drm/i915: Move non-phys cursors into the GTT
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requirement, prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirement, prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033         u32 fbc_ctl;
1034
1035         if (!I915_HAS_FBC(dev))
1036                 return;
1037
1038         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039                 return; /* Already off, just return */
1040
1041         /* Disable compression */
1042         fbc_ctl = I915_READ(FBC_CONTROL);
1043         fbc_ctl &= ~FBC_CTL_EN;
1044         I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046         /* Wait for compressing bit to clear */
1047         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048                 if (time_after(jiffies, timeout)) {
1049                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050                         break;
1051                 }
1052                 ; /* do nothing */
1053         }
1054
1055         intel_wait_for_vblank(dev);
1056
1057         DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct drm_framebuffer *fb = crtc->fb;
1072         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076                      DPFC_CTL_PLANEB);
1077         unsigned long stall_watermark = 200;
1078         u32 dpfc_ctl;
1079
1080         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081         dev_priv->cfb_fence = obj_priv->fence_reg;
1082         dev_priv->cfb_plane = intel_crtc->plane;
1083
1084         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088         } else {
1089                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090         }
1091
1092         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098         /* enable it... */
1099         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 dpfc_ctl;
1108
1109         /* Disable compression */
1110         dpfc_ctl = I915_READ(DPFC_CONTROL);
1111         dpfc_ctl &= ~DPFC_CTL_EN;
1112         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113         intel_wait_for_vblank(dev);
1114
1115         DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129         if (!dev_priv->display.fbc_enabled)
1130                 return false;
1131
1132         return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139         if (!dev_priv->display.enable_fbc)
1140                 return;
1141
1142         dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (!dev_priv->display.disable_fbc)
1150                 return;
1151
1152         dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156  * intel_update_fbc - enable/disable FBC as needed
1157  * @crtc: CRTC to point the compressor at
1158  * @mode: mode in use
1159  *
1160  * Set up the framebuffer compression hardware at mode set time.  We
1161  * enable it if possible:
1162  *   - plane A only (on pre-965)
1163  *   - no pixel mulitply/line duplication
1164  *   - no alpha buffer discard
1165  *   - no dual wide
1166  *   - framebuffer <= 2048 in width, 1536 in height
1167  *
1168  * We can't assume that any compression will take place (worst case),
1169  * so the compressed buffer has to be the same size as the uncompressed
1170  * one.  It also must reside (along with the line length buffer) in
1171  * stolen memory.
1172  *
1173  * We need to enable/disable FBC on a global basis.
1174  */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176                              struct drm_display_mode *mode)
1177 {
1178         struct drm_device *dev = crtc->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct drm_framebuffer *fb = crtc->fb;
1181         struct intel_framebuffer *intel_fb;
1182         struct drm_i915_gem_object *obj_priv;
1183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184         int plane = intel_crtc->plane;
1185
1186         if (!i915_powersave)
1187                 return;
1188
1189         if (!I915_HAS_FBC(dev))
1190                 return;
1191
1192         if (!crtc->fb)
1193                 return;
1194
1195         intel_fb = to_intel_framebuffer(fb);
1196         obj_priv = to_intel_bo(intel_fb->obj);
1197
1198         /*
1199          * If FBC is already on, we just have to verify that we can
1200          * keep it that way...
1201          * Need to disable if:
1202          *   - changing FBC params (stride, fence, mode)
1203          *   - new fb is too large to fit in compressed buffer
1204          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1205          */
1206         if (intel_fb->obj->size > dev_priv->cfb_size) {
1207                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1208                                 "compression\n");
1209                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1210                 goto out_disable;
1211         }
1212         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214                 DRM_DEBUG_KMS("mode incompatible with compression, "
1215                                 "disabling\n");
1216                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1217                 goto out_disable;
1218         }
1219         if ((mode->hdisplay > 2048) ||
1220             (mode->vdisplay > 1536)) {
1221                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1223                 goto out_disable;
1224         }
1225         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1228                 goto out_disable;
1229         }
1230         if (obj_priv->tiling_mode != I915_TILING_X) {
1231                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1233                 goto out_disable;
1234         }
1235
1236         if (intel_fbc_enabled(dev)) {
1237                 /* We can re-enable it in this case, but need to update pitch */
1238                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240                     (plane != dev_priv->cfb_plane))
1241                         intel_disable_fbc(dev);
1242         }
1243
1244         /* Now try to turn it back on if possible */
1245         if (!intel_fbc_enabled(dev))
1246                 intel_enable_fbc(crtc, 500);
1247
1248         return;
1249
1250 out_disable:
1251         /* Multiple disables should be harmless */
1252         if (intel_fbc_enabled(dev)) {
1253                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1254                 intel_disable_fbc(dev);
1255         }
1256 }
1257
1258 static int
1259 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1260 {
1261         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1262         u32 alignment;
1263         int ret;
1264
1265         switch (obj_priv->tiling_mode) {
1266         case I915_TILING_NONE:
1267                 alignment = 64 * 1024;
1268                 break;
1269         case I915_TILING_X:
1270                 /* pin() will align the object as required by fence */
1271                 alignment = 0;
1272                 break;
1273         case I915_TILING_Y:
1274                 /* FIXME: Is this true? */
1275                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1276                 return -EINVAL;
1277         default:
1278                 BUG();
1279         }
1280
1281         ret = i915_gem_object_pin(obj, alignment);
1282         if (ret != 0)
1283                 return ret;
1284
1285         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1286          * fence, whereas 965+ only requires a fence if using
1287          * framebuffer compression.  For simplicity, we always install
1288          * a fence as the cost is not that onerous.
1289          */
1290         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1291             obj_priv->tiling_mode != I915_TILING_NONE) {
1292                 ret = i915_gem_object_get_fence_reg(obj);
1293                 if (ret != 0) {
1294                         i915_gem_object_unpin(obj);
1295                         return ret;
1296                 }
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int
1303 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1304                     struct drm_framebuffer *old_fb)
1305 {
1306         struct drm_device *dev = crtc->dev;
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         struct drm_i915_master_private *master_priv;
1309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1310         struct intel_framebuffer *intel_fb;
1311         struct drm_i915_gem_object *obj_priv;
1312         struct drm_gem_object *obj;
1313         int pipe = intel_crtc->pipe;
1314         int plane = intel_crtc->plane;
1315         unsigned long Start, Offset;
1316         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1317         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1318         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1319         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1320         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1321         u32 dspcntr;
1322         int ret;
1323
1324         /* no fb bound */
1325         if (!crtc->fb) {
1326                 DRM_DEBUG_KMS("No FB bound\n");
1327                 return 0;
1328         }
1329
1330         switch (plane) {
1331         case 0:
1332         case 1:
1333                 break;
1334         default:
1335                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1336                 return -EINVAL;
1337         }
1338
1339         intel_fb = to_intel_framebuffer(crtc->fb);
1340         obj = intel_fb->obj;
1341         obj_priv = to_intel_bo(obj);
1342
1343         mutex_lock(&dev->struct_mutex);
1344         ret = intel_pin_and_fence_fb_obj(dev, obj);
1345         if (ret != 0) {
1346                 mutex_unlock(&dev->struct_mutex);
1347                 return ret;
1348         }
1349
1350         ret = i915_gem_object_set_to_display_plane(obj);
1351         if (ret != 0) {
1352                 i915_gem_object_unpin(obj);
1353                 mutex_unlock(&dev->struct_mutex);
1354                 return ret;
1355         }
1356
1357         dspcntr = I915_READ(dspcntr_reg);
1358         /* Mask out pixel format bits in case we change it */
1359         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1360         switch (crtc->fb->bits_per_pixel) {
1361         case 8:
1362                 dspcntr |= DISPPLANE_8BPP;
1363                 break;
1364         case 16:
1365                 if (crtc->fb->depth == 15)
1366                         dspcntr |= DISPPLANE_15_16BPP;
1367                 else
1368                         dspcntr |= DISPPLANE_16BPP;
1369                 break;
1370         case 24:
1371         case 32:
1372                 if (crtc->fb->depth == 30)
1373                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1374                 else
1375                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1376                 break;
1377         default:
1378                 DRM_ERROR("Unknown color depth\n");
1379                 i915_gem_object_unpin(obj);
1380                 mutex_unlock(&dev->struct_mutex);
1381                 return -EINVAL;
1382         }
1383         if (IS_I965G(dev)) {
1384                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1385                         dspcntr |= DISPPLANE_TILED;
1386                 else
1387                         dspcntr &= ~DISPPLANE_TILED;
1388         }
1389
1390         if (HAS_PCH_SPLIT(dev))
1391                 /* must disable */
1392                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1393
1394         I915_WRITE(dspcntr_reg, dspcntr);
1395
1396         Start = obj_priv->gtt_offset;
1397         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1398
1399         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1400                       Start, Offset, x, y, crtc->fb->pitch);
1401         I915_WRITE(dspstride, crtc->fb->pitch);
1402         if (IS_I965G(dev)) {
1403                 I915_WRITE(dspbase, Offset);
1404                 I915_READ(dspbase);
1405                 I915_WRITE(dspsurf, Start);
1406                 I915_READ(dspsurf);
1407                 I915_WRITE(dsptileoff, (y << 16) | x);
1408         } else {
1409                 I915_WRITE(dspbase, Start + Offset);
1410                 I915_READ(dspbase);
1411         }
1412
1413         if ((IS_I965G(dev) || plane == 0))
1414                 intel_update_fbc(crtc, &crtc->mode);
1415
1416         intel_wait_for_vblank(dev);
1417
1418         if (old_fb) {
1419                 intel_fb = to_intel_framebuffer(old_fb);
1420                 obj_priv = to_intel_bo(intel_fb->obj);
1421                 i915_gem_object_unpin(intel_fb->obj);
1422         }
1423         intel_increase_pllclock(crtc, true);
1424
1425         mutex_unlock(&dev->struct_mutex);
1426
1427         if (!dev->primary->master)
1428                 return 0;
1429
1430         master_priv = dev->primary->master->driver_priv;
1431         if (!master_priv->sarea_priv)
1432                 return 0;
1433
1434         if (pipe) {
1435                 master_priv->sarea_priv->pipeB_x = x;
1436                 master_priv->sarea_priv->pipeB_y = y;
1437         } else {
1438                 master_priv->sarea_priv->pipeA_x = x;
1439                 master_priv->sarea_priv->pipeA_y = y;
1440         }
1441
1442         return 0;
1443 }
1444
1445 /* Disable the VGA plane that we never use */
1446 static void i915_disable_vga (struct drm_device *dev)
1447 {
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         u8 sr1;
1450         u32 vga_reg;
1451
1452         if (HAS_PCH_SPLIT(dev))
1453                 vga_reg = CPU_VGACNTRL;
1454         else
1455                 vga_reg = VGACNTRL;
1456
1457         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1458                 return;
1459
1460         I915_WRITE8(VGA_SR_INDEX, 1);
1461         sr1 = I915_READ8(VGA_SR_DATA);
1462         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1463         udelay(100);
1464
1465         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1466 }
1467
1468 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1469 {
1470         struct drm_device *dev = crtc->dev;
1471         struct drm_i915_private *dev_priv = dev->dev_private;
1472         u32 dpa_ctl;
1473
1474         DRM_DEBUG_KMS("\n");
1475         dpa_ctl = I915_READ(DP_A);
1476         dpa_ctl &= ~DP_PLL_ENABLE;
1477         I915_WRITE(DP_A, dpa_ctl);
1478 }
1479
1480 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1481 {
1482         struct drm_device *dev = crtc->dev;
1483         struct drm_i915_private *dev_priv = dev->dev_private;
1484         u32 dpa_ctl;
1485
1486         dpa_ctl = I915_READ(DP_A);
1487         dpa_ctl |= DP_PLL_ENABLE;
1488         I915_WRITE(DP_A, dpa_ctl);
1489         udelay(200);
1490 }
1491
1492
1493 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1494 {
1495         struct drm_device *dev = crtc->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         u32 dpa_ctl;
1498
1499         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1500         dpa_ctl = I915_READ(DP_A);
1501         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1502
1503         if (clock < 200000) {
1504                 u32 temp;
1505                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1506                 /* workaround for 160Mhz:
1507                    1) program 0x4600c bits 15:0 = 0x8124
1508                    2) program 0x46010 bit 0 = 1
1509                    3) program 0x46034 bit 24 = 1
1510                    4) program 0x64000 bit 14 = 1
1511                    */
1512                 temp = I915_READ(0x4600c);
1513                 temp &= 0xffff0000;
1514                 I915_WRITE(0x4600c, temp | 0x8124);
1515
1516                 temp = I915_READ(0x46010);
1517                 I915_WRITE(0x46010, temp | 1);
1518
1519                 temp = I915_READ(0x46034);
1520                 I915_WRITE(0x46034, temp | (1 << 24));
1521         } else {
1522                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1523         }
1524         I915_WRITE(DP_A, dpa_ctl);
1525
1526         udelay(500);
1527 }
1528
1529 /* The FDI link training functions for ILK/Ibexpeak. */
1530 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1531 {
1532         struct drm_device *dev = crtc->dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1535         int pipe = intel_crtc->pipe;
1536         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1537         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1538         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1539         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1540         u32 temp, tries = 0;
1541
1542         /* enable CPU FDI TX and PCH FDI RX */
1543         temp = I915_READ(fdi_tx_reg);
1544         temp |= FDI_TX_ENABLE;
1545         temp &= ~(7 << 19);
1546         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1547         temp &= ~FDI_LINK_TRAIN_NONE;
1548         temp |= FDI_LINK_TRAIN_PATTERN_1;
1549         I915_WRITE(fdi_tx_reg, temp);
1550         I915_READ(fdi_tx_reg);
1551
1552         temp = I915_READ(fdi_rx_reg);
1553         temp &= ~FDI_LINK_TRAIN_NONE;
1554         temp |= FDI_LINK_TRAIN_PATTERN_1;
1555         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556         I915_READ(fdi_rx_reg);
1557         udelay(150);
1558
1559         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1560            for train result */
1561         temp = I915_READ(fdi_rx_imr_reg);
1562         temp &= ~FDI_RX_SYMBOL_LOCK;
1563         temp &= ~FDI_RX_BIT_LOCK;
1564         I915_WRITE(fdi_rx_imr_reg, temp);
1565         I915_READ(fdi_rx_imr_reg);
1566         udelay(150);
1567
1568         for (;;) {
1569                 temp = I915_READ(fdi_rx_iir_reg);
1570                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1571
1572                 if ((temp & FDI_RX_BIT_LOCK)) {
1573                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1574                         I915_WRITE(fdi_rx_iir_reg,
1575                                    temp | FDI_RX_BIT_LOCK);
1576                         break;
1577                 }
1578
1579                 tries++;
1580
1581                 if (tries > 5) {
1582                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1583                         break;
1584                 }
1585         }
1586
1587         /* Train 2 */
1588         temp = I915_READ(fdi_tx_reg);
1589         temp &= ~FDI_LINK_TRAIN_NONE;
1590         temp |= FDI_LINK_TRAIN_PATTERN_2;
1591         I915_WRITE(fdi_tx_reg, temp);
1592
1593         temp = I915_READ(fdi_rx_reg);
1594         temp &= ~FDI_LINK_TRAIN_NONE;
1595         temp |= FDI_LINK_TRAIN_PATTERN_2;
1596         I915_WRITE(fdi_rx_reg, temp);
1597         udelay(150);
1598
1599         tries = 0;
1600
1601         for (;;) {
1602                 temp = I915_READ(fdi_rx_iir_reg);
1603                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1604
1605                 if (temp & FDI_RX_SYMBOL_LOCK) {
1606                         I915_WRITE(fdi_rx_iir_reg,
1607                                    temp | FDI_RX_SYMBOL_LOCK);
1608                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1609                         break;
1610                 }
1611
1612                 tries++;
1613
1614                 if (tries > 5) {
1615                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1616                         break;
1617                 }
1618         }
1619
1620         DRM_DEBUG_KMS("FDI train done\n");
1621 }
1622
1623 static int snb_b_fdi_train_param [] = {
1624         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1625         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1626         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1627         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1628 };
1629
1630 /* The FDI link training functions for SNB/Cougarpoint. */
1631 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1632 {
1633         struct drm_device *dev = crtc->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636         int pipe = intel_crtc->pipe;
1637         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1638         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1639         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1640         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1641         u32 temp, i;
1642
1643         /* enable CPU FDI TX and PCH FDI RX */
1644         temp = I915_READ(fdi_tx_reg);
1645         temp |= FDI_TX_ENABLE;
1646         temp &= ~(7 << 19);
1647         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1648         temp &= ~FDI_LINK_TRAIN_NONE;
1649         temp |= FDI_LINK_TRAIN_PATTERN_1;
1650         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1651         /* SNB-B */
1652         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1653         I915_WRITE(fdi_tx_reg, temp);
1654         I915_READ(fdi_tx_reg);
1655
1656         temp = I915_READ(fdi_rx_reg);
1657         if (HAS_PCH_CPT(dev)) {
1658                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1659                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1660         } else {
1661                 temp &= ~FDI_LINK_TRAIN_NONE;
1662                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1663         }
1664         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1665         I915_READ(fdi_rx_reg);
1666         udelay(150);
1667
1668         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1669            for train result */
1670         temp = I915_READ(fdi_rx_imr_reg);
1671         temp &= ~FDI_RX_SYMBOL_LOCK;
1672         temp &= ~FDI_RX_BIT_LOCK;
1673         I915_WRITE(fdi_rx_imr_reg, temp);
1674         I915_READ(fdi_rx_imr_reg);
1675         udelay(150);
1676
1677         for (i = 0; i < 4; i++ ) {
1678                 temp = I915_READ(fdi_tx_reg);
1679                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1680                 temp |= snb_b_fdi_train_param[i];
1681                 I915_WRITE(fdi_tx_reg, temp);
1682                 udelay(500);
1683
1684                 temp = I915_READ(fdi_rx_iir_reg);
1685                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1686
1687                 if (temp & FDI_RX_BIT_LOCK) {
1688                         I915_WRITE(fdi_rx_iir_reg,
1689                                    temp | FDI_RX_BIT_LOCK);
1690                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1691                         break;
1692                 }
1693         }
1694         if (i == 4)
1695                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1696
1697         /* Train 2 */
1698         temp = I915_READ(fdi_tx_reg);
1699         temp &= ~FDI_LINK_TRAIN_NONE;
1700         temp |= FDI_LINK_TRAIN_PATTERN_2;
1701         if (IS_GEN6(dev)) {
1702                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1703                 /* SNB-B */
1704                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1705         }
1706         I915_WRITE(fdi_tx_reg, temp);
1707
1708         temp = I915_READ(fdi_rx_reg);
1709         if (HAS_PCH_CPT(dev)) {
1710                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1711                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1712         } else {
1713                 temp &= ~FDI_LINK_TRAIN_NONE;
1714                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1715         }
1716         I915_WRITE(fdi_rx_reg, temp);
1717         udelay(150);
1718
1719         for (i = 0; i < 4; i++ ) {
1720                 temp = I915_READ(fdi_tx_reg);
1721                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1722                 temp |= snb_b_fdi_train_param[i];
1723                 I915_WRITE(fdi_tx_reg, temp);
1724                 udelay(500);
1725
1726                 temp = I915_READ(fdi_rx_iir_reg);
1727                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1728
1729                 if (temp & FDI_RX_SYMBOL_LOCK) {
1730                         I915_WRITE(fdi_rx_iir_reg,
1731                                    temp | FDI_RX_SYMBOL_LOCK);
1732                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1733                         break;
1734                 }
1735         }
1736         if (i == 4)
1737                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1738
1739         DRM_DEBUG_KMS("FDI train done.\n");
1740 }
1741
1742 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1743 {
1744         struct drm_device *dev = crtc->dev;
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1747         int pipe = intel_crtc->pipe;
1748         int plane = intel_crtc->plane;
1749         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1750         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1751         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1752         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1753         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1754         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1755         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1756         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1757         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1758         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1759         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1760         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1761         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1762         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1763         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1764         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1765         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1766         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1767         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1768         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1769         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1770         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1771         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1772         u32 temp;
1773         int n;
1774         u32 pipe_bpc;
1775
1776         temp = I915_READ(pipeconf_reg);
1777         pipe_bpc = temp & PIPE_BPC_MASK;
1778
1779         /* XXX: When our outputs are all unaware of DPMS modes other than off
1780          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1781          */
1782         switch (mode) {
1783         case DRM_MODE_DPMS_ON:
1784         case DRM_MODE_DPMS_STANDBY:
1785         case DRM_MODE_DPMS_SUSPEND:
1786                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1787
1788                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1789                         temp = I915_READ(PCH_LVDS);
1790                         if ((temp & LVDS_PORT_EN) == 0) {
1791                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1792                                 POSTING_READ(PCH_LVDS);
1793                         }
1794                 }
1795
1796                 if (HAS_eDP) {
1797                         /* enable eDP PLL */
1798                         ironlake_enable_pll_edp(crtc);
1799                 } else {
1800
1801                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1802                         temp = I915_READ(fdi_rx_reg);
1803                         /*
1804                          * make the BPC in FDI Rx be consistent with that in
1805                          * pipeconf reg.
