;
1932         }
1933 }
1934
1935 static void intel_crtc_prepare (struct drm_crtc *crtc)
1936 {
1937         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1938         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1939 }
1940
1941 static void intel_crtc_commit (struct drm_crtc *crtc)
1942 {
1943         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1944         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1945 }
1946
1947 void intel_encoder_prepare (struct drm_encoder *encoder)
1948 {
1949         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1950         /* lvds has its own version of prepare see intel_lvds_prepare */
1951         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1952 }
1953
1954 void intel_encoder_commit (struct drm_encoder *encoder)
1955 {
1956         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1957         /* lvds has its own version of commit see intel_lvds_commit */
1958         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1959 }
1960
1961 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1962                                   struct drm_display_mode *mode,
1963                                   struct drm_display_mode *adjusted_mode)
1964 {
1965         struct drm_device *dev = crtc->dev;
1966         if (IS_IGDNG(dev)) {
1967                 /* FDI link clock is fixed at 2.7G */
1968                 if (mode->clock * 3 > 27000 * 4)
1969                         return MODE_CLOCK_HIGH;
1970         }
1971         return true;
1972 }
1973
1974 static int i945_get_display_clock_speed(struct drm_device *dev)
1975 {
1976         return 400000;
1977 }
1978
1979 static int i915_get_display_clock_speed(struct drm_device *dev)
1980 {
1981         return 333000;
1982 }
1983
1984 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
1985 {
1986         return 200000;
1987 }
1988
1989 static int i915gm_get_display_clock_speed(struct drm_device *dev)
1990 {
1991         u16 gcfgc = 0;
1992
1993         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1994
1995         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1996                 return 133000;
1997         else {
1998                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1999                 case GC_DISPLAY_CLOCK_333_MHZ:
2000                         return 333000;
2001                 default:
2002                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2003                         return 190000;
2004                 }
2005         }
2006 }
2007
2008 static int i865_get_display_clock_speed(struct drm_device *dev)
2009 {
2010         return 266000;
2011 }
2012
2013 static int i855_get_display_clock_speed(struct drm_device *dev)
2014 {
2015         u16 hpllcc = 0;
2016         /* Assume that the hardware is in the high speed state.  This
2017          * should be the default.
2018          */
2019         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2020         case GC_CLOCK_133_200:
2021         case GC_CLOCK_100_200:
2022                 return 200000;
2023         case GC_CLOCK_166_250:
2024                 return 250000;
2025         case GC_CLOCK_100_133:
2026                 return 133000;
2027         }
2028
2029         /* Shouldn't happen */
2030         return 0;
2031 }
2032
2033 static int i830_get_display_clock_speed(struct drm_device *dev)
2034 {
2035         return 133000;
2036 }
2037
2038 /**
2039  * Return the pipe currently connected to the panel fitter,
2040  * or -1 if the panel fitter is not present or not in use
2041  */
2042 static int intel_panel_fitter_pipe (struct drm_device *dev)
2043 {
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         u32  pfit_control;
2046
2047         /* i830 doesn't have a panel fitter */
2048         if (IS_I830(dev))
2049                 return -1;
2050
2051         pfit_control = I915_READ(PFIT_CONTROL);
2052
2053         /* See if the panel fitter is in use */
2054         if ((pfit_control & PFIT_ENABLE) == 0)
2055                 return -1;
2056
2057         /* 965 can place panel fitter on either pipe */
2058         if (IS_I965G(dev))
2059                 return (pfit_control >> 29) & 0x3;
2060
2061         /* older chips can only use pipe 1 */
2062         return 1;
2063 }
2064
2065 struct fdi_m_n {
2066         u32        tu;
2067         u32        gmch_m;
2068         u32        gmch_n;
2069         u32        link_m;
2070         u32        link_n;
2071 };
2072
2073 static void
2074 fdi_reduce_ratio(u32 *num, u32 *den)
2075 {
2076         while (*num > 0xffffff || *den > 0xffffff) {
2077                 *num >>= 1;
2078                 *den >>= 1;
2079         }
2080 }
2081
2082 #define DATA_N 0x800000
2083 #define LINK_N 0x80000
2084
2085 static void
2086 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2087                 int pixel_clock, int link_clock,
2088                 struct fdi_m_n *m_n)
2089 {
2090         u64 temp;
2091
2092         m_n->tu = 64; /* default size */
2093
2094         temp = (u64) DATA_N * pixel_clock;
2095         temp = div_u64(temp, link_clock);
2096         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2097         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2098         m_n->gmch_n = DATA_N;
2099         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2100
2101         temp = (u64) LINK_N * pixel_clock;
2102         m_n->link_m = div_u64(temp, link_clock);
2103         m_n->link_n = LINK_N;
2104         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2105 }
2106
2107
2108 struct intel_watermark_params {
2109         unsigned long fifo_size;
2110         unsigned long max_wm;
2111         unsigned long default_wm;
2112         unsigned long guard_size;
2113         unsigned long cacheline_size;
2114 };
2115
2116 /* IGD has different values for various configs */
2117 static struct intel_watermark_params igd_display_wm = {
2118         IGD_DISPLAY_FIFO,
2119         IGD_MAX_WM,
2120         IGD_DFT_WM,
2121         IGD_GUARD_WM,
2122         IGD_FIFO_LINE_SIZE
2123 };
2124 static struct intel_watermark_params igd_display_hplloff_wm = {
2125         IGD_DISPLAY_FIFO,
2126         IGD_MAX_WM,
2127         IGD_DFT_HPLLOFF_WM,
2128         IGD_GUARD_WM,
2129         IGD_FIFO_LINE_SIZE
2130 };
2131 static struct intel_watermark_params igd_cursor_wm = {
2132         IGD_CURSOR_FIFO,
2133         IGD_CURSOR_MAX_WM,
2134         IGD_CURSOR_DFT_WM,
2135         IGD_CURSOR_GUARD_WM,
2136         IGD_FIFO_LINE_SIZE,
2137 };
2138 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2139         IGD_CURSOR_FIFO,
2140         IGD_CURSOR_MAX_WM,
2141         IGD_CURSOR_DFT_WM,
2142         IGD_CURSOR_GUARD_WM,
2143         IGD_FIFO_LINE_SIZE
2144 };
2145 static struct intel_watermark_params g4x_wm_info = {
2146         G4X_FIFO_SIZE,
2147         G4X_MAX_WM,
2148         G4X_MAX_WM,
2149         2,
2150         G4X_FIFO_LINE_SIZE,
2151 };
2152 static struct intel_watermark_params i945_wm_info = {
2153         I945_FIFO_SIZE,
2154         I915_MAX_WM,
2155         1,
2156         2,
2157         I915_FIFO_LINE_SIZE
2158 };
2159 static struct intel_watermark_params i915_wm_info = {
2160         I915_FIFO_SIZE,
2161         I915_MAX_WM,
2162         1,
2163         2,
2164         I915_FIFO_LINE_SIZE
2165 };
2166 static struct intel_watermark_params i855_wm_info = {
2167         I855GM_FIFO_SIZE,
2168         I915_MAX_WM,
2169         1,
2170         2,
2171         I830_FIFO_LINE_SIZE
2172 };
2173 static struct intel_watermark_params i830_wm_info = {
2174         I830_FIFO_SIZE,
2175         I915_MAX_WM,
2176         1,
2177         2,
2178         I830_FIFO_LINE_SIZE
2179 };
2180
2181 /**
2182  * intel_calculate_wm - calculate watermark level
2183  * @clock_in_khz: pixel clock
2184  * @wm: chip FIFO params
2185  * @pixel_size: display pixel size
2186  * @latency_ns: memory latency for the platform
2187  *
2188  * Calculate the watermark level (the level at which the display plane will
2189  * start fetching from memory again).  Each chip has a different display
2190  * FIFO size and allocation, so the caller needs to figure that out and pass
2191  * in the correct intel_watermark_params structure.
2192  *
2193  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2194  * on the pixel size.  When it reaches the watermark level, it'll start
2195  * fetching FIFO line sized based chunks from memory until the FIFO fills
2196  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2197  * will occur, and a display engine hang could result.
2198  */
2199 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2200                                         struct intel_watermark_params *wm,
2201                                         int pixel_size,
2202                                         unsigned long latency_ns)
2203 {
2204         long entries_required, wm_size;
2205
2206         /*
2207          * Note: we need to make sure we don't overflow for various clock &
2208          * latency values.
2209          * clocks go from a few thousand to several hundred thousand.
