drm/i915: Clear the LVDS pipe B select bit when moving the LVDS to pipe A.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73 };
74
75 #define I8XX_DOT_MIN              25000
76 #define I8XX_DOT_MAX             350000
77 #define I8XX_VCO_MIN             930000
78 #define I8XX_VCO_MAX            1400000
79 #define I8XX_N_MIN                    3
80 #define I8XX_N_MAX                   16
81 #define I8XX_M_MIN                   96
82 #define I8XX_M_MAX                  140
83 #define I8XX_M1_MIN                  18
84 #define I8XX_M1_MAX                  26
85 #define I8XX_M2_MIN                   6
86 #define I8XX_M2_MAX                  16
87 #define I8XX_P_MIN                    4
88 #define I8XX_P_MAX                  128
89 #define I8XX_P1_MIN                   2
90 #define I8XX_P1_MAX                  33
91 #define I8XX_P1_LVDS_MIN              1
92 #define I8XX_P1_LVDS_MAX              6
93 #define I8XX_P2_SLOW                  4
94 #define I8XX_P2_FAST                  2
95 #define I8XX_P2_LVDS_SLOW             14
96 #define I8XX_P2_LVDS_FAST             7
97 #define I8XX_P2_SLOW_LIMIT       165000
98
99 #define I9XX_DOT_MIN              20000
100 #define I9XX_DOT_MAX             400000
101 #define I9XX_VCO_MIN            1400000
102 #define I9XX_VCO_MAX            2800000
103 #define PINEVIEW_VCO_MIN                1700000
104 #define PINEVIEW_VCO_MAX                3500000
105 #define I9XX_N_MIN                    1
106 #define I9XX_N_MAX                    6
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN                3
109 #define PINEVIEW_N_MAX                6
110 #define I9XX_M_MIN                   70
111 #define I9XX_M_MAX                  120
112 #define PINEVIEW_M_MIN                2
113 #define PINEVIEW_M_MAX              256
114 #define I9XX_M1_MIN                  10
115 #define I9XX_M1_MAX                  22
116 #define I9XX_M2_MIN                   5
117 #define I9XX_M2_MAX                   9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN               0
120 #define PINEVIEW_M1_MAX               0
121 #define PINEVIEW_M2_MIN               0
122 #define PINEVIEW_M2_MAX               254
123 #define I9XX_P_SDVO_DAC_MIN           5
124 #define I9XX_P_SDVO_DAC_MAX          80
125 #define I9XX_P_LVDS_MIN               7
126 #define I9XX_P_LVDS_MAX              98
127 #define PINEVIEW_P_LVDS_MIN                   7
128 #define PINEVIEW_P_LVDS_MAX                  112
129 #define I9XX_P1_MIN                   1
130 #define I9XX_P1_MAX                   8
131 #define I9XX_P2_SDVO_DAC_SLOW                10
132 #define I9XX_P2_SDVO_DAC_FAST                 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
134 #define I9XX_P2_LVDS_SLOW                    14
135 #define I9XX_P2_LVDS_FAST                     7
136 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
137
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN           25000
140 #define G4X_DOT_SDVO_MAX           270000
141 #define G4X_VCO_MIN                1750000
142 #define G4X_VCO_MAX                3500000
143 #define G4X_N_SDVO_MIN             1
144 #define G4X_N_SDVO_MAX             4
145 #define G4X_M_SDVO_MIN             104
146 #define G4X_M_SDVO_MAX             138
147 #define G4X_M1_SDVO_MIN            17
148 #define G4X_M1_SDVO_MAX            23
149 #define G4X_M2_SDVO_MIN            5
150 #define G4X_M2_SDVO_MAX            11
151 #define G4X_P_SDVO_MIN             10
152 #define G4X_P_SDVO_MAX             30
153 #define G4X_P1_SDVO_MIN            1
154 #define G4X_P1_SDVO_MAX            3
155 #define G4X_P2_SDVO_SLOW           10
156 #define G4X_P2_SDVO_FAST           10
157 #define G4X_P2_SDVO_LIMIT          270000
158
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN           22000
161 #define G4X_DOT_HDMI_DAC_MAX           400000
162 #define G4X_N_HDMI_DAC_MIN             1
163 #define G4X_N_HDMI_DAC_MAX             4
164 #define G4X_M_HDMI_DAC_MIN             104
165 #define G4X_M_HDMI_DAC_MAX             138
166 #define G4X_M1_HDMI_DAC_MIN            16
167 #define G4X_M1_HDMI_DAC_MAX            23
168 #define G4X_M2_HDMI_DAC_MIN            5
169 #define G4X_M2_HDMI_DAC_MAX            11
170 #define G4X_P_HDMI_DAC_MIN             5
171 #define G4X_P_HDMI_DAC_MAX             80
172 #define G4X_P1_HDMI_DAC_MIN            1
173 #define G4X_P1_HDMI_DAC_MAX            8
174 #define G4X_P2_HDMI_DAC_SLOW           10
175 #define G4X_P2_HDMI_DAC_FAST           5
176 #define G4X_P2_HDMI_DAC_LIMIT          165000
177
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
196
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
215
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN           161670
218 #define G4X_DOT_DISPLAY_PORT_MAX           227000
219 #define G4X_N_DISPLAY_PORT_MIN             1
220 #define G4X_N_DISPLAY_PORT_MAX             2
221 #define G4X_M_DISPLAY_PORT_MIN             97
222 #define G4X_M_DISPLAY_PORT_MAX             108
223 #define G4X_M1_DISPLAY_PORT_MIN            0x10
224 #define G4X_M1_DISPLAY_PORT_MAX            0x12
225 #define G4X_M2_DISPLAY_PORT_MIN            0x05
226 #define G4X_M2_DISPLAY_PORT_MAX            0x06
227 #define G4X_P_DISPLAY_PORT_MIN             10
228 #define G4X_P_DISPLAY_PORT_MAX             20
229 #define G4X_P1_DISPLAY_PORT_MIN            1
230 #define G4X_P1_DISPLAY_PORT_MAX            2
231 #define G4X_P2_DISPLAY_PORT_SLOW           10
232 #define G4X_P2_DISPLAY_PORT_FAST           10
233 #define G4X_P2_DISPLAY_PORT_LIMIT          0
234
235 /* Ironlake / Sandybridge */
236 /* as we calculate clock using (register_value + 2) for
237    N/M1/M2, so here the range value for them is (actual_value-2).
238  */
239 #define IRONLAKE_DOT_MIN         25000
240 #define IRONLAKE_DOT_MAX         350000
241 #define IRONLAKE_VCO_MIN         1760000
242 #define IRONLAKE_VCO_MAX         3510000
243 #define IRONLAKE_M1_MIN          12
244 #define IRONLAKE_M1_MAX          22
245 #define IRONLAKE_M2_MIN          5
246 #define IRONLAKE_M2_MAX          9
247 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
248
249 /* We have parameter ranges for different type of outputs. */
250
251 /* DAC & HDMI Refclk 120Mhz */
252 #define IRONLAKE_DAC_N_MIN      1
253 #define IRONLAKE_DAC_N_MAX      5
254 #define IRONLAKE_DAC_M_MIN      79
255 #define IRONLAKE_DAC_M_MAX      127
256 #define IRONLAKE_DAC_P_MIN      5
257 #define IRONLAKE_DAC_P_MAX      80
258 #define IRONLAKE_DAC_P1_MIN     1
259 #define IRONLAKE_DAC_P1_MAX     8
260 #define IRONLAKE_DAC_P2_SLOW    10
261 #define IRONLAKE_DAC_P2_FAST    5
262
263 /* LVDS single-channel 120Mhz refclk */
264 #define IRONLAKE_LVDS_S_N_MIN   1
265 #define IRONLAKE_LVDS_S_N_MAX   3
266 #define IRONLAKE_LVDS_S_M_MIN   79
267 #define IRONLAKE_LVDS_S_M_MAX   118
268 #define IRONLAKE_LVDS_S_P_MIN   28
269 #define IRONLAKE_LVDS_S_P_MAX   112
270 #define IRONLAKE_LVDS_S_P1_MIN  2
271 #define IRONLAKE_LVDS_S_P1_MAX  8
272 #define IRONLAKE_LVDS_S_P2_SLOW 14
273 #define IRONLAKE_LVDS_S_P2_FAST 14
274
275 /* LVDS dual-channel 120Mhz refclk */
276 #define IRONLAKE_LVDS_D_N_MIN   1
277 #define IRONLAKE_LVDS_D_N_MAX   3
278 #define IRONLAKE_LVDS_D_M_MIN   79
279 #define IRONLAKE_LVDS_D_M_MAX   127
280 #define IRONLAKE_LVDS_D_P_MIN   14
281 #define IRONLAKE_LVDS_D_P_MAX   56
282 #define IRONLAKE_LVDS_D_P1_MIN  2
283 #define IRONLAKE_LVDS_D_P1_MAX  8
284 #define IRONLAKE_LVDS_D_P2_SLOW 7
285 #define IRONLAKE_LVDS_D_P2_FAST 7
286
287 /* LVDS single-channel 100Mhz refclk */
288 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
289 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
290 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
291 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
292 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
293 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
294 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
295 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
296 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
297 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
298
299 /* LVDS dual-channel 100Mhz refclk */
300 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
301 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
302 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
303 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
304 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
305 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
306 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
307 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
308 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
309 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
310
311 /* DisplayPort */
312 #define IRONLAKE_DP_N_MIN               1
313 #define IRONLAKE_DP_N_MAX               2
314 #define IRONLAKE_DP_M_MIN               81
315 #define IRONLAKE_DP_M_MAX               90
316 #define IRONLAKE_DP_P_MIN               10
317 #define IRONLAKE_DP_P_MAX               20
318 #define IRONLAKE_DP_P2_FAST             10
319 #define IRONLAKE_DP_P2_SLOW             10
320 #define IRONLAKE_DP_P2_LIMIT            0
321 #define IRONLAKE_DP_P1_MIN              1
322 #define IRONLAKE_DP_P1_MAX              2
323
324 static bool
325 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
326                     int target, int refclk, intel_clock_t *best_clock);
327 static bool
328 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
329                         int target, int refclk, intel_clock_t *best_clock);
330
331 static bool
332 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
333                       int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
336                            int target, int refclk, intel_clock_t *best_clock);
337
338 static const intel_limit_t intel_limits_i8xx_dvo = {
339         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
340         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
341         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
342         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
343         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
344         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
345         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
346         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
347         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
348                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
349         .find_pll = intel_find_best_PLL,
350 };
351
352 static const intel_limit_t intel_limits_i8xx_lvds = {
353         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
354         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
355         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
356         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
357         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
358         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
359         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
360         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
361         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
363         .find_pll = intel_find_best_PLL,
364 };
365         
366 static const intel_limit_t intel_limits_i9xx_sdvo = {
367         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
368         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
369         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
370         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
371         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
372         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
373         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
374         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
375         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
376                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
377         .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_lvds = {
381         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
382         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
383         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
384         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
385         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
386         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
387         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
388         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
389         /* The single-channel range is 25-112Mhz, and dual-channel
390          * is 80-224Mhz.  Prefer single channel as much as possible.
391          */
392         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397     /* below parameter and function is for G4X Chipset Family*/
398 static const intel_limit_t intel_limits_g4x_sdvo = {
399         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
400         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
401         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
402         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
403         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
404         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
405         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
406         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
407         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
408                  .p2_slow = G4X_P2_SDVO_SLOW,
409                  .p2_fast = G4X_P2_SDVO_FAST
410         },
411         .find_pll = intel_g4x_find_best_PLL,
412 };
413
414 static const intel_limit_t intel_limits_g4x_hdmi = {
415         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
416         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
417         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
418         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
419         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
420         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
421         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
422         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
423         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
424                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
425                  .p2_fast = G4X_P2_HDMI_DAC_FAST
426         },
427         .find_pll = intel_g4x_find_best_PLL,
428 };
429
430 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
431         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
432                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
433         .vco = { .min = G4X_VCO_MIN,
434                  .max = G4X_VCO_MAX },
435         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
436                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
437         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
438                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
439         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
440                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
441         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
442                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
443         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
444                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
445         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
447         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
448                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
449                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
450         },
451         .find_pll = intel_g4x_find_best_PLL,
452 };
453
454 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
455         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
456                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
457         .vco = { .min = G4X_VCO_MIN,
458                  .max = G4X_VCO_MAX },
459         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
460                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
461         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
462                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
463         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
464                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
465         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
466                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
467         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
468                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
469         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
471         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
472                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
473                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
474         },
475         .find_pll = intel_g4x_find_best_PLL,
476 };
477
478 static const intel_limit_t intel_limits_g4x_display_port = {
479         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
480                  .max = G4X_DOT_DISPLAY_PORT_MAX },
481         .vco = { .min = G4X_VCO_MIN,
482                  .max = G4X_VCO_MAX},
483         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
484                  .max = G4X_N_DISPLAY_PORT_MAX },
485         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
486                  .max = G4X_M_DISPLAY_PORT_MAX },
487         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
488                  .max = G4X_M1_DISPLAY_PORT_MAX },
489         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
490                  .max = G4X_M2_DISPLAY_PORT_MAX },
491         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
492                  .max = G4X_P_DISPLAY_PORT_MAX },
493         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
494                  .max = G4X_P1_DISPLAY_PORT_MAX},
495         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
496                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
497                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
498         .find_pll = intel_find_pll_g4x_dp,
499 };
500
501 static const intel_limit_t intel_limits_pineview_sdvo = {
502         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
503         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
504         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
505         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
506         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
507         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
508         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
509         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
510         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
511                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
512         .find_pll = intel_find_best_PLL,
513 };
514
515 static const intel_limit_t intel_limits_pineview_lvds = {
516         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
517         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
518         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
519         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
520         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
521         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
522         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
523         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
524         /* Pineview only supports single-channel mode. */
525         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
526                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
527         .find_pll = intel_find_best_PLL,
528 };
529
530 static const intel_limit_t intel_limits_ironlake_dac = {
531         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
532         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
533         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
534         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
535         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
536         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
537         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
538         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
539         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
540                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
541                  .p2_fast = IRONLAKE_DAC_P2_FAST },
542         .find_pll = intel_g4x_find_best_PLL,
543 };
544
545 static const intel_limit_t intel_limits_ironlake_single_lvds = {
546         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
547         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
548         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
549         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
550         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
551         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
552         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
553         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
554         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
555                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
556                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
557         .find_pll = intel_g4x_find_best_PLL,
558 };
559
560 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
561         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
562         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
563         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
564         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
565         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
566         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
567         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
568         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
569         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
570                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
571                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
572         .find_pll = intel_g4x_find_best_PLL,
573 };
574
575 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
576         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
577         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
578         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
579         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
580         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
581         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
582         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
583         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
584         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
585                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
586                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
587         .find_pll = intel_g4x_find_best_PLL,
588 };
589
590 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
591         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
592         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
593         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
594         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
595         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
596         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
597         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
598         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
599         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
600                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
601                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
602         .find_pll = intel_g4x_find_best_PLL,
603 };
604
605 static const intel_limit_t intel_limits_ironlake_display_port = {
606         .dot = { .min = IRONLAKE_DOT_MIN,
607                  .max = IRONLAKE_DOT_MAX },
608         .vco = { .min = IRONLAKE_VCO_MIN,
609                  .max = IRONLAKE_VCO_MAX},
610         .n   = { .min = IRONLAKE_DP_N_MIN,
611                  .max = IRONLAKE_DP_N_MAX },
612         .m   = { .min = IRONLAKE_DP_M_MIN,
613                  .max = IRONLAKE_DP_M_MAX },
614         .m1  = { .min = IRONLAKE_M1_MIN,
615                  .max = IRONLAKE_M1_MAX },
616         .m2  = { .min = IRONLAKE_M2_MIN,
617                  .max = IRONLAKE_M2_MAX },
618         .p   = { .min = IRONLAKE_DP_P_MIN,
619                  .max = IRONLAKE_DP_P_MAX },
620         .p1  = { .min = IRONLAKE_DP_P1_MIN,
621                  .max = IRONLAKE_DP_P1_MAX},
622         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
623                  .p2_slow = IRONLAKE_DP_P2_SLOW,
624                  .p2_fast = IRONLAKE_DP_P2_FAST },
625         .find_pll = intel_find_pll_ironlake_dp,
626 };
627
628 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
629 {
630         struct drm_device *dev = crtc->dev;
631         struct drm_i915_private *dev_priv = dev->dev_private;
632         const intel_limit_t *limit;
633         int refclk = 120;
634
635         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
637                         refclk = 100;
638
639                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
640                     LVDS_CLKB_POWER_UP) {
641                         /* LVDS dual channel */
642                         if (refclk == 100)
643                                 limit = &intel_limits_ironlake_dual_lvds_100m;
644                         else
645                                 limit = &intel_limits_ironlake_dual_lvds;
646                 } else {
647                         if (refclk == 100)
648                                 limit = &intel_limits_ironlake_single_lvds_100m;
649                         else
650                                 limit = &intel_limits_ironlake_single_lvds;
651                 }
652         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
653                         HAS_eDP)
654                 limit = &intel_limits_ironlake_display_port;
655         else
656                 limit = &intel_limits_ironlake_dac;
657
658         return limit;
659 }
660
661 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
662 {
663         struct drm_device *dev = crtc->dev;
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         const intel_limit_t *limit;
666
667         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
668                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
669                     LVDS_CLKB_POWER_UP)
670                         /* LVDS with dual channel */
671                         limit = &intel_limits_g4x_dual_channel_lvds;
672                 else
673                         /* LVDS with dual channel */
674                         limit = &intel_limits_g4x_single_channel_lvds;
675         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
676                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
677                 limit = &intel_limits_g4x_hdmi;
678         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
679                 limit = &intel_limits_g4x_sdvo;
680         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
681                 limit = &intel_limits_g4x_display_port;
682         } else /* The option is for other outputs */
683                 limit = &intel_limits_i9xx_sdvo;
684
685         return limit;
686 }
687
688 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
689 {
690         struct drm_device *dev = crtc->dev;
691         const intel_limit_t *limit;
692
693         if (HAS_PCH_SPLIT(dev))
694                 limit = intel_ironlake_limit(crtc);
695         else if (IS_G4X(dev)) {
696                 limit = intel_g4x_limit(crtc);
697         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
698                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
699                         limit = &intel_limits_i9xx_lvds;
700                 else
701                         limit = &intel_limits_i9xx_sdvo;
702         } else if (IS_PINEVIEW(dev)) {
703                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
704                         limit = &intel_limits_pineview_lvds;
705                 else
706                         limit = &intel_limits_pineview_sdvo;
707         } else {
708                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
709                         limit = &intel_limits_i8xx_lvds;
710                 else
711                         limit = &intel_limits_i8xx_dvo;
712         }
713         return limit;
714 }
715
716 /* m1 is reserved as 0 in Pineview, n is a ring counter */
717 static void pineview_clock(int refclk, intel_clock_t *clock)
718 {
719         clock->m = clock->m2 + 2;
720         clock->p = clock->p1 * clock->p2;
721         clock->vco = refclk * clock->m / clock->n;
722         clock->dot = clock->vco / clock->p;
723 }
724
725 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
726 {
727         if (IS_PINEVIEW(dev)) {
728                 pineview_clock(refclk, clock);
729                 return;
730         }
731         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
732         clock->p = clock->p1 * clock->p2;
733         clock->vco = refclk * clock->m / (clock->n + 2);
734         clock->dot = clock->vco / clock->p;
735 }
736
737 /**
738  * Returns whether any output on the specified pipe is of the specified type
739  */
740 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
741 {
742     struct drm_device *dev = crtc->dev;
743     struct drm_mode_config *mode_config = &dev->mode_config;
744     struct drm_encoder *l_entry;
745
746     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
747             if (l_entry && l_entry->crtc == crtc) {
748                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
749                     if (intel_encoder->type == type)
750                             return true;
751             }
752     }
753     return false;
754 }
755
756 static struct drm_connector *
757 intel_pipe_get_connector (struct drm_crtc *crtc)
758 {
759     struct drm_device *dev = crtc->dev;
760     struct drm_mode_config *mode_config = &dev->mode_config;
761     struct drm_connector *l_entry, *ret = NULL;
762
763     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
764             if (l_entry->encoder &&
765                 l_entry->encoder->crtc == crtc) {
766                     ret = l_entry;
767                     break;
768             }
769     }
770     return ret;
771 }
772
773 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
774 /**
775  * Returns whether the given set of divisors are valid for a given refclk with
776  * the given connectors.