1806                          */
1807                         temp &= ~(0x7 << 16);
1808                         temp |= (pipe_bpc << 11);
1809                         temp &= ~(7 << 19);
1810                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1811                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1812                         I915_READ(fdi_rx_reg);
1813                         udelay(200);
1814
1815                         /* Switch from Rawclk to PCDclk */
1816                         temp = I915_READ(fdi_rx_reg);
1817                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1818                         I915_READ(fdi_rx_reg);
1819                         udelay(200);
1820
1821                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1822                         temp = I915_READ(fdi_tx_reg);
1823                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1824                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1825                                 I915_READ(fdi_tx_reg);
1826                                 udelay(100);
1827                         }
1828                 }
1829
1830                 /* Enable panel fitting for LVDS */
1831                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1832                         temp = I915_READ(pf_ctl_reg);
1833                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1834
1835                         /* currently full aspect */
1836                         I915_WRITE(pf_win_pos, 0);
1837
1838                         I915_WRITE(pf_win_size,
1839                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1840                                    (dev_priv->panel_fixed_mode->vdisplay));
1841                 }
1842
1843                 /* Enable CPU pipe */
1844                 temp = I915_READ(pipeconf_reg);
1845                 if ((temp & PIPEACONF_ENABLE) == 0) {
1846                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1847                         I915_READ(pipeconf_reg);
1848                         udelay(100);
1849                 }
1850
1851                 /* configure and enable CPU plane */
1852                 temp = I915_READ(dspcntr_reg);
1853                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1854                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1855                         /* Flush the plane changes */
1856                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1857                 }
1858
1859                 if (!HAS_eDP) {
1860                         /* For PCH output, training FDI link */
1861                         if (IS_GEN6(dev))
1862                                 gen6_fdi_link_train(crtc);
1863                         else
1864                                 ironlake_fdi_link_train(crtc);
1865
1866                         /* enable PCH DPLL */
1867                         temp = I915_READ(pch_dpll_reg);
1868                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1869                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1870                                 I915_READ(pch_dpll_reg);
1871                         }
1872                         udelay(200);
1873
1874                         if (HAS_PCH_CPT(dev)) {
1875                                 /* Be sure PCH DPLL SEL is set */
1876                                 temp = I915_READ(PCH_DPLL_SEL);
1877                                 if (trans_dpll_sel == 0 &&
1878                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1879                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1880                                 else if (trans_dpll_sel == 1 &&
1881                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1882                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1883                                 I915_WRITE(PCH_DPLL_SEL, temp);
1884                                 I915_READ(PCH_DPLL_SEL);
1885                         }
1886
1887                         /* set transcoder timing */
1888                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1889                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1890                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1891
1892                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1893                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1894                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1895
1896                         /* enable normal train */
1897                         temp = I915_READ(fdi_tx_reg);
1898                         temp &= ~FDI_LINK_TRAIN_NONE;
1899                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1900                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1901                         I915_READ(fdi_tx_reg);
1902
1903                         temp = I915_READ(fdi_rx_reg);
1904                         if (HAS_PCH_CPT(dev)) {
1905                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1906                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1907                         } else {
1908                                 temp &= ~FDI_LINK_TRAIN_NONE;
1909                                 temp |= FDI_LINK_TRAIN_NONE;
1910                         }
1911                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1912                         I915_READ(fdi_rx_reg);
1913
1914                         /* wait one idle pattern time */
1915                         udelay(100);
1916
1917                         /* For PCH DP, enable TRANS_DP_CTL */
1918                         if (HAS_PCH_CPT(dev) &&
1919                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1920                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1921                                 int reg;
1922
1923                                 reg = I915_READ(trans_dp_ctl);
1924                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1925                                 reg = TRANS_DP_OUTPUT_ENABLE |
1926                                       TRANS_DP_ENH_FRAMING |
1927                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1928                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1929
1930                                 switch (intel_trans_dp_port_sel(crtc)) {
1931                                 case PCH_DP_B:
1932                                         reg |= TRANS_DP_PORT_SEL_B;
1933                                         break;
1934                                 case PCH_DP_C:
1935                                         reg |= TRANS_DP_PORT_SEL_C;
1936                                         break;
1937                                 case PCH_DP_D:
1938                                         reg |= TRANS_DP_PORT_SEL_D;
1939                                         break;
1940                                 default:
1941                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1942                                         reg |= TRANS_DP_PORT_SEL_B;
1943                                         break;
1944                                 }
1945
1946                                 I915_WRITE(trans_dp_ctl, reg);
1947                                 POSTING_READ(trans_dp_ctl);
1948                         }
1949
1950                         /* enable PCH transcoder */
1951                         temp = I915_READ(transconf_reg);
1952                         /*
1953                          * make the BPC in transcoder be consistent with
1954                          * that in pipeconf reg.
1955                          */
1956                         temp &= ~PIPE_BPC_MASK;
1957                         temp |= pipe_bpc;
1958                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1959                         I915_READ(transconf_reg);
1960
1961                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1962                                 ;
1963
1964                 }
1965
1966                 intel_crtc_load_lut(crtc);
1967
1968         break;
1969         case DRM_MODE_DPMS_OFF:
1970                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1971
1972                 drm_vblank_off(dev, pipe);
1973                 /* Disable display plane */
1974                 temp = I915_READ(dspcntr_reg);
1975                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1976                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1977                         /* Flush the plane changes */
1978                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1979                         I915_READ(dspbase_reg);
1980                 }
1981
1982                 i915_disable_vga(dev);
1983
1984                 /* disable cpu pipe, disable after all planes disabled */
1985                 temp = I915_READ(pipeconf_reg);
1986                 if ((temp & PIPEACONF_ENABLE) != 0) {
1987                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1988                         I915_READ(pipeconf_reg);
1989                         n = 0;
1990                         /* wait for cpu pipe off, pipe state */
1991                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1992                                 n++;
1993                                 if (n < 60) {
1994                                         udelay(500);
1995                                         continue;
1996                                 } else {
1997                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1998                                                                 pipe);
1999                                         break;
2000                                 }
2001                         }
2002                 } else
2003                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2004
2005                 udelay(100);
2006
2007                 /* Disable PF */
2008                 temp = I915_READ(pf_ctl_reg);
2009                 if ((temp & PF_ENABLE) != 0) {
2010                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2011                         I915_READ(pf_ctl_reg);
2012                 }
2013                 I915_WRITE(pf_win_size, 0);
2014                 POSTING_READ(pf_win_size);
2015
2016
2017                 /* disable CPU FDI tx and PCH FDI rx */
2018                 temp = I915_READ(fdi_tx_reg);
2019                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2020                 I915_READ(fdi_tx_reg);
2021
2022                 temp = I915_READ(fdi_rx_reg);
2023                 /* BPC in FDI rx is consistent with that in pipeconf */
2024                 temp &= ~(0x07 << 16);
2025                 temp |= (pipe_bpc << 11);
2026                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2027                 I915_READ(fdi_rx_reg);
2028
2029                 udelay(100);
2030
2031                 /* still set train pattern 1 */
2032                 temp = I915_READ(fdi_tx_reg);
2033                 temp &= ~FDI_LINK_TRAIN_NONE;
2034                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2035                 I915_WRITE(fdi_tx_reg, temp);
2036                 POSTING_READ(fdi_tx_reg);
2037
2038                 temp = I915_READ(fdi_rx_reg);
2039                 if (HAS_PCH_CPT(dev)) {
2040                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2041                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2042                 } else {
2043                         temp &= ~FDI_LINK_TRAIN_NONE;
2044                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2045                 }
2046                 I915_WRITE(fdi_rx_reg, temp);
2047                 POSTING_READ(fdi_rx_reg);
2048
2049                 udelay(100);
2050
2051                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2052                         temp = I915_READ(PCH_LVDS);
2053                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2054                         I915_READ(PCH_LVDS);
2055                         udelay(100);
2056                 }
2057
2058                 /* disable PCH transcoder */
2059                 temp = I915_READ(transconf_reg);
2060                 if ((temp & TRANS_ENABLE) != 0) {
2061                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2062                         I915_READ(transconf_reg);
2063                         n = 0;
2064                         /* wait for PCH transcoder off, transcoder state */
2065                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2066                                 n++;
2067                                 if (n < 60) {
2068                                         udelay(500);
2069                                         continue;
2070                                 } else {
2071                                         DRM_DEBUG_KMS("transcoder %d off "
2072                                                         "delay\n", pipe);
2073                                         break;
2074                                 }
2075                         }
2076                 }
2077
2078                 temp = I915_READ(transconf_reg);
2079                 /* BPC in transcoder is consistent with that in pipeconf */
2080                 temp &= ~PIPE_BPC_MASK;
2081                 temp |= pipe_bpc;
2082                 I915_WRITE(transconf_reg, temp);
2083                 I915_READ(transconf_reg);
2084                 udelay(100);
2085
2086                 if (HAS_PCH_CPT(dev)) {
2087                         /* disable TRANS_DP_CTL */
2088                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2089                         int reg;
2090
2091                         reg = I915_READ(trans_dp_ctl);
2092                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2093                         I915_WRITE(trans_dp_ctl, reg);
2094                         POSTING_READ(trans_dp_ctl);
2095
2096                         /* disable DPLL_SEL */
2097                         temp = I915_READ(PCH_DPLL_SEL);
2098                         if (trans_dpll_sel == 0)
2099                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2100                         else
2101                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2102                         I915_WRITE(PCH_DPLL_SEL, temp);
2103                         I915_READ(PCH_DPLL_SEL);
2104
2105                 }
2106
2107                 /* disable PCH DPLL */
2108                 temp = I915_READ(pch_dpll_reg);
2109                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2110                 I915_READ(pch_dpll_reg);
2111
2112                 if (HAS_eDP) {
2113                         ironlake_disable_pll_edp(crtc);
2114                 }
2115
2116                 /* Switch from PCDclk to Rawclk */
2117                 temp = I915_READ(fdi_rx_reg);
2118                 temp &= ~FDI_SEL_PCDCLK;
2119                 I915_WRITE(fdi_rx_reg, temp);
2120                 I915_READ(fdi_rx_reg);
2121
2122                 /* Disable CPU FDI TX PLL */
2123                 temp = I915_READ(fdi_tx_reg);
2124                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2125                 I915_READ(fdi_tx_reg);
2126                 udelay(100);
2127
2128                 temp = I915_READ(fdi_rx_reg);
2129                 temp &= ~FDI_RX_PLL_ENABLE;
2130                 I915_WRITE(fdi_rx_reg, temp);
2131                 I915_READ(fdi_rx_reg);
2132
2133                 /* Wait for the clocks to turn off. */
2134                 udelay(100);
2135                 break;
2136         }
2137 }
2138
2139 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2140 {
2141         struct intel_overlay *overlay;
2142         int ret;
2143
2144         if (!enable && intel_crtc->overlay) {
2145                 overlay = intel_crtc->overlay;
2146                 mutex_lock(&overlay->dev->struct_mutex);
2147                 for (;;) {
2148                         ret = intel_overlay_switch_off(overlay);
2149                         if (ret == 0)
2150                                 break;
2151
2152                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2153                         if (ret != 0) {
2154                                 /* overlay doesn't react anymore. Usually
2155                                  * results in a black screen and an unkillable
2156                                  * X server. */
2157                                 BUG();
2158                                 overlay->hw_wedged = HW_WEDGED;
2159                                 break;
2160                         }
2161                 }
2162                 mutex_unlock(&overlay->dev->struct_mutex);
2163         }
2164         /* Let userspace switch the overlay on again. In most cases userspace
2165          * has to recompute where to put it anyway. */
2166
2167         return;
2168 }
2169
2170 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2171 {
2172         struct drm_device *dev = crtc->dev;
2173         struct drm_i915_private *dev_priv = dev->dev_private;
2174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175         int pipe = intel_crtc->pipe;
2176         int plane = intel_crtc->plane;
2177         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2178         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2179         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2180         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2181         u32 temp;
2182
2183         /* XXX: When our outputs are all unaware of DPMS modes other than off
2184          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2185          */
2186         switch (mode) {
2187         case DRM_MODE_DPMS_ON:
2188         case DRM_MODE_DPMS_STANDBY:
2189         case DRM_MODE_DPMS_SUSPEND:
2190                 intel_update_watermarks(dev);
2191
2192                 /* Enable the DPLL */
2193                 temp = I915_READ(dpll_reg);
2194                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2195                         I915_WRITE(dpll_reg, temp);
2196                         I915_READ(dpll_reg);
2197                         /* Wait for the clocks to stabilize. */
2198                         udelay(150);
2199                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2200                         I915_READ(dpll_reg);
2201                         /* Wait for the clocks to stabilize. */
2202                         udelay(150);
2203                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2204                         I915_READ(dpll_reg);
2205                         /* Wait for the clocks to stabilize. */
2206                         udelay(150);
2207                 }
2208
2209                 /* Enable the pipe */
2210                 temp = I915_READ(pipeconf_reg);
2211                 if ((temp & PIPEACONF_ENABLE) == 0)
2212                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2213
2214                 /* Enable the plane */
2215                 temp = I915_READ(dspcntr_reg);
2216                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2217                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2218                         /* Flush the plane changes */
2219                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2220                 }
2221
2222                 intel_crtc_load_lut(crtc);
2223
2224                 if ((IS_I965G(dev) || plane == 0))
2225                         intel_update_fbc(crtc, &crtc->mode);
2226
2227                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2228                 intel_crtc_dpms_overlay(intel_crtc, true);
2229         break;
2230         case DRM_MODE_DPMS_OFF:
2231                 intel_update_watermarks(dev);
2232
2233                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2234                 intel_crtc_dpms_overlay(intel_crtc, false);
2235                 drm_vblank_off(dev, pipe);
2236
2237                 if (dev_priv->cfb_plane == plane &&
2238                     dev_priv->display.disable_fbc)
2239                         dev_priv->display.disable_fbc(dev);
2240
2241                 /* Disable the VGA plane that we never use */
2242                 i915_disable_vga(dev);
2243
2244                 /* Disable display plane */
2245                 temp = I915_READ(dspcntr_reg);
2246                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2247                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2248                         /* Flush the plane changes */
2249                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2250                         I915_READ(dspbase_reg);
2251                 }
2252
2253                 if (!IS_I9XX(dev)) {
2254                         /* Wait for vblank for the disable to take effect */
2255                         intel_wait_for_vblank(dev);
2256                 }
2257
2258                 /* Next, disable display pipes */
2259                 temp = I915_READ(pipeconf_reg);
2260                 if ((temp & PIPEACONF_ENABLE) != 0) {
2261                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2262                         I915_READ(pipeconf_reg);
2263                 }
2264
2265                 /* Wait for vblank for the disable to take effect. */
2266                 intel_wait_for_vblank(dev);
2267
2268                 temp = I915_READ(dpll_reg);
2269                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2270                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2271                         I915_READ(dpll_reg);
2272                 }
2273
2274                 /* Wait for the clocks to turn off. */
2275                 udelay(150);
2276                 break;
2277         }
2278 }
2279
2280 /**
2281  * Sets the power management mode of the pipe and plane.