2210          * latency is usually a few thousand
2211          */
2212         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2213                 1000;
2214         entries_required /= wm->cacheline_size;
2215
2216         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2217
2218         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2219
2220         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2221
2222         /* Don't promote wm_size to unsigned... */
2223         if (wm_size > (long)wm->max_wm)
2224                 wm_size = wm->max_wm;
2225         if (wm_size <= 0)
2226                 wm_size = wm->default_wm;
2227         return wm_size;
2228 }
2229
2230 struct cxsr_latency {
2231         int is_desktop;
2232         unsigned long fsb_freq;
2233         unsigned long mem_freq;
2234         unsigned long display_sr;
2235         unsigned long display_hpll_disable;
2236         unsigned long cursor_sr;
2237         unsigned long cursor_hpll_disable;
2238 };
2239
2240 static struct cxsr_latency cxsr_latency_table[] = {
2241         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2242         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2243         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2244
2245         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2246         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2247         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2248
2249         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2250         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2251         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2252
2253         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2254         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2255         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2256
2257         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2258         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2259         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2260
2261         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2262         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2263         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2264 };
2265
2266 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2267                                                    int mem)
2268 {
2269         int i;
2270         struct cxsr_latency *latency;
2271
2272         if (fsb == 0 || mem == 0)
2273                 return NULL;
2274
2275         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2276                 latency = &cxsr_latency_table[i];
2277                 if (is_desktop == latency->is_desktop &&
2278                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2279                         return latency;
2280         }
2281
2282         DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2283
2284         return NULL;
2285 }
2286
2287 static void igd_disable_cxsr(struct drm_device *dev)
2288 {
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         u32 reg;
2291
2292         /* deactivate cxsr */
2293         reg = I915_READ(DSPFW3);
2294         reg &= ~(IGD_SELF_REFRESH_EN);
2295         I915_WRITE(DSPFW3, reg);
2296         DRM_INFO("Big FIFO is disabled\n");
2297 }
2298
2299 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2300                             int pixel_size)
2301 {
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         u32 reg;
2304         unsigned long wm;
2305         struct cxsr_latency *latency;
2306
2307         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2308                 dev_priv->mem_freq);
2309         if (!latency) {
2310                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2311                 igd_disable_cxsr(dev);
2312                 return;
2313         }
2314
2315         /* Display SR */
2316         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2317                                 latency->display_sr);
2318         reg = I915_READ(DSPFW1);
2319         reg &= 0x7fffff;
2320         reg |= wm << 23;
2321         I915_WRITE(DSPFW1, reg);
2322         DRM_DEBUG("DSPFW1 register is %x\n", reg);
2323
2324         /* cursor SR */
2325         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2326                                 latency->cursor_sr);
2327         reg = I915_READ(DSPFW3);
2328         reg &= ~(0x3f << 24);
2329         reg |= (wm & 0x3f) << 24;
2330         I915_WRITE(DSPFW3, reg);
2331
2332         /* Display HPLL off SR */
2333         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2334                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2335         reg = I915_READ(DSPFW3);
2336         reg &= 0xfffffe00;
2337         reg |= wm & 0x1ff;
2338         I915_WRITE(DSPFW3, reg);
2339
2340         /* cursor HPLL off SR */
2341         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2342                                 latency->cursor_hpll_disable);
2343         reg = I915_READ(DSPFW3);
2344         reg &= ~(0x3f << 16);
2345         reg |= (wm & 0x3f) << 16;
2346         I915_WRITE(DSPFW3, reg);
2347         DRM_DEBUG("DSPFW3 register is %x\n", reg);
2348
2349         /* activate cxsr */
2350         reg = I915_READ(DSPFW3);
2351         reg |= IGD_SELF_REFRESH_EN;
2352         I915_WRITE(DSPFW3, reg);
2353
2354         DRM_INFO("Big FIFO is enabled\n");
2355
2356         return;
2357 }
2358
2359 /*
2360  * Latency for FIFO fetches is dependent on several factors:
2361  *   - memory configuration (speed, channels)
2362  *   - chipset
2363  *   - current MCH state
2364  * It can be fairly high in some situations, so here we assume a fairly
2365  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2366  * set this value too high, the FIFO will fetch frequently to stay full)
2367  * and power consumption (set it too low to save power and we might see
2368  * FIFO underruns and display "flicker").
2369  *
2370  * A value of 5us seems to be a good balance; safe for very low end
2371  * platforms but not overly aggressive on lower latency configs.
2372  */
2373 const static int latency_ns = 5000;
2374
2375 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2376 {
2377         struct drm_i915_private *dev_priv = dev->dev_private;
2378         uint32_t dsparb = I915_READ(DSPARB);
2379         int size;
2380
2381         if (plane == 0)
2382                 size = dsparb & 0x7f;
2383         else
2384                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2385                         (dsparb & 0x7f);
2386
2387         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2388                   size);
2389
2390         return size;
2391 }
2392
2393 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2394 {
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396         uint32_t dsparb = I915_READ(DSPARB);
2397         int size;
2398
2399         if (plane == 0)
2400                 size = dsparb & 0x1ff;
2401         else
2402                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2403                         (dsparb & 0x1ff);
2404         size >>= 1; /* Convert to cachelines */
2405
2406         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2407                   size);
2408
2409         return size;
2410 }
2411
2412 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2413 {
2414         struct drm_i915_private *dev_priv = dev->dev_private;
2415         uint32_t dsparb = I915_READ(DSPARB);
2416         int size;
2417
2418         size = dsparb & 0x7f;
2419         size >>= 2; /* Convert to cachelines */
2420
2421         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2422                   size);
2423
2424         return size;
2425 }
2426
2427 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2428 {
2429         struct drm_i915_private *dev_priv = dev->dev_private;
2430         uint32_t dsparb = I915_READ(DSPARB);
2431         int size;
2432
2433         size = dsparb & 0x7f;
2434         size >>= 1; /* Convert to cachelines */
2435
2436         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2437                   size);
2438
2439         return size;
2440 }
2441
2442 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2443                           int planeb_clock, int sr_hdisplay, int pixel_size)
2444 {
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         int total_size, cacheline_size;
2447         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2448         struct intel_watermark_params planea_params, planeb_params;
2449         unsigned long line_time_us;
2450         int sr_clock, sr_entries = 0, entries_required;
2451
2452         /* Create copies of the base settings for each pipe */
2453         planea_params = planeb_params = g4x_wm_info;
2454
2455         /* Grab a couple of global values before we overwrite them */
2456         total_size = planea_params.fifo_size;
2457         cacheline_size = planea_params.cacheline_size;
2458
2459         /*
2460          * Note: we need to make sure we don't overflow for various clock &
2461          * latency values.
2462          * clocks go from a few thousand to several hundred thousand.
2463          * latency is usually a few thousand
2464          */
2465         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2466                 1000;
2467         entries_required /= G4X_FIFO_LINE_SIZE;
2468         planea_wm = entries_required + planea_params.guard_size;
2469
2470         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2471                 1000;
2472         entries_required /= G4X_FIFO_LINE_SIZE;
2473         planeb_wm = entries_required + planeb_params.guard_size;
2474
2475         cursora_wm = cursorb_wm = 16;
2476         cursor_sr = 32;
2477
2478         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2479
2480         /* Calc sr entries for one plane configs */
2481         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2482                 /* self-refresh has much higher latency */
2483                 const static int sr_latency_ns = 12000;
2484
2485                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2486                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2487
2488                 /* Use ns/us then divide to preserve precision */
2489                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2490                               pixel_size * sr_hdisplay) / 1000;
2491                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2492                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2493                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2494         }
2495
2496         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2497                   planea_wm, planeb_wm, sr_entries);
2498
2499         planea_wm &= 0x3f;
2500         planeb_wm &= 0x3f;
2501
2502         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2503                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2504                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2505         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2506                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2507         /* HPLL off in SR has some issues on G4x... disable it */
2508         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2509                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2510 }
2511
2512 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2513                            int unused3, int unused4)
2514 {
2515         struct drm_i915_private *dev_priv = dev->dev_private;
2516
2517         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2518
2519         /* 965 has limitations... */
2520         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2521         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2522 }
2523
2524 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2525                            int planeb_clock, int sr_hdisplay, int pixel_size)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         uint32_t fwater_lo;
2529         uint32_t fwater_hi;
2530         int total_size, cacheline_size, cwm, srwm = 1;
2531         int planea_wm, planeb_wm;
2532         struct intel_watermark_params planea_params, planeb_params;
2533         unsigned long line_time_us;
2534         int sr_clock, sr_entries = 0;
2535
2536         /* Create copies of the base settings for each pipe */
2537         if (IS_I965GM(dev) || IS_I945GM(dev))
2538                 planea_params = planeb_params = i945_wm_info;
2539         else if (IS_I9XX(dev))
2540                 planea_params = planeb_params = i915_wm_info;
2541         else
2542                 planea_params = planeb_params = i855_wm_info;
2543
2544         /* Grab a couple of global values before we overwrite them */
2545         total_size = planea_params.fifo_size;
2546         cacheline_size = planea_params.cacheline_size;
2547
2548         /* Update per-plane FIFO sizes */
2549         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2550         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2551
2552         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2553                                        pixel_size, latency_ns);
2554         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2555                                        pixel_size, latency_ns);
2556         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2557
2558         /*
2559          * Overlay gets an aggressive default since video jitter is bad.
2560          */
2561         cwm = 2;
2562
2563         /* Calc sr entries for one plane configs */
2564         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2565             (!planea_clock || !planeb_clock)) {
2566                 /* self-refresh has much higher latency */
2567                 const static int sr_latency_ns = 6000;
2568
2569                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2570                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2571
2572                 /* Use ns/us then divide to preserve precision */
2573                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2574                               pixel_size * sr_hdisplay) / 1000;
2575                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2576                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2577                 srwm = total_size - sr_entries;
2578                 if (srwm < 0)
2579                         srwm = 1;
2580                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2581         }
2582
2583         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2584                   planea_wm, planeb_wm, cwm, srwm);
2585
2586         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2587         fwater_hi = (cwm & 0x1f);
2588
2589         /* Set request length to 8 cachelines per fetch */
2590         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2591         fwater_hi = fwater_hi | (1 << 8);
2592
2593         I915_WRITE(FW_BLC, fwater_lo);
2594         I915_WRITE(FW_BLC2, fwater_hi);
2595 }
2596
2597 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2598                            int unused2, int pixel_size)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2602         int planea_wm;
2603
2604         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2605
2606         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2607                                        pixel_size, latency_ns);
2608         fwater_lo |= (3<<8) | planea_wm;
2609
2610         DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2611
2612         I915_WRITE(FW_BLC, fwater_lo);
2613 }
2614
2615 /**
2616  * intel_update_watermarks - update FIFO watermark values based on current modes
2617  *
2618  * Calculate watermark values for the various WM regs based on current mode
2619  * and plane configuration.