777  */
778
779 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
780 {
781         const intel_limit_t *limit = intel_limit (crtc);
782         struct drm_device *dev = crtc->dev;
783
784         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
785                 INTELPllInvalid ("p1 out of range\n");
786         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
787                 INTELPllInvalid ("p out of range\n");
788         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
789                 INTELPllInvalid ("m2 out of range\n");
790         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
791                 INTELPllInvalid ("m1 out of range\n");
792         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
793                 INTELPllInvalid ("m1 <= m2\n");
794         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
795                 INTELPllInvalid ("m out of range\n");
796         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
797                 INTELPllInvalid ("n out of range\n");
798         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
799                 INTELPllInvalid ("vco out of range\n");
800         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
801          * connector, etc., rather than just a single range.
802          */
803         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
804                 INTELPllInvalid ("dot out of range\n");
805
806         return true;
807 }
808
809 static bool
810 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
811                     int target, int refclk, intel_clock_t *best_clock)
812
813 {
814         struct drm_device *dev = crtc->dev;
815         struct drm_i915_private *dev_priv = dev->dev_private;
816         intel_clock_t clock;
817         int err = target;
818
819         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
820             (I915_READ(LVDS)) != 0) {
821                 /*
822                  * For LVDS, if the panel is on, just rely on its current
823                  * settings for dual-channel.  We haven't figured out how to
824                  * reliably set up different single/dual channel state, if we
825                  * even can.
826                  */
827                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
828                     LVDS_CLKB_POWER_UP)
829                         clock.p2 = limit->p2.p2_fast;
830                 else
831                         clock.p2 = limit->p2.p2_slow;
832         } else {
833                 if (target < limit->p2.dot_limit)
834                         clock.p2 = limit->p2.p2_slow;
835                 else
836                         clock.p2 = limit->p2.p2_fast;
837         }
838
839         memset (best_clock, 0, sizeof (*best_clock));
840
841         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
842              clock.m1++) {
843                 for (clock.m2 = limit->m2.min;
844                      clock.m2 <= limit->m2.max; clock.m2++) {
845                         /* m1 is always 0 in Pineview */
846                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
847                                 break;
848                         for (clock.n = limit->n.min;
849                              clock.n <= limit->n.max; clock.n++) {
850                                 for (clock.p1 = limit->p1.min;
851                                         clock.p1 <= limit->p1.max; clock.p1++) {
852                                         int this_err;
853
854                                         intel_clock(dev, refclk, &clock);
855
856                                         if (!intel_PLL_is_valid(crtc, &clock))
857                                                 continue;
858
859                                         this_err = abs(clock.dot - target);
860                                         if (this_err < err) {
861                                                 *best_clock = clock;
862                                                 err = this_err;
863                                         }
864                                 }
865                         }
866                 }
867         }
868
869         return (err != target);
870 }
871
872 static bool
873 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
874                         int target, int refclk, intel_clock_t *best_clock)
875 {
876         struct drm_device *dev = crtc->dev;
877         struct drm_i915_private *dev_priv = dev->dev_private;
878         intel_clock_t clock;
879         int max_n;
880         bool found;
881         /* approximately equals target * 0.00488 */
882         int err_most = (target >> 8) + (target >> 10);
883         found = false;
884
885         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
886                 int lvds_reg;
887
888                 if (HAS_PCH_SPLIT(dev))
889                         lvds_reg = PCH_LVDS;
890                 else
891                         lvds_reg = LVDS;
892                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
893                     LVDS_CLKB_POWER_UP)
894                         clock.p2 = limit->p2.p2_fast;
895                 else
896                         clock.p2 = limit->p2.p2_slow;
897         } else {
898                 if (target < limit->p2.dot_limit)
899                         clock.p2 = limit->p2.p2_slow;
900                 else
901                         clock.p2 = limit->p2.p2_fast;
902         }
903
904         memset(best_clock, 0, sizeof(*best_clock));
905         max_n = limit->n.max;
906         /* based on hardware requriment prefer smaller n to precision */
907         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
908                 /* based on hardware requirment prefere larger m1,m2 */
909                 for (clock.m1 = limit->m1.max;
910                      clock.m1 >= limit->m1.min; clock.m1--) {
911                         for (clock.m2 = limit->m2.max;
912                              clock.m2 >= limit->m2.min; clock.m2--) {
913                                 for (clock.p1 = limit->p1.max;
914                                      clock.p1 >= limit->p1.min; clock.p1--) {
915                                         int this_err;
916
917                                         intel_clock(dev, refclk, &clock);
918                                         if (!intel_PLL_is_valid(crtc, &clock))
919                                                 continue;
920                                         this_err = abs(clock.dot - target) ;
921                                         if (this_err < err_most) {
922                                                 *best_clock = clock;
923                                                 err_most = this_err;
924                                                 max_n = clock.n;
925                                                 found = true;
926                                         }
927                                 }
928                         }
929                 }
930         }
931         return found;
932 }
933
934 static bool
935 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
936                            int target, int refclk, intel_clock_t *best_clock)
937 {
938         struct drm_device *dev = crtc->dev;
939         intel_clock_t clock;
940
941         /* return directly when it is eDP */
942         if (HAS_eDP)
943                 return true;
944
945         if (target < 200000) {
946                 clock.n = 1;
947                 clock.p1 = 2;
948                 clock.p2 = 10;
949                 clock.m1 = 12;
950                 clock.m2 = 9;
951         } else {
952                 clock.n = 2;
953                 clock.p1 = 1;
954                 clock.p2 = 10;
955                 clock.m1 = 14;
956                 clock.m2 = 8;
957         }
958         intel_clock(dev, refclk, &clock);
959         memcpy(best_clock, &clock, sizeof(intel_clock_t));
960         return true;
961 }
962
963 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
964 static bool
965 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
966                       int target, int refclk, intel_clock_t *best_clock)
967 {
968     intel_clock_t clock;
969     if (target < 200000) {
970         clock.p1 = 2;
971         clock.p2 = 10;
972         clock.n = 2;
973         clock.m1 = 23;
974         clock.m2 = 8;
975     } else {
976         clock.p1 = 1;
977         clock.p2 = 10;
978         clock.n = 1;
979         clock.m1 = 14;
980         clock.m2 = 2;
981     }
982     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
983     clock.p = (clock.p1 * clock.p2);
984     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
985     clock.vco = 0;
986     memcpy(best_clock, &clock, sizeof(intel_clock_t));
987     return true;
988 }
989
990 void
991 intel_wait_for_vblank(struct drm_device *dev)
992 {
993         /* Wait for 20ms, i.e. one cycle at 50hz. */
994         msleep(20);
995 }
996
997 /* Parameters have changed, update FBC info */
998 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
999 {
1000         struct drm_device *dev = crtc->dev;
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002         struct drm_framebuffer *fb = crtc->fb;
1003         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1004         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1006         int plane, i;
1007         u32 fbc_ctl, fbc_ctl2;
1008
1009         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1010
1011         if (fb->pitch < dev_priv->cfb_pitch)
1012                 dev_priv->cfb_pitch = fb->pitch;
1013
1014         /* FBC_CTL wants 64B units */
1015         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1016         dev_priv->cfb_fence = obj_priv->fence_reg;
1017         dev_priv->cfb_plane = intel_crtc->plane;
1018         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1019
1020         /* Clear old tags */
1021         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1022                 I915_WRITE(FBC_TAG + (i * 4), 0);
1023
1024         /* Set it up... */
1025         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1026         if (obj_priv->tiling_mode != I915_TILING_NONE)
1027                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1028         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1029         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1030
1031         /* enable it... */
1032         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1033         if (IS_I945GM(dev))
1034                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1035         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1036         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1037         if (obj_priv->tiling_mode != I915_TILING_NONE)
1038                 fbc_ctl |= dev_priv->cfb_fence;
1039         I915_WRITE(FBC_CONTROL, fbc_ctl);
1040
1041         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1042                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1043 }
1044
1045 void i8xx_disable_fbc(struct drm_device *dev)
1046 {
1047         struct drm_i915_private *dev_priv = dev->dev_private;
1048         u32 fbc_ctl;
1049
1050         if (!I915_HAS_FBC(dev))
1051                 return;
1052
1053         /* Disable compression */
1054         fbc_ctl = I915_READ(FBC_CONTROL);
1055         fbc_ctl &= ~FBC_CTL_EN;
1056         I915_WRITE(FBC_CONTROL, fbc_ctl);
1057
1058         /* Wait for compressing bit to clear */
1059         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1060                 ; /* nothing */
1061
1062         intel_wait_for_vblank(dev);
1063
1064         DRM_DEBUG_KMS("disabled FBC\n");
1065 }
1066
1067 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071
1072         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1073 }
1074
1075 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1076 {
1077         struct drm_device *dev = crtc->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         struct drm_framebuffer *fb = crtc->fb;
1080         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1081         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1083         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1084                      DPFC_CTL_PLANEB);
1085         unsigned long stall_watermark = 200;
1086         u32 dpfc_ctl;
1087
1088         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089         dev_priv->cfb_fence = obj_priv->fence_reg;
1090         dev_priv->cfb_plane = intel_crtc->plane;
1091
1092         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1093         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1094                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1095                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1096         } else {
1097                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1098         }
1099
1100         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1101         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1102                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1103                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1104         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1105
1106         /* enable it... */
1107         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1108
1109         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1110 }
1111
1112 void g4x_disable_fbc(struct drm_device *dev)
1113 {
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         u32 dpfc_ctl;
1116
1117         /* Disable compression */
1118         dpfc_ctl = I915_READ(DPFC_CONTROL);
1119         dpfc_ctl &= ~DPFC_CTL_EN;
1120         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1121         intel_wait_for_vblank(dev);
1122
1123         DRM_DEBUG_KMS("disabled FBC\n");
1124 }
1125
1126 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1127 {
1128         struct drm_device *dev = crtc->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130
1131         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1132 }
1133
1134 /**
1135  * intel_update_fbc - enable/disable FBC as needed
1136  * @crtc: CRTC to point the compressor at
1137  * @mode: mode in use
1138  *
1139  * Set up the framebuffer compression hardware at mode set time.  We
1140  * enable it if possible:
1141  *   - plane A only (on pre-965)
1142  *   - no pixel mulitply/line duplication
1143  *   - no alpha buffer discard
1144  *   - no dual wide
1145  *   - framebuffer <= 2048 in width, 1536 in height
1146  *
1147  * We can't assume that any compression will take place (worst case),
1148  * so the compressed buffer has to be the same size as the uncompressed
1149  * one.  It also must reside (along with the line length buffer) in
1150  * stolen memory.
1151  *
1152  * We need to enable/disable FBC on a global basis.
1153  */
1154 static void intel_update_fbc(struct drm_crtc *crtc,
1155                              struct drm_display_mode *mode)
1156 {
1157         struct drm_device *dev = crtc->dev;
1158         struct drm_i915_private *dev_priv = dev->dev_private;
1159         struct drm_framebuffer *fb = crtc->fb;
1160         struct intel_framebuffer *intel_fb;
1161         struct drm_i915_gem_object *obj_priv;
1162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1163         int plane = intel_crtc->plane;
1164
1165         if (!i915_powersave)
1166                 return;
1167
1168         if (!dev_priv->display.fbc_enabled ||
1169             !dev_priv->display.enable_fbc ||
1170             !dev_priv->display.disable_fbc)
1171                 return;
1172
1173         if (!crtc->fb)
1174                 return;
1175
1176         intel_fb = to_intel_framebuffer(fb);
1177         obj_priv = to_intel_bo(intel_fb->obj);
1178
1179         /*
1180          * If FBC is already on, we just have to verify that we can
1181          * keep it that way...
1182          * Need to disable if:
1183          *   - changing FBC params (stride, fence, mode)
1184          *   - new fb is too large to fit in compressed buffer
1185          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1186          */
1187         if (intel_fb->obj->size > dev_priv->cfb_size) {
1188                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1189                                 "compression\n");
1190                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1191                 goto out_disable;
1192         }
1193         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1194             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1195                 DRM_DEBUG_KMS("mode incompatible with compression, "
1196                                 "disabling\n");
1197                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1198                 goto out_disable;
1199         }
1200         if ((mode->hdisplay > 2048) ||
1201             (mode->vdisplay > 1536)) {
1202                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1203                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1204                 goto out_disable;
1205         }
1206         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1207                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1208                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1209                 goto out_disable;
1210         }
1211         if (obj_priv->tiling_mode != I915_TILING_X) {
1212                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1213                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1214                 goto out_disable;
1215         }
1216
1217         if (dev_priv->display.fbc_enabled(crtc)) {
1218                 /* We can re-enable it in this case, but need to update pitch */
1219                 if (fb->pitch > dev_priv->cfb_pitch)
1220                         dev_priv->display.disable_fbc(dev);
1221                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1222                         dev_priv->display.disable_fbc(dev);
1223                 if (plane != dev_priv->cfb_plane)
1224                         dev_priv->display.disable_fbc(dev);
1225         }
1226
1227         if (!dev_priv->display.fbc_enabled(crtc)) {
1228                 /* Now try to turn it back on if possible */
1229                 dev_priv->display.enable_fbc(crtc, 500);
1230         }
1231
1232         return;
1233
1234 out_disable:
1235         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1236         /* Multiple disables should be harmless */
1237         if (dev_priv->display.fbc_enabled(crtc))
1238                 dev_priv->display.disable_fbc(dev);
1239 }
1240
1241 static int
1242 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1243 {
1244         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245         u32 alignment;
1246         int ret;
1247
1248         switch (obj_priv->tiling_mode) {
1249         case I915_TILING_NONE:
1250                 alignment = 64 * 1024;
1251                 break;
1252         case I915_TILING_X:
1253                 /* pin() will align the object as required by fence */
1254                 alignment = 0;
1255                 break;
1256         case I915_TILING_Y:
1257                 /* FIXME: Is this true? */
1258                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1259                 return -EINVAL;
1260         default:
1261                 BUG();
1262         }
1263
1264         ret = i915_gem_object_pin(obj, alignment);
1265         if (ret != 0)
1266                 return ret;
1267
1268         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1269          * fence, whereas 965+ only requires a fence if using
1270          * framebuffer compression.  For simplicity, we always install
1271          * a fence as the cost is not that onerous.