2282  *
2283  * This code should probably grow support for turning the cursor off and back
2284  * on appropriately at the same time as we're turning the pipe off/on.
2285  */
2286 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2287 {
2288         struct drm_device *dev = crtc->dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct drm_i915_master_private *master_priv;
2291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292         int pipe = intel_crtc->pipe;
2293         bool enabled;
2294
2295         dev_priv->display.dpms(crtc, mode);
2296
2297         intel_crtc->dpms_mode = mode;
2298
2299         if (!dev->primary->master)
2300                 return;
2301
2302         master_priv = dev->primary->master->driver_priv;
2303         if (!master_priv->sarea_priv)
2304                 return;
2305
2306         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2307
2308         switch (pipe) {
2309         case 0:
2310                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2311                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2312                 break;
2313         case 1:
2314                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2315                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2316                 break;
2317         default:
2318                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2319                 break;
2320         }
2321 }
2322
2323 static void intel_crtc_prepare (struct drm_crtc *crtc)
2324 {
2325         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2326         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2327 }
2328
2329 static void intel_crtc_commit (struct drm_crtc *crtc)
2330 {
2331         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2332         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2333 }
2334
2335 void intel_encoder_prepare (struct drm_encoder *encoder)
2336 {
2337         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2338         /* lvds has its own version of prepare see intel_lvds_prepare */
2339         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2340 }
2341
2342 void intel_encoder_commit (struct drm_encoder *encoder)
2343 {
2344         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2345         /* lvds has its own version of commit see intel_lvds_commit */
2346         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2347 }
2348
2349 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2350                                   struct drm_display_mode *mode,
2351                                   struct drm_display_mode *adjusted_mode)
2352 {
2353         struct drm_device *dev = crtc->dev;
2354         if (HAS_PCH_SPLIT(dev)) {
2355                 /* FDI link clock is fixed at 2.7G */
2356                 if (mode->clock * 3 > 27000 * 4)
2357                         return MODE_CLOCK_HIGH;
2358         }
2359
2360         drm_mode_set_crtcinfo(adjusted_mode, 0);
2361         return true;
2362 }
2363
2364 static int i945_get_display_clock_speed(struct drm_device *dev)
2365 {
2366         return 400000;
2367 }
2368
2369 static int i915_get_display_clock_speed(struct drm_device *dev)
2370 {
2371         return 333000;
2372 }
2373
2374 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2375 {
2376         return 200000;
2377 }
2378
2379 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2380 {
2381         u16 gcfgc = 0;
2382
2383         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2384
2385         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2386                 return 133000;
2387         else {
2388                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2389                 case GC_DISPLAY_CLOCK_333_MHZ:
2390                         return 333000;
2391                 default:
2392                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2393                         return 190000;
2394                 }
2395         }
2396 }
2397
2398 static int i865_get_display_clock_speed(struct drm_device *dev)
2399 {
2400         return 266000;
2401 }
2402
2403 static int i855_get_display_clock_speed(struct drm_device *dev)
2404 {
2405         u16 hpllcc = 0;
2406         /* Assume that the hardware is in the high speed state.  This
2407          * should be the default.
2408          */
2409         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2410         case GC_CLOCK_133_200:
2411         case GC_CLOCK_100_200:
2412                 return 200000;
2413         case GC_CLOCK_166_250:
2414                 return 250000;
2415         case GC_CLOCK_100_133:
2416                 return 133000;
2417         }
2418
2419         /* Shouldn't happen */
2420         return 0;
2421 }
2422
2423 static int i830_get_display_clock_speed(struct drm_device *dev)
2424 {
2425         return 133000;
2426 }
2427
2428 /**
2429  * Return the pipe currently connected to the panel fitter,
2430  * or -1 if the panel fitter is not present or not in use
2431  */
2432 int intel_panel_fitter_pipe (struct drm_device *dev)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         u32  pfit_control;
2436
2437         /* i830 doesn't have a panel fitter */
2438         if (IS_I830(dev))
2439                 return -1;
2440
2441         pfit_control = I915_READ(PFIT_CONTROL);
2442
2443         /* See if the panel fitter is in use */
2444         if ((pfit_control & PFIT_ENABLE) == 0)
2445                 return -1;
2446
2447         /* 965 can place panel fitter on either pipe */
2448         if (IS_I965G(dev))
2449                 return (pfit_control >> 29) & 0x3;
2450
2451         /* older chips can only use pipe 1 */
2452         return 1;
2453 }
2454
2455 struct fdi_m_n {
2456         u32        tu;
2457         u32        gmch_m;
2458         u32        gmch_n;
2459         u32        link_m;
2460         u32        link_n;
2461 };
2462
2463 static void
2464 fdi_reduce_ratio(u32 *num, u32 *den)
2465 {
2466         while (*num > 0xffffff || *den > 0xffffff) {
2467                 *num >>= 1;
2468                 *den >>= 1;
2469         }
2470 }
2471
2472 #define DATA_N 0x800000
2473 #define LINK_N 0x80000
2474
2475 static void
2476 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2477                      int link_clock, struct fdi_m_n *m_n)
2478 {
2479         u64 temp;
2480
2481         m_n->tu = 64; /* default size */
2482
2483         temp = (u64) DATA_N * pixel_clock;
2484         temp = div_u64(temp, link_clock);
2485         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2486         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2487         m_n->gmch_n = DATA_N;
2488         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2489
2490         temp = (u64) LINK_N * pixel_clock;
2491         m_n->link_m = div_u64(temp, link_clock);
2492         m_n->link_n = LINK_N;
2493         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2494 }
2495
2496
2497 struct intel_watermark_params {
2498         unsigned long fifo_size;
2499         unsigned long max_wm;
2500         unsigned long default_wm;
2501         unsigned long guard_size;
2502         unsigned long cacheline_size;
2503 };
2504
2505 /* Pineview has different values for various configs */
2506 static struct intel_watermark_params pineview_display_wm = {
2507         PINEVIEW_DISPLAY_FIFO,
2508         PINEVIEW_MAX_WM,
2509         PINEVIEW_DFT_WM,
2510         PINEVIEW_GUARD_WM,
2511         PINEVIEW_FIFO_LINE_SIZE
2512 };
2513 static struct intel_watermark_params pineview_display_hplloff_wm = {
2514         PINEVIEW_DISPLAY_FIFO,
2515         PINEVIEW_MAX_WM,
2516         PINEVIEW_DFT_HPLLOFF_WM,
2517         PINEVIEW_GUARD_WM,
2518         PINEVIEW_FIFO_LINE_SIZE
2519 };
2520 static struct intel_watermark_params pineview_cursor_wm = {
2521         PINEVIEW_CURSOR_FIFO,
2522         PINEVIEW_CURSOR_MAX_WM,
2523         PINEVIEW_CURSOR_DFT_WM,
2524         PINEVIEW_CURSOR_GUARD_WM,
2525         PINEVIEW_FIFO_LINE_SIZE,
2526 };
2527 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2528         PINEVIEW_CURSOR_FIFO,
2529         PINEVIEW_CURSOR_MAX_WM,
2530         PINEVIEW_CURSOR_DFT_WM,
2531         PINEVIEW_CURSOR_GUARD_WM,
2532         PINEVIEW_FIFO_LINE_SIZE
2533 };
2534 static struct intel_watermark_params g4x_wm_info = {
2535         G4X_FIFO_SIZE,
2536         G4X_MAX_WM,
2537         G4X_MAX_WM,
2538         2,
2539         G4X_FIFO_LINE_SIZE,
2540 };
2541 static struct intel_watermark_params i945_wm_info = {
2542         I945_FIFO_SIZE,
2543         I915_MAX_WM,
2544         1,
2545         2,
2546         I915_FIFO_LINE_SIZE
2547 };
2548 static struct intel_watermark_params i915_wm_info = {
2549         I915_FIFO_SIZE,
2550         I915_MAX_WM,
2551         1,
2552         2,
2553         I915_FIFO_LINE_SIZE
2554 };
2555 static struct intel_watermark_params i855_wm_info = {
2556         I855GM_FIFO_SIZE,
2557         I915_MAX_WM,
2558         1,
2559         2,
2560         I830_FIFO_LINE_SIZE
2561 };
2562 static struct intel_watermark_params i830_wm_info = {
2563         I830_FIFO_SIZE,
2564         I915_MAX_WM,
2565         1,
2566         2,
2567         I830_FIFO_LINE_SIZE
2568 };
2569
2570 static struct intel_watermark_params ironlake_display_wm_info = {
2571         ILK_DISPLAY_FIFO,
2572         ILK_DISPLAY_MAXWM,
2573         ILK_DISPLAY_DFTWM,
2574         2,
2575         ILK_FIFO_LINE_SIZE
2576 };
2577
2578 static struct intel_watermark_params ironlake_display_srwm_info = {
2579         ILK_DISPLAY_SR_FIFO,
2580         ILK_DISPLAY_MAX_SRWM,
2581         ILK_DISPLAY_DFT_SRWM,
2582         2,
2583         ILK_FIFO_LINE_SIZE
2584 };
2585
2586 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2587         ILK_CURSOR_SR_FIFO,
2588         ILK_CURSOR_MAX_SRWM,
2589         ILK_CURSOR_DFT_SRWM,
2590         2,
2591         ILK_FIFO_LINE_SIZE
2592 };
2593
2594 /**
2595  * intel_calculate_wm - calculate watermark level
2596  * @clock_in_khz: pixel clock
2597  * @wm: chip FIFO params
2598  * @pixel_size: display pixel size
2599  * @latency_ns: memory latency for the platform
2600  *
2601  * Calculate the watermark level (the level at which the display plane will
2602  * start fetching from memory again).  Each chip has a different display
2603  * FIFO size and allocation, so the caller needs to figure that out and pass
2604  * in the correct intel_watermark_params structure.
2605  *
2606  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2607  * on the pixel size.  When it reaches the watermark level, it'll start
2608  * fetching FIFO line sized based chunks from memory until the FIFO fills
2609  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2610  * will occur, and a display engine hang could result.
2611  */
2612 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2613                                         struct intel_watermark_params *wm,
2614                                         int pixel_size,
2615                                         unsigned long latency_ns)
2616 {
2617         long entries_required, wm_size;
2618
2619         /*
2620          * Note: we need to make sure we don't overflow for various clock &
2621          * latency values.
2622          * clocks go from a few thousand to several hundred thousand.
2623          * latency is usually a few thousand
2624          */
2625         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2626                 1000;
2627         entries_required /= wm->cacheline_size;
2628
2629         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2630
2631         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2632
2633         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2634
2635         /* Don't promote wm_size to unsigned... */
2636         if (wm_size > (long)wm->max_wm)
2637                 wm_size = wm->max_wm;
2638         if (wm_size <= 0)
2639                 wm_size = wm->default_wm;
2640         return wm_size;
2641 }
2642
2643 struct cxsr_latency {
2644         int is_desktop;
2645         int is_ddr3;
2646         unsigned long fsb_freq;
2647         unsigned long mem_freq;
2648         unsigned long display_sr;
2649         unsigned long display_hpll_disable;
2650         unsigned long cursor_sr;
2651         unsigned long cursor_hpll_disable;
2652 };
2653
2654 static struct cxsr_latency cxsr_latency_table[] = {
2655         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2656         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2657         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2658         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2659         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2660
2661         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2662         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2663         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2664         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2665         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2666
2667         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2668         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2669         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2670         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2671         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2672
2673         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2674         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2675         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2676         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2677         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2678
2679         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2680         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2681         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2682         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2683         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2684
2685         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2686         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2687         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2688         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2689         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2690 };
2691
2692 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, 
2693                                                    int fsb, int mem)
2694 {
2695         int i;
2696         struct cxsr_latency *latency;
2697
2698         if (fsb == 0 || mem == 0)
2699                 return NULL;
2700
2701         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2702                 latency = &cxsr_latency_table[i];
2703                 if (is_desktop == latency->is_desktop &&
2704                     is_ddr3 == latency->is_ddr3 &&
2705                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2706                         return latency;
2707         }
2708
2709         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2710
2711         return NULL;
2712 }
2713
2714 static void pineview_disable_cxsr(struct drm_device *dev)
2715 {
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         u32 reg;
2718
2719         /* deactivate cxsr */
2720         reg = I915_READ(DSPFW3);
2721         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2722         I915_WRITE(DSPFW3, reg);
2723         DRM_INFO("Big FIFO is disabled\n");
2724 }
2725
2726 /*
2727  * Latency for FIFO fetches is dependent on several factors:
2728  *   - memory configuration (speed, channels)
2729  *   - chipset
2730  *   - current MCH state
2731  * It can be fairly high in some situations, so here we assume a fairly
2732  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2733  * set this value too high, the FIFO will fetch frequently to stay full)
2734  * and power consumption (set it too low to save power and we might see
2735  * FIFO underruns and display "flicker").
2736  *
2737  * A value of 5us seems to be a good balance; safe for very low end
2738  * platforms but not overly aggressive on lower latency configs.
2739  */
2740 static const int latency_ns = 5000;
2741
2742 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         uint32_t dsparb = I915_READ(DSPARB);
2746         int size;
2747
2748         if (plane == 0)
2749                 size = dsparb & 0x7f;
2750         else
2751                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2752                         (dsparb & 0x7f);
2753
2754         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2755                         plane ? "B" : "A", size);
2756
2757         return size;
2758 }
2759
2760 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2761 {
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         uint32_t dsparb = I915_READ(DSPARB);
2764         int size;
2765
2766         if (plane == 0)
2767                 size = dsparb & 0x1ff;
2768         else
2769                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2770                         (dsparb & 0x1ff);
2771         size >>= 1; /* Convert to cachelines */
2772
2773         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2774                         plane ? "B" : "A", size);
2775
2776         return size;
2777 }
2778
2779 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2780 {
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         uint32_t dsparb = I915_READ(DSPARB);
2783         int size;
2784
2785         size = dsparb & 0x7f;
2786         size >>= 2; /* Convert to cachelines */
2787
2788         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2789                         plane ? "B" : "A",
2790                   size);
2791
2792         return size;
2793 }
2794
2795 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2796 {
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         uint32_t dsparb = I915_READ(DSPARB);
2799         int size;
2800
2801         size = dsparb & 0x7f;
2802         size >>= 1; /* Convert to cachelines */
2803
2804         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2805                         plane ? "B" : "A", size);
2806
2807         return size;
2808 }
2809
2810 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2811                           int planeb_clock, int sr_hdisplay, int pixel_size)
2812 {
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         u32 reg;
2815         unsigned long wm;
2816         struct cxsr_latency *latency;
2817         int sr_clock;
2818
2819         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 
2820                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2821         if (!latency) {
2822                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2823                 pineview_disable_cxsr(dev);
2824                 return;
2825         }
2826
2827         if (!planea_clock || !planeb_clock) {
2828                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2829
2830                 /* Display SR */
2831                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2832                                         pixel_size, latency->display_sr);
2833                 reg = I915_READ(DSPFW1);
2834                 reg &= ~DSPFW_SR_MASK;
2835                 reg |= wm << DSPFW_SR_SHIFT;
2836                 I915_WRITE(DSPFW1, reg);
2837                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2838
2839                 /* cursor SR */
2840                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2841                                         pixel_size, latency->cursor_sr);
2842                 reg = I915_READ(DSPFW3);
2843                 reg &= ~DSPFW_CURSOR_SR_MASK;
2844                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2845                 I915_WRITE(DSPFW3, reg);
2846
2847                 /* Display HPLL off SR */
2848                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2849                                         pixel_size, latency->display_hpll_disable);
2850                 reg = I915_READ(DSPFW3);
2851                 reg &= ~DSPFW_HPLL_SR_MASK;
2852                 reg |= wm & DSPFW_HPLL_SR_MASK;
2853                 I915_WRITE(DSPFW3, reg);
2854
2855                 /* cursor HPLL off SR */
2856                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2857                                         pixel_size, latency->cursor_hpll_disable);
2858                 reg = I915_READ(DSPFW3);
2859                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2860                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2861                 I915_WRITE(DSPFW3, reg);
2862                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2863
2864                 /* activate cxsr */
2865                 reg = I915_READ(DSPFW3);
2866                 reg |= PINEVIEW_SELF_REFRESH_EN;
2867                 I915_WRITE(DSPFW3, reg);
2868                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2869         } else {
2870                 pineview_disable_cxsr(dev);
2871                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2872         }
2873 }
2874
2875 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2876                           int planeb_clock, int sr_hdisplay, int pixel_size)
2877 {
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         int total_size, cacheline_size;
2880         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2881         struct intel_watermark_params planea_params, planeb_params;
2882         unsigned long line_time_us;
2883         int sr_clock, sr_entries = 0, entries_required;
2884
2885         /* Create copies of the base settings for each pipe */
2886         planea_params = planeb_params = g4x_wm_info;
2887
2888         /* Grab a couple of global values before we overwrite them */
2889         total_size = planea_params.fifo_size;
2890         cacheline_size = planea_params.cacheline_size;
2891
2892         /*
2893          * Note: we need to make sure we don't overflow for various clock &
2894          * latency values.