2620  *
2621  * There are several cases to deal with here:
2622  *   - normal (i.e. non-self-refresh)
2623  *   - self-refresh (SR) mode
2624  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2625  *   - lines are small relative to FIFO size (buffer can hold more than 2
2626  *     lines), so need to account for TLB latency
2627  *
2628  *   The normal calculation is:
2629  *     watermark = dotclock * bytes per pixel * latency
2630  *   where latency is platform & configuration dependent (we assume pessimal
2631  *   values here).
2632  *
2633  *   The SR calculation is:
2634  *     watermark = (trunc(latency/line time)+1) * surface width *
2635  *       bytes per pixel
2636  *   where
2637  *     line time = htotal / dotclock
2638  *   and latency is assumed to be high, as above.
2639  *
2640  * The final value programmed to the register should always be rounded up,
2641  * and include an extra 2 entries to account for clock crossings.
2642  *
2643  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2644  * to set the non-SR watermarks to 8.
2645   */
2646 static void intel_update_watermarks(struct drm_device *dev)
2647 {
2648         struct drm_i915_private *dev_priv = dev->dev_private;
2649         struct drm_crtc *crtc;
2650         struct intel_crtc *intel_crtc;
2651         int sr_hdisplay = 0;
2652         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2653         int enabled = 0, pixel_size = 0;
2654
2655         if (!dev_priv->display.update_wm)
2656                 return;
2657
2658         /* Get the clock config from both planes */
2659         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2660                 intel_crtc = to_intel_crtc(crtc);
2661                 if (crtc->enabled) {
2662                         enabled++;
2663                         if (intel_crtc->plane == 0) {
2664                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2665                                           intel_crtc->pipe, crtc->mode.clock);
2666                                 planea_clock = crtc->mode.clock;
2667                         } else {
2668                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2669                                           intel_crtc->pipe, crtc->mode.clock);
2670                                 planeb_clock = crtc->mode.clock;
2671                         }
2672                         sr_hdisplay = crtc->mode.hdisplay;
2673                         sr_clock = crtc->mode.clock;
2674                         if (crtc->fb)
2675                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2676                         else
2677                                 pixel_size = 4; /* by default */
2678                 }
2679         }
2680
2681         if (enabled <= 0)
2682                 return;
2683
2684         /* Single plane configs can enable self refresh */
2685         if (enabled == 1 && IS_IGD(dev))
2686                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2687         else if (IS_IGD(dev))
2688                 igd_disable_cxsr(dev);
2689
2690         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2691                                     sr_hdisplay, pixel_size);
2692 }
2693
2694 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2695                                struct drm_display_mode *mode,
2696                                struct drm_display_mode *adjusted_mode,
2697                                int x, int y,
2698                                struct drm_framebuffer *old_fb)
2699 {
2700         struct drm_device *dev = crtc->dev;
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         int pipe = intel_crtc->pipe;
2704         int plane = intel_crtc->plane;
2705         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2706         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2707         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2708         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2709         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2710         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2711         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2712         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2713         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2714         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2715         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2716         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2717         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2718         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2719         int refclk, num_outputs = 0;
2720         intel_clock_t clock, reduced_clock;
2721         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2722         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2723         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2724         bool is_edp = false;
2725         struct drm_mode_config *mode_config = &dev->mode_config;
2726         struct drm_connector *connector;
2727         const intel_limit_t *limit;
2728         int ret;
2729         struct fdi_m_n m_n = {0};
2730         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2731         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2732         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2733         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2734         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2735         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2736         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2737         int lvds_reg = LVDS;
2738         u32 temp;
2739         int sdvo_pixel_multiply;
2740         int target_clock;
2741
2742         drm_vblank_pre_modeset(dev, pipe);
2743
2744         list_for_each_entry(connector, &mode_config->connector_list, head) {
2745                 struct intel_output *intel_output = to_intel_output(connector);
2746
2747                 if (!connector->encoder || connector->encoder->crtc != crtc)
2748                         continue;
2749
2750                 switch (intel_output->type) {
2751                 case INTEL_OUTPUT_LVDS:
2752                         is_lvds = true;
2753                         break;
2754                 case INTEL_OUTPUT_SDVO:
2755                 case INTEL_OUTPUT_HDMI:
2756                         is_sdvo = true;
2757                         if (intel_output->needs_tv_clock)
2758                                 is_tv = true;
2759                         break;
2760                 case INTEL_OUTPUT_DVO:
2761                         is_dvo = true;
2762                         break;
2763                 case INTEL_OUTPUT_TVOUT:
2764                         is_tv = true;
2765                         break;
2766                 case INTEL_OUTPUT_ANALOG:
2767                         is_crt = true;
2768                         break;
2769                 case INTEL_OUTPUT_DISPLAYPORT:
2770                         is_dp = true;
2771                         break;
2772                 case INTEL_OUTPUT_EDP:
2773                         is_edp = true;
2774                         break;
2775                 }
2776
2777                 num_outputs++;
2778         }
2779
2780         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2781                 refclk = dev_priv->lvds_ssc_freq * 1000;
2782                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2783         } else if (IS_I9XX(dev)) {
2784                 refclk = 96000;
2785                 if (IS_IGDNG(dev))
2786                         refclk = 120000; /* 120Mhz refclk */
2787         } else {
2788                 refclk = 48000;
2789         }
2790         
2791
2792         /*
2793          * Returns a set of divisors for the desired target clock with the given
2794          * refclk, or FALSE.  The returned values represent the clock equation:
2795          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2796          */
2797         limit = intel_limit(crtc);
2798         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2799         if (!ok) {
2800                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2801                 drm_vblank_post_modeset(dev, pipe);
2802                 return -EINVAL;
2803         }
2804
2805         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2806                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2807                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2808                                                             (adjusted_mode->clock*3/4),
2809                                                             refclk,
2810                                                             &reduced_clock);
2811         }
2812
2813         /* SDVO TV has fixed PLL values depend on its clock range,
2814            this mirrors vbios setting. */
2815         if (is_sdvo && is_tv) {
2816                 if (adjusted_mode->clock >= 100000
2817                                 && adjusted_mode->clock < 140500) {
2818                         clock.p1 = 2;
2819                         clock.p2 = 10;
2820                         clock.n = 3;
2821                         clock.m1 = 16;
2822                         clock.m2 = 8;
2823                 } else if (adjusted_mode->clock >= 140500
2824                                 && adjusted_mode->clock <= 200000) {
2825                         clock.p1 = 1;
2826                         clock.p2 = 10;
2827                         clock.n = 6;
2828                         clock.m1 = 12;
2829                         clock.m2 = 8;
2830                 }
2831         }
2832
2833         /* FDI link */
2834         if (IS_IGDNG(dev)) {
2835                 int lane, link_bw, bpp;
2836                 /* eDP doesn't require FDI link, so just set DP M/N
2837                    according to current link config */
2838                 if (is_edp) {
2839                         struct drm_connector *edp;
2840                         target_clock = mode->clock;
2841                         edp = intel_pipe_get_output(crtc);
2842                         intel_edp_link_config(to_intel_output(edp),
2843                                         &lane, &link_bw);
2844                 } else {
2845                         /* DP over FDI requires target mode clock
2846                            instead of link clock */
2847                         if (is_dp)
2848                                 target_clock = mode->clock;
2849                         else
2850                                 target_clock = adjusted_mode->clock;
2851                         lane = 4;
2852                         link_bw = 270000;
2853                 }
2854
2855                 /* determine panel color depth */
2856                 temp = I915_READ(pipeconf_reg);
2857
2858                 switch (temp & PIPE_BPC_MASK) {
2859                 case PIPE_8BPC:
2860                         bpp = 24;
2861                         break;
2862                 case PIPE_10BPC:
2863                         bpp = 30;
2864                         break;
2865                 case PIPE_6BPC:
2866                         bpp = 18;
2867                         break;
2868                 case PIPE_12BPC:
2869                         bpp = 36;
2870                         break;
2871                 default:
2872                         DRM_ERROR("unknown pipe bpc value\n");
2873                         bpp = 24;
2874                 }
2875
2876                 igdng_compute_m_n(bpp, lane, target_clock,
2877                                   link_bw, &m_n);
2878         }
2879
2880         /* Ironlake: try to setup display ref clock before DPLL
2881          * enabling. This is only under driver's control after
2882          * PCH B stepping, previous chipset stepping should be
2883          * ignoring this setting.