1272          */
1273         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1274             obj_priv->tiling_mode != I915_TILING_NONE) {
1275                 ret = i915_gem_object_get_fence_reg(obj);
1276                 if (ret != 0) {
1277                         i915_gem_object_unpin(obj);
1278                         return ret;
1279                 }
1280         }
1281
1282         return 0;
1283 }
1284
1285 static int
1286 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1287                     struct drm_framebuffer *old_fb)
1288 {
1289         struct drm_device *dev = crtc->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         struct drm_i915_master_private *master_priv;
1292         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1293         struct intel_framebuffer *intel_fb;
1294         struct drm_i915_gem_object *obj_priv;
1295         struct drm_gem_object *obj;
1296         int pipe = intel_crtc->pipe;
1297         int plane = intel_crtc->plane;
1298         unsigned long Start, Offset;
1299         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1300         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1301         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1302         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1303         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1304         u32 dspcntr;
1305         int ret;
1306
1307         /* no fb bound */
1308         if (!crtc->fb) {
1309                 DRM_DEBUG_KMS("No FB bound\n");
1310                 return 0;
1311         }
1312
1313         switch (plane) {
1314         case 0:
1315         case 1:
1316                 break;
1317         default:
1318                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1319                 return -EINVAL;
1320         }
1321
1322         intel_fb = to_intel_framebuffer(crtc->fb);
1323         obj = intel_fb->obj;
1324         obj_priv = to_intel_bo(obj);
1325
1326         mutex_lock(&dev->struct_mutex);
1327         ret = intel_pin_and_fence_fb_obj(dev, obj);
1328         if (ret != 0) {
1329                 mutex_unlock(&dev->struct_mutex);
1330                 return ret;
1331         }
1332
1333         ret = i915_gem_object_set_to_display_plane(obj);
1334         if (ret != 0) {
1335                 i915_gem_object_unpin(obj);
1336                 mutex_unlock(&dev->struct_mutex);
1337                 return ret;
1338         }
1339
1340         dspcntr = I915_READ(dspcntr_reg);
1341         /* Mask out pixel format bits in case we change it */
1342         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1343         switch (crtc->fb->bits_per_pixel) {
1344         case 8:
1345                 dspcntr |= DISPPLANE_8BPP;
1346                 break;
1347         case 16:
1348                 if (crtc->fb->depth == 15)
1349                         dspcntr |= DISPPLANE_15_16BPP;
1350                 else
1351                         dspcntr |= DISPPLANE_16BPP;
1352                 break;
1353         case 24:
1354         case 32:
1355                 if (crtc->fb->depth == 30)
1356                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1357                 else
1358                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1359                 break;
1360         default:
1361                 DRM_ERROR("Unknown color depth\n");
1362                 i915_gem_object_unpin(obj);
1363                 mutex_unlock(&dev->struct_mutex);
1364                 return -EINVAL;
1365         }
1366         if (IS_I965G(dev)) {
1367                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1368                         dspcntr |= DISPPLANE_TILED;
1369                 else
1370                         dspcntr &= ~DISPPLANE_TILED;
1371         }
1372
1373         if (HAS_PCH_SPLIT(dev))
1374                 /* must disable */
1375                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1376
1377         I915_WRITE(dspcntr_reg, dspcntr);
1378
1379         Start = obj_priv->gtt_offset;
1380         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1381
1382         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1383         I915_WRITE(dspstride, crtc->fb->pitch);
1384         if (IS_I965G(dev)) {
1385                 I915_WRITE(dspbase, Offset);
1386                 I915_READ(dspbase);
1387                 I915_WRITE(dspsurf, Start);
1388                 I915_READ(dspsurf);
1389                 I915_WRITE(dsptileoff, (y << 16) | x);
1390         } else {
1391                 I915_WRITE(dspbase, Start + Offset);
1392                 I915_READ(dspbase);
1393         }
1394
1395         if ((IS_I965G(dev) || plane == 0))
1396                 intel_update_fbc(crtc, &crtc->mode);
1397
1398         intel_wait_for_vblank(dev);
1399
1400         if (old_fb) {
1401                 intel_fb = to_intel_framebuffer(old_fb);
1402                 obj_priv = to_intel_bo(intel_fb->obj);
1403                 i915_gem_object_unpin(intel_fb->obj);
1404         }
1405         intel_increase_pllclock(crtc, true);
1406
1407         mutex_unlock(&dev->struct_mutex);
1408
1409         if (!dev->primary->master)
1410                 return 0;
1411
1412         master_priv = dev->primary->master->driver_priv;
1413         if (!master_priv->sarea_priv)
1414                 return 0;
1415
1416         if (pipe) {
1417                 master_priv->sarea_priv->pipeB_x = x;
1418                 master_priv->sarea_priv->pipeB_y = y;
1419         } else {
1420                 master_priv->sarea_priv->pipeA_x = x;
1421                 master_priv->sarea_priv->pipeA_y = y;
1422         }
1423
1424         return 0;
1425 }
1426
1427 /* Disable the VGA plane that we never use */
1428 static void i915_disable_vga (struct drm_device *dev)
1429 {
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         u8 sr1;
1432         u32 vga_reg;
1433
1434         if (HAS_PCH_SPLIT(dev))
1435                 vga_reg = CPU_VGACNTRL;
1436         else
1437                 vga_reg = VGACNTRL;
1438
1439         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1440                 return;
1441
1442         I915_WRITE8(VGA_SR_INDEX, 1);
1443         sr1 = I915_READ8(VGA_SR_DATA);
1444         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1445         udelay(100);
1446
1447         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1448 }
1449
1450 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1451 {
1452         struct drm_device *dev = crtc->dev;
1453         struct drm_i915_private *dev_priv = dev->dev_private;
1454         u32 dpa_ctl;
1455
1456         DRM_DEBUG_KMS("\n");
1457         dpa_ctl = I915_READ(DP_A);
1458         dpa_ctl &= ~DP_PLL_ENABLE;
1459         I915_WRITE(DP_A, dpa_ctl);
1460 }
1461
1462 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1463 {
1464         struct drm_device *dev = crtc->dev;
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466         u32 dpa_ctl;
1467
1468         dpa_ctl = I915_READ(DP_A);
1469         dpa_ctl |= DP_PLL_ENABLE;
1470         I915_WRITE(DP_A, dpa_ctl);
1471         udelay(200);
1472 }
1473
1474
1475 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1476 {
1477         struct drm_device *dev = crtc->dev;
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         u32 dpa_ctl;
1480
1481         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1482         dpa_ctl = I915_READ(DP_A);
1483         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1484
1485         if (clock < 200000) {
1486                 u32 temp;
1487                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1488                 /* workaround for 160Mhz:
1489                    1) program 0x4600c bits 15:0 = 0x8124
1490                    2) program 0x46010 bit 0 = 1
1491                    3) program 0x46034 bit 24 = 1
1492                    4) program 0x64000 bit 14 = 1
1493                    */
1494                 temp = I915_READ(0x4600c);
1495                 temp &= 0xffff0000;
1496                 I915_WRITE(0x4600c, temp | 0x8124);
1497
1498                 temp = I915_READ(0x46010);
1499                 I915_WRITE(0x46010, temp | 1);
1500
1501                 temp = I915_READ(0x46034);
1502                 I915_WRITE(0x46034, temp | (1 << 24));
1503         } else {
1504                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1505         }
1506         I915_WRITE(DP_A, dpa_ctl);
1507
1508         udelay(500);
1509 }
1510
1511 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1512 {
1513         struct drm_device *dev = crtc->dev;
1514         struct drm_i915_private *dev_priv = dev->dev_private;
1515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1516         int pipe = intel_crtc->pipe;
1517         int plane = intel_crtc->plane;
1518         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1519         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1520         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1521         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1522         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1523         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1524         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1525         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1526         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1527         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1528         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1529         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1530         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1531         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1532         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1533         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1534         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1535         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1536         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1537         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1538         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1539         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1540         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1541         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1542         u32 temp;
1543         int tries = 5, j, n;
1544         u32 pipe_bpc;
1545
1546         temp = I915_READ(pipeconf_reg);
1547         pipe_bpc = temp & PIPE_BPC_MASK;
1548
1549         /* XXX: When our outputs are all unaware of DPMS modes other than off
1550          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1551          */
1552         switch (mode) {
1553         case DRM_MODE_DPMS_ON:
1554         case DRM_MODE_DPMS_STANDBY:
1555         case DRM_MODE_DPMS_SUSPEND:
1556                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1557
1558                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1559                         temp = I915_READ(PCH_LVDS);
1560                         if ((temp & LVDS_PORT_EN) == 0) {
1561                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1562                                 POSTING_READ(PCH_LVDS);
1563                         }
1564                 }
1565
1566                 if (HAS_eDP) {
1567                         /* enable eDP PLL */
1568                         ironlake_enable_pll_edp(crtc);
1569                 } else {
1570                         /* enable PCH DPLL */
1571                         temp = I915_READ(pch_dpll_reg);
1572                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1573                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1574                                 I915_READ(pch_dpll_reg);
1575                         }
1576
1577                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1578                         temp = I915_READ(fdi_rx_reg);
1579                         /*
1580                          * make the BPC in FDI Rx be consistent with that in
1581                          * pipeconf reg.
1582                          */
1583                         temp &= ~(0x7 << 16);
1584                         temp |= (pipe_bpc << 11);
1585                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1586                                         FDI_SEL_PCDCLK |
1587                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1588                         I915_READ(fdi_rx_reg);
1589                         udelay(200);
1590
1591                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1592                         temp = I915_READ(fdi_tx_reg);
1593                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1594                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1595                                 I915_READ(fdi_tx_reg);
1596                                 udelay(100);
1597                         }
1598                 }
1599
1600                 /* Enable panel fitting for LVDS */
1601                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1602                         temp = I915_READ(pf_ctl_reg);
1603                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1604
1605                         /* currently full aspect */
1606                         I915_WRITE(pf_win_pos, 0);
1607
1608                         I915_WRITE(pf_win_size,
1609                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1610                                    (dev_priv->panel_fixed_mode->vdisplay));
1611                 }
1612
1613                 /* Enable CPU pipe */
1614                 temp = I915_READ(pipeconf_reg);
1615                 if ((temp & PIPEACONF_ENABLE) == 0) {
1616                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1617                         I915_READ(pipeconf_reg);
1618                         udelay(100);
1619                 }
1620
1621                 /* configure and enable CPU plane */
1622                 temp = I915_READ(dspcntr_reg);
1623                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1624                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1625                         /* Flush the plane changes */
1626                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1627                 }
1628
1629                 if (!HAS_eDP) {
1630                         /* enable CPU FDI TX and PCH FDI RX */
1631                         temp = I915_READ(fdi_tx_reg);
1632                         temp |= FDI_TX_ENABLE;
1633                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1634                         temp &= ~FDI_LINK_TRAIN_NONE;
1635                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1636                         I915_WRITE(fdi_tx_reg, temp);
1637                         I915_READ(fdi_tx_reg);
1638
1639                         temp = I915_READ(fdi_rx_reg);
1640                         temp &= ~FDI_LINK_TRAIN_NONE;
1641                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1642                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1643                         I915_READ(fdi_rx_reg);
1644
1645                         udelay(150);
1646
1647                         /* Train FDI. */
1648                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1649                            for train result */
1650                         temp = I915_READ(fdi_rx_imr_reg);
1651                         temp &= ~FDI_RX_SYMBOL_LOCK;
1652                         temp &= ~FDI_RX_BIT_LOCK;
1653                         I915_WRITE(fdi_rx_imr_reg, temp);
1654                         I915_READ(fdi_rx_imr_reg);
1655                         udelay(150);
1656
1657                         temp = I915_READ(fdi_rx_iir_reg);
1658                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1659
1660                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1661                                 for (j = 0; j < tries; j++) {
1662                                         temp = I915_READ(fdi_rx_iir_reg);
1663                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1664                                                                 temp);
1665                                         if (temp & FDI_RX_BIT_LOCK)
1666                                                 break;
1667                                         udelay(200);
1668                                 }
1669                                 if (j != tries)
1670                                         I915_WRITE(fdi_rx_iir_reg,
1671                                                         temp | FDI_RX_BIT_LOCK);
1672                                 else
1673                                         DRM_DEBUG_KMS("train 1 fail\n");
1674                         } else {
1675                                 I915_WRITE(fdi_rx_iir_reg,
1676                                                 temp | FDI_RX_BIT_LOCK);
1677                                 DRM_DEBUG_KMS("train 1 ok 2!\n");
1678                         }
1679                         temp = I915_READ(fdi_tx_reg);
1680                         temp &= ~FDI_LINK_TRAIN_NONE;
1681                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1682                         I915_WRITE(fdi_tx_reg, temp);
1683
1684                         temp = I915_READ(fdi_rx_reg);
1685                         temp &= ~FDI_LINK_TRAIN_NONE;
1686                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1687                         I915_WRITE(fdi_rx_reg, temp);
1688
1689                         udelay(150);
1690
1691                         temp = I915_READ(fdi_rx_iir_reg);
1692                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1693
1694                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1695                                 for (j = 0; j < tries; j++) {
1696                                         temp = I915_READ(fdi_rx_iir_reg);
1697                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1698                                                                 temp);
1699                                         if (temp & FDI_RX_SYMBOL_LOCK)
1700                                                 break;
1701                                         udelay(200);
1702                                 }
1703                                 if (j != tries) {
1704                                         I915_WRITE(fdi_rx_iir_reg,
1705                                                         temp | FDI_RX_SYMBOL_LOCK);
1706                                         DRM_DEBUG_KMS("train 2 ok 1!\n");
1707                                 } else
1708                                         DRM_DEBUG_KMS("train 2 fail\n");
1709                         } else {
1710                                 I915_WRITE(fdi_rx_iir_reg,
1711                                                 temp | FDI_RX_SYMBOL_LOCK);
1712                                 DRM_DEBUG_KMS("train 2 ok 2!\n");
1713                         }
1714                         DRM_DEBUG_KMS("train done\n");
1715
1716                         /* set transcoder timing */
1717                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1718                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1719                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1720
1721                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1722                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1723                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1724
1725                         /* enable PCH transcoder */
1726                         temp = I915_READ(transconf_reg);
1727                         /*
1728                          * make the BPC in transcoder be consistent with
1729                          * that in pipeconf reg.
1730                          */
1731                         temp &= ~PIPE_BPC_MASK;
1732                         temp |= pipe_bpc;
1733                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1734                         I915_READ(transconf_reg);
1735
1736                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1737                                 ;
1738
1739                         /* enable normal */
1740
1741                         temp = I915_READ(fdi_tx_reg);
1742                         temp &= ~FDI_LINK_TRAIN_NONE;
1743                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1744                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1745                         I915_READ(fdi_tx_reg);
1746
1747                         temp = I915_READ(fdi_rx_reg);
1748                         temp &= ~FDI_LINK_TRAIN_NONE;
1749                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1750                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1751                         I915_READ(fdi_rx_reg);
1752
1753                         /* wait one idle pattern time */
1754                         udelay(100);
1755
1756                 }
1757
1758                 intel_crtc_load_lut(crtc);
1759
1760         break;
1761         case DRM_MODE_DPMS_OFF:
1762                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1763
1764                 drm_vblank_off(dev, pipe);
1765                 /* Disable display plane */
1766                 temp = I915_READ(dspcntr_reg);
1767                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1768                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1769                         /* Flush the plane changes */
1770                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1771                         I915_READ(dspbase_reg);
1772                 }
1773
1774                 i915_disable_vga(dev);
1775
1776                 /* disable cpu pipe, disable after all planes disabled */
1777                 temp = I915_READ(pipeconf_reg);
1778                 if ((temp & PIPEACONF_ENABLE) != 0) {
1779                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1780                         I915_READ(pipeconf_reg);
1781                         n = 0;
1782                         /* wait for cpu pipe off, pipe state */
1783                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1784                                 n++;
1785                                 if (n < 60) {
1786                                         udelay(500);
1787                                         continue;
1788                                 } else {
1789                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1790                                                                 pipe);
1791                                         break;
1792                                 }
1793                         }
1794                 } else
1795                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1796
1797                 udelay(100);
1798
1799                 /* Disable PF */
1800                 temp = I915_READ(pf_ctl_reg);
1801                 if ((temp & PF_ENABLE) != 0) {
1802                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1803                         I915_READ(pf_ctl_reg);
1804                 }
1805                 I915_WRITE(pf_win_size, 0);
1806
1807                 /* disable CPU FDI tx and PCH FDI rx */
1808                 temp = I915_READ(fdi_tx_reg);
1809                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1810                 I915_READ(fdi_tx_reg);
1811
1812                 temp = I915_READ(fdi_rx_reg);
1813                 /* BPC in FDI rx is consistent with that in pipeconf */
1814                 temp &= ~(0x07 << 16);
1815                 temp |= (pipe_bpc << 11);
1816                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1817                 I915_READ(fdi_rx_reg);
1818
1819                 udelay(100);
1820
1821                 /* still set train pattern 1 */
1822                 temp = I915_READ(fdi_tx_reg);
1823                 temp &= ~FDI_LINK_TRAIN_NONE;
1824                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1825                 I915_WRITE(fdi_tx_reg, temp);
1826
1827                 temp = I915_READ(fdi_rx_reg);
1828                 temp &= ~FDI_LINK_TRAIN_NONE;
1829                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1830                 I915_WRITE(fdi_rx_reg, temp);
1831
1832                 udelay(100);
1833
1834                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1835                         temp = I915_READ(PCH_LVDS);
1836                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1837                         I915_READ(PCH_LVDS);
1838                         udelay(100);
1839                 }
1840
1841                 /* disable PCH transcoder */
1842                 temp = I915_READ(transconf_reg);
1843                 if ((temp & TRANS_ENABLE) != 0) {
1844                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1845                         I915_READ(transconf_reg);
1846                         n = 0;
1847                         /* wait for PCH transcoder off, transcoder state */
1848                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1849                                 n++;
1850                                 if (n < 60) {
1851                                         udelay(500);
1852                                         continue;
1853                                 } else {
1854                                         DRM_DEBUG_KMS("transcoder %d off "
1855                                                         "delay\n", pipe);
1856                                         break;
1857                                 }
1858                         }
1859                 }
1860                 temp = I915_READ(transconf_reg);
1861                 /* BPC in transcoder is consistent with that in pipeconf */
1862                 temp &= ~PIPE_BPC_MASK;
1863                 temp |= pipe_bpc;
1864                 I915_WRITE(transconf_reg, temp);
1865                 I915_READ(transconf_reg);
1866                 udelay(100);
1867
1868                 /* disable PCH DPLL */
1869                 temp = I915_READ(pch_dpll_reg);
1870                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1871                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1872                         I915_READ(pch_dpll_reg);
1873                 }
1874
1875                 if (HAS_eDP) {
1876                         ironlake_disable_pll_edp(crtc);
1877                 }
1878
1879                 temp = I915_READ(fdi_rx_reg);
1880                 temp &= ~FDI_SEL_PCDCLK;
1881                 I915_WRITE(fdi_rx_reg, temp);
1882                 I915_READ(fdi_rx_reg);
1883
1884                 temp = I915_READ(fdi_rx_reg);
1885                 temp &= ~FDI_RX_PLL_ENABLE;
1886                 I915_WRITE(fdi_rx_reg, temp);
1887                 I915_READ(fdi_rx_reg);
1888
1889                 /* Disable CPU FDI TX PLL */
1890                 temp = I915_READ(fdi_tx_reg);
1891                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1892                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1893                         I915_READ(fdi_tx_reg);
1894                         udelay(100);
1895                 }
1896
1897                 /* Wait for the clocks to turn off. */
1898                 udelay(100);
1899                 break;
1900         }
1901 }
1902
1903 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1904 {
1905         struct intel_overlay *overlay;
1906         int ret;
1907
1908         if (!enable && intel_crtc->overlay) {
1909                 overlay = intel_crtc->overlay;
1910                 mutex_lock(&overlay->dev->struct_mutex);
1911                 for (;;) {
1912                         ret = intel_overlay_switch_off(overlay);
1913                         if (ret == 0)
1914                                 break;
1915
1916                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
1917                         if (ret != 0) {
1918                                 /* overlay doesn't react anymore. Usually
1919                                  * results in a black screen and an unkillable
1920                                  * X server. */
1921                                 BUG();
1922                                 overlay->hw_wedged = HW_WEDGED;
1923                                 break;
1924                         }
1925                 }
1926                 mutex_unlock(&overlay->dev->struct_mutex);
1927         }
1928         /* Let userspace switch the overlay on again. In most cases userspace
1929          * has to recompute where to put it anyway. */
1930
1931         return;
1932 }
1933
1934 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1935 {
1936         struct drm_device *dev = crtc->dev;
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1939         int pipe = intel_crtc->pipe;
1940         int plane = intel_crtc->plane;
1941         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1942         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1943         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1944         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1945         u32 temp;
1946
1947         /* XXX: When our outputs are all unaware of DPMS modes other than off
1948          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1949          */
1950         switch (mode) {
1951         case DRM_MODE_DPMS_ON:
1952         case DRM_MODE_DPMS_STANDBY:
1953         case DRM_MODE_DPMS_SUSPEND:
1954                 intel_update_watermarks(dev);
1955
1956                 /* Enable the DPLL */
1957                 temp = I915_READ(dpll_reg);
1958                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1959                         I915_WRITE(dpll_reg, temp);
1960                         I915_READ(dpll_reg);
1961                         /* Wait for the clocks to stabilize. */
1962                         udelay(150);
1963                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1964                         I915_READ(dpll_reg);
1965                         /* Wait for the clocks to stabilize. */
1966                         udelay(150);
1967                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1968                         I915_READ(dpll_reg);
1969                         /* Wait for the clocks to stabilize. */
1970                         udelay(150);
1971                 }
1972
1973                 /* Enable the pipe */
1974                 temp = I915_READ(pipeconf_reg);
1975                 if ((temp & PIPEACONF_ENABLE) == 0)
1976                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1977
1978                 /* Enable the plane */
1979                 temp = I915_READ(dspcntr_reg);
1980                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1981                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1982                         /* Flush the plane changes */
1983                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1984                 }
1985
1986                 intel_crtc_load_lut(crtc);
1987
1988                 if ((IS_I965G(dev) || plane == 0))
1989                         intel_update_fbc(crtc, &crtc->mode);
1990
1991                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1992                 intel_crtc_dpms_overlay(intel_crtc, true);
1993         break;
1994         case DRM_MODE_DPMS_OFF:
1995                 intel_update_watermarks(dev);
1996
1997                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1998                 intel_crtc_dpms_overlay(intel_crtc, false);
1999                 drm_vblank_off(dev, pipe);
2000
2001                 if (dev_priv->cfb_plane == plane &&
2002                     dev_priv->display.disable_fbc)
2003                         dev_priv->display.disable_fbc(dev);
2004
2005                 /* Disable the VGA plane that we never use */
2006                 i915_disable_vga(dev);
2007
2008                 /* Disable display plane */
2009                 temp = I915_READ(dspcntr_reg);
2010                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2011                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2012                         /* Flush the plane changes */
2013                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2014                         I915_READ(dspbase_reg);
2015                 }
2016
2017                 if (!IS_I9XX(dev)) {
2018                         /* Wait for vblank for the disable to take effect */
2019                         intel_wait_for_vblank(dev);
2020                 }
2021
2022                 /* Next, disable display pipes */
2023                 temp = I915_READ(pipeconf_reg);
2024                 if ((temp & PIPEACONF_ENABLE) != 0) {
2025                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2026                         I915_READ(pipeconf_reg);
2027                 }
2028
2029                 /* Wait for vblank for the disable to take effect. */
2030                 intel_wait_for_vblank(dev);
2031
2032                 temp = I915_READ(dpll_reg);
2033                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2034                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2035                         I915_READ(dpll_reg);
2036                 }
2037
2038                 /* Wait for the clocks to turn off. */
2039                 udelay(150);
2040                 break;
2041         }
2042 }
2043
2044 /**
2045  * Sets the power management mode of the pipe and plane.