2895          * clocks go from a few thousand to several hundred thousand.
2896          * latency is usually a few thousand
2897          */
2898         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2899                 1000;
2900         entries_required /= G4X_FIFO_LINE_SIZE;
2901         planea_wm = entries_required + planea_params.guard_size;
2902
2903         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2904                 1000;
2905         entries_required /= G4X_FIFO_LINE_SIZE;
2906         planeb_wm = entries_required + planeb_params.guard_size;
2907
2908         cursora_wm = cursorb_wm = 16;
2909         cursor_sr = 32;
2910
2911         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2912
2913         /* Calc sr entries for one plane configs */
2914         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2915                 /* self-refresh has much higher latency */
2916                 static const int sr_latency_ns = 12000;
2917
2918                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2919                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2920
2921                 /* Use ns/us then divide to preserve precision */
2922                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2923                               pixel_size * sr_hdisplay) / 1000;
2924                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2925                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2926                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2927         } else {
2928                 /* Turn off self refresh if both pipes are enabled */
2929                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2930                                         & ~FW_BLC_SELF_EN);
2931         }
2932
2933         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2934                   planea_wm, planeb_wm, sr_entries);
2935
2936         planea_wm &= 0x3f;
2937         planeb_wm &= 0x3f;
2938
2939         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2940                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2941                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2942         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2943                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2944         /* HPLL off in SR has some issues on G4x... disable it */
2945         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2946                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2947 }
2948
2949 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2950                            int planeb_clock, int sr_hdisplay, int pixel_size)
2951 {
2952         struct drm_i915_private *dev_priv = dev->dev_private;
2953         unsigned long line_time_us;
2954         int sr_clock, sr_entries, srwm = 1;
2955
2956         /* Calc sr entries for one plane configs */
2957         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2958                 /* self-refresh has much higher latency */
2959                 static const int sr_latency_ns = 12000;
2960
2961                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2962                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2963
2964                 /* Use ns/us then divide to preserve precision */
2965                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2966                               pixel_size * sr_hdisplay) / 1000;
2967                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2968                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2969                 srwm = I945_FIFO_SIZE - sr_entries;
2970                 if (srwm < 0)
2971                         srwm = 1;
2972                 srwm &= 0x3f;
2973                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2974         } else {
2975                 /* Turn off self refresh if both pipes are enabled */
2976                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2977                                         & ~FW_BLC_SELF_EN);
2978         }
2979
2980         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2981                       srwm);
2982
2983         /* 965 has limitations... */
2984         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2985                    (8 << 0));
2986         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2987 }
2988
2989 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2990                            int planeb_clock, int sr_hdisplay, int pixel_size)
2991 {
2992         struct drm_i915_private *dev_priv = dev->dev_private;
2993         uint32_t fwater_lo;
2994         uint32_t fwater_hi;
2995         int total_size, cacheline_size, cwm, srwm = 1;
2996         int planea_wm, planeb_wm;
2997         struct intel_watermark_params planea_params, planeb_params;
2998         unsigned long line_time_us;
2999         int sr_clock, sr_entries = 0;
3000
3001         /* Create copies of the base settings for each pipe */
3002         if (IS_I965GM(dev) || IS_I945GM(dev))
3003                 planea_params = planeb_params = i945_wm_info;
3004         else if (IS_I9XX(dev))
3005                 planea_params = planeb_params = i915_wm_info;
3006         else
3007                 planea_params = planeb_params = i855_wm_info;
3008
3009         /* Grab a couple of global values before we overwrite them */
3010         total_size = planea_params.fifo_size;
3011         cacheline_size = planea_params.cacheline_size;
3012
3013         /* Update per-plane FIFO sizes */
3014         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3015         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3016
3017         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3018                                        pixel_size, latency_ns);
3019         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3020                                        pixel_size, latency_ns);
3021         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3022
3023         /*
3024          * Overlay gets an aggressive default since video jitter is bad.
3025          */
3026         cwm = 2;
3027
3028         /* Calc sr entries for one plane configs */
3029         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3030             (!planea_clock || !planeb_clock)) {
3031                 /* self-refresh has much higher latency */
3032                 static const int sr_latency_ns = 6000;
3033
3034                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3035                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3036
3037                 /* Use ns/us then divide to preserve precision */
3038                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3039                               pixel_size * sr_hdisplay) / 1000;
3040                 sr_entries = roundup(sr_entries / cacheline_size, 1);
3041                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3042                 srwm = total_size - sr_entries;
3043                 if (srwm < 0)
3044                         srwm = 1;
3045
3046                 if (IS_I945G(dev) || IS_I945GM(dev))
3047                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3048                 else if (IS_I915GM(dev)) {
3049                         /* 915M has a smaller SRWM field */
3050                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3051                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3052                 }
3053         } else {
3054                 /* Turn off self refresh if both pipes are enabled */
3055                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3056                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3057                                    & ~FW_BLC_SELF_EN);
3058                 } else if (IS_I915GM(dev)) {
3059                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3060                 }
3061         }
3062
3063         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3064                   planea_wm, planeb_wm, cwm, srwm);
3065
3066         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3067         fwater_hi = (cwm & 0x1f);
3068
3069         /* Set request length to 8 cachelines per fetch */
3070         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3071         fwater_hi = fwater_hi | (1 << 8);
3072
3073         I915_WRITE(FW_BLC, fwater_lo);
3074         I915_WRITE(FW_BLC2, fwater_hi);
3075 }
3076
3077 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3078                            int unused2, int pixel_size)
3079 {
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3082         int planea_wm;
3083
3084         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3085
3086         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3087                                        pixel_size, latency_ns);
3088         fwater_lo |= (3<<8) | planea_wm;
3089
3090         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3091
3092         I915_WRITE(FW_BLC, fwater_lo);
3093 }
3094
3095 #define ILK_LP0_PLANE_LATENCY           700
3096
3097 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3098                        int planeb_clock, int sr_hdisplay, int pixel_size)
3099 {
3100         struct drm_i915_private *dev_priv = dev->dev_private;
3101         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3102         int sr_wm, cursor_wm;
3103         unsigned long line_time_us;
3104         int sr_clock, entries_required;
3105         u32 reg_value;
3106
3107         /* Calculate and update the watermark for plane A */
3108         if (planea_clock) {
3109                 entries_required = ((planea_clock / 1000) * pixel_size *
3110                                      ILK_LP0_PLANE_LATENCY) / 1000;
3111                 entries_required = DIV_ROUND_UP(entries_required,
3112                                    ironlake_display_wm_info.cacheline_size);
3113                 planea_wm = entries_required +
3114                             ironlake_display_wm_info.guard_size;
3115
3116                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3117                         planea_wm = ironlake_display_wm_info.max_wm;
3118
3119                 cursora_wm = 16;
3120                 reg_value = I915_READ(WM0_PIPEA_ILK);
3121                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3122                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3123                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3124                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3125                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3126                                 "cursor: %d\n", planea_wm, cursora_wm);
3127         }
3128         /* Calculate and update the watermark for plane B */
3129         if (planeb_clock) {
3130                 entries_required = ((planeb_clock / 1000) * pixel_size *
3131                                      ILK_LP0_PLANE_LATENCY) / 1000;
3132                 entries_required = DIV_ROUND_UP(entries_required,
3133                                    ironlake_display_wm_info.cacheline_size);
3134                 planeb_wm = entries_required +
3135                             ironlake_display_wm_info.guard_size;
3136
3137                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3138                         planeb_wm = ironlake_display_wm_info.max_wm;
3139
3140                 cursorb_wm = 16;
3141                 reg_value = I915_READ(WM0_PIPEB_ILK);
3142                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3143                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3144                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3145                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3146                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3147                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3148         }
3149
3150         /*
3151          * Calculate and update the self-refresh watermark only when one
3152          * display plane is used.
3153          */
3154         if (!planea_clock || !planeb_clock) {
3155                 int line_count;
3156                 /* Read the self-refresh latency. The unit is 0.5us */
3157                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3158
3159                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3160                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3161
3162                 /* Use ns/us then divide to preserve precision */
3163                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3164                                / 1000;
3165
3166                 /* calculate the self-refresh watermark for display plane */
3167                 entries_required = line_count * sr_hdisplay * pixel_size;
3168                 entries_required = DIV_ROUND_UP(entries_required,
3169                                    ironlake_display_srwm_info.cacheline_size);
3170                 sr_wm = entries_required +
3171                         ironlake_display_srwm_info.guard_size;
3172
3173                 /* calculate the self-refresh watermark for display cursor */
3174                 entries_required = line_count * pixel_size * 64;
3175                 entries_required = DIV_ROUND_UP(entries_required,
3176                                    ironlake_cursor_srwm_info.cacheline_size);
3177                 cursor_wm = entries_required +
3178                             ironlake_cursor_srwm_info.guard_size;
3179
3180                 /* configure watermark and enable self-refresh */
3181                 reg_value = I915_READ(WM1_LP_ILK);
3182                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3183                                WM1_LP_CURSOR_MASK);
3184                 reg_value |= WM1_LP_SR_EN |
3185                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3186                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3187
3188                 I915_WRITE(WM1_LP_ILK, reg_value);
3189                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3190                                 "cursor %d\n", sr_wm, cursor_wm);
3191
3192         } else {
3193                 /* Turn off self refresh if both pipes are enabled */
3194                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3195         }
3196 }
3197 /**
3198  * intel_update_watermarks - update FIFO watermark values based on current modes
3199  *
3200  * Calculate watermark values for the various WM regs based on current mode
3201  * and plane configuration.
3202  *
3203  * There are several cases to deal with here:
3204  *   - normal (i.e. non-self-refresh)
3205  *   - self-refresh (SR) mode
3206  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3207  *   - lines are small relative to FIFO size (buffer can hold more than 2
3208  *     lines), so need to account for TLB latency
3209  *
3210  *   The normal calculation is:
3211  *     watermark = dotclock * bytes per pixel * latency
3212  *   where latency is platform & configuration dependent (we assume pessimal
3213  *   values here).
3214  *
3215  *   The SR calculation is:
3216  *     watermark = (trunc(latency/line time)+1) * surface width *
3217  *       bytes per pixel
3218  *   where
3219  *     line time = htotal / dotclock
3220  *   and latency is assumed to be high, as above.
3221  *
3222  * The final value programmed to the register should always be rounded up,
3223  * and include an extra 2 entries to account for clock crossings.
3224  *
3225  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3226  * to set the non-SR watermarks to 8.
3227   */
3228 static void intel_update_watermarks(struct drm_device *dev)
3229 {
3230         struct drm_i915_private *dev_priv = dev->dev_private;
3231         struct drm_crtc *crtc;
3232         struct intel_crtc *intel_crtc;
3233         int sr_hdisplay = 0;
3234         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3235         int enabled = 0, pixel_size = 0;
3236
3237         if (!dev_priv->display.update_wm)
3238                 return;
3239
3240         /* Get the clock config from both planes */
3241         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3242                 intel_crtc = to_intel_crtc(crtc);
3243                 if (crtc->enabled) {
3244                         enabled++;
3245                         if (intel_crtc->plane == 0) {
3246                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3247                                           intel_crtc->pipe, crtc->mode.clock);
3248                                 planea_clock = crtc->mode.clock;
3249                         } else {
3250                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3251                                           intel_crtc->pipe, crtc->mode.clock);
3252                                 planeb_clock = crtc->mode.clock;
3253                         }
3254                         sr_hdisplay = crtc->mode.hdisplay;
3255                         sr_clock = crtc->mode.clock;
3256                         if (crtc->fb)
3257                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3258                         else
3259                                 pixel_size = 4; /* by default */
3260                 }
3261         }
3262
3263         if (enabled <= 0)
3264                 return;
3265
3266         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3267                                     sr_hdisplay, pixel_size);
3268 }
3269
3270 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3271                                struct drm_display_mode *mode,
3272                                struct drm_display_mode *adjusted_mode,
3273                                int x, int y,
3274                                struct drm_framebuffer *old_fb)
3275 {
3276         struct drm_device *dev = crtc->dev;
3277         struct drm_i915_private *dev_priv = dev->dev_private;
3278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3279         int pipe = intel_crtc->pipe;
3280         int plane = intel_crtc->plane;
3281         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3282         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3283         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3284         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3285         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3286         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3287         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3288         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3289         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3290         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3291         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3292         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3293         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3294         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3295         int refclk, num_connectors = 0;
3296         intel_clock_t clock, reduced_clock;
3297         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3298         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3299         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3300         bool is_edp = false;
3301         struct drm_mode_config *mode_config = &dev->mode_config;
3302         struct drm_encoder *encoder;
3303         struct intel_encoder *intel_encoder = NULL;
3304         const intel_limit_t *limit;
3305         int ret;
3306         struct fdi_m_n m_n = {0};
3307         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3308         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3309         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3310         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3311         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3312         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3313         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3314         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3315         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3316         int lvds_reg = LVDS;
3317         u32 temp;
3318         int sdvo_pixel_multiply;
3319         int target_clock;
3320
3321         drm_vblank_pre_modeset(dev, pipe);
3322
3323         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3324
3325                 if (!encoder || encoder->crtc != crtc)
3326                         continue;
3327
3328                 intel_encoder = enc_to_intel_encoder(encoder);
3329
3330                 switch (intel_encoder->type) {
3331                 case INTEL_OUTPUT_LVDS:
3332                         is_lvds = true;
3333                         break;
3334                 case INTEL_OUTPUT_SDVO:
3335                 case INTEL_OUTPUT_HDMI:
3336                         is_sdvo = true;
3337                         if (intel_encoder->needs_tv_clock)
3338                                 is_tv = true;
3339                         break;
3340                 case INTEL_OUTPUT_DVO:
3341                         is_dvo = true;
3342                         break;
3343                 case INTEL_OUTPUT_TVOUT:
3344                         is_tv = true;
3345                         break;
3346                 case INTEL_OUTPUT_ANALOG:
3347                         is_crt = true;
3348                         break;
3349                 case INTEL_OUTPUT_DISPLAYPORT:
3350                         is_dp = true;
3351                         break;
3352                 case INTEL_OUTPUT_EDP:
3353                         is_edp = true;
3354                         break;
3355                 }
3356
3357                 num_connectors++;
3358         }
3359
3360         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3361                 refclk = dev_priv->lvds_ssc_freq * 1000;
3362                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3363                                         refclk / 1000);
3364         } else if (IS_I9XX(dev)) {
3365                 refclk = 96000;
3366                 if (HAS_PCH_SPLIT(dev))
3367                         refclk = 120000; /* 120Mhz refclk */
3368         } else {
3369                 refclk = 48000;
3370         }
3371         
3372
3373         /*
3374          * Returns a set of divisors for the desired target clock with the given
3375          * refclk, or FALSE.  The returned values represent the clock equation:
3376          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3377          */
3378         limit = intel_limit(crtc);
3379         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3380         if (!ok) {
3381                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3382                 drm_vblank_post_modeset(dev, pipe);
3383                 return -EINVAL;
3384         }
3385
3386         if (is_lvds && dev_priv->lvds_downclock_avail) {
3387                 has_reduced_clock = limit->find_pll(limit, crtc,
3388                                                             dev_priv->lvds_downclock,
3389                                                             refclk,
3390                                                             &reduced_clock);
3391                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3392                         /*
3393                          * If the different P is found, it means that we can't
3394                          * switch the display clock by using the FP0/FP1.
3395                          * In such case we will disable the LVDS downclock
3396                          * feature.