2884          */
2885         if (IS_IGDNG(dev)) {
2886                 temp = I915_READ(PCH_DREF_CONTROL);
2887                 /* Always enable nonspread source */
2888                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2889                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2890                 I915_WRITE(PCH_DREF_CONTROL, temp);
2891                 POSTING_READ(PCH_DREF_CONTROL);
2892
2893                 temp &= ~DREF_SSC_SOURCE_MASK;
2894                 temp |= DREF_SSC_SOURCE_ENABLE;
2895                 I915_WRITE(PCH_DREF_CONTROL, temp);
2896                 POSTING_READ(PCH_DREF_CONTROL);
2897
2898                 udelay(200);
2899
2900                 if (is_edp) {
2901                         if (dev_priv->lvds_use_ssc) {
2902                                 temp |= DREF_SSC1_ENABLE;
2903                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2904                                 POSTING_READ(PCH_DREF_CONTROL);
2905
2906                                 udelay(200);
2907
2908                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2909                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2910                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2911                                 POSTING_READ(PCH_DREF_CONTROL);
2912                         } else {
2913                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2914                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2915                                 POSTING_READ(PCH_DREF_CONTROL);
2916                         }
2917                 }
2918         }
2919
2920         if (IS_IGD(dev)) {
2921                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2922                 if (has_reduced_clock)
2923                         fp2 = (1 << reduced_clock.n) << 16 |
2924                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2925         } else {
2926                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2927                 if (has_reduced_clock)
2928                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2929                                 reduced_clock.m2;
2930         }
2931
2932         if (!IS_IGDNG(dev))
2933                 dpll = DPLL_VGA_MODE_DIS;
2934
2935         if (IS_I9XX(dev)) {
2936                 if (is_lvds)
2937                         dpll |= DPLLB_MODE_LVDS;
2938                 else
2939                         dpll |= DPLLB_MODE_DAC_SERIAL;
2940                 if (is_sdvo) {
2941                         dpll |= DPLL_DVO_HIGH_SPEED;
2942                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2943                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2944                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2945                         else if (IS_IGDNG(dev))
2946                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2947                 }
2948                 if (is_dp)
2949                         dpll |= DPLL_DVO_HIGH_SPEED;
2950
2951                 /* compute bitmask from p1 value */
2952                 if (IS_IGD(dev))
2953                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2954                 else {
2955                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2956                         /* also FPA1 */
2957                         if (IS_IGDNG(dev))
2958                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2959                         if (IS_G4X(dev) && has_reduced_clock)
2960                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2961                 }
2962                 switch (clock.p2) {
2963                 case 5:
2964                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2965                         break;
2966                 case 7:
2967                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2968                         break;
2969                 case 10:
2970                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2971                         break;
2972                 case 14:
2973                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2974                         break;
2975                 }
2976                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2977                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2978         } else {
2979                 if (is_lvds) {
2980                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2981                 } else {
2982                         if (clock.p1 == 2)
2983                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2984                         else
2985                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2986                         if (clock.p2 == 4)
2987                                 dpll |= PLL_P2_DIVIDE_BY_4;
2988                 }
2989         }
2990
2991         if (is_sdvo && is_tv)
2992                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2993         else if (is_tv)
2994                 /* XXX: just matching BIOS for now */
2995                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2996                 dpll |= 3;
2997         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2998                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2999         else
3000                 dpll |= PLL_REF_INPUT_DREFCLK;
3001
3002         /* setup pipeconf */
3003         pipeconf = I915_READ(pipeconf_reg);
3004
3005         /* Set up the display plane register */
3006         dspcntr = DISPPLANE_GAMMA_ENABLE;
3007
3008         /* IGDNG's plane is forced to pipe, bit 24 is to
3009            enable color space conversion */
3010         if (!IS_IGDNG(dev)) {
3011                 if (pipe == 0)
3012                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3013                 else
3014                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3015         }
3016
3017         if (pipe == 0 && !IS_I965G(dev)) {
3018                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3019                  * core speed.
3020                  *
3021                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3022                  * pipe == 0 check?
3023                  */
3024                 if (mode->clock >
3025                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3026                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3027                 else
3028                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3029         }
3030
3031         dspcntr |= DISPLAY_PLANE_ENABLE;
3032         pipeconf |= PIPEACONF_ENABLE;
3033         dpll |= DPLL_VCO_ENABLE;
3034
3035
3036         /* Disable the panel fitter if it was on our pipe */
3037         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3038                 I915_WRITE(PFIT_CONTROL, 0);
3039
3040         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3041         drm_mode_debug_printmodeline(mode);
3042
3043         /* assign to IGDNG registers */
3044         if (IS_IGDNG(dev)) {
3045                 fp_reg = pch_fp_reg;
3046                 dpll_reg = pch_dpll_reg;
3047         }
3048
3049         if (is_edp) {
3050                 igdng_disable_pll_edp(crtc);
3051         } else if ((dpll & DPLL_VCO_ENABLE)) {
3052                 I915_WRITE(fp_reg, fp);
3053                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3054                 I915_READ(dpll_reg);
3055                 udelay(150);
3056         }
3057
3058         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3059          * This is an exception to the general rule that mode_set doesn't turn
3060          * things on.
3061          */
3062         if (is_lvds) {
3063                 u32 lvds;
3064
3065                 if (IS_IGDNG(dev))
3066                         lvds_reg = PCH_LVDS;
3067
3068                 lvds = I915_READ(lvds_reg);
3069                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3070                 /* set the corresponsding LVDS_BORDER bit */
3071                 lvds |= dev_priv->lvds_border_bits;
3072                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3073                  * set the DPLLs for dual-channel mode or not.
3074                  */
3075                 if (clock.p2 == 7)
3076                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3077                 else
3078                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3079
3080                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3081                  * appropriately here, but we need to look more thoroughly into how
3082                  * panels behave in the two modes.
3083                  */
3084
3085                 I915_WRITE(lvds_reg, lvds);
3086                 I915_READ(lvds_reg);
3087         }
3088         if (is_dp)
3089                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3090
3091         if (!is_edp) {
3092                 I915_WRITE(fp_reg, fp);
3093                 I915_WRITE(dpll_reg, dpll);
3094                 I915_READ(dpll_reg);
3095                 /* Wait for the clocks to stabilize. */
3096                 udelay(150);
3097
3098                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3099                         if (is_sdvo) {
3100                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3101                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3102                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3103                         } else
3104                                 I915_WRITE(dpll_md_reg, 0);
3105                 } else {
3106                         /* write it again -- the BIOS does, after all */
3107                         I915_WRITE(dpll_reg, dpll);
3108                 }
3109                 I915_READ(dpll_reg);
3110                 /* Wait for the clocks to stabilize. */
3111                 udelay(150);
3112         }
3113
3114         if (is_lvds && has_reduced_clock && i915_powersave) {
3115                 I915_WRITE(fp_reg + 4, fp2);
3116                 intel_crtc->lowfreq_avail = true;
3117                 if (HAS_PIPE_CXSR(dev)) {
3118                         DRM_DEBUG("enabling CxSR downclocking\n");
3119                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3120                 }
3121         } else {
3122                 I915_WRITE(fp_reg + 4, fp);
3123                 intel_crtc->lowfreq_avail = false;
3124                 if (HAS_PIPE_CXSR(dev)) {
3125                         DRM_DEBUG("disabling CxSR downclocking\n");
3126                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3127                 }
3128         }
3129
3130         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3131                    ((adjusted_mode->crtc_htotal - 1) << 16));
3132         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3133                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3134         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3135                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3136         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3137                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3138         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3139                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3140         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3141                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3142         /* pipesrc and dspsize control the size that is scaled from, which should
3143          * always be the user's requested size.