2046  *
2047  * This code should probably grow support for turning the cursor off and back
2048  * on appropriately at the same time as we're turning the pipe off/on.
2049  */
2050 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2051 {
2052         struct drm_device *dev = crtc->dev;
2053         struct drm_i915_private *dev_priv = dev->dev_private;
2054         struct drm_i915_master_private *master_priv;
2055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2056         int pipe = intel_crtc->pipe;
2057         bool enabled;
2058
2059         dev_priv->display.dpms(crtc, mode);
2060
2061         intel_crtc->dpms_mode = mode;
2062
2063         if (!dev->primary->master)
2064                 return;
2065
2066         master_priv = dev->primary->master->driver_priv;
2067         if (!master_priv->sarea_priv)
2068                 return;
2069
2070         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2071
2072         switch (pipe) {
2073         case 0:
2074                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2075                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2076                 break;
2077         case 1:
2078                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2079                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2080                 break;
2081         default:
2082                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2083                 break;
2084         }
2085 }
2086
2087 static void intel_crtc_prepare (struct drm_crtc *crtc)
2088 {
2089         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2090         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2091 }
2092
2093 static void intel_crtc_commit (struct drm_crtc *crtc)
2094 {
2095         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2096         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2097 }
2098
2099 void intel_encoder_prepare (struct drm_encoder *encoder)
2100 {
2101         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2102         /* lvds has its own version of prepare see intel_lvds_prepare */
2103         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2104 }
2105
2106 void intel_encoder_commit (struct drm_encoder *encoder)
2107 {
2108         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2109         /* lvds has its own version of commit see intel_lvds_commit */
2110         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2111 }
2112
2113 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2114                                   struct drm_display_mode *mode,
2115                                   struct drm_display_mode *adjusted_mode)
2116 {
2117         struct drm_device *dev = crtc->dev;
2118         if (HAS_PCH_SPLIT(dev)) {
2119                 /* FDI link clock is fixed at 2.7G */
2120                 if (mode->clock * 3 > 27000 * 4)
2121                         return MODE_CLOCK_HIGH;
2122         }
2123         return true;
2124 }
2125
2126 static int i945_get_display_clock_speed(struct drm_device *dev)
2127 {
2128         return 400000;
2129 }
2130
2131 static int i915_get_display_clock_speed(struct drm_device *dev)
2132 {
2133         return 333000;
2134 }
2135
2136 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2137 {
2138         return 200000;
2139 }
2140
2141 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2142 {
2143         u16 gcfgc = 0;
2144
2145         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2146
2147         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2148                 return 133000;
2149         else {
2150                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2151                 case GC_DISPLAY_CLOCK_333_MHZ:
2152                         return 333000;
2153                 default:
2154                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2155                         return 190000;
2156                 }
2157         }
2158 }
2159
2160 static int i865_get_display_clock_speed(struct drm_device *dev)
2161 {
2162         return 266000;
2163 }
2164
2165 static int i855_get_display_clock_speed(struct drm_device *dev)
2166 {
2167         u16 hpllcc = 0;
2168         /* Assume that the hardware is in the high speed state.  This
2169          * should be the default.
2170          */
2171         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2172         case GC_CLOCK_133_200:
2173         case GC_CLOCK_100_200:
2174                 return 200000;
2175         case GC_CLOCK_166_250:
2176                 return 250000;
2177         case GC_CLOCK_100_133:
2178                 return 133000;
2179         }
2180
2181         /* Shouldn't happen */
2182         return 0;
2183 }
2184
2185 static int i830_get_display_clock_speed(struct drm_device *dev)
2186 {
2187         return 133000;
2188 }
2189
2190 /**
2191  * Return the pipe currently connected to the panel fitter,
2192  * or -1 if the panel fitter is not present or not in use
2193  */
2194 int intel_panel_fitter_pipe (struct drm_device *dev)
2195 {
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197         u32  pfit_control;
2198
2199         /* i830 doesn't have a panel fitter */
2200         if (IS_I830(dev))
2201                 return -1;
2202
2203         pfit_control = I915_READ(PFIT_CONTROL);
2204
2205         /* See if the panel fitter is in use */
2206         if ((pfit_control & PFIT_ENABLE) == 0)
2207                 return -1;
2208
2209         /* 965 can place panel fitter on either pipe */
2210         if (IS_I965G(dev))
2211                 return (pfit_control >> 29) & 0x3;
2212
2213         /* older chips can only use pipe 1 */
2214         return 1;
2215 }
2216
2217 struct fdi_m_n {
2218         u32        tu;
2219         u32        gmch_m;
2220         u32        gmch_n;
2221         u32        link_m;
2222         u32        link_n;
2223 };
2224
2225 static void
2226 fdi_reduce_ratio(u32 *num, u32 *den)
2227 {
2228         while (*num > 0xffffff || *den > 0xffffff) {
2229                 *num >>= 1;
2230                 *den >>= 1;
2231         }
2232 }
2233
2234 #define DATA_N 0x800000
2235 #define LINK_N 0x80000
2236
2237 static void
2238 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2239                      int link_clock, struct fdi_m_n *m_n)
2240 {
2241         u64 temp;
2242
2243         m_n->tu = 64; /* default size */
2244
2245         temp = (u64) DATA_N * pixel_clock;
2246         temp = div_u64(temp, link_clock);
2247         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2248         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2249         m_n->gmch_n = DATA_N;
2250         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2251
2252         temp = (u64) LINK_N * pixel_clock;
2253         m_n->link_m = div_u64(temp, link_clock);
2254         m_n->link_n = LINK_N;
2255         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2256 }
2257
2258
2259 struct intel_watermark_params {
2260         unsigned long fifo_size;
2261         unsigned long max_wm;
2262         unsigned long default_wm;
2263         unsigned long guard_size;
2264         unsigned long cacheline_size;
2265 };
2266
2267 /* Pineview has different values for various configs */
2268 static struct intel_watermark_params pineview_display_wm = {
2269         PINEVIEW_DISPLAY_FIFO,
2270         PINEVIEW_MAX_WM,
2271         PINEVIEW_DFT_WM,
2272         PINEVIEW_GUARD_WM,
2273         PINEVIEW_FIFO_LINE_SIZE
2274 };
2275 static struct intel_watermark_params pineview_display_hplloff_wm = {
2276         PINEVIEW_DISPLAY_FIFO,
2277         PINEVIEW_MAX_WM,
2278         PINEVIEW_DFT_HPLLOFF_WM,
2279         PINEVIEW_GUARD_WM,
2280         PINEVIEW_FIFO_LINE_SIZE
2281 };
2282 static struct intel_watermark_params pineview_cursor_wm = {
2283         PINEVIEW_CURSOR_FIFO,
2284         PINEVIEW_CURSOR_MAX_WM,
2285         PINEVIEW_CURSOR_DFT_WM,
2286         PINEVIEW_CURSOR_GUARD_WM,
2287         PINEVIEW_FIFO_LINE_SIZE,
2288 };
2289 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2290         PINEVIEW_CURSOR_FIFO,
2291         PINEVIEW_CURSOR_MAX_WM,
2292         PINEVIEW_CURSOR_DFT_WM,
2293         PINEVIEW_CURSOR_GUARD_WM,
2294         PINEVIEW_FIFO_LINE_SIZE
2295 };
2296 static struct intel_watermark_params g4x_wm_info = {
2297         G4X_FIFO_SIZE,
2298         G4X_MAX_WM,
2299         G4X_MAX_WM,
2300         2,
2301         G4X_FIFO_LINE_SIZE,
2302 };
2303 static struct intel_watermark_params i945_wm_info = {
2304         I945_FIFO_SIZE,
2305         I915_MAX_WM,
2306         1,
2307         2,
2308         I915_FIFO_LINE_SIZE
2309 };
2310 static struct intel_watermark_params i915_wm_info = {
2311         I915_FIFO_SIZE,
2312         I915_MAX_WM,
2313         1,
2314         2,
2315         I915_FIFO_LINE_SIZE
2316 };
2317 static struct intel_watermark_params i855_wm_info = {
2318         I855GM_FIFO_SIZE,
2319         I915_MAX_WM,
2320         1,
2321         2,
2322         I830_FIFO_LINE_SIZE
2323 };
2324 static struct intel_watermark_params i830_wm_info = {
2325         I830_FIFO_SIZE,
2326         I915_MAX_WM,
2327         1,
2328         2,
2329         I830_FIFO_LINE_SIZE
2330 };
2331
2332 /**
2333  * intel_calculate_wm - calculate watermark level
2334  * @clock_in_khz: pixel clock
2335  * @wm: chip FIFO params
2336  * @pixel_size: display pixel size
2337  * @latency_ns: memory latency for the platform
2338  *
2339  * Calculate the watermark level (the level at which the display plane will
2340  * start fetching from memory again).  Each chip has a different display
2341  * FIFO size and allocation, so the caller needs to figure that out and pass
2342  * in the correct intel_watermark_params structure.
2343  *
2344  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2345  * on the pixel size.  When it reaches the watermark level, it'll start
2346  * fetching FIFO line sized based chunks from memory until the FIFO fills
2347  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2348  * will occur, and a display engine hang could result.
2349  */
2350 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2351                                         struct intel_watermark_params *wm,
2352                                         int pixel_size,
2353                                         unsigned long latency_ns)
2354 {
2355         long entries_required, wm_size;
2356
2357         /*
2358          * Note: we need to make sure we don't overflow for various clock &
2359          * latency values.
2360          * clocks go from a few thousand to several hundred thousand.
2361          * latency is usually a few thousand
2362          */
2363         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2364                 1000;
2365         entries_required /= wm->cacheline_size;
2366
2367         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2368
2369         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2370
2371         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2372
2373         /* Don't promote wm_size to unsigned... */
2374         if (wm_size > (long)wm->max_wm)
2375                 wm_size = wm->max_wm;
2376         if (wm_size <= 0)
2377                 wm_size = wm->default_wm;
2378         return wm_size;
2379 }
2380
2381 struct cxsr_latency {
2382         int is_desktop;
2383         unsigned long fsb_freq;
2384         unsigned long mem_freq;
2385         unsigned long display_sr;
2386         unsigned long display_hpll_disable;
2387         unsigned long cursor_sr;
2388         unsigned long cursor_hpll_disable;
2389 };
2390
2391 static struct cxsr_latency cxsr_latency_table[] = {
2392         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2393         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2394         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2395
2396         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2397         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2398         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2399
2400         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2401         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2402         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2403
2404         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2405         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2406         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2407
2408         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2409         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2410         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2411
2412         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2413         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2414         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2415 };
2416
2417 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2418                                                    int mem)
2419 {
2420         int i;
2421         struct cxsr_latency *latency;
2422
2423         if (fsb == 0 || mem == 0)
2424                 return NULL;
2425
2426         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2427                 latency = &cxsr_latency_table[i];
2428                 if (is_desktop == latency->is_desktop &&
2429                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2430                         return latency;
2431         }
2432
2433         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2434
2435         return NULL;
2436 }
2437
2438 static void pineview_disable_cxsr(struct drm_device *dev)
2439 {
2440         struct drm_i915_private *dev_priv = dev->dev_private;
2441         u32 reg;
2442
2443         /* deactivate cxsr */
2444         reg = I915_READ(DSPFW3);
2445         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2446         I915_WRITE(DSPFW3, reg);
2447         DRM_INFO("Big FIFO is disabled\n");
2448 }
2449
2450 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2451                                  int pixel_size)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         u32 reg;
2455         unsigned long wm;
2456         struct cxsr_latency *latency;
2457
2458         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2459                 dev_priv->mem_freq);
2460         if (!latency) {
2461                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2462                 pineview_disable_cxsr(dev);
2463                 return;
2464         }
2465
2466         /* Display SR */
2467         wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2468                                 latency->display_sr);
2469         reg = I915_READ(DSPFW1);
2470         reg &= 0x7fffff;
2471         reg |= wm << 23;
2472         I915_WRITE(DSPFW1, reg);
2473         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2474
2475         /* cursor SR */
2476         wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2477                                 latency->cursor_sr);
2478         reg = I915_READ(DSPFW3);
2479         reg &= ~(0x3f << 24);
2480         reg |= (wm & 0x3f) << 24;
2481         I915_WRITE(DSPFW3, reg);
2482
2483         /* Display HPLL off SR */
2484         wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2485                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2486         reg = I915_READ(DSPFW3);
2487         reg &= 0xfffffe00;
2488         reg |= wm & 0x1ff;
2489         I915_WRITE(DSPFW3, reg);
2490
2491         /* cursor HPLL off SR */
2492         wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2493                                 latency->cursor_hpll_disable);
2494         reg = I915_READ(DSPFW3);
2495         reg &= ~(0x3f << 16);
2496         reg |= (wm & 0x3f) << 16;
2497         I915_WRITE(DSPFW3, reg);
2498         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2499
2500         /* activate cxsr */
2501         reg = I915_READ(DSPFW3);
2502         reg |= PINEVIEW_SELF_REFRESH_EN;
2503         I915_WRITE(DSPFW3, reg);
2504
2505         DRM_INFO("Big FIFO is enabled\n");
2506
2507         return;
2508 }
2509
2510 /*
2511  * Latency for FIFO fetches is dependent on several factors:
2512  *   - memory configuration (speed, channels)
2513  *   - chipset
2514  *   - current MCH state
2515  * It can be fairly high in some situations, so here we assume a fairly
2516  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2517  * set this value too high, the FIFO will fetch frequently to stay full)
2518  * and power consumption (set it too low to save power and we might see
2519  * FIFO underruns and display "flicker").
2520  *
2521  * A value of 5us seems to be a good balance; safe for very low end
2522  * platforms but not overly aggressive on lower latency configs.
2523  */
2524 static const int latency_ns = 5000;
2525
2526 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2527 {
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529         uint32_t dsparb = I915_READ(DSPARB);
2530         int size;
2531
2532         if (plane == 0)
2533                 size = dsparb & 0x7f;
2534         else
2535                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2536                         (dsparb & 0x7f);
2537
2538         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2539                         plane ? "B" : "A", size);
2540
2541         return size;
2542 }
2543
2544 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2545 {
2546         struct drm_i915_private *dev_priv = dev->dev_private;
2547         uint32_t dsparb = I915_READ(DSPARB);
2548         int size;
2549
2550         if (plane == 0)
2551                 size = dsparb & 0x1ff;
2552         else
2553                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2554                         (dsparb & 0x1ff);
2555         size >>= 1; /* Convert to cachelines */
2556
2557         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2558                         plane ? "B" : "A", size);
2559
2560         return size;
2561 }
2562
2563 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2564 {
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         uint32_t dsparb = I915_READ(DSPARB);
2567         int size;
2568
2569         size = dsparb & 0x7f;
2570         size >>= 2; /* Convert to cachelines */
2571
2572         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2573                         plane ? "B" : "A",
2574                   size);
2575
2576         return size;
2577 }
2578
2579 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2580 {
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         uint32_t dsparb = I915_READ(DSPARB);
2583         int size;
2584
2585         size = dsparb & 0x7f;
2586         size >>= 1; /* Convert to cachelines */
2587
2588         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2589                         plane ? "B" : "A", size);
2590
2591         return size;
2592 }
2593
2594 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2595                           int planeb_clock, int sr_hdisplay, int pixel_size)
2596 {
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         int total_size, cacheline_size;
2599         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2600         struct intel_watermark_params planea_params, planeb_params;
2601         unsigned long line_time_us;
2602         int sr_clock, sr_entries = 0, entries_required;
2603
2604         /* Create copies of the base settings for each pipe */
2605         planea_params = planeb_params = g4x_wm_info;
2606
2607         /* Grab a couple of global values before we overwrite them */
2608         total_size = planea_params.fifo_size;
2609         cacheline_size = planea_params.cacheline_size;
2610
2611         /*
2612          * Note: we need to make sure we don't overflow for various clock &
2613          * latency values.