3397                          */
3398                         DRM_DEBUG_KMS("Different P is found for "
3399                                                 "LVDS clock/downclock\n");
3400                         has_reduced_clock = 0;
3401                 }
3402         }
3403         /* SDVO TV has fixed PLL values depend on its clock range,
3404            this mirrors vbios setting. */
3405         if (is_sdvo && is_tv) {
3406                 if (adjusted_mode->clock >= 100000
3407                                 && adjusted_mode->clock < 140500) {
3408                         clock.p1 = 2;
3409                         clock.p2 = 10;
3410                         clock.n = 3;
3411                         clock.m1 = 16;
3412                         clock.m2 = 8;
3413                 } else if (adjusted_mode->clock >= 140500
3414                                 && adjusted_mode->clock <= 200000) {
3415                         clock.p1 = 1;
3416                         clock.p2 = 10;
3417                         clock.n = 6;
3418                         clock.m1 = 12;
3419                         clock.m2 = 8;
3420                 }
3421         }
3422
3423         /* FDI link */
3424         if (HAS_PCH_SPLIT(dev)) {
3425                 int lane = 0, link_bw, bpp;
3426                 /* eDP doesn't require FDI link, so just set DP M/N
3427                    according to current link config */
3428                 if (is_edp) {
3429                         target_clock = mode->clock;
3430                         intel_edp_link_config(intel_encoder,
3431                                         &lane, &link_bw);
3432                 } else {
3433                         /* DP over FDI requires target mode clock
3434                            instead of link clock */
3435                         if (is_dp)
3436                                 target_clock = mode->clock;
3437                         else
3438                                 target_clock = adjusted_mode->clock;
3439                         link_bw = 270000;
3440                 }
3441
3442                 /* determine panel color depth */
3443                 temp = I915_READ(pipeconf_reg);
3444                 temp &= ~PIPE_BPC_MASK;
3445                 if (is_lvds) {
3446                         int lvds_reg = I915_READ(PCH_LVDS);
3447                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3448                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3449                                 temp |= PIPE_8BPC;
3450                         else
3451                                 temp |= PIPE_6BPC;
3452                 } else if (is_edp) {
3453                         switch (dev_priv->edp_bpp/3) {
3454                         case 8:
3455                                 temp |= PIPE_8BPC;
3456                                 break;
3457                         case 10:
3458                                 temp |= PIPE_10BPC;
3459                                 break;
3460                         case 6:
3461                                 temp |= PIPE_6BPC;
3462                                 break;
3463                         case 12:
3464                                 temp |= PIPE_12BPC;
3465                                 break;
3466                         }
3467                 } else
3468                         temp |= PIPE_8BPC;
3469                 I915_WRITE(pipeconf_reg, temp);
3470                 I915_READ(pipeconf_reg);
3471
3472                 switch (temp & PIPE_BPC_MASK) {
3473                 case PIPE_8BPC:
3474                         bpp = 24;
3475                         break;
3476                 case PIPE_10BPC:
3477                         bpp = 30;
3478                         break;
3479                 case PIPE_6BPC:
3480                         bpp = 18;
3481                         break;
3482                 case PIPE_12BPC:
3483                         bpp = 36;
3484                         break;
3485                 default:
3486                         DRM_ERROR("unknown pipe bpc value\n");
3487                         bpp = 24;
3488                 }
3489
3490                 if (!lane) {
3491                         /* 
3492                          * Account for spread spectrum to avoid
3493                          * oversubscribing the link. Max center spread
3494                          * is 2.5%; use 5% for safety's sake.
3495                          */
3496                         u32 bps = target_clock * bpp * 21 / 20;
3497                         lane = bps / (link_bw * 8) + 1;
3498                 }
3499
3500                 intel_crtc->fdi_lanes = lane;
3501
3502                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3503         }
3504
3505         /* Ironlake: try to setup display ref clock before DPLL
3506          * enabling. This is only under driver's control after
3507          * PCH B stepping, previous chipset stepping should be
3508          * ignoring this setting.
3509          */
3510         if (HAS_PCH_SPLIT(dev)) {
3511                 temp = I915_READ(PCH_DREF_CONTROL);
3512                 /* Always enable nonspread source */
3513                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3514                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3515                 I915_WRITE(PCH_DREF_CONTROL, temp);
3516                 POSTING_READ(PCH_DREF_CONTROL);
3517
3518                 temp &= ~DREF_SSC_SOURCE_MASK;
3519                 temp |= DREF_SSC_SOURCE_ENABLE;
3520                 I915_WRITE(PCH_DREF_CONTROL, temp);
3521                 POSTING_READ(PCH_DREF_CONTROL);
3522
3523                 udelay(200);
3524
3525                 if (is_edp) {
3526                         if (dev_priv->lvds_use_ssc) {
3527                                 temp |= DREF_SSC1_ENABLE;
3528                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3529                                 POSTING_READ(PCH_DREF_CONTROL);
3530
3531                                 udelay(200);
3532
3533                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3534                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3535                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3536                                 POSTING_READ(PCH_DREF_CONTROL);
3537                         } else {
3538                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3539                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3540                                 POSTING_READ(PCH_DREF_CONTROL);
3541                         }
3542                 }
3543         }
3544
3545         if (IS_PINEVIEW(dev)) {
3546                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3547                 if (has_reduced_clock)
3548                         fp2 = (1 << reduced_clock.n) << 16 |
3549                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3550         } else {
3551                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3552                 if (has_reduced_clock)
3553                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3554                                 reduced_clock.m2;
3555         }
3556
3557         if (!HAS_PCH_SPLIT(dev))
3558                 dpll = DPLL_VGA_MODE_DIS;
3559
3560         if (IS_I9XX(dev)) {
3561                 if (is_lvds)
3562                         dpll |= DPLLB_MODE_LVDS;
3563                 else
3564                         dpll |= DPLLB_MODE_DAC_SERIAL;
3565                 if (is_sdvo) {
3566                         dpll |= DPLL_DVO_HIGH_SPEED;
3567                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3568                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3569                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3570                         else if (HAS_PCH_SPLIT(dev))
3571                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3572                 }
3573                 if (is_dp)
3574                         dpll |= DPLL_DVO_HIGH_SPEED;
3575
3576                 /* compute bitmask from p1 value */
3577                 if (IS_PINEVIEW(dev))
3578                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3579                 else {
3580                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3581                         /* also FPA1 */
3582                         if (HAS_PCH_SPLIT(dev))
3583                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3584                         if (IS_G4X(dev) && has_reduced_clock)
3585                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3586                 }
3587                 switch (clock.p2) {
3588                 case 5:
3589                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3590                         break;
3591                 case 7:
3592                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3593                         break;
3594                 case 10:
3595                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3596                         break;
3597                 case 14:
3598                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3599                         break;
3600                 }
3601                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3602                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3603         } else {
3604                 if (is_lvds) {
3605                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3606                 } else {
3607                         if (clock.p1 == 2)
3608                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3609                         else
3610                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3611                         if (clock.p2 == 4)
3612                                 dpll |= PLL_P2_DIVIDE_BY_4;
3613                 }
3614         }
3615
3616         if (is_sdvo && is_tv)
3617                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3618         else if (is_tv)
3619                 /* XXX: just matching BIOS for now */
3620                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3621                 dpll |= 3;
3622         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3623                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3624         else
3625                 dpll |= PLL_REF_INPUT_DREFCLK;
3626
3627         /* setup pipeconf */
3628         pipeconf = I915_READ(pipeconf_reg);
3629
3630         /* Set up the display plane register */
3631         dspcntr = DISPPLANE_GAMMA_ENABLE;
3632
3633         /* Ironlake's plane is forced to pipe, bit 24 is to
3634            enable color space conversion */
3635         if (!HAS_PCH_SPLIT(dev)) {
3636                 if (pipe == 0)
3637                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3638                 else
3639                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3640         }
3641
3642         if (pipe == 0 && !IS_I965G(dev)) {
3643                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3644                  * core speed.
3645                  *
3646                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3647                  * pipe == 0 check?
3648                  */
3649                 if (mode->clock >
3650                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3651                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3652                 else
3653                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3654         }
3655
3656         /* Disable the panel fitter if it was on our pipe */
3657         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3658                 I915_WRITE(PFIT_CONTROL, 0);
3659
3660         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3661         drm_mode_debug_printmodeline(mode);
3662
3663         /* assign to Ironlake registers */
3664         if (HAS_PCH_SPLIT(dev)) {
3665                 fp_reg = pch_fp_reg;
3666                 dpll_reg = pch_dpll_reg;
3667         }
3668
3669         if (is_edp) {
3670                 ironlake_disable_pll_edp(crtc);
3671         } else if ((dpll & DPLL_VCO_ENABLE)) {
3672                 I915_WRITE(fp_reg, fp);
3673                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3674                 I915_READ(dpll_reg);
3675                 udelay(150);
3676         }
3677
3678         /* enable transcoder DPLL */
3679         if (HAS_PCH_CPT(dev)) {
3680                 temp = I915_READ(PCH_DPLL_SEL);
3681                 if (trans_dpll_sel == 0)
3682                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3683                 else
3684                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3685                 I915_WRITE(PCH_DPLL_SEL, temp);
3686                 I915_READ(PCH_DPLL_SEL);
3687                 udelay(150);
3688         }
3689
3690         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3691          * This is an exception to the general rule that mode_set doesn't turn
3692          * things on.
3693          */
3694         if (is_lvds) {
3695                 u32 lvds;
3696
3697                 if (HAS_PCH_SPLIT(dev))
3698                         lvds_reg = PCH_LVDS;
3699
3700                 lvds = I915_READ(lvds_reg);
3701                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3702                 if (pipe == 1) {
3703                         if (HAS_PCH_CPT(dev))
3704                                 lvds |= PORT_TRANS_B_SEL_CPT;
3705                         else
3706                                 lvds |= LVDS_PIPEB_SELECT;
3707                 } else {
3708                         if (HAS_PCH_CPT(dev))
3709                                 lvds &= ~PORT_TRANS_SEL_MASK;
3710                         else
3711                                 lvds &= ~LVDS_PIPEB_SELECT;
3712                 }
3713                 /* set the corresponsding LVDS_BORDER bit */
3714                 lvds |= dev_priv->lvds_border_bits;
3715                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3716                  * set the DPLLs for dual-channel mode or not.
3717                  */
3718                 if (clock.p2 == 7)
3719                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3720                 else
3721                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3722
3723                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3724                  * appropriately here, but we need to look more thoroughly into how
3725                  * panels behave in the two modes.
3726                  */
3727                 /* set the dithering flag */
3728                 if (IS_I965G(dev)) {
3729                         if (dev_priv->lvds_dither) {
3730                                 if (HAS_PCH_SPLIT(dev)) {
3731                                         pipeconf |= PIPE_ENABLE_DITHER;
3732                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3733                                 } else
3734                                         lvds |= LVDS_ENABLE_DITHER;
3735                         } else {
3736                                 if (HAS_PCH_SPLIT(dev)) {
3737                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3738                                         pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3739                                 } else
3740                                         lvds &= ~LVDS_ENABLE_DITHER;
3741                         }
3742                 }
3743                 I915_WRITE(lvds_reg, lvds);
3744                 I915_READ(lvds_reg);
3745         }
3746         if (is_dp)
3747                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3748         else if (HAS_PCH_SPLIT(dev)) {
3749                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3750                 if (pipe == 0) {
3751                         I915_WRITE(TRANSA_DATA_M1, 0);
3752                         I915_WRITE(TRANSA_DATA_N1, 0);
3753                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3754                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3755                 } else {
3756                         I915_WRITE(TRANSB_DATA_M1, 0);
3757                         I915_WRITE(TRANSB_DATA_N1, 0);
3758                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3759                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3760                 }
3761         }
3762
3763         if (!is_edp) {
3764                 I915_WRITE(fp_reg, fp);
3765                 I915_WRITE(dpll_reg, dpll);
3766                 I915_READ(dpll_reg);
3767                 /* Wait for the clocks to stabilize. */
3768                 udelay(150);
3769
3770                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3771                         if (is_sdvo) {
3772                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3773                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3774                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3775                         } else
3776                                 I915_WRITE(dpll_md_reg, 0);
3777                 } else {
3778                         /* write it again -- the BIOS does, after all */
3779                         I915_WRITE(dpll_reg, dpll);
3780                 }
3781                 I915_READ(dpll_reg);
3782                 /* Wait for the clocks to stabilize. */
3783                 udelay(150);
3784         }
3785
3786         if (is_lvds && has_reduced_clock && i915_powersave) {
3787                 I915_WRITE(fp_reg + 4, fp2);
3788                 intel_crtc->lowfreq_avail = true;
3789                 if (HAS_PIPE_CXSR(dev)) {
3790                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3791                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3792                 }
3793         } else {
3794                 I915_WRITE(fp_reg + 4, fp);
3795                 intel_crtc->lowfreq_avail = false;
3796                 if (HAS_PIPE_CXSR(dev)) {
3797                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3798                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3799                 }
3800         }
3801
3802         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3803                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3804                 /* the chip adds 2 halflines automatically */
3805                 adjusted_mode->crtc_vdisplay -= 1;
3806                 adjusted_mode->crtc_vtotal -= 1;
3807                 adjusted_mode->crtc_vblank_start -= 1;
3808                 adjusted_mode->crtc_vblank_end -= 1;
3809                 adjusted_mode->crtc_vsync_end -= 1;
3810                 adjusted_mode->crtc_vsync_start -= 1;
3811         } else
3812                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3813
3814         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3815                    ((adjusted_mode->crtc_htotal - 1) << 16));
3816         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3817                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3818         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3819                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3820         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3821                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3822         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3823                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3824         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3825                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3826         /* pipesrc and dspsize control the size that is scaled from, which should
3827          * always be the user's requested size.