3144          */
3145         if (!IS_IGDNG(dev)) {
3146                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3147                                 (mode->hdisplay - 1));
3148                 I915_WRITE(dsppos_reg, 0);
3149         }
3150         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3151
3152         if (IS_IGDNG(dev)) {
3153                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3154                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3155                 I915_WRITE(link_m1_reg, m_n.link_m);
3156                 I915_WRITE(link_n1_reg, m_n.link_n);
3157
3158                 if (is_edp) {
3159                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
3160                 } else {
3161                         /* enable FDI RX PLL too */
3162                         temp = I915_READ(fdi_rx_reg);
3163                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3164                         udelay(200);
3165                 }
3166         }
3167
3168         I915_WRITE(pipeconf_reg, pipeconf);
3169         I915_READ(pipeconf_reg);
3170
3171         intel_wait_for_vblank(dev);
3172
3173         if (IS_IGDNG(dev)) {
3174                 /* enable address swizzle for tiling buffer */
3175                 temp = I915_READ(DISP_ARB_CTL);
3176                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3177         }
3178
3179         I915_WRITE(dspcntr_reg, dspcntr);
3180
3181         /* Flush the plane changes */
3182         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3183
3184         if ((IS_I965G(dev) || plane == 0))
3185                 intel_update_fbc(crtc, &crtc->mode);
3186
3187         intel_update_watermarks(dev);
3188
3189         drm_vblank_post_modeset(dev, pipe);
3190
3191         return ret;
3192 }
3193
3194 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3195 void intel_crtc_load_lut(struct drm_crtc *crtc)
3196 {
3197         struct drm_device *dev = crtc->dev;
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3201         int i;
3202
3203         /* The clocks have to be on to load the palette. */
3204         if (!crtc->enabled)
3205                 return;
3206
3207         /* use legacy palette for IGDNG */
3208         if (IS_IGDNG(dev))
3209                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3210                                                    LGC_PALETTE_B;
3211
3212         for (i = 0; i < 256; i++) {
3213                 I915_WRITE(palreg + 4 * i,
3214                            (intel_crtc->lut_r[i] << 16) |
3215                            (intel_crtc->lut_g[i] << 8) |
3216                            intel_crtc->lut_b[i]);
3217         }
3218 }
3219
3220 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3221                                  struct drm_file *file_priv,
3222                                  uint32_t handle,
3223                                  uint32_t width, uint32_t height)
3224 {
3225         struct drm_device *dev = crtc->dev;
3226         struct drm_i915_private *dev_priv = dev->dev_private;
3227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3228         struct drm_gem_object *bo;
3229         struct drm_i915_gem_object *obj_priv;
3230         int pipe = intel_crtc->pipe;
3231         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3232         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3233         uint32_t temp = I915_READ(control);
3234         size_t addr;
3235         int ret;
3236
3237         DRM_DEBUG("\n");
3238
3239         /* if we want to turn off the cursor ignore width and height */
3240         if (!handle) {
3241                 DRM_DEBUG("cursor off\n");
3242                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3243                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3244                         temp |= CURSOR_MODE_DISABLE;
3245                 } else {
3246                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3247                 }
3248                 addr = 0;
3249                 bo = NULL;
3250                 mutex_lock(&dev->struct_mutex);
3251                 goto finish;
3252         }
3253
3254         /* Currently we only support 64x64 cursors */
3255         if (width != 64 || height != 64) {
3256                 DRM_ERROR("we currently only support 64x64 cursors\n");
3257                 return -EINVAL;
3258         }
3259
3260         bo = drm_gem_object_lookup(dev, file_priv, handle);
3261         if (!bo)
3262                 return -ENOENT;
3263
3264         obj_priv = bo->driver_private;
3265
3266         if (bo->size < width * height * 4) {
3267                 DRM_ERROR("buffer is to small\n");
3268                 ret = -ENOMEM;
3269                 goto fail;
3270         }
3271
3272         /* we only need to pin inside GTT if cursor is non-phy */
3273         mutex_lock(&dev->struct_mutex);
3274         if (!dev_priv->cursor_needs_physical) {
3275                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3276                 if (ret) {
3277                         DRM_ERROR("failed to pin cursor bo\n");
3278                         goto fail_locked;
3279                 }
3280                 addr = obj_priv->gtt_offset;
3281         } else {
3282                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3283                 if (ret) {
3284                         DRM_ERROR("failed to attach phys object\n");
3285                         goto fail_locked;
3286                 }
3287                 addr = obj_priv->phys_obj->handle->busaddr;
3288         }
3289
3290         if (!IS_I9XX(dev))
3291                 I915_WRITE(CURSIZE, (height << 12) | width);
3292
3293         /* Hooray for CUR*CNTR differences */
3294         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3295                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3296                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3297                 temp |= (pipe << 28); /* Connect to correct pipe */
3298         } else {
3299                 temp &= ~(CURSOR_FORMAT_MASK);
3300                 temp |= CURSOR_ENABLE;
3301                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3302         }
3303
3304  finish:
3305         I915_WRITE(control, temp);
3306         I915_WRITE(base, addr);
3307
3308         if (intel_crtc->cursor_bo) {
3309                 if (dev_priv->cursor_needs_physical) {
3310                         if (intel_crtc->cursor_bo != bo)
3311                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3312                 } else
3313                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3314                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3315         }
3316
3317         mutex_unlock(&dev->struct_mutex);
3318
3319         intel_crtc->cursor_addr = addr;
3320         intel_crtc->cursor_bo = bo;
3321
3322         return 0;
3323 fail:
3324         mutex_lock(&dev->struct_mutex);
3325 fail_locked:
3326         drm_gem_object_unreference(bo);
3327         mutex_unlock(&dev->struct_mutex);
3328         return ret;
3329 }
3330
3331 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3332 {
3333         struct drm_device *dev = crtc->dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336         struct intel_framebuffer *intel_fb;
3337         int pipe = intel_crtc->pipe;
3338         uint32_t temp = 0;
3339         uint32_t adder;
3340
3341         if (crtc->fb) {
3342                 intel_fb = to_intel_framebuffer(crtc->fb);
3343                 intel_mark_busy(dev, intel_fb->obj);
3344         }
3345
3346         if (x < 0) {
3347                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3348                 x = -x;
3349         }
3350         if (y < 0) {
3351                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3352                 y = -y;
3353         }
3354
3355         temp |= x << CURSOR_X_SHIFT;
3356         temp |= y << CURSOR_Y_SHIFT;
3357
3358         adder = intel_crtc->cursor_addr;
3359         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3360         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3361
3362         return 0;
3363 }
3364
3365 /** Sets the color ramps on behalf of RandR */
3366 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3367                                  u16 blue, int regno)
3368 {
3369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3370
3371         intel_crtc->lut_r[regno] = red >> 8;
3372         intel_crtc->lut_g[regno] = green >> 8;
3373         intel_crtc->lut_b[regno] = blue >> 8;
3374 }
3375
3376 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3377                              u16 *blue, int regno)
3378 {
3379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3380
3381         *red = intel_crtc->lut_r[regno] << 8;
3382         *green = intel_crtc->lut_g[regno] << 8;
3383         *blue = intel_crtc->lut_b[regno] << 8;
3384 }
3385
3386 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3387                                  u16 *blue, uint32_t size)
3388 {
3389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3390         int i;
3391
3392         if (size != 256)
3393                 return;
3394
3395         for (i = 0; i < 256; i++) {
3396                 intel_crtc->lut_r[i] = red[i] >> 8;
3397                 intel_crtc->lut_g[i] = green[i] >> 8;
3398                 intel_crtc->lut_b[i] = blue[i] >> 8;
3399         }
3400
3401         intel_crtc_load_lut(crtc);
3402 }
3403
3404 /**
3405  * Get a pipe with a simple mode set on it for doing load-based monitor
3406  * detection.
3407  *
3408  * It will be up to the load-detect code to adjust the pipe as appropriate for
3409  * its requirements.  The pipe will be connected to no other outputs.
3410  *
3411  * Currently this code will only succeed if there is a pipe with no outputs
3412  * configured for it.  In the future, it could choose to temporarily disable
3413  * some outputs to free up a pipe for its use.
3414  *
3415  * \return crtc, or NULL if no pipes are available.
3416  */
3417
3418 /* VESA 640x480x72Hz mode to set on the pipe */
3419 static struct drm_display_mode load_detect_mode = {
3420         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3421                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3422 };
3423
3424 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3425                                             struct drm_display_mode *mode,
3426                                             int *dpms_mode)
3427 {
3428         struct intel_crtc *intel_crtc;
3429         struct drm_crtc *possible_crtc;
3430         struct drm_crtc *supported_crtc =NULL;
3431         struct drm_encoder *encoder = &intel_output->enc;
3432         struct drm_crtc *crtc = NULL;
3433         struct drm_device *dev = encoder->dev;
3434         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3435         struct drm_crtc_helper_funcs *crtc_funcs;
3436         int i = -1;
3437
3438         /*
3439          * Algorithm gets a little messy:
3440          *   - if the connector already has an assigned crtc, use it (but make
3441          *     sure it's on first)
3442          *   - try to find the first unused crtc that can drive this connector,
3443          *     and use that if we find one
3444          *   - if there are no unused crtcs available, try to use the first
3445          *     one we found that supports the connector
3446          */
3447
3448         /* See if we already have a CRTC for this connector */
3449         if (encoder->crtc) {
3450                 crtc = encoder->crtc;
3451                 /* Make sure the crtc and connector are running */
3452                 intel_crtc = to_intel_crtc(crtc);
3453                 *dpms_mode = intel_crtc->dpms_mode;
3454                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3455                         crtc_funcs = crtc->helper_private;
3456                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3457                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3458                 }
3459                 return crtc;
3460         }
3461
3462         /* Find an unused one (if possible) */
3463         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3464                 i++;
3465                 if (!(encoder->possible_crtcs & (1 << i)))
3466                         continue;
3467                 if (!possible_crtc->enabled) {
3468                         crtc = possible_crtc;
3469                         break;
3470                 }
3471                 if (!supported_crtc)
3472                         supported_crtc = possible_crtc;
3473         }
3474
3475         /*
3476          * If we didn't find an unused CRTC, don't use any.