2614          * clocks go from a few thousand to several hundred thousand.
2615          * latency is usually a few thousand
2616          */
2617         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2618                 1000;
2619         entries_required /= G4X_FIFO_LINE_SIZE;
2620         planea_wm = entries_required + planea_params.guard_size;
2621
2622         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2623                 1000;
2624         entries_required /= G4X_FIFO_LINE_SIZE;
2625         planeb_wm = entries_required + planeb_params.guard_size;
2626
2627         cursora_wm = cursorb_wm = 16;
2628         cursor_sr = 32;
2629
2630         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2631
2632         /* Calc sr entries for one plane configs */
2633         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2634                 /* self-refresh has much higher latency */
2635                 static const int sr_latency_ns = 12000;
2636
2637                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2638                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2639
2640                 /* Use ns/us then divide to preserve precision */
2641                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2642                               pixel_size * sr_hdisplay) / 1000;
2643                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2644                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2645                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2646         } else {
2647                 /* Turn off self refresh if both pipes are enabled */
2648                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2649                                         & ~FW_BLC_SELF_EN);
2650         }
2651
2652         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2653                   planea_wm, planeb_wm, sr_entries);
2654
2655         planea_wm &= 0x3f;
2656         planeb_wm &= 0x3f;
2657
2658         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2659                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2660                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2661         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2662                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2663         /* HPLL off in SR has some issues on G4x... disable it */
2664         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2665                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2666 }
2667
2668 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2669                            int planeb_clock, int sr_hdisplay, int pixel_size)
2670 {
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         unsigned long line_time_us;
2673         int sr_clock, sr_entries, srwm = 1;
2674
2675         /* Calc sr entries for one plane configs */
2676         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2677                 /* self-refresh has much higher latency */
2678                 static const int sr_latency_ns = 12000;
2679
2680                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2681                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2682
2683                 /* Use ns/us then divide to preserve precision */
2684                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2685                               pixel_size * sr_hdisplay) / 1000;
2686                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2687                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2688                 srwm = I945_FIFO_SIZE - sr_entries;
2689                 if (srwm < 0)
2690                         srwm = 1;
2691                 srwm &= 0x3f;
2692                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2693         } else {
2694                 /* Turn off self refresh if both pipes are enabled */
2695                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2696                                         & ~FW_BLC_SELF_EN);
2697         }
2698
2699         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2700                       srwm);
2701
2702         /* 965 has limitations... */
2703         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2704                    (8 << 0));
2705         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2706 }
2707
2708 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2709                            int planeb_clock, int sr_hdisplay, int pixel_size)
2710 {
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         uint32_t fwater_lo;
2713         uint32_t fwater_hi;
2714         int total_size, cacheline_size, cwm, srwm = 1;
2715         int planea_wm, planeb_wm;
2716         struct intel_watermark_params planea_params, planeb_params;
2717         unsigned long line_time_us;
2718         int sr_clock, sr_entries = 0;
2719
2720         /* Create copies of the base settings for each pipe */
2721         if (IS_I965GM(dev) || IS_I945GM(dev))
2722                 planea_params = planeb_params = i945_wm_info;
2723         else if (IS_I9XX(dev))
2724                 planea_params = planeb_params = i915_wm_info;
2725         else
2726                 planea_params = planeb_params = i855_wm_info;
2727
2728         /* Grab a couple of global values before we overwrite them */
2729         total_size = planea_params.fifo_size;
2730         cacheline_size = planea_params.cacheline_size;
2731
2732         /* Update per-plane FIFO sizes */
2733         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2734         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2735
2736         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2737                                        pixel_size, latency_ns);
2738         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2739                                        pixel_size, latency_ns);
2740         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2741
2742         /*
2743          * Overlay gets an aggressive default since video jitter is bad.
2744          */
2745         cwm = 2;
2746
2747         /* Calc sr entries for one plane configs */
2748         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2749             (!planea_clock || !planeb_clock)) {
2750                 /* self-refresh has much higher latency */
2751                 static const int sr_latency_ns = 6000;
2752
2753                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2754                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2755
2756                 /* Use ns/us then divide to preserve precision */
2757                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2758                               pixel_size * sr_hdisplay) / 1000;
2759                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2760                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2761                 srwm = total_size - sr_entries;
2762                 if (srwm < 0)
2763                         srwm = 1;
2764
2765                 if (IS_I945G(dev) || IS_I945GM(dev))
2766                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2767                 else if (IS_I915GM(dev)) {
2768                         /* 915M has a smaller SRWM field */
2769                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2770                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2771                 }
2772         } else {
2773                 /* Turn off self refresh if both pipes are enabled */
2774                 if (IS_I945G(dev) || IS_I945GM(dev)) {
2775                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2776                                    & ~FW_BLC_SELF_EN);
2777                 } else if (IS_I915GM(dev)) {
2778                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
2779                 }
2780         }
2781
2782         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2783                   planea_wm, planeb_wm, cwm, srwm);
2784
2785         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2786         fwater_hi = (cwm & 0x1f);
2787
2788         /* Set request length to 8 cachelines per fetch */
2789         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2790         fwater_hi = fwater_hi | (1 << 8);
2791
2792         I915_WRITE(FW_BLC, fwater_lo);
2793         I915_WRITE(FW_BLC2, fwater_hi);
2794 }
2795
2796 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2797                            int unused2, int pixel_size)
2798 {
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2801         int planea_wm;
2802
2803         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2804
2805         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2806                                        pixel_size, latency_ns);
2807         fwater_lo |= (3<<8) | planea_wm;
2808
2809         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2810
2811         I915_WRITE(FW_BLC, fwater_lo);
2812 }
2813
2814 /**
2815  * intel_update_watermarks - update FIFO watermark values based on current modes
2816  *
2817  * Calculate watermark values for the various WM regs based on current mode
2818  * and plane configuration.
2819  *
2820  * There are several cases to deal with here:
2821  *   - normal (i.e. non-self-refresh)
2822  *   - self-refresh (SR) mode
2823  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2824  *   - lines are small relative to FIFO size (buffer can hold more than 2
2825  *     lines), so need to account for TLB latency
2826  *
2827  *   The normal calculation is:
2828  *     watermark = dotclock * bytes per pixel * latency
2829  *   where latency is platform & configuration dependent (we assume pessimal
2830  *   values here).
2831  *
2832  *   The SR calculation is:
2833  *     watermark = (trunc(latency/line time)+1) * surface width *
2834  *       bytes per pixel
2835  *   where
2836  *     line time = htotal / dotclock
2837  *   and latency is assumed to be high, as above.
2838  *
2839  * The final value programmed to the register should always be rounded up,
2840  * and include an extra 2 entries to account for clock crossings.
2841  *
2842  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2843  * to set the non-SR watermarks to 8.
2844   */
2845 static void intel_update_watermarks(struct drm_device *dev)
2846 {
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         struct drm_crtc *crtc;
2849         struct intel_crtc *intel_crtc;
2850         int sr_hdisplay = 0;
2851         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2852         int enabled = 0, pixel_size = 0;
2853
2854         if (!dev_priv->display.update_wm)
2855                 return;
2856
2857         /* Get the clock config from both planes */
2858         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2859                 intel_crtc = to_intel_crtc(crtc);
2860                 if (crtc->enabled) {
2861                         enabled++;
2862                         if (intel_crtc->plane == 0) {
2863                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2864                                           intel_crtc->pipe, crtc->mode.clock);
2865                                 planea_clock = crtc->mode.clock;
2866                         } else {
2867                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2868                                           intel_crtc->pipe, crtc->mode.clock);
2869                                 planeb_clock = crtc->mode.clock;
2870                         }
2871                         sr_hdisplay = crtc->mode.hdisplay;
2872                         sr_clock = crtc->mode.clock;
2873                         if (crtc->fb)
2874                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2875                         else
2876                                 pixel_size = 4; /* by default */
2877                 }
2878         }
2879
2880         if (enabled <= 0)
2881                 return;
2882
2883         /* Single plane configs can enable self refresh */
2884         if (enabled == 1 && IS_PINEVIEW(dev))
2885                 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2886         else if (IS_PINEVIEW(dev))
2887                 pineview_disable_cxsr(dev);
2888
2889         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2890                                     sr_hdisplay, pixel_size);
2891 }
2892
2893 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2894                                struct drm_display_mode *mode,
2895                                struct drm_display_mode *adjusted_mode,
2896                                int x, int y,
2897                                struct drm_framebuffer *old_fb)
2898 {
2899         struct drm_device *dev = crtc->dev;
2900         struct drm_i915_private *dev_priv = dev->dev_private;
2901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2902         int pipe = intel_crtc->pipe;
2903         int plane = intel_crtc->plane;
2904         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2905         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2906         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2907         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2908         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2909         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2910         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2911         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2912         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2913         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2914         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2915         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2916         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2917         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2918         int refclk, num_connectors = 0;
2919         intel_clock_t clock, reduced_clock;
2920         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2921         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2922         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2923         bool is_edp = false;
2924         struct drm_mode_config *mode_config = &dev->mode_config;
2925         struct drm_encoder *encoder;
2926         struct intel_encoder *intel_encoder;
2927         const intel_limit_t *limit;
2928         int ret;
2929         struct fdi_m_n m_n = {0};
2930         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2931         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2932         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2933         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2934         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2935         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2936         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2937         int lvds_reg = LVDS;
2938         u32 temp;
2939         int sdvo_pixel_multiply;
2940         int target_clock;
2941
2942         drm_vblank_pre_modeset(dev, pipe);
2943
2944         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2945
2946                 if (!encoder || encoder->crtc != crtc)
2947                         continue;
2948
2949                 intel_encoder = enc_to_intel_encoder(encoder);
2950
2951                 switch (intel_encoder->type) {
2952                 case INTEL_OUTPUT_LVDS:
2953                         is_lvds = true;
2954                         break;
2955                 case INTEL_OUTPUT_SDVO:
2956                 case INTEL_OUTPUT_HDMI:
2957                         is_sdvo = true;
2958                         if (intel_encoder->needs_tv_clock)
2959                                 is_tv = true;
2960                         break;
2961                 case INTEL_OUTPUT_DVO:
2962                         is_dvo = true;
2963                         break;
2964                 case INTEL_OUTPUT_TVOUT:
2965                         is_tv = true;
2966                         break;
2967                 case INTEL_OUTPUT_ANALOG:
2968                         is_crt = true;
2969                         break;
2970                 case INTEL_OUTPUT_DISPLAYPORT:
2971                         is_dp = true;
2972                         break;
2973                 case INTEL_OUTPUT_EDP:
2974                         is_edp = true;
2975                         break;
2976                 }
2977
2978                 num_connectors++;
2979         }
2980
2981         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
2982                 refclk = dev_priv->lvds_ssc_freq * 1000;
2983                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2984                                         refclk / 1000);
2985         } else if (IS_I9XX(dev)) {
2986                 refclk = 96000;
2987                 if (HAS_PCH_SPLIT(dev))
2988                         refclk = 120000; /* 120Mhz refclk */
2989         } else {
2990                 refclk = 48000;
2991         }
2992         
2993
2994         /*
2995          * Returns a set of divisors for the desired target clock with the given
2996          * refclk, or FALSE.  The returned values represent the clock equation:
2997          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2998          */
2999         limit = intel_limit(crtc);
3000         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3001         if (!ok) {
3002                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3003                 drm_vblank_post_modeset(dev, pipe);
3004                 return -EINVAL;
3005         }
3006
3007         if (is_lvds && dev_priv->lvds_downclock_avail) {
3008                 has_reduced_clock = limit->find_pll(limit, crtc,
3009                                                             dev_priv->lvds_downclock,
3010                                                             refclk,
3011                                                             &reduced_clock);
3012                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3013                         /*
3014                          * If the different P is found, it means that we can't
3015                          * switch the display clock by using the FP0/FP1.
3016                          * In such case we will disable the LVDS downclock
3017                          * feature.
3018                          */
3019                         DRM_DEBUG_KMS("Different P is found for "
3020                                                 "LVDS clock/downclock\n");
3021                         has_reduced_clock = 0;
3022                 }
3023         }
3024         /* SDVO TV has fixed PLL values depend on its clock range,
3025            this mirrors vbios setting. */
3026         if (is_sdvo && is_tv) {
3027                 if (adjusted_mode->clock >= 100000
3028                                 && adjusted_mode->clock < 140500) {
3029                         clock.p1 = 2;
3030                         clock.p2 = 10;
3031                         clock.n = 3;
3032                         clock.m1 = 16;
3033                         clock.m2 = 8;
3034                 } else if (adjusted_mode->clock >= 140500
3035                                 && adjusted_mode->clock <= 200000) {
3036                         clock.p1 = 1;
3037                         clock.p2 = 10;
3038                         clock.n = 6;
3039                         clock.m1 = 12;
3040                         clock.m2 = 8;
3041                 }
3042         }
3043
3044         /* FDI link */
3045         if (HAS_PCH_SPLIT(dev)) {
3046                 int lane, link_bw, bpp;
3047                 /* eDP doesn't require FDI link, so just set DP M/N
3048                    according to current link config */
3049                 if (is_edp) {
3050                         struct drm_connector *edp;
3051                         target_clock = mode->clock;
3052                         edp = intel_pipe_get_connector(crtc);
3053                         intel_edp_link_config(to_intel_encoder(edp),
3054                                         &lane, &link_bw);
3055                 } else {
3056                         /* DP over FDI requires target mode clock
3057                            instead of link clock */
3058                         if (is_dp)
3059                                 target_clock = mode->clock;
3060                         else
3061                                 target_clock = adjusted_mode->clock;
3062                         lane = 4;
3063                         link_bw = 270000;
3064                 }
3065
3066                 /* determine panel color depth */
3067                 temp = I915_READ(pipeconf_reg);
3068                 temp &= ~PIPE_BPC_MASK;
3069                 if (is_lvds) {
3070                         int lvds_reg = I915_READ(PCH_LVDS);
3071                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3072                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3073                                 temp |= PIPE_8BPC;
3074                         else
3075                                 temp |= PIPE_6BPC;
3076                 } else if (is_edp) {
3077                         switch (dev_priv->edp_bpp/3) {
3078                         case 8:
3079                                 temp |= PIPE_8BPC;
3080                                 break;
3081                         case 10:
3082                                 temp |= PIPE_10BPC;
3083                                 break;
3084                         case 6:
3085                                 temp |= PIPE_6BPC;
3086                                 break;
3087                         case 12:
3088                                 temp |= PIPE_12BPC;
3089                                 break;
3090                         }
3091                 } else
3092                         temp |= PIPE_8BPC;
3093                 I915_WRITE(pipeconf_reg, temp);
3094                 I915_READ(pipeconf_reg);
3095
3096                 switch (temp & PIPE_BPC_MASK) {
3097                 case PIPE_8BPC:
3098                         bpp = 24;
3099                         break;
3100                 case PIPE_10BPC:
3101                         bpp = 30;
3102                         break;
3103                 case PIPE_6BPC:
3104                         bpp = 18;
3105                         break;
3106                 case PIPE_12BPC:
3107                         bpp = 36;
3108                         break;
3109                 default:
3110                         DRM_ERROR("unknown pipe bpc value\n");
3111                         bpp = 24;
3112                 }
3113
3114                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3115         }
3116
3117         /* Ironlake: try to setup display ref clock before DPLL
3118          * enabling. This is only under driver's control after
3119          * PCH B stepping, previous chipset stepping should be
3120          * ignoring this setting.
3121          */
3122         if (HAS_PCH_SPLIT(dev)) {
3123                 temp = I915_READ(PCH_DREF_CONTROL);
3124                 /* Always enable nonspread source */
3125                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3126                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3127                 I915_WRITE(PCH_DREF_CONTROL, temp);
3128                 POSTING_READ(PCH_DREF_CONTROL);
3129
3130                 temp &= ~DREF_SSC_SOURCE_MASK;
3131                 temp |= DREF_SSC_SOURCE_ENABLE;
3132                 I915_WRITE(PCH_DREF_CONTROL, temp);
3133                 POSTING_READ(PCH_DREF_CONTROL);
3134
3135                 udelay(200);
3136
3137                 if (is_edp) {
3138                         if (dev_priv->lvds_use_ssc) {
3139                                 temp |= DREF_SSC1_ENABLE;
3140                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3141                                 POSTING_READ(PCH_DREF_CONTROL);
3142
3143                                 udelay(200);
3144
3145                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3146                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3147                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3148                                 POSTING_READ(PCH_DREF_CONTROL);
3149                         } else {
3150                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3151                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3152                                 POSTING_READ(PCH_DREF_CONTROL);
3153                         }
3154                 }
3155         }
3156
3157         if (IS_PINEVIEW(dev)) {
3158                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3159                 if (has_reduced_clock)
3160                         fp2 = (1 << reduced_clock.n) << 16 |
3161                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3162         } else {
3163                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3164                 if (has_reduced_clock)
3165                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3166                                 reduced_clock.m2;
3167         }
3168
3169         if (!HAS_PCH_SPLIT(dev))
3170                 dpll = DPLL_VGA_MODE_DIS;
3171
3172         if (IS_I9XX(dev)) {
3173                 if (is_lvds)
3174                         dpll |= DPLLB_MODE_LVDS;
3175                 else
3176                         dpll |= DPLLB_MODE_DAC_SERIAL;
3177                 if (is_sdvo) {
3178                         dpll |= DPLL_DVO_HIGH_SPEED;
3179                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3180                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3181                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3182                         else if (HAS_PCH_SPLIT(dev))
3183                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3184                 }
3185                 if (is_dp)
3186                         dpll |= DPLL_DVO_HIGH_SPEED;
3187
3188                 /* compute bitmask from p1 value */
3189                 if (IS_PINEVIEW(dev))
3190                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3191                 else {
3192                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3193                         /* also FPA1 */
3194                         if (HAS_PCH_SPLIT(dev))
3195                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3196                         if (IS_G4X(dev) && has_reduced_clock)
3197                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3198                 }
3199                 switch (clock.p2) {
3200                 case 5:
3201                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3202                         break;
3203                 case 7:
3204                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3205                         break;
3206                 case 10:
3207                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3208                         break;
3209                 case 14:
3210                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3211                         break;
3212                 }
3213                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3214                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3215         } else {
3216                 if (is_lvds) {
3217                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3218                 } else {
3219                         if (clock.p1 == 2)
3220                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3221                         else
3222                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3223                         if (clock.p2 == 4)
3224                                 dpll |= PLL_P2_DIVIDE_BY_4;
3225                 }
3226         }
3227
3228         if (is_sdvo && is_tv)
3229                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3230         else if (is_tv)
3231                 /* XXX: just matching BIOS for now */
3232                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3233                 dpll |= 3;
3234         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3235                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3236         else
3237                 dpll |= PLL_REF_INPUT_DREFCLK;
3238
3239         /* setup pipeconf */
3240         pipeconf = I915_READ(pipeconf_reg);
3241
3242         /* Set up the display plane register */
3243         dspcntr = DISPPLANE_GAMMA_ENABLE;
3244
3245         /* Ironlake's plane is forced to pipe, bit 24 is to
3246            enable color space conversion */
3247         if (!HAS_PCH_SPLIT(dev)) {
3248                 if (pipe == 0)
3249                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3250                 else
3251                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3252         }
3253
3254         if (pipe == 0 && !IS_I965G(dev)) {
3255                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3256                  * core speed.