3828          */
3829         if (!HAS_PCH_SPLIT(dev)) {
3830                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3831                                 (mode->hdisplay - 1));
3832                 I915_WRITE(dsppos_reg, 0);
3833         }
3834         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3835
3836         if (HAS_PCH_SPLIT(dev)) {
3837                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3838                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3839                 I915_WRITE(link_m1_reg, m_n.link_m);
3840                 I915_WRITE(link_n1_reg, m_n.link_n);
3841
3842                 if (is_edp) {
3843                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3844                 } else {
3845                         /* enable FDI RX PLL too */
3846                         temp = I915_READ(fdi_rx_reg);
3847                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3848                         I915_READ(fdi_rx_reg);
3849                         udelay(200);
3850
3851                         /* enable FDI TX PLL too */
3852                         temp = I915_READ(fdi_tx_reg);
3853                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3854                         I915_READ(fdi_tx_reg);
3855
3856                         /* enable FDI RX PCDCLK */
3857                         temp = I915_READ(fdi_rx_reg);
3858                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3859                         I915_READ(fdi_rx_reg);
3860                         udelay(200);
3861                 }
3862         }
3863
3864         I915_WRITE(pipeconf_reg, pipeconf);
3865         I915_READ(pipeconf_reg);
3866
3867         intel_wait_for_vblank(dev);
3868
3869         if (IS_IRONLAKE(dev)) {
3870                 /* enable address swizzle for tiling buffer */
3871                 temp = I915_READ(DISP_ARB_CTL);
3872                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3873         }
3874
3875         I915_WRITE(dspcntr_reg, dspcntr);
3876
3877         /* Flush the plane changes */
3878         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3879
3880         if ((IS_I965G(dev) || plane == 0))
3881                 intel_update_fbc(crtc, &crtc->mode);
3882
3883         intel_update_watermarks(dev);
3884
3885         drm_vblank_post_modeset(dev, pipe);
3886
3887         return ret;
3888 }
3889
3890 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3891 void intel_crtc_load_lut(struct drm_crtc *crtc)
3892 {
3893         struct drm_device *dev = crtc->dev;
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3896         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3897         int i;
3898
3899         /* The clocks have to be on to load the palette. */
3900         if (!crtc->enabled)
3901                 return;
3902
3903         /* use legacy palette for Ironlake */
3904         if (HAS_PCH_SPLIT(dev))
3905                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3906                                                    LGC_PALETTE_B;
3907
3908         for (i = 0; i < 256; i++) {
3909                 I915_WRITE(palreg + 4 * i,
3910                            (intel_crtc->lut_r[i] << 16) |
3911                            (intel_crtc->lut_g[i] << 8) |
3912                            intel_crtc->lut_b[i]);
3913         }
3914 }
3915
3916 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3917                                  struct drm_file *file_priv,
3918                                  uint32_t handle,
3919                                  uint32_t width, uint32_t height)
3920 {
3921         struct drm_device *dev = crtc->dev;
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3924         struct drm_gem_object *bo;
3925         struct drm_i915_gem_object *obj_priv;
3926         int pipe = intel_crtc->pipe;
3927         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3928         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3929         uint32_t temp = I915_READ(control);
3930         size_t addr;
3931         int ret;
3932
3933         DRM_DEBUG_KMS("\n");
3934
3935         /* if we want to turn off the cursor ignore width and height */
3936         if (!handle) {
3937                 DRM_DEBUG_KMS("cursor off\n");
3938                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3939                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3940                         temp |= CURSOR_MODE_DISABLE;
3941                 } else {
3942                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3943                 }
3944                 addr = 0;
3945                 bo = NULL;
3946                 mutex_lock(&dev->struct_mutex);
3947                 goto finish;
3948         }
3949
3950         /* Currently we only support 64x64 cursors */
3951         if (width != 64 || height != 64) {
3952                 DRM_ERROR("we currently only support 64x64 cursors\n");
3953                 return -EINVAL;
3954         }
3955
3956         bo = drm_gem_object_lookup(dev, file_priv, handle);
3957         if (!bo)
3958                 return -ENOENT;
3959
3960         obj_priv = to_intel_bo(bo);
3961
3962         if (bo->size < width * height * 4) {
3963                 DRM_ERROR("buffer is to small\n");
3964                 ret = -ENOMEM;
3965                 goto fail;
3966         }
3967
3968         /* we only need to pin inside GTT if cursor is non-phy */
3969         mutex_lock(&dev->struct_mutex);
3970         if (!dev_priv->info->cursor_needs_physical) {
3971                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3972                 if (ret) {
3973                         DRM_ERROR("failed to pin cursor bo\n");
3974                         goto fail_locked;
3975                 }
3976
3977                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
3978                 if (ret) {
3979                         DRM_ERROR("failed to move cursor bo into the GTT\n");
3980                         goto fail_unpin;
3981                 }
3982
3983                 addr = obj_priv->gtt_offset;
3984         } else {
3985                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3986                 if (ret) {
3987                         DRM_ERROR("failed to attach phys object\n");
3988                         goto fail_locked;
3989                 }
3990                 addr = obj_priv->phys_obj->handle->busaddr;
3991         }
3992
3993         if (!IS_I9XX(dev))
3994                 I915_WRITE(CURSIZE, (height << 12) | width);
3995
3996         /* Hooray for CUR*CNTR differences */
3997         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3998                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3999                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4000                 temp |= (pipe << 28); /* Connect to correct pipe */
4001         } else {
4002                 temp &= ~(CURSOR_FORMAT_MASK);
4003                 temp |= CURSOR_ENABLE;
4004                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4005         }
4006
4007  finish:
4008         I915_WRITE(control, temp);
4009         I915_WRITE(base, addr);
4010
4011         if (intel_crtc->cursor_bo) {
4012                 if (dev_priv->info->cursor_needs_physical) {
4013                         if (intel_crtc->cursor_bo != bo)
4014                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4015                 } else
4016                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4017                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4018         }
4019
4020         mutex_unlock(&dev->struct_mutex);
4021
4022         intel_crtc->cursor_addr = addr;
4023         intel_crtc->cursor_bo = bo;
4024
4025         return 0;
4026 fail_unpin:
4027         i915_gem_object_unpin(bo);
4028 fail_locked:
4029         mutex_unlock(&dev->struct_mutex);
4030 fail:
4031         drm_gem_object_unreference_unlocked(bo);
4032         return ret;
4033 }
4034
4035 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4036 {
4037         struct drm_device *dev = crtc->dev;
4038         struct drm_i915_private *dev_priv = dev->dev_private;
4039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4040         struct intel_framebuffer *intel_fb;
4041         int pipe = intel_crtc->pipe;
4042         uint32_t temp = 0;
4043         uint32_t adder;
4044
4045         if (crtc->fb) {
4046                 intel_fb = to_intel_framebuffer(crtc->fb);
4047                 intel_mark_busy(dev, intel_fb->obj);
4048         }
4049
4050         if (x < 0) {
4051                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4052                 x = -x;
4053         }
4054         if (y < 0) {
4055                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4056                 y = -y;
4057         }
4058
4059         temp |= x << CURSOR_X_SHIFT;
4060         temp |= y << CURSOR_Y_SHIFT;
4061
4062         adder = intel_crtc->cursor_addr;
4063         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4064         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4065
4066         return 0;
4067 }
4068
4069 /** Sets the color ramps on behalf of RandR */
4070 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4071                                  u16 blue, int regno)
4072 {
4073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074
4075         intel_crtc->lut_r[regno] = red >> 8;
4076         intel_crtc->lut_g[regno] = green >> 8;
4077         intel_crtc->lut_b[regno] = blue >> 8;
4078 }
4079
4080 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4081                              u16 *blue, int regno)
4082 {
4083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4084
4085         *red = intel_crtc->lut_r[regno] << 8;
4086         *green = intel_crtc->lut_g[regno] << 8;
4087         *blue = intel_crtc->lut_b[regno] << 8;
4088 }
4089
4090 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4091                                  u16 *blue, uint32_t size)
4092 {
4093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4094         int i;
4095
4096         if (size != 256)
4097                 return;
4098
4099         for (i = 0; i < 256; i++) {
4100                 intel_crtc->lut_r[i] = red[i] >> 8;
4101                 intel_crtc->lut_g[i] = green[i] >> 8;
4102                 intel_crtc->lut_b[i] = blue[i] >> 8;
4103         }
4104
4105         intel_crtc_load_lut(crtc);
4106 }
4107
4108 /**
4109  * Get a pipe with a simple mode set on it for doing load-based monitor
4110  * detection.
4111  *
4112  * It will be up to the load-detect code to adjust the pipe as appropriate for
4113  * its requirements.  The pipe will be connected to no other encoders.
4114  *
4115  * Currently this code will only succeed if there is a pipe with no encoders
4116  * configured for it.  In the future, it could choose to temporarily disable
4117  * some outputs to free up a pipe for its use.
4118  *
4119  * \return crtc, or NULL if no pipes are available.
4120  */
4121
4122 /* VESA 640x480x72Hz mode to set on the pipe */
4123 static struct drm_display_mode load_detect_mode = {
4124         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4125                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4126 };
4127
4128 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4129                                             struct drm_connector *connector,
4130                                             struct drm_display_mode *mode,
4131                                             int *dpms_mode)
4132 {
4133         struct intel_crtc *intel_crtc;
4134         struct drm_crtc *possible_crtc;
4135         struct drm_crtc *supported_crtc =NULL;
4136         struct drm_encoder *encoder = &intel_encoder->enc;
4137         struct drm_crtc *crtc = NULL;
4138         struct drm_device *dev = encoder->dev;
4139         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4140         struct drm_crtc_helper_funcs *crtc_funcs;
4141         int i = -1;
4142
4143         /*
4144          * Algorithm gets a little messy:
4145          *   - if the connector already has an assigned crtc, use it (but make
4146          *     sure it's on first)
4147          *   - try to find the first unused crtc that can drive this connector,
4148          *     and use that if we find one
4149          *   - if there are no unused crtcs available, try to use the first
4150          *     one we found that supports the connector
4151          */
4152
4153         /* See if we already have a CRTC for this connector */
4154         if (encoder->crtc) {
4155                 crtc = encoder->crtc;
4156                 /* Make sure the crtc and connector are running */
4157                 intel_crtc = to_intel_crtc(crtc);
4158                 *dpms_mode = intel_crtc->dpms_mode;
4159                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4160                         crtc_funcs = crtc->helper_private;
4161                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4162                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4163                 }
4164                 return crtc;
4165         }
4166
4167         /* Find an unused one (if possible) */
4168         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4169                 i++;
4170                 if (!(encoder->possible_crtcs & (1 << i)))
4171                         continue;
4172                 if (!possible_crtc->enabled) {
4173                         crtc = possible_crtc;
4174                         break;
4175                 }
4176                 if (!supported_crtc)
4177                         supported_crtc = possible_crtc;
4178         }
4179
4180         /*
4181          * If we didn't find an unused CRTC, don't use any.
4182          */
4183         if (!crtc) {
4184                 return NULL;
4185         }
4186
4187         encoder->crtc = crtc;
4188         connector->encoder = encoder;
4189         intel_encoder->load_detect_temp = true;
4190
4191         intel_crtc = to_intel_crtc(crtc);
4192         *dpms_mode = intel_crtc->dpms_mode;
4193
4194         if (!crtc->enabled) {
4195                 if (!mode)
4196                         mode = &load_detect_mode;
4197                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4198         } else {
4199                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4200                         crtc_funcs = crtc->helper_private;
4201                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4202                 }
4203
4204                 /* Add this connector to the crtc */
4205                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4206                 encoder_funcs->commit(encoder);
4207         }
4208         /* let the connector get through one full cycle before testing */
4209         intel_wait_for_vblank(dev);
4210
4211         return crtc;
4212 }
4213
4214 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4215                                     struct drm_connector *connector, int dpms_mode)
4216 {
4217         struct drm_encoder *encoder = &intel_encoder->enc;
4218         struct drm_device *dev = encoder->dev;
4219         struct drm_crtc *crtc = encoder->crtc;
4220         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4221         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4222
4223         if (intel_encoder->load_detect_temp) {
4224                 encoder->crtc = NULL;
4225                 connector->encoder = NULL;
4226                 intel_encoder->load_detect_temp = false;
4227                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4228                 drm_helper_disable_unused_functions(dev);
4229         }
4230
4231         /* Switch crtc and encoder back off if necessary */
4232         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4233                 if (encoder->crtc == crtc)
4234                         encoder_funcs->dpms(encoder, dpms_mode);
4235                 crtc_funcs->dpms(crtc, dpms_mode);
4236         }
4237 }
4238
4239 /* Returns the clock of the currently programmed mode of the given pipe. */
4240 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4241 {
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4244         int pipe = intel_crtc->pipe;
4245         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4246         u32 fp;
4247         intel_clock_t clock;
4248
4249         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4250                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4251         else
4252                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4253
4254         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4255         if (IS_PINEVIEW(dev)) {
4256                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4257                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4258         } else {
4259                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4260                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4261         }
4262
4263         if (IS_I9XX(dev)) {
4264                 if (IS_PINEVIEW(dev))
4265                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4266                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4267                 else
4268                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4269                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4270
4271                 switch (dpll & DPLL_MODE_MASK) {
4272                 case DPLLB_MODE_DAC_SERIAL:
4273                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4274                                 5 : 10;
4275                         break;
4276                 case DPLLB_MODE_LVDS:
4277                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4278                                 7 : 14;
4279                         break;
4280                 default:
4281                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4282                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4283                         return 0;
4284                 }
4285
4286                 /* XXX: Handle the 100Mhz refclk */
4287                 intel_clock(dev, 96000, &clock);
4288         } else {
4289                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4290
4291                 if (is_lvds) {
4292                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4293                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4294                         clock.p2 = 14;
4295
4296                         if ((dpll & PLL_REF_INPUT_MASK) ==
4297                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4298                                 /* XXX: might not be 66MHz */
4299                                 intel_clock(dev, 66000, &clock);
4300                         } else
4301                                 intel_clock(dev, 48000, &clock);
4302                 } else {
4303                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4304                                 clock.p1 = 2;
4305                         else {
4306                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4307                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4308                         }
4309                         if (dpll & PLL_P2_DIVIDE_BY_4)
4310                                 clock.p2 = 4;
4311                         else
4312                                 clock.p2 = 2;
4313
4314                         intel_clock(dev, 48000, &clock);
4315                 }
4316         }
4317
4318         /* XXX: It would be nice to validate the clocks, but we can't reuse
4319          * i830PllIsValid() because it relies on the xf86_config connector
4320          * configuration being accurate, which it isn't necessarily.
4321          */
4322
4323         return clock.dot;
4324 }
4325
4326 /** Returns the currently programmed mode of the given pipe. */
4327 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4328                                              struct drm_crtc *crtc)
4329 {
4330         struct drm_i915_private *dev_priv = dev->dev_private;
4331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4332         int pipe = intel_crtc->pipe;
4333         struct drm_display_mode *mode;
4334         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4335         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4336         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4337         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4338
4339         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4340         if (!mode)
4341                 return NULL;
4342
4343         mode->clock = intel_crtc_clock_get(dev, crtc);
4344         mode->hdisplay = (htot & 0xffff) + 1;
4345         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4346         mode->hsync_start = (hsync & 0xffff) + 1;
4347         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4348         mode->vdisplay = (vtot & 0xffff) + 1;
4349         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4350         mode->vsync_start = (vsync & 0xffff) + 1;
4351         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4352
4353         drm_mode_set_name(mode);
4354         drm_mode_set_crtcinfo(mode, 0);
4355
4356         return mode;
4357 }
4358
4359 #define GPU_IDLE_TIMEOUT 500 /* ms */
4360
4361 /* When this timer fires, we've been idle for awhile */
4362 static void intel_gpu_idle_timer(unsigned long arg)
4363 {
4364         struct drm_device *dev = (struct drm_device *)arg;
4365         drm_i915_private_t *dev_priv = dev->dev_private;
4366
4367         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4368
4369         dev_priv->busy = false;
4370
4371         queue_work(dev_priv->wq, &dev_priv->idle_work);
4372 }
4373
4374 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4375
4376 static void intel_crtc_idle_timer(unsigned long arg)
4377 {
4378         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4379         struct drm_crtc *crtc = &intel_crtc->base;
4380         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4381
4382         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4383
4384         intel_crtc->busy = false;
4385
4386         queue_work(dev_priv->wq, &dev_priv->idle_work);
4387 }
4388
4389 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4390 {
4391         struct drm_device *dev = crtc->dev;
4392         drm_i915_private_t *dev_priv = dev->dev_private;
4393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4394         int pipe = intel_crtc->pipe;
4395         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4396         int dpll = I915_READ(dpll_reg);
4397
4398         if (HAS_PCH_SPLIT(dev))
4399                 return;
4400
4401         if (!dev_priv->lvds_downclock_avail)
4402                 return;
4403
4404         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4405                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4406
4407                 /* Unlock panel regs */
4408                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4409
4410                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4411                 I915_WRITE(dpll_reg, dpll);
4412                 dpll = I915_READ(dpll_reg);
4413                 intel_wait_for_vblank(dev);
4414                 dpll = I915_READ(dpll_reg);
4415                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4416                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4417
4418                 /* ...and lock them again */
4419                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4420         }
4421
4422         /* Schedule downclock */
4423         if (schedule)
4424                 mod_timer(&intel_crtc->idle_timer, jiffies +
4425                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4426 }
4427
4428 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4429 {
4430         struct drm_device *dev = crtc->dev;
4431         drm_i915_private_t *dev_priv = dev->dev_private;
4432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4433         int pipe = intel_crtc->pipe;
4434         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4435         int dpll = I915_READ(dpll_reg);
4436
4437         if (HAS_PCH_SPLIT(dev))
4438                 return;
4439
4440         if (!dev_priv->lvds_downclock_avail)
4441                 return;
4442
4443         /*
4444          * Since this is called by a timer, we should never get here in
4445          * the manual case.
4446          */
4447         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4448                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4449
4450                 /* Unlock panel regs */
4451                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4452
4453                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4454                 I915_WRITE(dpll_reg, dpll);
4455                 dpll = I915_READ(dpll_reg);
4456                 intel_wait_for_vblank(dev);
4457                 dpll = I915_READ(dpll_reg);
4458                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4459                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4460
4461                 /* ...and lock them again */
4462                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4463         }
4464
4465 }
4466
4467 /**
4468  * intel_idle_update - adjust clocks for idleness
4469  * @work: work struct
4470  *
4471  * Either the GPU or display (or both) went idle.  Check the busy status
4472  * here and adjust the CRTC and GPU clocks as necessary.
4473  */
4474 static void intel_idle_update(struct work_struct *work)
4475 {
4476         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4477                                                     idle_work);
4478         struct drm_device *dev = dev_priv->dev;
4479         struct drm_crtc *crtc;
4480         struct intel_crtc *intel_crtc;
4481
4482         if (!i915_powersave)
4483                 return;
4484
4485         mutex_lock(&dev->struct_mutex);
4486
4487         i915_update_gfx_val(dev_priv);
4488
4489         if (IS_I945G(dev) || IS_I945GM(dev)) {
4490                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4491                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4492         }
4493
4494         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4495                 /* Skip inactive CRTCs */
4496                 if (!crtc->fb)
4497                         continue;
4498
4499                 intel_crtc = to_intel_crtc(crtc);
4500                 if (!intel_crtc->busy)
4501                         intel_decrease_pllclock(crtc);
4502         }
4503
4504         mutex_unlock(&dev->struct_mutex);
4505 }
4506
4507 /**
4508  * intel_mark_busy - mark the GPU and possibly the display busy
4509  * @dev: drm device
4510  * @obj: object we're operating on
4511  *
4512  * Callers can use this function to indicate that the GPU is busy processing
4513  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4514  * buffer), we'll also mark the display as busy, so we know to increase its
4515  * clock frequency.