3477          */
3478         if (!crtc) {
3479                 return NULL;
3480         }
3481
3482         encoder->crtc = crtc;
3483         intel_output->base.encoder = encoder;
3484         intel_output->load_detect_temp = true;
3485
3486         intel_crtc = to_intel_crtc(crtc);
3487         *dpms_mode = intel_crtc->dpms_mode;
3488
3489         if (!crtc->enabled) {
3490                 if (!mode)
3491                         mode = &load_detect_mode;
3492                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3493         } else {
3494                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3495                         crtc_funcs = crtc->helper_private;
3496                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3497                 }
3498
3499                 /* Add this connector to the crtc */
3500                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3501                 encoder_funcs->commit(encoder);
3502         }
3503         /* let the connector get through one full cycle before testing */
3504         intel_wait_for_vblank(dev);
3505
3506         return crtc;
3507 }
3508
3509 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3510 {
3511         struct drm_encoder *encoder = &intel_output->enc;
3512         struct drm_device *dev = encoder->dev;
3513         struct drm_crtc *crtc = encoder->crtc;
3514         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3515         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3516
3517         if (intel_output->load_detect_temp) {
3518                 encoder->crtc = NULL;
3519                 intel_output->base.encoder = NULL;
3520                 intel_output->load_detect_temp = false;
3521                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3522                 drm_helper_disable_unused_functions(dev);
3523         }
3524
3525         /* Switch crtc and output back off if necessary */
3526         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3527                 if (encoder->crtc == crtc)
3528                         encoder_funcs->dpms(encoder, dpms_mode);
3529                 crtc_funcs->dpms(crtc, dpms_mode);
3530         }
3531 }
3532
3533 /* Returns the clock of the currently programmed mode of the given pipe. */
3534 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3535 {
3536         struct drm_i915_private *dev_priv = dev->dev_private;
3537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3538         int pipe = intel_crtc->pipe;
3539         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3540         u32 fp;
3541         intel_clock_t clock;
3542
3543         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3544                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3545         else
3546                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3547
3548         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3549         if (IS_IGD(dev)) {
3550                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3551                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3552         } else {
3553                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3554                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3555         }
3556
3557         if (IS_I9XX(dev)) {
3558                 if (IS_IGD(dev))
3559                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3560                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3561                 else
3562                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3563                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3564
3565                 switch (dpll & DPLL_MODE_MASK) {
3566                 case DPLLB_MODE_DAC_SERIAL:
3567                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3568                                 5 : 10;
3569                         break;
3570                 case DPLLB_MODE_LVDS:
3571                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3572                                 7 : 14;
3573                         break;
3574                 default:
3575                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3576                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3577                         return 0;
3578                 }
3579
3580                 /* XXX: Handle the 100Mhz refclk */
3581                 intel_clock(dev, 96000, &clock);
3582         } else {
3583                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3584
3585                 if (is_lvds) {
3586                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3587                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3588                         clock.p2 = 14;
3589
3590                         if ((dpll & PLL_REF_INPUT_MASK) ==
3591                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3592                                 /* XXX: might not be 66MHz */
3593                                 intel_clock(dev, 66000, &clock);
3594                         } else
3595                                 intel_clock(dev, 48000, &clock);
3596                 } else {
3597                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3598                                 clock.p1 = 2;
3599                         else {
3600                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3601                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3602                         }
3603                         if (dpll & PLL_P2_DIVIDE_BY_4)
3604                                 clock.p2 = 4;
3605                         else
3606                                 clock.p2 = 2;
3607
3608                         intel_clock(dev, 48000, &clock);
3609                 }
3610         }
3611
3612         /* XXX: It would be nice to validate the clocks, but we can't reuse
3613          * i830PllIsValid() because it relies on the xf86_config connector
3614          * configuration being accurate, which it isn't necessarily.
3615          */
3616
3617         return clock.dot;
3618 }
3619
3620 /** Returns the currently programmed mode of the given pipe. */
3621 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3622                                              struct drm_crtc *crtc)
3623 {
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626         int pipe = intel_crtc->pipe;
3627         struct drm_display_mode *mode;
3628         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3629         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3630         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3631         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3632
3633         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3634         if (!mode)
3635                 return NULL;
3636
3637         mode->clock = intel_crtc_clock_get(dev, crtc);
3638         mode->hdisplay = (htot & 0xffff) + 1;
3639         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3640         mode->hsync_start = (hsync & 0xffff) + 1;
3641         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3642         mode->vdisplay = (vtot & 0xffff) + 1;
3643         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3644         mode->vsync_start = (vsync & 0xffff) + 1;
3645         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3646
3647         drm_mode_set_name(mode);
3648         drm_mode_set_crtcinfo(mode, 0);
3649
3650         return mode;
3651 }
3652
3653 #define GPU_IDLE_TIMEOUT 500 /* ms */
3654
3655 /* When this timer fires, we've been idle for awhile */
3656 static void intel_gpu_idle_timer(unsigned long arg)
3657 {
3658         struct drm_device *dev = (struct drm_device *)arg;
3659         drm_i915_private_t *dev_priv = dev->dev_private;
3660
3661         DRM_DEBUG("idle timer fired, downclocking\n");
3662
3663         dev_priv->busy = false;
3664
3665         queue_work(dev_priv->wq, &dev_priv->idle_work);
3666 }
3667
3668 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3669 {
3670         drm_i915_private_t *dev_priv = dev->dev_private;
3671
3672         if (IS_IGDNG(dev))
3673                 return;
3674
3675         if (!dev_priv->render_reclock_avail) {
3676                 DRM_DEBUG("not reclocking render clock\n");
3677                 return;
3678         }
3679
3680         /* Restore render clock frequency to original value */
3681         if (IS_G4X(dev) || IS_I9XX(dev))
3682                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3683         else if (IS_I85X(dev))
3684                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3685         DRM_DEBUG("increasing render clock frequency\n");
3686
3687         /* Schedule downclock */
3688         if (schedule)
3689                 mod_timer(&dev_priv->idle_timer, jiffies +
3690                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3691 }
3692
3693 void intel_decrease_renderclock(struct drm_device *dev)
3694 {
3695         drm_i915_private_t *dev_priv = dev->dev_private;
3696
3697         if (IS_IGDNG(dev))
3698                 return;
3699
3700         if (!dev_priv->render_reclock_avail) {
3701                 DRM_DEBUG("not reclocking render clock\n");
3702                 return;
3703         }
3704
3705         if (IS_G4X(dev)) {
3706                 u16 gcfgc;
3707
3708                 /* Adjust render clock... */
3709                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3710
3711                 /* Down to minimum... */
3712                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3713                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3714
3715                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3716         } else if (IS_I965G(dev)) {
3717                 u16 gcfgc;
3718
3719                 /* Adjust render clock... */
3720                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3721
3722                 /* Down to minimum... */
3723                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3724                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3725
3726                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3727         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3728                 u16 gcfgc;
3729
3730                 /* Adjust render clock... */
3731                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3732
3733                 /* Down to minimum... */
3734                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3735                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3736
3737                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3738         } else if (IS_I915G(dev)) {
3739                 u16 gcfgc;
3740
3741                 /* Adjust render clock... */
3742                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3743
3744                 /* Down to minimum... */
3745                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3746                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3747
3748                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3749         } else if (IS_I85X(dev)) {
3750                 u16 hpllcc;
3751
3752                 /* Adjust render clock... */
3753                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3754
3755                 /* Up to maximum... */
3756                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3757                 hpllcc |= GC_CLOCK_133_200;
3758
3759                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3760         }
3761         DRM_DEBUG("decreasing render clock frequency\n");
3762 }
3763
3764 /* Note that no increase function is needed for this - increase_renderclock()
3765  *  will also rewrite these bits
3766  */
3767 void intel_decrease_displayclock(struct drm_device *dev)
3768 {
3769         if (IS_IGDNG(dev))
3770                 return;
3771
3772         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3773             IS_I915GM(dev)) {
3774                 u16 gcfgc;
3775
3776                 /* Adjust render clock... */
3777                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3778
3779                 /* Down to minimum... */
3780                 gcfgc &= ~0xf0;
3781                 gcfgc |= 0x80;
3782
3783                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3784         }
3785 }
3786
3787 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3788
3789 static void intel_crtc_idle_timer(unsigned long arg)
3790 {
3791         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3792         struct drm_crtc *crtc = &intel_crtc->base;
3793         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3794
3795         DRM_DEBUG("idle timer fired, downclocking\n");
3796
3797         intel_crtc->busy = false;
3798
3799         queue_work(dev_priv->wq, &dev_priv->idle_work);
3800 }
3801
3802 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3803 {
3804         struct drm_device *dev = crtc->dev;
3805         drm_i915_private_t *dev_priv = dev->dev_private;
3806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807         int pipe = intel_crtc->pipe;
3808         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3809         int dpll = I915_READ(dpll_reg);
3810
3811         if (IS_IGDNG(dev))
3812                 return;
3813
3814         if (!dev_priv->lvds_downclock_avail)
3815                 return;
3816
3817         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3818                 DRM_DEBUG("upclocking LVDS\n");
3819
3820                 /* Unlock panel regs */
3821                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3822
3823                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3824                 I915_WRITE(dpll_reg, dpll);
3825                 dpll = I915_READ(dpll_reg);
3826                 intel_wait_for_vblank(dev);
3827                 dpll = I915_READ(dpll_reg);
3828                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3829                         DRM_DEBUG("failed to upclock LVDS!\n");
3830
3831                 /* ...and lock them again */
3832                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3833         }
3834
3835         /* Schedule downclock */
3836         if (schedule)
3837                 mod_timer(&intel_crtc->idle_timer, jiffies +
3838                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3839 }
3840
3841 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         drm_i915_private_t *dev_priv = dev->dev_private;
3845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846         int pipe = intel_crtc->pipe;
3847         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3848         int dpll = I915_READ(dpll_reg);
3849
3850         if (IS_IGDNG(dev))
3851                 return;
3852
3853         if (!dev_priv->lvds_downclock_avail)
3854                 return;
3855
3856         /*
3857          * Since this is called by a timer, we should never get here in
3858          * the manual case.
3859          */
3860         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3861                 DRM_DEBUG("downclocking LVDS\n");
3862
3863                 /* Unlock panel regs */
3864                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3865
3866                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3867                 I915_WRITE(dpll_reg, dpll);
3868                 dpll = I915_READ(dpll_reg);
3869                 intel_wait_for_vblank(dev);
3870                 dpll = I915_READ(dpll_reg);
3871                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3872                         DRM_DEBUG("failed to downclock LVDS!\n");
3873
3874                 /* ...and lock them again */
3875                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3876         }
3877
3878 }
3879
3880 /**
3881  * intel_idle_update - adjust clocks for idleness
3882  * @work: work struct
3883  *
3884  * Either the GPU or display (or both) went idle.  Check the busy status
3885  * here and adjust the CRTC and GPU clocks as necessary.