3257                  *
3258                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3259                  * pipe == 0 check?
3260                  */
3261                 if (mode->clock >
3262                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3263                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3264                 else
3265                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3266         }
3267
3268         dspcntr |= DISPLAY_PLANE_ENABLE;
3269         pipeconf |= PIPEACONF_ENABLE;
3270         dpll |= DPLL_VCO_ENABLE;
3271
3272
3273         /* Disable the panel fitter if it was on our pipe */
3274         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3275                 I915_WRITE(PFIT_CONTROL, 0);
3276
3277         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3278         drm_mode_debug_printmodeline(mode);
3279
3280         /* assign to Ironlake registers */
3281         if (HAS_PCH_SPLIT(dev)) {
3282                 fp_reg = pch_fp_reg;
3283                 dpll_reg = pch_dpll_reg;
3284         }
3285
3286         if (is_edp) {
3287                 ironlake_disable_pll_edp(crtc);
3288         } else if ((dpll & DPLL_VCO_ENABLE)) {
3289                 I915_WRITE(fp_reg, fp);
3290                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3291                 I915_READ(dpll_reg);
3292                 udelay(150);
3293         }
3294
3295         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3296          * This is an exception to the general rule that mode_set doesn't turn
3297          * things on.
3298          */
3299         if (is_lvds) {
3300                 u32 lvds;
3301
3302                 if (HAS_PCH_SPLIT(dev))
3303                         lvds_reg = PCH_LVDS;
3304
3305                 lvds = I915_READ(lvds_reg);
3306                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3307                 if (pipe == 1)
3308                         lvds |= LVDS_PIPEB_SELECT;
3309                 else
3310                         lvds &= ~LVDS_PIPEB_SELECT;
3311                 /* set the corresponsding LVDS_BORDER bit */
3312                 lvds |= dev_priv->lvds_border_bits;
3313                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3314                  * set the DPLLs for dual-channel mode or not.
3315                  */
3316                 if (clock.p2 == 7)
3317                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3318                 else
3319                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3320
3321                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3322                  * appropriately here, but we need to look more thoroughly into how
3323                  * panels behave in the two modes.
3324                  */
3325                 /* set the dithering flag */
3326                 if (IS_I965G(dev)) {
3327                         if (dev_priv->lvds_dither) {
3328                                 if (HAS_PCH_SPLIT(dev))
3329                                         pipeconf |= PIPE_ENABLE_DITHER;
3330                                 else
3331                                         lvds |= LVDS_ENABLE_DITHER;
3332                         } else {
3333                                 if (HAS_PCH_SPLIT(dev))
3334                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3335                                 else
3336                                         lvds &= ~LVDS_ENABLE_DITHER;
3337                         }
3338                 }
3339                 I915_WRITE(lvds_reg, lvds);
3340                 I915_READ(lvds_reg);
3341         }
3342         if (is_dp)
3343                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3344
3345         if (!is_edp) {
3346                 I915_WRITE(fp_reg, fp);
3347                 I915_WRITE(dpll_reg, dpll);
3348                 I915_READ(dpll_reg);
3349                 /* Wait for the clocks to stabilize. */
3350                 udelay(150);
3351
3352                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3353                         if (is_sdvo) {
3354                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3355                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3356                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3357                         } else
3358                                 I915_WRITE(dpll_md_reg, 0);
3359                 } else {
3360                         /* write it again -- the BIOS does, after all */
3361                         I915_WRITE(dpll_reg, dpll);
3362                 }
3363                 I915_READ(dpll_reg);
3364                 /* Wait for the clocks to stabilize. */
3365                 udelay(150);
3366         }
3367
3368         if (is_lvds && has_reduced_clock && i915_powersave) {
3369                 I915_WRITE(fp_reg + 4, fp2);
3370                 intel_crtc->lowfreq_avail = true;
3371                 if (HAS_PIPE_CXSR(dev)) {
3372                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3373                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3374                 }
3375         } else {
3376                 I915_WRITE(fp_reg + 4, fp);
3377                 intel_crtc->lowfreq_avail = false;
3378                 if (HAS_PIPE_CXSR(dev)) {
3379                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3380                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3381                 }
3382         }
3383
3384         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3385                    ((adjusted_mode->crtc_htotal - 1) << 16));
3386         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3387                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3388         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3389                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3390         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3391                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3392         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3393                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3394         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3395                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3396         /* pipesrc and dspsize control the size that is scaled from, which should
3397          * always be the user's requested size.
3398          */
3399         if (!HAS_PCH_SPLIT(dev)) {
3400                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3401                                 (mode->hdisplay - 1));
3402                 I915_WRITE(dsppos_reg, 0);
3403         }
3404         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3405
3406         if (HAS_PCH_SPLIT(dev)) {
3407                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3408                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3409                 I915_WRITE(link_m1_reg, m_n.link_m);
3410                 I915_WRITE(link_n1_reg, m_n.link_n);
3411
3412                 if (is_edp) {
3413                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3414                 } else {
3415                         /* enable FDI RX PLL too */
3416                         temp = I915_READ(fdi_rx_reg);
3417                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3418                         udelay(200);
3419                 }
3420         }
3421
3422         I915_WRITE(pipeconf_reg, pipeconf);
3423         I915_READ(pipeconf_reg);
3424
3425         intel_wait_for_vblank(dev);
3426
3427         if (IS_IRONLAKE(dev)) {
3428                 /* enable address swizzle for tiling buffer */
3429                 temp = I915_READ(DISP_ARB_CTL);
3430                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3431         }
3432
3433         I915_WRITE(dspcntr_reg, dspcntr);
3434
3435         /* Flush the plane changes */
3436         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3437
3438         if ((IS_I965G(dev) || plane == 0))
3439                 intel_update_fbc(crtc, &crtc->mode);
3440
3441         intel_update_watermarks(dev);
3442
3443         drm_vblank_post_modeset(dev, pipe);
3444
3445         return ret;
3446 }
3447
3448 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3449 void intel_crtc_load_lut(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3455         int i;
3456
3457         /* The clocks have to be on to load the palette. */
3458         if (!crtc->enabled)
3459                 return;
3460
3461         /* use legacy palette for Ironlake */
3462         if (HAS_PCH_SPLIT(dev))
3463                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3464                                                    LGC_PALETTE_B;
3465
3466         for (i = 0; i < 256; i++) {
3467                 I915_WRITE(palreg + 4 * i,
3468                            (intel_crtc->lut_r[i] << 16) |
3469                            (intel_crtc->lut_g[i] << 8) |
3470                            intel_crtc->lut_b[i]);
3471         }
3472 }
3473
3474 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3475                                  struct drm_file *file_priv,
3476                                  uint32_t handle,
3477                                  uint32_t width, uint32_t height)
3478 {
3479         struct drm_device *dev = crtc->dev;
3480         struct drm_i915_private *dev_priv = dev->dev_private;
3481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3482         struct drm_gem_object *bo;
3483         struct drm_i915_gem_object *obj_priv;
3484         int pipe = intel_crtc->pipe;
3485         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3486         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3487         uint32_t temp = I915_READ(control);
3488         size_t addr;
3489         int ret;
3490
3491         DRM_DEBUG_KMS("\n");
3492
3493         /* if we want to turn off the cursor ignore width and height */
3494         if (!handle) {
3495                 DRM_DEBUG_KMS("cursor off\n");
3496                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3497                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3498                         temp |= CURSOR_MODE_DISABLE;
3499                 } else {
3500                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3501                 }
3502                 addr = 0;
3503                 bo = NULL;
3504                 mutex_lock(&dev->struct_mutex);
3505                 goto finish;
3506         }
3507
3508         /* Currently we only support 64x64 cursors */
3509         if (width != 64 || height != 64) {
3510                 DRM_ERROR("we currently only support 64x64 cursors\n");
3511                 return -EINVAL;
3512         }
3513
3514         bo = drm_gem_object_lookup(dev, file_priv, handle);
3515         if (!bo)
3516                 return -ENOENT;
3517
3518         obj_priv = to_intel_bo(bo);
3519
3520         if (bo->size < width * height * 4) {
3521                 DRM_ERROR("buffer is to small\n");
3522                 ret = -ENOMEM;
3523                 goto fail;
3524         }
3525
3526         /* we only need to pin inside GTT if cursor is non-phy */
3527         mutex_lock(&dev->struct_mutex);
3528         if (!dev_priv->info->cursor_needs_physical) {
3529                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3530                 if (ret) {
3531                         DRM_ERROR("failed to pin cursor bo\n");
3532                         goto fail_locked;
3533                 }
3534                 addr = obj_priv->gtt_offset;
3535         } else {
3536                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3537                 if (ret) {
3538                         DRM_ERROR("failed to attach phys object\n");
3539                         goto fail_locked;
3540                 }
3541                 addr = obj_priv->phys_obj->handle->busaddr;
3542         }
3543
3544         if (!IS_I9XX(dev))
3545                 I915_WRITE(CURSIZE, (height << 12) | width);
3546
3547         /* Hooray for CUR*CNTR differences */
3548         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3549                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3550                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3551                 temp |= (pipe << 28); /* Connect to correct pipe */
3552         } else {
3553                 temp &= ~(CURSOR_FORMAT_MASK);
3554                 temp |= CURSOR_ENABLE;
3555                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3556         }
3557
3558  finish:
3559         I915_WRITE(control, temp);
3560         I915_WRITE(base, addr);
3561
3562         if (intel_crtc->cursor_bo) {
3563                 if (dev_priv->info->cursor_needs_physical) {
3564                         if (intel_crtc->cursor_bo != bo)
3565                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3566                 } else
3567                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3568                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3569         }
3570
3571         mutex_unlock(&dev->struct_mutex);
3572
3573         intel_crtc->cursor_addr = addr;
3574         intel_crtc->cursor_bo = bo;
3575
3576         return 0;
3577 fail_locked:
3578         mutex_unlock(&dev->struct_mutex);
3579 fail:
3580         drm_gem_object_unreference_unlocked(bo);
3581         return ret;
3582 }
3583
3584 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3585 {
3586         struct drm_device *dev = crtc->dev;
3587         struct drm_i915_private *dev_priv = dev->dev_private;
3588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589         struct intel_framebuffer *intel_fb;
3590         int pipe = intel_crtc->pipe;
3591         uint32_t temp = 0;
3592         uint32_t adder;
3593
3594         if (crtc->fb) {
3595                 intel_fb = to_intel_framebuffer(crtc->fb);
3596                 intel_mark_busy(dev, intel_fb->obj);
3597         }
3598
3599         if (x < 0) {
3600                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3601                 x = -x;
3602         }
3603         if (y < 0) {
3604                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3605                 y = -y;
3606         }
3607
3608         temp |= x << CURSOR_X_SHIFT;
3609         temp |= y << CURSOR_Y_SHIFT;
3610
3611         adder = intel_crtc->cursor_addr;
3612         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3613         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3614
3615         return 0;
3616 }
3617
3618 /** Sets the color ramps on behalf of RandR */
3619 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3620                                  u16 blue, int regno)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623
3624         intel_crtc->lut_r[regno] = red >> 8;
3625         intel_crtc->lut_g[regno] = green >> 8;
3626         intel_crtc->lut_b[regno] = blue >> 8;
3627 }
3628
3629 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3630                              u16 *blue, int regno)
3631 {
3632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3633
3634         *red = intel_crtc->lut_r[regno] << 8;
3635         *green = intel_crtc->lut_g[regno] << 8;
3636         *blue = intel_crtc->lut_b[regno] << 8;
3637 }
3638
3639 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3640                                  u16 *blue, uint32_t size)
3641 {
3642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643         int i;
3644
3645         if (size != 256)
3646                 return;
3647
3648         for (i = 0; i < 256; i++) {
3649                 intel_crtc->lut_r[i] = red[i] >> 8;
3650                 intel_crtc->lut_g[i] = green[i] >> 8;
3651                 intel_crtc->lut_b[i] = blue[i] >> 8;
3652         }
3653
3654         intel_crtc_load_lut(crtc);
3655 }
3656
3657 /**
3658  * Get a pipe with a simple mode set on it for doing load-based monitor
3659  * detection.
3660  *
3661  * It will be up to the load-detect code to adjust the pipe as appropriate for
3662  * its requirements.  The pipe will be connected to no other encoders.
3663  *
3664  * Currently this code will only succeed if there is a pipe with no encoders
3665  * configured for it.  In the future, it could choose to temporarily disable
3666  * some outputs to free up a pipe for its use.
3667  *
3668  * \return crtc, or NULL if no pipes are available.
3669  */
3670
3671 /* VESA 640x480x72Hz mode to set on the pipe */
3672 static struct drm_display_mode load_detect_mode = {
3673         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3674                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3675 };
3676
3677 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
3678                                             struct drm_connector *connector,
3679                                             struct drm_display_mode *mode,
3680                                             int *dpms_mode)
3681 {
3682         struct intel_crtc *intel_crtc;
3683         struct drm_crtc *possible_crtc;
3684         struct drm_crtc *supported_crtc =NULL;
3685         struct drm_encoder *encoder = &intel_encoder->enc;
3686         struct drm_crtc *crtc = NULL;
3687         struct drm_device *dev = encoder->dev;
3688         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3689         struct drm_crtc_helper_funcs *crtc_funcs;
3690         int i = -1;
3691
3692         /*
3693          * Algorithm gets a little messy:
3694          *   - if the connector already has an assigned crtc, use it (but make
3695          *     sure it's on first)
3696          *   - try to find the first unused crtc that can drive this connector,
3697          *     and use that if we find one
3698          *   - if there are no unused crtcs available, try to use the first
3699          *     one we found that supports the connector
3700          */
3701
3702         /* See if we already have a CRTC for this connector */
3703         if (encoder->crtc) {
3704                 crtc = encoder->crtc;
3705                 /* Make sure the crtc and connector are running */
3706                 intel_crtc = to_intel_crtc(crtc);
3707                 *dpms_mode = intel_crtc->dpms_mode;
3708                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3709                         crtc_funcs = crtc->helper_private;
3710                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3711                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3712                 }
3713                 return crtc;
3714         }
3715
3716         /* Find an unused one (if possible) */
3717         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3718                 i++;
3719                 if (!(encoder->possible_crtcs & (1 << i)))
3720                         continue;
3721                 if (!possible_crtc->enabled) {
3722                         crtc = possible_crtc;
3723                         break;
3724                 }
3725                 if (!supported_crtc)
3726                         supported_crtc = possible_crtc;
3727         }
3728
3729         /*
3730          * If we didn't find an unused CRTC, don't use any.
3731          */
3732         if (!crtc) {
3733                 return NULL;
3734         }
3735
3736         encoder->crtc = crtc;
3737         connector->encoder = encoder;
3738         intel_encoder->load_detect_temp = true;
3739
3740         intel_crtc = to_intel_crtc(crtc);
3741         *dpms_mode = intel_crtc->dpms_mode;
3742
3743         if (!crtc->enabled) {
3744                 if (!mode)
3745                         mode = &load_detect_mode;
3746                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3747         } else {
3748                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3749                         crtc_funcs = crtc->helper_private;
3750                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3751                 }
3752
3753                 /* Add this connector to the crtc */
3754                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3755                 encoder_funcs->commit(encoder);
3756         }
3757         /* let the connector get through one full cycle before testing */
3758         intel_wait_for_vblank(dev);
3759
3760         return crtc;
3761 }
3762
3763 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
3764                                     struct drm_connector *connector, int dpms_mode)
3765 {
3766         struct drm_encoder *encoder = &intel_encoder->enc;
3767         struct drm_device *dev = encoder->dev;
3768         struct drm_crtc *crtc = encoder->crtc;
3769         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3770         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3771
3772         if (intel_encoder->load_detect_temp) {
3773                 encoder->crtc = NULL;
3774                 connector->encoder = NULL;
3775                 intel_encoder->load_detect_temp = false;
3776                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3777                 drm_helper_disable_unused_functions(dev);
3778         }
3779
3780         /* Switch crtc and encoder back off if necessary */
3781         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3782                 if (encoder->crtc == crtc)
3783                         encoder_funcs->dpms(encoder, dpms_mode);
3784                 crtc_funcs->dpms(crtc, dpms_mode);
3785         }
3786 }
3787
3788 /* Returns the clock of the currently programmed mode of the given pipe. */
3789 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3790 {
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3793         int pipe = intel_crtc->pipe;
3794         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3795         u32 fp;
3796         intel_clock_t clock;
3797
3798         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3799                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3800         else
3801                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3802
3803         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3804         if (IS_PINEVIEW(dev)) {
3805                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3806                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3807         } else {
3808                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3809                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3810         }
3811
3812         if (IS_I9XX(dev)) {
3813                 if (IS_PINEVIEW(dev))
3814                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3815                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3816                 else
3817                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3818                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3819
3820                 switch (dpll & DPLL_MODE_MASK) {
3821                 case DPLLB_MODE_DAC_SERIAL:
3822                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3823                                 5 : 10;
3824                         break;
3825                 case DPLLB_MODE_LVDS:
3826                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3827                                 7 : 14;
3828                         break;
3829                 default:
3830                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3831                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3832                         return 0;
3833                 }
3834
3835                 /* XXX: Handle the 100Mhz refclk */
3836                 intel_clock(dev, 96000, &clock);
3837         } else {
3838                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3839
3840                 if (is_lvds) {
3841                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3842                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3843                         clock.p2 = 14;
3844
3845                         if ((dpll & PLL_REF_INPUT_MASK) ==
3846                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3847                                 /* XXX: might not be 66MHz */
3848                                 intel_clock(dev, 66000, &clock);
3849                         } else
3850                                 intel_clock(dev, 48000, &clock);
3851                 } else {
3852                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3853                                 clock.p1 = 2;
3854                         else {
3855                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3856                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3857                         }
3858                         if (dpll & PLL_P2_DIVIDE_BY_4)
3859                                 clock.p2 = 4;
3860                         else
3861                                 clock.p2 = 2;
3862
3863                         intel_clock(dev, 48000, &clock);
3864                 }
3865         }
3866
3867         /* XXX: It would be nice to validate the clocks, but we can't reuse
3868          * i830PllIsValid() because it relies on the xf86_config connector
3869          * configuration being accurate, which it isn't necessarily.