4516  */
4517 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4518 {
4519         drm_i915_private_t *dev_priv = dev->dev_private;
4520         struct drm_crtc *crtc = NULL;
4521         struct intel_framebuffer *intel_fb;
4522         struct intel_crtc *intel_crtc;
4523
4524         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4525                 return;
4526
4527         if (!dev_priv->busy) {
4528                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4529                         u32 fw_blc_self;
4530
4531                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4532                         fw_blc_self = I915_READ(FW_BLC_SELF);
4533                         fw_blc_self &= ~FW_BLC_SELF_EN;
4534                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4535                 }
4536                 dev_priv->busy = true;
4537         } else
4538                 mod_timer(&dev_priv->idle_timer, jiffies +
4539                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4540
4541         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4542                 if (!crtc->fb)
4543                         continue;
4544
4545                 intel_crtc = to_intel_crtc(crtc);
4546                 intel_fb = to_intel_framebuffer(crtc->fb);
4547                 if (intel_fb->obj == obj) {
4548                         if (!intel_crtc->busy) {
4549                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4550                                         u32 fw_blc_self;
4551
4552                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4553                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4554                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4555                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4556                                 }
4557                                 /* Non-busy -> busy, upclock */
4558                                 intel_increase_pllclock(crtc, true);
4559                                 intel_crtc->busy = true;
4560                         } else {
4561                                 /* Busy -> busy, put off timer */
4562                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4563                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4564                         }
4565                 }
4566         }
4567 }
4568
4569 static void intel_crtc_destroy(struct drm_crtc *crtc)
4570 {
4571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572
4573         drm_crtc_cleanup(crtc);
4574         kfree(intel_crtc);
4575 }
4576
4577 struct intel_unpin_work {
4578         struct work_struct work;
4579         struct drm_device *dev;
4580         struct drm_gem_object *old_fb_obj;
4581         struct drm_gem_object *pending_flip_obj;
4582         struct drm_pending_vblank_event *event;
4583         int pending;
4584 };
4585
4586 static void intel_unpin_work_fn(struct work_struct *__work)
4587 {
4588         struct intel_unpin_work *work =
4589                 container_of(__work, struct intel_unpin_work, work);
4590
4591         mutex_lock(&work->dev->struct_mutex);
4592         i915_gem_object_unpin(work->old_fb_obj);
4593         drm_gem_object_unreference(work->pending_flip_obj);
4594         drm_gem_object_unreference(work->old_fb_obj);
4595         mutex_unlock(&work->dev->struct_mutex);
4596         kfree(work);
4597 }
4598
4599 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4600 {
4601         drm_i915_private_t *dev_priv = dev->dev_private;
4602         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604         struct intel_unpin_work *work;
4605         struct drm_i915_gem_object *obj_priv;
4606         struct drm_pending_vblank_event *e;
4607         struct timeval now;
4608         unsigned long flags;
4609
4610         /* Ignore early vblank irqs */
4611         if (intel_crtc == NULL)
4612                 return;
4613
4614         spin_lock_irqsave(&dev->event_lock, flags);
4615         work = intel_crtc->unpin_work;
4616         if (work == NULL || !work->pending) {
4617                 spin_unlock_irqrestore(&dev->event_lock, flags);
4618                 return;
4619         }
4620
4621         intel_crtc->unpin_work = NULL;
4622         drm_vblank_put(dev, intel_crtc->pipe);
4623
4624         if (work->event) {
4625                 e = work->event;
4626                 do_gettimeofday(&now);
4627                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4628                 e->event.tv_sec = now.tv_sec;
4629                 e->event.tv_usec = now.tv_usec;
4630                 list_add_tail(&e->base.link,
4631                               &e->base.file_priv->event_list);
4632                 wake_up_interruptible(&e->base.file_priv->event_wait);
4633         }
4634
4635         spin_unlock_irqrestore(&dev->event_lock, flags);
4636
4637         obj_priv = to_intel_bo(work->pending_flip_obj);
4638
4639         /* Initial scanout buffer will have a 0 pending flip count */
4640         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4641             atomic_dec_and_test(&obj_priv->pending_flip))
4642                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4643         schedule_work(&work->work);
4644 }
4645
4646 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4647 {
4648         drm_i915_private_t *dev_priv = dev->dev_private;
4649         struct intel_crtc *intel_crtc =
4650                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4651         unsigned long flags;
4652
4653         spin_lock_irqsave(&dev->event_lock, flags);
4654         if (intel_crtc->unpin_work) {
4655                 intel_crtc->unpin_work->pending = 1;
4656         } else {
4657                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4658         }
4659         spin_unlock_irqrestore(&dev->event_lock, flags);
4660 }
4661
4662 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4663                                 struct drm_framebuffer *fb,
4664                                 struct drm_pending_vblank_event *event)
4665 {
4666         struct drm_device *dev = crtc->dev;
4667         struct drm_i915_private *dev_priv = dev->dev_private;
4668         struct intel_framebuffer *intel_fb;
4669         struct drm_i915_gem_object *obj_priv;
4670         struct drm_gem_object *obj;
4671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4672         struct intel_unpin_work *work;
4673         unsigned long flags;
4674         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4675         int ret, pipesrc;
4676
4677         work = kzalloc(sizeof *work, GFP_KERNEL);
4678         if (work == NULL)
4679                 return -ENOMEM;
4680
4681         work->event = event;
4682         work->dev = crtc->dev;
4683         intel_fb = to_intel_framebuffer(crtc->fb);
4684         work->old_fb_obj = intel_fb->obj;
4685         INIT_WORK(&work->work, intel_unpin_work_fn);
4686
4687         /* We borrow the event spin lock for protecting unpin_work */
4688         spin_lock_irqsave(&dev->event_lock, flags);
4689         if (intel_crtc->unpin_work) {
4690                 spin_unlock_irqrestore(&dev->event_lock, flags);
4691                 kfree(work);
4692
4693                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4694                 return -EBUSY;
4695         }
4696         intel_crtc->unpin_work = work;
4697         spin_unlock_irqrestore(&dev->event_lock, flags);
4698
4699         intel_fb = to_intel_framebuffer(fb);
4700         obj = intel_fb->obj;
4701
4702         mutex_lock(&dev->struct_mutex);
4703         ret = intel_pin_and_fence_fb_obj(dev, obj);
4704         if (ret != 0) {
4705                 mutex_unlock(&dev->struct_mutex);
4706
4707                 spin_lock_irqsave(&dev->event_lock, flags);
4708                 intel_crtc->unpin_work = NULL;
4709                 spin_unlock_irqrestore(&dev->event_lock, flags);
4710
4711                 kfree(work);
4712
4713                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4714                                  to_intel_bo(obj));
4715                 return ret;
4716         }
4717
4718         /* Reference the objects for the scheduled work. */
4719         drm_gem_object_reference(work->old_fb_obj);
4720         drm_gem_object_reference(obj);
4721
4722         crtc->fb = fb;
4723         i915_gem_object_flush_write_domain(obj);
4724         drm_vblank_get(dev, intel_crtc->pipe);
4725         obj_priv = to_intel_bo(obj);
4726         atomic_inc(&obj_priv->pending_flip);
4727         work->pending_flip_obj = obj;
4728
4729         BEGIN_LP_RING(4);
4730         OUT_RING(MI_DISPLAY_FLIP |
4731                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4732         OUT_RING(fb->pitch);
4733         if (IS_I965G(dev)) {
4734                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4735                 pipesrc = I915_READ(pipesrc_reg); 
4736                 OUT_RING(pipesrc & 0x0fff0fff);
4737         } else {
4738                 OUT_RING(obj_priv->gtt_offset);
4739                 OUT_RING(MI_NOOP);
4740         }
4741         ADVANCE_LP_RING();
4742
4743         mutex_unlock(&dev->struct_mutex);
4744
4745         return 0;
4746 }
4747
4748 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4749         .dpms = intel_crtc_dpms,
4750         .mode_fixup = intel_crtc_mode_fixup,
4751         .mode_set = intel_crtc_mode_set,
4752         .mode_set_base = intel_pipe_set_base,
4753         .prepare = intel_crtc_prepare,
4754         .commit = intel_crtc_commit,
4755         .load_lut = intel_crtc_load_lut,
4756 };
4757
4758 static const struct drm_crtc_funcs intel_crtc_funcs = {
4759         .cursor_set = intel_crtc_cursor_set,
4760         .cursor_move = intel_crtc_cursor_move,
4761         .gamma_set = intel_crtc_gamma_set,
4762         .set_config = drm_crtc_helper_set_config,
4763         .destroy = intel_crtc_destroy,
4764         .page_flip = intel_crtc_page_flip,
4765 };
4766
4767
4768 static void intel_crtc_init(struct drm_device *dev, int pipe)
4769 {
4770         drm_i915_private_t *dev_priv = dev->dev_private;
4771         struct intel_crtc *intel_crtc;
4772         int i;
4773
4774         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4775         if (intel_crtc == NULL)
4776                 return;
4777
4778         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4779
4780         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4781         intel_crtc->pipe = pipe;
4782         intel_crtc->plane = pipe;
4783         for (i = 0; i < 256; i++) {
4784                 intel_crtc->lut_r[i] = i;
4785                 intel_crtc->lut_g[i] = i;
4786                 intel_crtc->lut_b[i] = i;
4787         }
4788
4789         /* Swap pipes & planes for FBC on pre-965 */
4790         intel_crtc->pipe = pipe;
4791         intel_crtc->plane = pipe;
4792         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4793                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4794                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4795         }
4796
4797         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4798                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4799         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4800         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4801
4802         intel_crtc->cursor_addr = 0;
4803         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4804         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4805
4806         intel_crtc->busy = false;
4807
4808         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4809                     (unsigned long)intel_crtc);
4810 }
4811
4812 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4813                                 struct drm_file *file_priv)
4814 {
4815         drm_i915_private_t *dev_priv = dev->dev_private;
4816         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4817         struct drm_mode_object *drmmode_obj;
4818         struct intel_crtc *crtc;
4819
4820         if (!dev_priv) {
4821                 DRM_ERROR("called with no initialization\n");
4822                 return -EINVAL;
4823         }
4824
4825         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4826                         DRM_MODE_OBJECT_CRTC);
4827
4828         if (!drmmode_obj) {
4829                 DRM_ERROR("no such CRTC id\n");
4830                 return -EINVAL;
4831         }
4832
4833         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4834         pipe_from_crtc_id->pipe = crtc->pipe;
4835
4836         return 0;
4837 }
4838
4839 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4840 {
4841         struct drm_crtc *crtc = NULL;
4842
4843         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4844                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4845                 if (intel_crtc->pipe == pipe)
4846                         break;
4847         }
4848         return crtc;
4849 }
4850
4851 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4852 {
4853         int index_mask = 0;
4854         struct drm_encoder *encoder;
4855         int entry = 0;
4856
4857         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4858                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4859                 if (type_mask & intel_encoder->clone_mask)
4860                         index_mask |= (1 << entry);
4861                 entry++;
4862         }
4863         return index_mask;
4864 }
4865
4866
4867 static void intel_setup_outputs(struct drm_device *dev)
4868 {
4869         struct drm_i915_private *dev_priv = dev->dev_private;
4870         struct drm_encoder *encoder;
4871
4872         intel_crt_init(dev);
4873
4874         /* Set up integrated LVDS */
4875         if (IS_MOBILE(dev) && !IS_I830(dev))
4876                 intel_lvds_init(dev);
4877
4878         if (HAS_PCH_SPLIT(dev)) {
4879                 int found;
4880
4881                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4882                         intel_dp_init(dev, DP_A);
4883
4884                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4885                         /* PCH SDVOB multiplex with HDMIB */
4886                         found = intel_sdvo_init(dev, PCH_SDVOB);
4887                         if (!found)
4888                                 intel_hdmi_init(dev, HDMIB);
4889                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4890                                 intel_dp_init(dev, PCH_DP_B);
4891                 }
4892
4893                 if (I915_READ(HDMIC) & PORT_DETECTED)
4894                         intel_hdmi_init(dev, HDMIC);
4895
4896                 if (I915_READ(HDMID) & PORT_DETECTED)
4897                         intel_hdmi_init(dev, HDMID);
4898
4899                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4900                         intel_dp_init(dev, PCH_DP_C);
4901
4902                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4903                         intel_dp_init(dev, PCH_DP_D);
4904
4905         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4906                 bool found = false;
4907
4908                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4909                         DRM_DEBUG_KMS("probing SDVOB\n");
4910                         found = intel_sdvo_init(dev, SDVOB);
4911                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4912                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4913                                 intel_hdmi_init(dev, SDVOB);
4914                         }
4915
4916                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4917                                 DRM_DEBUG_KMS("probing DP_B\n");
4918                                 intel_dp_init(dev, DP_B);
4919                         }
4920                 }
4921
4922                 /* Before G4X SDVOC doesn't have its own detect register */
4923
4924                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4925                         DRM_DEBUG_KMS("probing SDVOC\n");
4926                         found = intel_sdvo_init(dev, SDVOC);
4927                 }
4928
4929                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4930
4931                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4932                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4933                                 intel_hdmi_init(dev, SDVOC);
4934                         }
4935                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4936                                 DRM_DEBUG_KMS("probing DP_C\n");
4937                                 intel_dp_init(dev, DP_C);
4938                         }
4939                 }
4940
4941                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4942                     (I915_READ(DP_D) & DP_DETECTED)) {
4943                         DRM_DEBUG_KMS("probing DP_D\n");
4944                         intel_dp_init(dev, DP_D);
4945                 }
4946         } else if (IS_GEN2(dev))
4947                 intel_dvo_init(dev);
4948
4949         if (SUPPORTS_TV(dev))
4950                 intel_tv_init(dev);
4951
4952         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4953                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4954
4955                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4956                 encoder->possible_clones = intel_encoder_clones(dev,
4957                                                 intel_encoder->clone_mask);
4958         }
4959 }
4960
4961 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4962 {
4963         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4964
4965         drm_framebuffer_cleanup(fb);
4966         drm_gem_object_unreference_unlocked(intel_fb->obj);
4967
4968         kfree(intel_fb);
4969 }
4970
4971 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4972                                                 struct drm_file *file_priv,
4973                                                 unsigned int *handle)
4974 {
4975         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4976         struct drm_gem_object *object = intel_fb->obj;
4977
4978         return drm_gem_handle_create(file_priv, object, handle);
4979 }
4980
4981 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4982         .destroy = intel_user_framebuffer_destroy,
4983         .create_handle = intel_user_framebuffer_create_handle,
4984 };
4985
4986 int intel_framebuffer_init(struct drm_device *dev,
4987                            struct intel_framebuffer *intel_fb,
4988                            struct drm_mode_fb_cmd *mode_cmd,
4989                            struct drm_gem_object *obj)
4990 {
4991         int ret;
4992
4993         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4994         if (ret) {
4995                 DRM_ERROR("framebuffer init failed %d\n", ret);
4996                 return ret;
4997         }
4998
4999         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5000         intel_fb->obj = obj;
5001         return 0;
5002 }
5003
5004 static struct drm_framebuffer *
5005 intel_user_framebuffer_create(struct drm_device *dev,
5006                               struct drm_file *filp,
5007                               struct drm_mode_fb_cmd *mode_cmd)
5008 {
5009         struct drm_gem_object *obj;
5010         struct intel_framebuffer *intel_fb;
5011         int ret;
5012
5013         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5014         if (!obj)
5015                 return NULL;
5016
5017         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5018         if (!intel_fb)
5019                 return NULL;
5020
5021         ret = intel_framebuffer_init(dev, intel_fb,
5022                                      mode_cmd, obj);
5023         if (ret) {
5024                 drm_gem_object_unreference_unlocked(obj);
5025                 kfree(intel_fb);
5026                 return NULL;
5027         }
5028
5029         return &intel_fb->base;
5030 }
5031
5032 static const struct drm_mode_config_funcs intel_mode_funcs = {
5033         .fb_create = intel_user_framebuffer_create,
5034         .output_poll_changed = intel_fb_output_poll_changed,
5035 };
5036
5037 static struct drm_gem_object *
5038 intel_alloc_power_context(struct drm_device *dev)
5039 {
5040         struct drm_gem_object *pwrctx;
5041         int ret;
5042
5043         pwrctx = i915_gem_alloc_object(dev, 4096);
5044         if (!pwrctx) {
5045                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5046                 return NULL;
5047         }
5048
5049         mutex_lock(&dev->struct_mutex);
5050         ret = i915_gem_object_pin(pwrctx, 4096);
5051         if (ret) {
5052                 DRM_ERROR("failed to pin power context: %d\n", ret);
5053                 goto err_unref;
5054         }
5055
5056         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5057         if (ret) {
5058                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5059                 goto err_unpin;
5060         }
5061         mutex_unlock(&dev->struct_mutex);
5062
5063         return pwrctx;
5064
5065 err_unpin:
5066         i915_gem_object_unpin(pwrctx);
5067 err_unref:
5068         drm_gem_object_unreference(pwrctx);
5069         mutex_unlock(&dev->struct_mutex);
5070         return NULL;
5071 }
5072
5073 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5074 {
5075         struct drm_i915_private *dev_priv = dev->dev_private;
5076         u16 rgvswctl;
5077
5078         rgvswctl = I915_READ16(MEMSWCTL);