3886  */
3887 static void intel_idle_update(struct work_struct *work)
3888 {
3889         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3890                                                     idle_work);
3891         struct drm_device *dev = dev_priv->dev;
3892         struct drm_crtc *crtc;
3893         struct intel_crtc *intel_crtc;
3894
3895         if (!i915_powersave)
3896                 return;
3897
3898         mutex_lock(&dev->struct_mutex);
3899
3900         /* GPU isn't processing, downclock it. */
3901         if (!dev_priv->busy) {
3902                 intel_decrease_renderclock(dev);
3903                 intel_decrease_displayclock(dev);
3904         }
3905
3906         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3907                 /* Skip inactive CRTCs */
3908                 if (!crtc->fb)
3909                         continue;
3910
3911                 intel_crtc = to_intel_crtc(crtc);
3912                 if (!intel_crtc->busy)
3913                         intel_decrease_pllclock(crtc);
3914         }
3915
3916         mutex_unlock(&dev->struct_mutex);
3917 }
3918
3919 /**
3920  * intel_mark_busy - mark the GPU and possibly the display busy
3921  * @dev: drm device
3922  * @obj: object we're operating on
3923  *
3924  * Callers can use this function to indicate that the GPU is busy processing
3925  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3926  * buffer), we'll also mark the display as busy, so we know to increase its
3927  * clock frequency.
3928  */
3929 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3930 {
3931         drm_i915_private_t *dev_priv = dev->dev_private;
3932         struct drm_crtc *crtc = NULL;
3933         struct intel_framebuffer *intel_fb;
3934         struct intel_crtc *intel_crtc;
3935
3936         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3937                 return;
3938
3939         dev_priv->busy = true;
3940         intel_increase_renderclock(dev, true);
3941
3942         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3943                 if (!crtc->fb)
3944                         continue;
3945
3946                 intel_crtc = to_intel_crtc(crtc);
3947                 intel_fb = to_intel_framebuffer(crtc->fb);
3948                 if (intel_fb->obj == obj) {
3949                         if (!intel_crtc->busy) {
3950                                 /* Non-busy -> busy, upclock */
3951                                 intel_increase_pllclock(crtc, true);
3952                                 intel_crtc->busy = true;
3953                         } else {
3954                                 /* Busy -> busy, put off timer */
3955                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3956                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3957                         }
3958                 }
3959         }
3960 }
3961
3962 static void intel_crtc_destroy(struct drm_crtc *crtc)
3963 {
3964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3965
3966         drm_crtc_cleanup(crtc);
3967         kfree(intel_crtc);
3968 }
3969
3970 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3971         .dpms = intel_crtc_dpms,
3972         .mode_fixup = intel_crtc_mode_fixup,
3973         .mode_set = intel_crtc_mode_set,
3974         .mode_set_base = intel_pipe_set_base,
3975         .prepare = intel_crtc_prepare,
3976         .commit = intel_crtc_commit,
3977         .load_lut = intel_crtc_load_lut,
3978 };
3979
3980 static const struct drm_crtc_funcs intel_crtc_funcs = {
3981         .cursor_set = intel_crtc_cursor_set,
3982         .cursor_move = intel_crtc_cursor_move,
3983         .gamma_set = intel_crtc_gamma_set,
3984         .set_config = drm_crtc_helper_set_config,
3985         .destroy = intel_crtc_destroy,
3986 };
3987
3988
3989 static void intel_crtc_init(struct drm_device *dev, int pipe)
3990 {
3991         struct intel_crtc *intel_crtc;
3992         int i;
3993
3994         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3995         if (intel_crtc == NULL)
3996                 return;
3997
3998         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3999
4000         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4001         intel_crtc->pipe = pipe;
4002         intel_crtc->plane = pipe;
4003         for (i = 0; i < 256; i++) {
4004                 intel_crtc->lut_r[i] = i;
4005                 intel_crtc->lut_g[i] = i;
4006                 intel_crtc->lut_b[i] = i;
4007         }
4008
4009         /* Swap pipes & planes for FBC on pre-965 */
4010         intel_crtc->pipe = pipe;
4011         intel_crtc->plane = pipe;
4012         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4013                 DRM_DEBUG("swapping pipes & planes for FBC\n");
4014                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4015         }
4016
4017         intel_crtc->cursor_addr = 0;
4018         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4019         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4020
4021         intel_crtc->busy = false;
4022
4023         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4024                     (unsigned long)intel_crtc);
4025 }
4026
4027 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4028                                 struct drm_file *file_priv)
4029 {
4030         drm_i915_private_t *dev_priv = dev->dev_private;
4031         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4032         struct drm_mode_object *drmmode_obj;
4033         struct intel_crtc *crtc;
4034
4035         if (!dev_priv) {
4036                 DRM_ERROR("called with no initialization\n");
4037                 return -EINVAL;
4038         }
4039
4040         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4041                         DRM_MODE_OBJECT_CRTC);
4042
4043         if (!drmmode_obj) {
4044                 DRM_ERROR("no such CRTC id\n");
4045                 return -EINVAL;
4046         }
4047
4048         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4049         pipe_from_crtc_id->pipe = crtc->pipe;
4050
4051         return 0;
4052 }
4053
4054 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4055 {
4056         struct drm_crtc *crtc = NULL;
4057
4058         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4059                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4060                 if (intel_crtc->pipe == pipe)
4061                         break;
4062         }
4063         return crtc;
4064 }
4065
4066 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4067 {
4068         int index_mask = 0;
4069         struct drm_connector *connector;
4070         int entry = 0;
4071
4072         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4073                 struct intel_output *intel_output = to_intel_output(connector);
4074                 if (type_mask & intel_output->clone_mask)
4075                         index_mask |= (1 << entry);
4076                 entry++;
4077         }
4078         return index_mask;
4079 }
4080
4081
4082 static void intel_setup_outputs(struct drm_device *dev)
4083 {
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085         struct drm_connector *connector;
4086
4087         intel_crt_init(dev);
4088
4089         /* Set up integrated LVDS */
4090         if (IS_MOBILE(dev) && !IS_I830(dev))
4091                 intel_lvds_init(dev);
4092
4093         if (IS_IGDNG(dev)) {
4094                 int found;
4095
4096                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4097                         intel_dp_init(dev, DP_A);
4098
4099                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4100                         /* check SDVOB */
4101                         /* found = intel_sdvo_init(dev, HDMIB); */
4102                         found = 0;
4103                         if (!found)
4104                                 intel_hdmi_init(dev, HDMIB);
4105                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4106                                 intel_dp_init(dev, PCH_DP_B);
4107                 }
4108
4109                 if (I915_READ(HDMIC) & PORT_DETECTED)
4110                         intel_hdmi_init(dev, HDMIC);
4111
4112                 if (I915_READ(HDMID) & PORT_DETECTED)
4113                         intel_hdmi_init(dev, HDMID);
4114
4115                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4116                         intel_dp_init(dev, PCH_DP_C);
4117
4118                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4119                         intel_dp_init(dev, PCH_DP_D);
4120
4121         } else if (IS_I9XX(dev)) {
4122                 bool found = false;
4123
4124                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4125                         found = intel_sdvo_init(dev, SDVOB);
4126                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4127                                 intel_hdmi_init(dev, SDVOB);
4128
4129                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
4130                                 intel_dp_init(dev, DP_B);
4131                 }
4132
4133                 /* Before G4X SDVOC doesn't have its own detect register */
4134
4135                 if (I915_READ(SDVOB) & SDVO_DETECTED)
4136                         found = intel_sdvo_init(dev, SDVOC);
4137
4138                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4139
4140                         if (SUPPORTS_INTEGRATED_HDMI(dev))
4141                                 intel_hdmi_init(dev, SDVOC);
4142                         if (SUPPORTS_INTEGRATED_DP(dev))
4143                                 intel_dp_init(dev, DP_C);
4144                 }
4145
4146                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4147                         intel_dp_init(dev, DP_D);
4148         } else
4149                 intel_dvo_init(dev);
4150
4151         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4152                 intel_tv_init(dev);
4153
4154         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4155                 struct intel_output *intel_output = to_intel_output(connector);
4156                 struct drm_encoder *encoder = &intel_output->enc;
4157
4158                 encoder->possible_crtcs = intel_output->crtc_mask;
4159                 encoder->possible_clones = intel_connector_clones(dev,
4160                                                 intel_output->clone_mask);
4161         }
4162 }
4163
4164 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4165 {
4166         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4167         struct drm_device *dev = fb->dev;
4168
4169         if (fb->fbdev)
4170                 intelfb_remove(dev, fb);
4171
4172         drm_framebuffer_cleanup(fb);
4173         mutex_lock(&dev->struct_mutex);
4174         drm_gem_object_unreference(intel_fb->obj);
4175         mutex_unlock(&dev->struct_mutex);
4176
4177         kfree(intel_fb);
4178 }
4179
4180 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4181                                                 struct drm_file *file_priv,
4182                                                 unsigned int *handle)
4183 {
4184         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4185         struct drm_gem_object *object = intel_fb->obj;
4186
4187         return drm_gem_handle_create(file_priv, object, handle);
4188 }
4189
4190 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4191         .destroy = intel_user_framebuffer_destroy,
4192         .create_handle = intel_user_framebuffer_create_handle,
4193 };
4194
4195 int intel_framebuffer_create(struct drm_device *dev,
4196                              struct drm_mode_fb_cmd *mode_cmd,
4197                              struct drm_framebuffer **fb,
4198                              struct drm_gem_object *obj)
4199 {
4200         struct intel_framebuffer *intel_fb;
4201         int ret;
4202
4203         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4204         if (!intel_fb)
4205                 return -ENOMEM;
4206
4207         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4208         if (ret) {
4209                 DRM_ERROR("framebuffer init failed %d\n", ret);
4210                 return ret;
4211         }
4212
4213         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4214
4215         intel_fb->obj = obj;
4216
4217         *fb = &intel_fb->base;
4218
4219         return 0;
4220 }
4221
4222
4223 static struct drm_framebuffer *
4224 intel_user_framebuffer_create(struct drm_device *dev,
4225                               struct drm_file *filp,
4226                               struct drm_mode_fb_cmd *mode_cmd)
4227 {
4228         struct drm_gem_object *obj;
4229         struct drm_framebuffer *fb;
4230         int ret;
4231
4232         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4233         if (!obj)
4234                 return NULL;
4235
4236         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4237         if (ret) {
4238                 mutex_lock(&dev->struct_mutex);
4239                 drm_gem_object_unreference(obj);
4240                 mutex_unlock(&dev->struct_mutex);
4241                 return NULL;
4242         }
4243
4244         return fb;
4245 }
4246
4247 static const struct drm_mode_config_funcs intel_mode_funcs = {
4248         .fb_create = intel_user_framebuffer_create,
4249         .fb_changed = intelfb_probe,
4250 };
4251
4252 void intel_init_clock_gating(struct drm_device *dev)
4253 {
4254         struct drm_i915_private *dev_priv = dev->dev_private;
4255
4256         /*
4257          * Disable clock gating reported to work incorrectly according to the
4258          * specs, but enable as much else as we can.