3870          */
3871
3872         return clock.dot;
3873 }
3874
3875 /** Returns the currently programmed mode of the given pipe. */
3876 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3877                                              struct drm_crtc *crtc)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3881         int pipe = intel_crtc->pipe;
3882         struct drm_display_mode *mode;
3883         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3884         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3885         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3886         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3887
3888         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3889         if (!mode)
3890                 return NULL;
3891
3892         mode->clock = intel_crtc_clock_get(dev, crtc);
3893         mode->hdisplay = (htot & 0xffff) + 1;
3894         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3895         mode->hsync_start = (hsync & 0xffff) + 1;
3896         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3897         mode->vdisplay = (vtot & 0xffff) + 1;
3898         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3899         mode->vsync_start = (vsync & 0xffff) + 1;
3900         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3901
3902         drm_mode_set_name(mode);
3903         drm_mode_set_crtcinfo(mode, 0);
3904
3905         return mode;
3906 }
3907
3908 #define GPU_IDLE_TIMEOUT 500 /* ms */
3909
3910 /* When this timer fires, we've been idle for awhile */
3911 static void intel_gpu_idle_timer(unsigned long arg)
3912 {
3913         struct drm_device *dev = (struct drm_device *)arg;
3914         drm_i915_private_t *dev_priv = dev->dev_private;
3915
3916         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3917
3918         dev_priv->busy = false;
3919
3920         queue_work(dev_priv->wq, &dev_priv->idle_work);
3921 }
3922
3923 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3924
3925 static void intel_crtc_idle_timer(unsigned long arg)
3926 {
3927         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3928         struct drm_crtc *crtc = &intel_crtc->base;
3929         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3930
3931         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3932
3933         intel_crtc->busy = false;
3934
3935         queue_work(dev_priv->wq, &dev_priv->idle_work);
3936 }
3937
3938 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3939 {
3940         struct drm_device *dev = crtc->dev;
3941         drm_i915_private_t *dev_priv = dev->dev_private;
3942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3943         int pipe = intel_crtc->pipe;
3944         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3945         int dpll = I915_READ(dpll_reg);
3946
3947         if (HAS_PCH_SPLIT(dev))
3948                 return;
3949
3950         if (!dev_priv->lvds_downclock_avail)
3951                 return;
3952
3953         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3954                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3955
3956                 /* Unlock panel regs */
3957                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3958
3959                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3960                 I915_WRITE(dpll_reg, dpll);
3961                 dpll = I915_READ(dpll_reg);
3962                 intel_wait_for_vblank(dev);
3963                 dpll = I915_READ(dpll_reg);
3964                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3965                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3966
3967                 /* ...and lock them again */
3968                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3969         }
3970
3971         /* Schedule downclock */
3972         if (schedule)
3973                 mod_timer(&intel_crtc->idle_timer, jiffies +
3974                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3975 }
3976
3977 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3978 {
3979         struct drm_device *dev = crtc->dev;
3980         drm_i915_private_t *dev_priv = dev->dev_private;
3981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3982         int pipe = intel_crtc->pipe;
3983         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3984         int dpll = I915_READ(dpll_reg);
3985
3986         if (HAS_PCH_SPLIT(dev))
3987                 return;
3988
3989         if (!dev_priv->lvds_downclock_avail)
3990                 return;
3991
3992         /*
3993          * Since this is called by a timer, we should never get here in
3994          * the manual case.
3995          */
3996         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3997                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3998
3999                 /* Unlock panel regs */
4000                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4001
4002                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4003                 I915_WRITE(dpll_reg, dpll);
4004                 dpll = I915_READ(dpll_reg);
4005                 intel_wait_for_vblank(dev);
4006                 dpll = I915_READ(dpll_reg);
4007                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4008                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4009
4010                 /* ...and lock them again */
4011                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4012         }
4013
4014 }
4015
4016 /**
4017  * intel_idle_update - adjust clocks for idleness
4018  * @work: work struct
4019  *
4020  * Either the GPU or display (or both) went idle.  Check the busy status
4021  * here and adjust the CRTC and GPU clocks as necessary.
4022  */
4023 static void intel_idle_update(struct work_struct *work)
4024 {
4025         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4026                                                     idle_work);
4027         struct drm_device *dev = dev_priv->dev;
4028         struct drm_crtc *crtc;
4029         struct intel_crtc *intel_crtc;
4030
4031         if (!i915_powersave)
4032                 return;
4033
4034         mutex_lock(&dev->struct_mutex);
4035
4036         if (IS_I945G(dev) || IS_I945GM(dev)) {
4037                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4038                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4039         }
4040
4041         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4042                 /* Skip inactive CRTCs */
4043                 if (!crtc->fb)
4044                         continue;
4045
4046                 intel_crtc = to_intel_crtc(crtc);
4047                 if (!intel_crtc->busy)
4048                         intel_decrease_pllclock(crtc);
4049         }
4050
4051         mutex_unlock(&dev->struct_mutex);
4052 }
4053
4054 /**
4055  * intel_mark_busy - mark the GPU and possibly the display busy
4056  * @dev: drm device
4057  * @obj: object we're operating on
4058  *
4059  * Callers can use this function to indicate that the GPU is busy processing
4060  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4061  * buffer), we'll also mark the display as busy, so we know to increase its
4062  * clock frequency.
4063  */
4064 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4065 {
4066         drm_i915_private_t *dev_priv = dev->dev_private;
4067         struct drm_crtc *crtc = NULL;
4068         struct intel_framebuffer *intel_fb;
4069         struct intel_crtc *intel_crtc;
4070
4071         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4072                 return;
4073
4074         if (!dev_priv->busy) {
4075                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4076                         u32 fw_blc_self;
4077
4078                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4079                         fw_blc_self = I915_READ(FW_BLC_SELF);
4080                         fw_blc_self &= ~FW_BLC_SELF_EN;
4081                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4082                 }
4083                 dev_priv->busy = true;
4084         } else
4085                 mod_timer(&dev_priv->idle_timer, jiffies +
4086                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4087
4088         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4089                 if (!crtc->fb)
4090                         continue;
4091
4092                 intel_crtc = to_intel_crtc(crtc);
4093                 intel_fb = to_intel_framebuffer(crtc->fb);
4094                 if (intel_fb->obj == obj) {
4095                         if (!intel_crtc->busy) {
4096                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4097                                         u32 fw_blc_self;
4098
4099                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4100                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4101                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4102                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4103                                 }
4104                                 /* Non-busy -> busy, upclock */
4105                                 intel_increase_pllclock(crtc, true);
4106                                 intel_crtc->busy = true;
4107                         } else {
4108                                 /* Busy -> busy, put off timer */
4109                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4110                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4111                         }
4112                 }
4113         }
4114 }
4115
4116 static void intel_crtc_destroy(struct drm_crtc *crtc)
4117 {
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119
4120         drm_crtc_cleanup(crtc);
4121         kfree(intel_crtc);
4122 }
4123
4124 struct intel_unpin_work {
4125         struct work_struct work;
4126         struct drm_device *dev;
4127         struct drm_gem_object *old_fb_obj;
4128         struct drm_gem_object *pending_flip_obj;
4129         struct drm_pending_vblank_event *event;
4130         int pending;
4131 };
4132
4133 static void intel_unpin_work_fn(struct work_struct *__work)
4134 {
4135         struct intel_unpin_work *work =
4136                 container_of(__work, struct intel_unpin_work, work);
4137
4138         mutex_lock(&work->dev->struct_mutex);
4139         i915_gem_object_unpin(work->old_fb_obj);
4140         drm_gem_object_unreference(work->pending_flip_obj);
4141         drm_gem_object_unreference(work->old_fb_obj);
4142         mutex_unlock(&work->dev->struct_mutex);
4143         kfree(work);
4144 }
4145
4146 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4147 {
4148         drm_i915_private_t *dev_priv = dev->dev_private;
4149         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151         struct intel_unpin_work *work;
4152         struct drm_i915_gem_object *obj_priv;
4153         struct drm_pending_vblank_event *e;
4154         struct timeval now;
4155         unsigned long flags;
4156
4157         /* Ignore early vblank irqs */
4158         if (intel_crtc == NULL)
4159                 return;
4160
4161         spin_lock_irqsave(&dev->event_lock, flags);
4162         work = intel_crtc->unpin_work;
4163         if (work == NULL || !work->pending) {
4164                 if (work && !work->pending) {
4165                         obj_priv = to_intel_bo(work->pending_flip_obj);
4166                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4167                                          obj_priv,
4168                                          atomic_read(&obj_priv->pending_flip));
4169                 }
4170                 spin_unlock_irqrestore(&dev->event_lock, flags);
4171                 return;
4172         }
4173
4174         intel_crtc->unpin_work = NULL;
4175         drm_vblank_put(dev, intel_crtc->pipe);
4176
4177         if (work->event) {
4178                 e = work->event;
4179                 do_gettimeofday(&now);
4180                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4181                 e->event.tv_sec = now.tv_sec;
4182                 e->event.tv_usec = now.tv_usec;
4183                 list_add_tail(&e->base.link,
4184                               &e->base.file_priv->event_list);
4185                 wake_up_interruptible(&e->base.file_priv->event_wait);
4186         }
4187
4188         spin_unlock_irqrestore(&dev->event_lock, flags);
4189
4190         obj_priv = to_intel_bo(work->pending_flip_obj);
4191
4192         /* Initial scanout buffer will have a 0 pending flip count */
4193         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4194             atomic_dec_and_test(&obj_priv->pending_flip))
4195                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4196         schedule_work(&work->work);
4197 }
4198
4199 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4200 {
4201         drm_i915_private_t *dev_priv = dev->dev_private;
4202         struct intel_crtc *intel_crtc =
4203                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4204         unsigned long flags;
4205
4206         spin_lock_irqsave(&dev->event_lock, flags);
4207         if (intel_crtc->unpin_work) {
4208                 intel_crtc->unpin_work->pending = 1;
4209         } else {
4210                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4211         }
4212         spin_unlock_irqrestore(&dev->event_lock, flags);
4213 }
4214
4215 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4216                                 struct drm_framebuffer *fb,
4217                                 struct drm_pending_vblank_event *event)
4218 {
4219         struct drm_device *dev = crtc->dev;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_framebuffer *intel_fb;
4222         struct drm_i915_gem_object *obj_priv;
4223         struct drm_gem_object *obj;
4224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225         struct intel_unpin_work *work;
4226         unsigned long flags;
4227         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4228         int ret, pipesrc;
4229         RING_LOCALS;
4230
4231         work = kzalloc(sizeof *work, GFP_KERNEL);
4232         if (work == NULL)
4233                 return -ENOMEM;
4234
4235         mutex_lock(&dev->struct_mutex);
4236
4237         work->event = event;
4238         work->dev = crtc->dev;
4239         intel_fb = to_intel_framebuffer(crtc->fb);
4240         work->old_fb_obj = intel_fb->obj;
4241         INIT_WORK(&work->work, intel_unpin_work_fn);
4242
4243         /* We borrow the event spin lock for protecting unpin_work */
4244         spin_lock_irqsave(&dev->event_lock, flags);
4245         if (intel_crtc->unpin_work) {
4246                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4247                 spin_unlock_irqrestore(&dev->event_lock, flags);
4248                 kfree(work);
4249                 mutex_unlock(&dev->struct_mutex);
4250                 return -EBUSY;
4251         }
4252         intel_crtc->unpin_work = work;
4253         spin_unlock_irqrestore(&dev->event_lock, flags);
4254
4255         intel_fb = to_intel_framebuffer(fb);
4256         obj = intel_fb->obj;
4257
4258         ret = intel_pin_and_fence_fb_obj(dev, obj);
4259         if (ret != 0) {
4260                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4261                           to_intel_bo(obj));
4262                 kfree(work);
4263                 intel_crtc->unpin_work = NULL;
4264                 mutex_unlock(&dev->struct_mutex);
4265                 return ret;
4266         }
4267
4268         /* Reference the objects for the scheduled work. */
4269         drm_gem_object_reference(work->old_fb_obj);
4270         drm_gem_object_reference(obj);
4271
4272         crtc->fb = fb;
4273         i915_gem_object_flush_write_domain(obj);
4274         drm_vblank_get(dev, intel_crtc->pipe);
4275         obj_priv = to_intel_bo(obj);
4276         atomic_inc(&obj_priv->pending_flip);
4277         work->pending_flip_obj = obj;
4278
4279         BEGIN_LP_RING(4);
4280         OUT_RING(MI_DISPLAY_FLIP |
4281                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4282         OUT_RING(fb->pitch);
4283         if (IS_I965G(dev)) {
4284                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4285                 pipesrc = I915_READ(pipesrc_reg); 
4286                 OUT_RING(pipesrc & 0x0fff0fff);
4287         } else {
4288                 OUT_RING(obj_priv->gtt_offset);
4289                 OUT_RING(MI_NOOP);
4290         }
4291         ADVANCE_LP_RING();
4292
4293         mutex_unlock(&dev->struct_mutex);
4294
4295         return 0;
4296 }
4297
4298 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4299         .dpms = intel_crtc_dpms,
4300         .mode_fixup = intel_crtc_mode_fixup,
4301         .mode_set = intel_crtc_mode_set,
4302         .mode_set_base = intel_pipe_set_base,
4303         .prepare = intel_crtc_prepare,
4304         .commit = intel_crtc_commit,
4305         .load_lut = intel_crtc_load_lut,
4306 };
4307
4308 static const struct drm_crtc_funcs intel_crtc_funcs = {
4309         .cursor_set = intel_crtc_cursor_set,
4310         .cursor_move = intel_crtc_cursor_move,
4311         .gamma_set = intel_crtc_gamma_set,
4312         .set_config = drm_crtc_helper_set_config,
4313         .destroy = intel_crtc_destroy,
4314         .page_flip = intel_crtc_page_flip,
4315 };
4316
4317
4318 static void intel_crtc_init(struct drm_device *dev, int pipe)
4319 {
4320         drm_i915_private_t *dev_priv = dev->dev_private;
4321         struct intel_crtc *intel_crtc;
4322         int i;
4323
4324         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4325         if (intel_crtc == NULL)
4326                 return;
4327
4328         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4329
4330         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4331         intel_crtc->pipe = pipe;
4332         intel_crtc->plane = pipe;
4333         for (i = 0; i < 256; i++) {
4334                 intel_crtc->lut_r[i] = i;
4335                 intel_crtc->lut_g[i] = i;
4336                 intel_crtc->lut_b[i] = i;
4337         }
4338
4339         /* Swap pipes & planes for FBC on pre-965 */
4340         intel_crtc->pipe = pipe;
4341         intel_crtc->plane = pipe;
4342         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4343                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4344                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4345         }
4346
4347         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4348                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4349         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4350         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4351
4352         intel_crtc->cursor_addr = 0;
4353         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4354         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4355
4356         intel_crtc->busy = false;
4357
4358         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4359                     (unsigned long)intel_crtc);
4360 }
4361
4362 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4363                                 struct drm_file *file_priv)
4364 {
4365         drm_i915_private_t *dev_priv = dev->dev_private;
4366         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4367         struct drm_mode_object *drmmode_obj;
4368         struct intel_crtc *crtc;
4369
4370         if (!dev_priv) {
4371                 DRM_ERROR("called with no initialization\n");
4372                 return -EINVAL;
4373         }
4374
4375         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4376                         DRM_MODE_OBJECT_CRTC);
4377
4378         if (!drmmode_obj) {
4379                 DRM_ERROR("no such CRTC id\n");
4380                 return -EINVAL;
4381         }
4382
4383         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4384         pipe_from_crtc_id->pipe = crtc->pipe;
4385
4386         return 0;
4387 }
4388
4389 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4390 {
4391         struct drm_crtc *crtc = NULL;
4392
4393         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4394                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4395                 if (intel_crtc->pipe == pipe)
4396                         break;
4397         }
4398         return crtc;
4399 }
4400
4401 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4402 {
4403         int index_mask = 0;
4404         struct drm_encoder *encoder;
4405         int entry = 0;
4406
4407         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4408                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4409                 if (type_mask & intel_encoder->clone_mask)
4410                         index_mask |= (1 << entry);
4411                 entry++;
4412         }
4413         return index_mask;
4414 }
4415
4416
4417 static void intel_setup_outputs(struct drm_device *dev)
4418 {
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct drm_encoder *encoder;
4421
4422         intel_crt_init(dev);
4423
4424         /* Set up integrated LVDS */
4425         if (IS_MOBILE(dev) && !IS_I830(dev))
4426                 intel_lvds_init(dev);
4427
4428         if (HAS_PCH_SPLIT(dev)) {
4429                 int found;
4430
4431                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4432                         intel_dp_init(dev, DP_A);
4433
4434                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4435                         /* check SDVOB */
4436                         /* found = intel_sdvo_init(dev, HDMIB); */
4437                         found = 0;
4438                         if (!found)
4439                                 intel_hdmi_init(dev, HDMIB);
4440                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4441                                 intel_dp_init(dev, PCH_DP_B);
4442                 }
4443
4444                 if (I915_READ(HDMIC) & PORT_DETECTED)
4445                         intel_hdmi_init(dev, HDMIC);
4446
4447                 if (I915_READ(HDMID) & PORT_DETECTED)
4448                         intel_hdmi_init(dev, HDMID);
4449
4450                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4451                         intel_dp_init(dev, PCH_DP_C);
4452
4453                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4454                         intel_dp_init(dev, PCH_DP_D);