5079         if (rgvswctl & MEMCTL_CMD_STS) {
5080                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5081                 return false; /* still busy with another command */
5082         }
5083
5084         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5085                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5086         I915_WRITE16(MEMSWCTL, rgvswctl);
5087         POSTING_READ16(MEMSWCTL);
5088
5089         rgvswctl |= MEMCTL_CMD_STS;
5090         I915_WRITE16(MEMSWCTL, rgvswctl);
5091
5092         return true;
5093 }
5094
5095 void ironlake_enable_drps(struct drm_device *dev)
5096 {
5097         struct drm_i915_private *dev_priv = dev->dev_private;
5098         u32 rgvmodectl = I915_READ(MEMMODECTL);
5099         u8 fmax, fmin, fstart, vstart;
5100         int i = 0;
5101
5102         /* 100ms RC evaluation intervals */
5103         I915_WRITE(RCUPEI, 100000);
5104         I915_WRITE(RCDNEI, 100000);
5105
5106         /* Set max/min thresholds to 90ms and 80ms respectively */
5107         I915_WRITE(RCBMAXAVG, 90000);
5108         I915_WRITE(RCBMINAVG, 80000);
5109
5110         I915_WRITE(MEMIHYST, 1);
5111
5112         /* Set up min, max, and cur for interrupt handling */
5113         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5114         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5115         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5116                 MEMMODE_FSTART_SHIFT;
5117         fstart = fmax;
5118
5119         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5120                 PXVFREQ_PX_SHIFT;
5121
5122         dev_priv->fmax = fstart; /* IPS callback will increase this */
5123         dev_priv->fstart = fstart;
5124
5125         dev_priv->max_delay = fmax;
5126         dev_priv->min_delay = fmin;
5127         dev_priv->cur_delay = fstart;
5128
5129         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5130                          fstart);
5131
5132         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5133
5134         /*
5135          * Interrupts will be enabled in ironlake_irq_postinstall
5136          */
5137
5138         I915_WRITE(VIDSTART, vstart);
5139         POSTING_READ(VIDSTART);
5140
5141         rgvmodectl |= MEMMODE_SWMODE_EN;
5142         I915_WRITE(MEMMODECTL, rgvmodectl);
5143
5144         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5145                 if (i++ > 100) {
5146                         DRM_ERROR("stuck trying to change perf mode\n");
5147                         break;
5148                 }
5149                 msleep(1);
5150         }
5151         msleep(1);
5152
5153         ironlake_set_drps(dev, fstart);
5154
5155         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5156                 I915_READ(0x112e0);
5157         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5158         dev_priv->last_count2 = I915_READ(0x112f4);
5159         getrawmonotonic(&dev_priv->last_time2);
5160 }
5161
5162 void ironlake_disable_drps(struct drm_device *dev)
5163 {
5164         struct drm_i915_private *dev_priv = dev->dev_private;
5165         u16 rgvswctl = I915_READ16(MEMSWCTL);
5166
5167         /* Ack interrupts, disable EFC interrupt */
5168         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5169         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5170         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5171         I915_WRITE(DEIIR, DE_PCU_EVENT);
5172         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5173
5174         /* Go back to the starting frequency */
5175         ironlake_set_drps(dev, dev_priv->fstart);
5176         msleep(1);
5177         rgvswctl |= MEMCTL_CMD_STS;
5178         I915_WRITE(MEMSWCTL, rgvswctl);
5179         msleep(1);
5180
5181 }
5182
5183 static unsigned long intel_pxfreq(u32 vidfreq)
5184 {
5185         unsigned long freq;
5186         int div = (vidfreq & 0x3f0000) >> 16;
5187         int post = (vidfreq & 0x3000) >> 12;
5188         int pre = (vidfreq & 0x7);
5189
5190         if (!pre)
5191                 return 0;
5192
5193         freq = ((div * 133333) / ((1<<post) * pre));
5194
5195         return freq;
5196 }
5197
5198 void intel_init_emon(struct drm_device *dev)
5199 {
5200         struct drm_i915_private *dev_priv = dev->dev_private;
5201         u32 lcfuse;
5202         u8 pxw[16];
5203         int i;
5204
5205         /* Disable to program */
5206         I915_WRITE(ECR, 0);
5207         POSTING_READ(ECR);
5208
5209         /* Program energy weights for various events */
5210         I915_WRITE(SDEW, 0x15040d00);
5211         I915_WRITE(CSIEW0, 0x007f0000);
5212         I915_WRITE(CSIEW1, 0x1e220004);
5213         I915_WRITE(CSIEW2, 0x04000004);
5214
5215         for (i = 0; i < 5; i++)
5216                 I915_WRITE(PEW + (i * 4), 0);
5217         for (i = 0; i < 3; i++)
5218                 I915_WRITE(DEW + (i * 4), 0);
5219
5220         /* Program P-state weights to account for frequency power adjustment */
5221         for (i = 0; i < 16; i++) {
5222                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5223                 unsigned long freq = intel_pxfreq(pxvidfreq);
5224                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5225                         PXVFREQ_PX_SHIFT;
5226                 unsigned long val;
5227
5228                 val = vid * vid;
5229                 val *= (freq / 1000);
5230                 val *= 255;
5231                 val /= (127*127*900);
5232                 if (val > 0xff)
5233                         DRM_ERROR("bad pxval: %ld\n", val);
5234                 pxw[i] = val;
5235         }
5236         /* Render standby states get 0 weight */
5237         pxw[14] = 0;
5238         pxw[15] = 0;
5239
5240         for (i = 0; i < 4; i++) {
5241                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5242                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5243                 I915_WRITE(PXW + (i * 4), val);
5244         }
5245
5246         /* Adjust magic regs to magic values (more experimental results) */
5247         I915_WRITE(OGW0, 0);
5248         I915_WRITE(OGW1, 0);
5249         I915_WRITE(EG0, 0x00007f00);
5250         I915_WRITE(EG1, 0x0000000e);
5251         I915_WRITE(EG2, 0x000e0000);
5252         I915_WRITE(EG3, 0x68000300);
5253         I915_WRITE(EG4, 0x42000000);
5254         I915_WRITE(EG5, 0x00140031);
5255         I915_WRITE(EG6, 0);
5256         I915_WRITE(EG7, 0);
5257
5258         for (i = 0; i < 8; i++)
5259                 I915_WRITE(PXWL + (i * 4), 0);
5260
5261         /* Enable PMON + select events */
5262         I915_WRITE(ECR, 0x80000019);
5263
5264         lcfuse = I915_READ(LCFUSE02);
5265
5266         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5267 }
5268
5269 void intel_init_clock_gating(struct drm_device *dev)
5270 {
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272
5273         /*
5274          * Disable clock gating reported to work incorrectly according to the
5275          * specs, but enable as much else as we can.
5276          */
5277         if (HAS_PCH_SPLIT(dev)) {
5278                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5279
5280                 if (IS_IRONLAKE(dev)) {
5281                         /* Required for FBC */
5282                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5283                         /* Required for CxSR */
5284                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5285
5286                         I915_WRITE(PCH_3DCGDIS0,
5287                                    MARIUNIT_CLOCK_GATE_DISABLE |
5288                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5289                 }
5290
5291                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5292
5293                 /*
5294                  * According to the spec the following bits should be set in
5295                  * order to enable memory self-refresh
5296                  * The bit 22/21 of 0x42004
5297                  * The bit 5 of 0x42020
5298                  * The bit 15 of 0x45000
5299                  */
5300                 if (IS_IRONLAKE(dev)) {
5301                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5302                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5303                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5304                         I915_WRITE(ILK_DSPCLK_GATE,
5305                                         (I915_READ(ILK_DSPCLK_GATE) |
5306                                                 ILK_DPARB_CLK_GATE));
5307                         I915_WRITE(DISP_ARB_CTL,
5308                                         (I915_READ(DISP_ARB_CTL) |
5309                                                 DISP_FBC_WM_DIS));
5310                 }
5311                 return;
5312         } else if (IS_G4X(dev)) {
5313                 uint32_t dspclk_gate;
5314                 I915_WRITE(RENCLK_GATE_D1, 0);
5315                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5316                        GS_UNIT_CLOCK_GATE_DISABLE |
5317                        CL_UNIT_CLOCK_GATE_DISABLE);
5318                 I915_WRITE(RAMCLK_GATE_D, 0);
5319                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5320                         OVRUNIT_CLOCK_GATE_DISABLE |
5321                         OVCUNIT_CLOCK_GATE_DISABLE;
5322                 if (IS_GM45(dev))
5323                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5324                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5325         } else if (IS_I965GM(dev)) {
5326                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5327                 I915_WRITE(RENCLK_GATE_D2, 0);
5328                 I915_WRITE(DSPCLK_GATE_D, 0);
5329                 I915_WRITE(RAMCLK_GATE_D, 0);
5330                 I915_WRITE16(DEUC, 0);
5331         } else if (IS_I965G(dev)) {
5332                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5333                        I965_RCC_CLOCK_GATE_DISABLE |
5334                        I965_RCPB_CLOCK_GATE_DISABLE |
5335                        I965_ISC_CLOCK_GATE_DISABLE |
5336                        I965_FBC_CLOCK_GATE_DISABLE);
5337                 I915_WRITE(RENCLK_GATE_D2, 0);
5338         } else if (IS_I9XX(dev)) {
5339                 u32 dstate = I915_READ(D_STATE);
5340
5341                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5342                         DSTATE_DOT_CLOCK_GATING;
5343                 I915_WRITE(D_STATE, dstate);
5344         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5345                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5346         } else if (IS_I830(dev)) {
5347                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5348         }
5349
5350         /*
5351          * GPU can automatically power down the render unit if given a page
5352          * to save state.
5353          */
5354         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5355                 struct drm_i915_gem_object *obj_priv = NULL;
5356
5357                 if (dev_priv->pwrctx) {
5358                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5359                 } else {
5360                         struct drm_gem_object *pwrctx;
5361
5362                         pwrctx = intel_alloc_power_context(dev);
5363                         if (pwrctx) {
5364                                 dev_priv->pwrctx = pwrctx;
5365                                 obj_priv = to_intel_bo(pwrctx);
5366                         }
5367                 }
5368
5369                 if (obj_priv) {
5370                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5371                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5372                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5373                 }
5374         }
5375 }
5376
5377 /* Set up chip specific display functions */
5378 static void intel_init_display(struct drm_device *dev)
5379 {
5380         struct drm_i915_private *dev_priv = dev->dev_private;
5381
5382         /* We always want a DPMS function */
5383         if (HAS_PCH_SPLIT(dev))
5384                 dev_priv->display.dpms = ironlake_crtc_dpms;
5385         else
5386                 dev_priv->display.dpms = i9xx_crtc_dpms;
5387
5388         if (I915_HAS_FBC(dev)) {
5389                 if (IS_GM45(dev)) {
5390                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5391                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5392                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5393                 } else if (IS_I965GM(dev)) {
5394                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5395                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5396                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5397                 }
5398                 /* 855GM needs testing */
5399         }
5400
5401         /* Returns the core display clock speed */
5402         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5403                 dev_priv->display.get_display_clock_speed =
5404                         i945_get_display_clock_speed;
5405         else if (IS_I915G(dev))
5406                 dev_priv->display.get_display_clock_speed =
5407                         i915_get_display_clock_speed;
5408         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5409                 dev_priv->display.get_display_clock_speed =
5410                         i9xx_misc_get_display_clock_speed;
5411         else if (IS_I915GM(dev))
5412                 dev_priv->display.get_display_clock_speed =
5413                         i915gm_get_display_clock_speed;
5414         else if (IS_I865G(dev))
5415                 dev_priv->display.get_display_clock_speed =
5416                         i865_get_display_clock_speed;
5417         else if (IS_I85X(dev))
5418                 dev_priv->display.get_display_clock_speed =
5419                         i855_get_display_clock_speed;
5420         else /* 852, 830 */
5421                 dev_priv->display.get_display_clock_speed =
5422                         i830_get_display_clock_speed;
5423
5424         /* For FIFO watermark updates */
5425         if (HAS_PCH_SPLIT(dev)) {
5426                 if (IS_IRONLAKE(dev)) {
5427                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5428                                 dev_priv->display.update_wm = ironlake_update_wm;
5429                         else {
5430                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5431                                               "Disable CxSR\n");
5432                                 dev_priv->display.update_wm = NULL;
5433                         }
5434                 } else
5435                         dev_priv->display.update_wm = NULL;
5436         } else if (IS_PINEVIEW(dev)) {
5437                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5438                                             dev_priv->is_ddr3,
5439                                             dev_priv->fsb_freq,
5440                                             dev_priv->mem_freq)) {
5441                         DRM_INFO("failed to find known CxSR latency "
5442                                  "(found ddr%s fsb freq %d, mem freq %d), "
5443                                  "disabling CxSR\n",
5444                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5445                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5446                         /* Disable CxSR and never update its watermark again */
5447                         pineview_disable_cxsr(dev);
5448                         dev_priv->display.update_wm = NULL;
5449                 } else
5450                         dev_priv->display.update_wm = pineview_update_wm;
5451         } else if (IS_G4X(dev))
5452                 dev_priv->display.update_wm = g4x_update_wm;
5453         else if (IS_I965G(dev))
5454                 dev_priv->display.update_wm = i965_update_wm;
5455         else if (IS_I9XX(dev)) {
5456                 dev_priv->display.update_wm = i9xx_update_wm;
5457                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5458         } else if (IS_I85X(dev)) {
5459                 dev_priv->display.update_wm = i9xx_update_wm;
5460                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5461         } else {
5462                 dev_priv->display.update_wm = i830_update_wm;
5463                 if (IS_845G(dev))
5464                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5465                 else
5466                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5467         }
5468 }
5469
5470 void intel_modeset_init(struct drm_device *dev)
5471 {
5472         struct drm_i915_private *dev_priv = dev->dev_private;
5473         int num_pipe;
5474         int i;
5475
5476         drm_mode_config_init(dev);
5477
5478         dev->mode_config.min_width = 0;
5479         dev->mode_config.min_height = 0;
5480
5481         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5482
5483         intel_init_display(dev);
5484
5485         if (IS_I965G(dev)) {
5486                 dev->mode_config.max_width = 8192;
5487                 dev->mode_config.max_height = 8192;
5488         } else if (IS_I9XX(dev)) {
5489                 dev->mode_config.max_width = 4096;
5490                 dev->mode_config.max_height = 4096;
5491         } else {
5492                 dev->mode_config.max_width = 2048;
5493                 dev->mode_config.max_height = 2048;
5494         }
5495
5496         /* set memory base */
5497         if (IS_I9XX(dev))
5498                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5499         else
5500                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5501
5502         if (IS_MOBILE(dev) || IS_I9XX(dev))
5503                 num_pipe = 2;
5504         else
5505                 num_pipe = 1;
5506         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5507                   num_pipe, num_pipe > 1 ? "s" : "");
5508
5509         for (i = 0; i < num_pipe; i++) {
5510                 intel_crtc_init(dev, i);
5511         }
5512
5513         intel_setup_outputs(dev);
5514
5515         intel_init_clock_gating(dev);
5516
5517         if (IS_IRONLAKE_M(dev)) {
5518                 ironlake_enable_drps(dev);
5519                 intel_init_emon(dev);
5520         }
5521
5522         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5523         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5524                     (unsigned long)dev);
5525
5526         intel_setup_overlay(dev);
5527 }
5528
5529 void intel_modeset_cleanup(struct drm_device *dev)
5530 {
5531         struct drm_i915_private *dev_priv = dev->dev_private;
5532         struct drm_crtc *crtc;
5533         struct intel_crtc *intel_crtc;
5534
5535         mutex_lock(&dev->struct_mutex);
5536
5537         drm_kms_helper_poll_fini(dev);
5538         intel_fbdev_fini(dev);
5539
5540         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5541                 /* Skip inactive CRTCs */
5542                 if (!crtc->fb)
5543                         continue;
5544
5545                 intel_crtc = to_intel_crtc(crtc);
5546                 intel_increase_pllclock(crtc, false);
5547                 del_timer_sync(&intel_crtc->idle_timer);
5548         }
5549
5550         del_timer_sync(&dev_priv->idle_timer);
5551
5552         if (dev_priv->display.disable_fbc)
5553                 dev_priv->display.disable_fbc(dev);
5554
5555         if (dev_priv->pwrctx) {
5556                 struct drm_i915_gem_object *obj_priv;
5557
5558                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5559                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5560                 I915_READ(PWRCTXA);
5561                 i915_gem_object_unpin(dev_priv->pwrctx);
5562                 drm_gem_object_unreference(dev_priv->pwrctx);
5563         }
5564
5565         if (IS_IRONLAKE_M(dev))
5566                 ironlake_disable_drps(dev);
5567
5568         mutex_unlock(&dev->struct_mutex);
5569
5570         drm_mode_config_cleanup(dev);
5571 }
5572
5573
5574 /*
5575  * Return which encoder is currently attached for connector.
5576  */
5577 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5578 {
5579         struct drm_mode_object *obj;
5580         struct drm_encoder *encoder;
5581         int i;
5582
5583         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5584                 if (connector->encoder_ids[i] == 0)
5585                         break;
5586
5587                 obj = drm_mode_object_find(connector->dev,
5588                                            connector->encoder_ids[i],
5589                                            DRM_MODE_OBJECT_ENCODER);
5590                 if (!obj)
5591                         continue;
5592
5593                 encoder = obj_to_encoder(obj);
5594                 return encoder;
5595         }
5596         return NULL;
5597 }
5598
5599 /*
5600  * set vga decode state - true == enable VGA decode
5601  */
5602 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5603 {
5604         struct drm_i915_private *dev_priv = dev->dev_private;
5605         u16 gmch_ctrl;
5606
5607         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5608         if (state)
5609                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5610         else
5611                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5612         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5613         return 0;
5614 }