4259          */
4260         if (IS_IGDNG(dev)) {
4261                 return;
4262         } else if (IS_G4X(dev)) {
4263                 uint32_t dspclk_gate;
4264                 I915_WRITE(RENCLK_GATE_D1, 0);
4265                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4266                        GS_UNIT_CLOCK_GATE_DISABLE |
4267                        CL_UNIT_CLOCK_GATE_DISABLE);
4268                 I915_WRITE(RAMCLK_GATE_D, 0);
4269                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4270                         OVRUNIT_CLOCK_GATE_DISABLE |
4271                         OVCUNIT_CLOCK_GATE_DISABLE;
4272                 if (IS_GM45(dev))
4273                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4274                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4275         } else if (IS_I965GM(dev)) {
4276                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4277                 I915_WRITE(RENCLK_GATE_D2, 0);
4278                 I915_WRITE(DSPCLK_GATE_D, 0);
4279                 I915_WRITE(RAMCLK_GATE_D, 0);
4280                 I915_WRITE16(DEUC, 0);
4281         } else if (IS_I965G(dev)) {
4282                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4283                        I965_RCC_CLOCK_GATE_DISABLE |
4284                        I965_RCPB_CLOCK_GATE_DISABLE |
4285                        I965_ISC_CLOCK_GATE_DISABLE |
4286                        I965_FBC_CLOCK_GATE_DISABLE);
4287                 I915_WRITE(RENCLK_GATE_D2, 0);
4288         } else if (IS_I9XX(dev)) {
4289                 u32 dstate = I915_READ(D_STATE);
4290
4291                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4292                         DSTATE_DOT_CLOCK_GATING;
4293                 I915_WRITE(D_STATE, dstate);
4294         } else if (IS_I855(dev) || IS_I865G(dev)) {
4295                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4296         } else if (IS_I830(dev)) {
4297                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4298         }
4299 }
4300
4301 /* Set up chip specific display functions */
4302 static void intel_init_display(struct drm_device *dev)
4303 {
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305
4306         /* We always want a DPMS function */
4307         if (IS_IGDNG(dev))
4308                 dev_priv->display.dpms = igdng_crtc_dpms;
4309         else
4310                 dev_priv->display.dpms = i9xx_crtc_dpms;
4311
4312         /* Only mobile has FBC, leave pointers NULL for other chips */
4313         if (IS_MOBILE(dev)) {
4314                 if (IS_GM45(dev)) {
4315                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4316                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4317                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4318                 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4319                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4320                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4321                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4322                 }
4323                 /* 855GM needs testing */
4324         }
4325
4326         /* Returns the core display clock speed */
4327         if (IS_I945G(dev))
4328                 dev_priv->display.get_display_clock_speed =
4329                         i945_get_display_clock_speed;
4330         else if (IS_I915G(dev))
4331                 dev_priv->display.get_display_clock_speed =
4332                         i915_get_display_clock_speed;
4333         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4334                 dev_priv->display.get_display_clock_speed =
4335                         i9xx_misc_get_display_clock_speed;
4336         else if (IS_I915GM(dev))
4337                 dev_priv->display.get_display_clock_speed =
4338                         i915gm_get_display_clock_speed;
4339         else if (IS_I865G(dev))
4340                 dev_priv->display.get_display_clock_speed =
4341                         i865_get_display_clock_speed;
4342         else if (IS_I855(dev))
4343                 dev_priv->display.get_display_clock_speed =
4344                         i855_get_display_clock_speed;
4345         else /* 852, 830 */
4346                 dev_priv->display.get_display_clock_speed =
4347                         i830_get_display_clock_speed;
4348
4349         /* For FIFO watermark updates */
4350         if (IS_IGDNG(dev))
4351                 dev_priv->display.update_wm = NULL;
4352         else if (IS_G4X(dev))
4353                 dev_priv->display.update_wm = g4x_update_wm;
4354         else if (IS_I965G(dev))
4355                 dev_priv->display.update_wm = i965_update_wm;
4356         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4357                 dev_priv->display.update_wm = i9xx_update_wm;
4358                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4359         } else {
4360                 if (IS_I85X(dev))
4361                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4362                 else if (IS_845G(dev))
4363                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4364                 else
4365                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4366                 dev_priv->display.update_wm = i830_update_wm;
4367         }
4368 }
4369
4370 void intel_modeset_init(struct drm_device *dev)
4371 {
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         int num_pipe;
4374         int i;
4375
4376         drm_mode_config_init(dev);
4377
4378         dev->mode_config.min_width = 0;
4379         dev->mode_config.min_height = 0;
4380
4381         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4382
4383         intel_init_display(dev);
4384
4385         if (IS_I965G(dev)) {
4386                 dev->mode_config.max_width = 8192;
4387                 dev->mode_config.max_height = 8192;
4388         } else if (IS_I9XX(dev)) {
4389                 dev->mode_config.max_width = 4096;
4390                 dev->mode_config.max_height = 4096;
4391         } else {
4392                 dev->mode_config.max_width = 2048;
4393                 dev->mode_config.max_height = 2048;
4394         }
4395
4396         /* set memory base */
4397         if (IS_I9XX(dev))
4398                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4399         else
4400                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4401
4402         if (IS_MOBILE(dev) || IS_I9XX(dev))
4403                 num_pipe = 2;
4404         else
4405                 num_pipe = 1;
4406         DRM_DEBUG("%d display pipe%s available.\n",
4407                   num_pipe, num_pipe > 1 ? "s" : "");
4408
4409         if (IS_I85X(dev))
4410                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4411         else if (IS_I9XX(dev) || IS_G4X(dev))
4412                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4413
4414         for (i = 0; i < num_pipe; i++) {
4415                 intel_crtc_init(dev, i);
4416         }
4417
4418         intel_setup_outputs(dev);
4419
4420         intel_init_clock_gating(dev);
4421
4422         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4423         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4424                     (unsigned long)dev);
4425 }
4426
4427 void intel_modeset_cleanup(struct drm_device *dev)
4428 {
4429         struct drm_i915_private *dev_priv = dev->dev_private;
4430         struct drm_crtc *crtc;
4431         struct intel_crtc *intel_crtc;
4432
4433         mutex_lock(&dev->struct_mutex);
4434
4435         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4436                 /* Skip inactive CRTCs */
4437                 if (!crtc->fb)
4438                         continue;
4439
4440                 intel_crtc = to_intel_crtc(crtc);
4441                 intel_increase_pllclock(crtc, false);
4442                 del_timer_sync(&intel_crtc->idle_timer);
4443         }
4444
4445         intel_increase_renderclock(dev, false);
4446         del_timer_sync(&dev_priv->idle_timer);
4447
4448         mutex_unlock(&dev->struct_mutex);
4449
4450         if (dev_priv->display.disable_fbc)
4451                 dev_priv->display.disable_fbc(dev);
4452
4453         drm_mode_config_cleanup(dev);
4454 }
4455
4456
4457 /* current intel driver doesn't take advantage of encoders
4458    always give back the encoder for the connector
4459 */
4460 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4461 {
4462         struct intel_output *intel_output = to_intel_output(connector);
4463
4464         return &intel_output->enc;
4465 }
4466
4467 /*
4468  * set vga decode state - true == enable VGA decode
4469  */
4470 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4471 {
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473         u16 gmch_ctrl;
4474
4475         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4476         if (state)
4477                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4478         else
4479                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4480         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4481         return 0;
4482 }