4455
4456         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4457                 bool found = false;
4458
4459                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4460                         DRM_DEBUG_KMS("probing SDVOB\n");
4461                         found = intel_sdvo_init(dev, SDVOB);
4462                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4463                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4464                                 intel_hdmi_init(dev, SDVOB);
4465                         }
4466
4467                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4468                                 DRM_DEBUG_KMS("probing DP_B\n");
4469                                 intel_dp_init(dev, DP_B);
4470                         }
4471                 }
4472
4473                 /* Before G4X SDVOC doesn't have its own detect register */
4474
4475                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4476                         DRM_DEBUG_KMS("probing SDVOC\n");
4477                         found = intel_sdvo_init(dev, SDVOC);
4478                 }
4479
4480                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4481
4482                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4483                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4484                                 intel_hdmi_init(dev, SDVOC);
4485                         }
4486                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4487                                 DRM_DEBUG_KMS("probing DP_C\n");
4488                                 intel_dp_init(dev, DP_C);
4489                         }
4490                 }
4491
4492                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4493                     (I915_READ(DP_D) & DP_DETECTED)) {
4494                         DRM_DEBUG_KMS("probing DP_D\n");
4495                         intel_dp_init(dev, DP_D);
4496                 }
4497         } else if (IS_GEN2(dev))
4498                 intel_dvo_init(dev);
4499
4500         if (SUPPORTS_TV(dev))
4501                 intel_tv_init(dev);
4502
4503         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4504                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4505
4506                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4507                 encoder->possible_clones = intel_encoder_clones(dev,
4508                                                 intel_encoder->clone_mask);
4509         }
4510 }
4511
4512 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4513 {
4514         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4515         struct drm_device *dev = fb->dev;
4516
4517         if (fb->fbdev)
4518                 intelfb_remove(dev, fb);
4519
4520         drm_framebuffer_cleanup(fb);
4521         drm_gem_object_unreference_unlocked(intel_fb->obj);
4522
4523         kfree(intel_fb);
4524 }
4525
4526 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4527                                                 struct drm_file *file_priv,
4528                                                 unsigned int *handle)
4529 {
4530         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4531         struct drm_gem_object *object = intel_fb->obj;
4532
4533         return drm_gem_handle_create(file_priv, object, handle);
4534 }
4535
4536 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4537         .destroy = intel_user_framebuffer_destroy,
4538         .create_handle = intel_user_framebuffer_create_handle,
4539 };
4540
4541 int intel_framebuffer_create(struct drm_device *dev,
4542                              struct drm_mode_fb_cmd *mode_cmd,
4543                              struct drm_framebuffer **fb,
4544                              struct drm_gem_object *obj)
4545 {
4546         struct intel_framebuffer *intel_fb;
4547         int ret;
4548
4549         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4550         if (!intel_fb)
4551                 return -ENOMEM;
4552
4553         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4554         if (ret) {
4555                 DRM_ERROR("framebuffer init failed %d\n", ret);
4556                 return ret;
4557         }
4558
4559         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4560
4561         intel_fb->obj = obj;
4562
4563         *fb = &intel_fb->base;
4564
4565         return 0;
4566 }
4567
4568
4569 static struct drm_framebuffer *
4570 intel_user_framebuffer_create(struct drm_device *dev,
4571                               struct drm_file *filp,
4572                               struct drm_mode_fb_cmd *mode_cmd)
4573 {
4574         struct drm_gem_object *obj;
4575         struct drm_framebuffer *fb;
4576         int ret;
4577
4578         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4579         if (!obj)
4580                 return NULL;
4581
4582         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4583         if (ret) {
4584                 drm_gem_object_unreference_unlocked(obj);
4585                 return NULL;
4586         }
4587
4588         return fb;
4589 }
4590
4591 static const struct drm_mode_config_funcs intel_mode_funcs = {
4592         .fb_create = intel_user_framebuffer_create,
4593         .fb_changed = intelfb_probe,
4594 };
4595
4596 static struct drm_gem_object *
4597 intel_alloc_power_context(struct drm_device *dev)
4598 {
4599         struct drm_gem_object *pwrctx;
4600         int ret;
4601
4602         pwrctx = drm_gem_object_alloc(dev, 4096);
4603         if (!pwrctx) {
4604                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4605                 return NULL;
4606         }
4607
4608         mutex_lock(&dev->struct_mutex);
4609         ret = i915_gem_object_pin(pwrctx, 4096);
4610         if (ret) {
4611                 DRM_ERROR("failed to pin power context: %d\n", ret);
4612                 goto err_unref;
4613         }
4614
4615         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4616         if (ret) {
4617                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4618                 goto err_unpin;
4619         }
4620         mutex_unlock(&dev->struct_mutex);
4621
4622         return pwrctx;
4623
4624 err_unpin:
4625         i915_gem_object_unpin(pwrctx);
4626 err_unref:
4627         drm_gem_object_unreference(pwrctx);
4628         mutex_unlock(&dev->struct_mutex);
4629         return NULL;
4630 }
4631
4632 void ironlake_enable_drps(struct drm_device *dev)
4633 {
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4636         u8 fmax, fmin, fstart, vstart;
4637         int i = 0;
4638
4639         /* 100ms RC evaluation intervals */
4640         I915_WRITE(RCUPEI, 100000);
4641         I915_WRITE(RCDNEI, 100000);
4642
4643         /* Set max/min thresholds to 90ms and 80ms respectively */
4644         I915_WRITE(RCBMAXAVG, 90000);
4645         I915_WRITE(RCBMINAVG, 80000);
4646
4647         I915_WRITE(MEMIHYST, 1);
4648
4649         /* Set up min, max, and cur for interrupt handling */
4650         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4651         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4652         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4653                 MEMMODE_FSTART_SHIFT;
4654         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4655                 PXVFREQ_PX_SHIFT;
4656
4657         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
4658         dev_priv->min_delay = fmin;
4659         dev_priv->cur_delay = fstart;
4660
4661         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4662
4663         /*
4664          * Interrupts will be enabled in ironlake_irq_postinstall
4665          */
4666
4667         I915_WRITE(VIDSTART, vstart);
4668         POSTING_READ(VIDSTART);
4669
4670         rgvmodectl |= MEMMODE_SWMODE_EN;
4671         I915_WRITE(MEMMODECTL, rgvmodectl);
4672
4673         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
4674                 if (i++ > 100) {
4675                         DRM_ERROR("stuck trying to change perf mode\n");
4676                         break;
4677                 }
4678                 msleep(1);
4679         }
4680         msleep(1);
4681
4682         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4683                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4684         I915_WRITE(MEMSWCTL, rgvswctl);
4685         POSTING_READ(MEMSWCTL);
4686
4687         rgvswctl |= MEMCTL_CMD_STS;
4688         I915_WRITE(MEMSWCTL, rgvswctl);
4689 }
4690
4691 void ironlake_disable_drps(struct drm_device *dev)
4692 {
4693         struct drm_i915_private *dev_priv = dev->dev_private;
4694         u32 rgvswctl;
4695         u8 fstart;
4696
4697         /* Ack interrupts, disable EFC interrupt */
4698         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4699         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4700         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4701         I915_WRITE(DEIIR, DE_PCU_EVENT);
4702         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4703
4704         /* Go back to the starting frequency */
4705         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
4706                 MEMMODE_FSTART_SHIFT;
4707         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4708                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4709         I915_WRITE(MEMSWCTL, rgvswctl);
4710         msleep(1);
4711         rgvswctl |= MEMCTL_CMD_STS;
4712         I915_WRITE(MEMSWCTL, rgvswctl);
4713         msleep(1);
4714
4715 }
4716
4717 void intel_init_clock_gating(struct drm_device *dev)
4718 {
4719         struct drm_i915_private *dev_priv = dev->dev_private;
4720
4721         /*
4722          * Disable clock gating reported to work incorrectly according to the
4723          * specs, but enable as much else as we can.
4724          */
4725         if (HAS_PCH_SPLIT(dev)) {
4726                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
4727
4728                 if (IS_IRONLAKE(dev)) {
4729                         /* Required for FBC */
4730                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
4731                         /* Required for CxSR */
4732                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
4733
4734                         I915_WRITE(PCH_3DCGDIS0,
4735                                    MARIUNIT_CLOCK_GATE_DISABLE |
4736                                    SVSMUNIT_CLOCK_GATE_DISABLE);
4737                 }
4738
4739                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
4740                 return;
4741         } else if (IS_G4X(dev)) {
4742                 uint32_t dspclk_gate;
4743                 I915_WRITE(RENCLK_GATE_D1, 0);
4744                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4745                        GS_UNIT_CLOCK_GATE_DISABLE |
4746                        CL_UNIT_CLOCK_GATE_DISABLE);
4747                 I915_WRITE(RAMCLK_GATE_D, 0);
4748                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4749                         OVRUNIT_CLOCK_GATE_DISABLE |
4750                         OVCUNIT_CLOCK_GATE_DISABLE;
4751                 if (IS_GM45(dev))
4752                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4753                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4754         } else if (IS_I965GM(dev)) {
4755                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4756                 I915_WRITE(RENCLK_GATE_D2, 0);
4757                 I915_WRITE(DSPCLK_GATE_D, 0);
4758                 I915_WRITE(RAMCLK_GATE_D, 0);
4759                 I915_WRITE16(DEUC, 0);
4760         } else if (IS_I965G(dev)) {
4761                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4762                        I965_RCC_CLOCK_GATE_DISABLE |
4763                        I965_RCPB_CLOCK_GATE_DISABLE |
4764                        I965_ISC_CLOCK_GATE_DISABLE |
4765                        I965_FBC_CLOCK_GATE_DISABLE);
4766                 I915_WRITE(RENCLK_GATE_D2, 0);
4767         } else if (IS_I9XX(dev)) {
4768                 u32 dstate = I915_READ(D_STATE);
4769
4770                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4771                         DSTATE_DOT_CLOCK_GATING;
4772                 I915_WRITE(D_STATE, dstate);
4773         } else if (IS_I85X(dev) || IS_I865G(dev)) {
4774                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4775         } else if (IS_I830(dev)) {
4776                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4777         }
4778
4779         /*
4780          * GPU can automatically power down the render unit if given a page
4781          * to save state.
4782          */
4783         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4784                 struct drm_i915_gem_object *obj_priv = NULL;
4785
4786                 if (dev_priv->pwrctx) {
4787                         obj_priv = to_intel_bo(dev_priv->pwrctx);
4788                 } else {
4789                         struct drm_gem_object *pwrctx;
4790
4791                         pwrctx = intel_alloc_power_context(dev);
4792                         if (pwrctx) {
4793                                 dev_priv->pwrctx = pwrctx;
4794                                 obj_priv = to_intel_bo(pwrctx);
4795                         }
4796                 }
4797
4798                 if (obj_priv) {
4799                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4800                         I915_WRITE(MCHBAR_RENDER_STANDBY,
4801                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4802                 }
4803         }
4804 }
4805
4806 /* Set up chip specific display functions */
4807 static void intel_init_display(struct drm_device *dev)
4808 {
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810
4811         /* We always want a DPMS function */
4812         if (HAS_PCH_SPLIT(dev))
4813                 dev_priv->display.dpms = ironlake_crtc_dpms;
4814         else
4815                 dev_priv->display.dpms = i9xx_crtc_dpms;
4816
4817         /* Only mobile has FBC, leave pointers NULL for other chips */
4818         if (IS_MOBILE(dev)) {
4819                 if (IS_GM45(dev)) {
4820                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4821                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4822                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4823                 } else if (IS_I965GM(dev)) {
4824                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4825                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4826                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4827                 }
4828                 /* 855GM needs testing */
4829         }
4830
4831         /* Returns the core display clock speed */
4832         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4833                 dev_priv->display.get_display_clock_speed =
4834                         i945_get_display_clock_speed;
4835         else if (IS_I915G(dev))
4836                 dev_priv->display.get_display_clock_speed =
4837                         i915_get_display_clock_speed;
4838         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4839                 dev_priv->display.get_display_clock_speed =
4840                         i9xx_misc_get_display_clock_speed;
4841         else if (IS_I915GM(dev))
4842                 dev_priv->display.get_display_clock_speed =
4843                         i915gm_get_display_clock_speed;
4844         else if (IS_I865G(dev))
4845                 dev_priv->display.get_display_clock_speed =
4846                         i865_get_display_clock_speed;
4847         else if (IS_I85X(dev))
4848                 dev_priv->display.get_display_clock_speed =
4849                         i855_get_display_clock_speed;
4850         else /* 852, 830 */
4851                 dev_priv->display.get_display_clock_speed =
4852                         i830_get_display_clock_speed;
4853
4854         /* For FIFO watermark updates */
4855         if (HAS_PCH_SPLIT(dev))
4856                 dev_priv->display.update_wm = NULL;
4857         else if (IS_G4X(dev))
4858                 dev_priv->display.update_wm = g4x_update_wm;
4859         else if (IS_I965G(dev))
4860                 dev_priv->display.update_wm = i965_update_wm;
4861         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4862                 dev_priv->display.update_wm = i9xx_update_wm;
4863                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4864         } else {
4865                 if (IS_I85X(dev))
4866                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4867                 else if (IS_845G(dev))
4868                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4869                 else
4870                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4871                 dev_priv->display.update_wm = i830_update_wm;
4872         }
4873 }
4874
4875 void intel_modeset_init(struct drm_device *dev)
4876 {
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         int num_pipe;
4879         int i;
4880
4881         drm_mode_config_init(dev);
4882
4883         dev->mode_config.min_width = 0;
4884         dev->mode_config.min_height = 0;
4885
4886         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4887
4888         intel_init_display(dev);
4889
4890         if (IS_I965G(dev)) {
4891                 dev->mode_config.max_width = 8192;
4892                 dev->mode_config.max_height = 8192;
4893         } else if (IS_I9XX(dev)) {
4894                 dev->mode_config.max_width = 4096;
4895                 dev->mode_config.max_height = 4096;
4896         } else {
4897                 dev->mode_config.max_width = 2048;
4898                 dev->mode_config.max_height = 2048;
4899         }
4900
4901         /* set memory base */
4902         if (IS_I9XX(dev))
4903                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4904         else
4905                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4906
4907         if (IS_MOBILE(dev) || IS_I9XX(dev))
4908                 num_pipe = 2;
4909         else
4910                 num_pipe = 1;
4911         DRM_DEBUG_KMS("%d display pipe%s available.\n",
4912                   num_pipe, num_pipe > 1 ? "s" : "");
4913
4914         for (i = 0; i < num_pipe; i++) {
4915                 intel_crtc_init(dev, i);
4916         }
4917
4918         intel_setup_outputs(dev);
4919
4920         intel_init_clock_gating(dev);
4921
4922         if (IS_IRONLAKE_M(dev))
4923                 ironlake_enable_drps(dev);
4924
4925         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4926         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4927                     (unsigned long)dev);
4928
4929         intel_setup_overlay(dev);
4930
4931         if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4932                                                         dev_priv->fsb_freq,
4933                                                         dev_priv->mem_freq))
4934                 DRM_INFO("failed to find known CxSR latency "
4935                          "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4936                          dev_priv->fsb_freq, dev_priv->mem_freq);
4937 }
4938
4939 void intel_modeset_cleanup(struct drm_device *dev)
4940 {
4941         struct drm_i915_private *dev_priv = dev->dev_private;
4942         struct drm_crtc *crtc;
4943         struct intel_crtc *intel_crtc;
4944
4945         mutex_lock(&dev->struct_mutex);
4946
4947         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4948                 /* Skip inactive CRTCs */
4949                 if (!crtc->fb)
4950                         continue;
4951
4952                 intel_crtc = to_intel_crtc(crtc);
4953                 intel_increase_pllclock(crtc, false);
4954                 del_timer_sync(&intel_crtc->idle_timer);
4955         }
4956
4957         del_timer_sync(&dev_priv->idle_timer);
4958
4959         if (dev_priv->display.disable_fbc)
4960                 dev_priv->display.disable_fbc(dev);
4961
4962         if (dev_priv->pwrctx) {
4963                 struct drm_i915_gem_object *obj_priv;
4964
4965                 obj_priv = to_intel_bo(dev_priv->pwrctx);
4966                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4967                 I915_READ(PWRCTXA);
4968                 i915_gem_object_unpin(dev_priv->pwrctx);
4969                 drm_gem_object_unreference(dev_priv->pwrctx);
4970         }
4971
4972         if (IS_IRONLAKE_M(dev))
4973                 ironlake_disable_drps(dev);
4974
4975         mutex_unlock(&dev->struct_mutex);
4976
4977         drm_mode_config_cleanup(dev);
4978 }
4979
4980
4981 /* current intel driver doesn't take advantage of encoders
4982    always give back the encoder for the connector
4983 */
4984 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4985 {
4986         struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4987
4988         return &intel_encoder->enc;
4989 }
4990
4991 /*
4992  * Return which encoder is currently attached for connector.
4993  */
4994 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
4995 {
4996         struct drm_mode_object *obj;
4997         struct drm_encoder *encoder;
4998         int i;
4999
5000         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5001                 if (connector->encoder_ids[i] == 0)
5002                         break;
5003
5004                 obj = drm_mode_object_find(connector->dev,
5005                                            connector->encoder_ids[i],
5006                                            DRM_MODE_OBJECT_ENCODER);
5007                 if (!obj)
5008                         continue;
5009
5010                 encoder = obj_to_encoder(obj);
5011                 return encoder;
5012         }
5013         return NULL;
5014 }
5015
5016 /*
5017  * set vga decode state - true == enable VGA decode
5018  */
5019 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5020 {
5021         struct drm_i915_private *dev_priv = dev->dev_private;
5022         u16 gmch_ctrl;
5023
5024         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5025         if (state)
5026                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5027         else
5028                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5029         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5030         return 0;
5031 }