Use drm_gem_object_[handle_]unreference_unlocked where possible
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73 };
74
75 #define I8XX_DOT_MIN              25000
76 #define I8XX_DOT_MAX             350000
77 #define I8XX_VCO_MIN             930000
78 #define I8XX_VCO_MAX            1400000
79 #define I8XX_N_MIN                    3
80 #define I8XX_N_MAX                   16
81 #define I8XX_M_MIN                   96
82 #define I8XX_M_MAX                  140
83 #define I8XX_M1_MIN                  18
84 #define I8XX_M1_MAX                  26
85 #define I8XX_M2_MIN                   6
86 #define I8XX_M2_MAX                  16
87 #define I8XX_P_MIN                    4
88 #define I8XX_P_MAX                  128
89 #define I8XX_P1_MIN                   2
90 #define I8XX_P1_MAX                  33
91 #define I8XX_P1_LVDS_MIN              1
92 #define I8XX_P1_LVDS_MAX              6
93 #define I8XX_P2_SLOW                  4
94 #define I8XX_P2_FAST                  2
95 #define I8XX_P2_LVDS_SLOW             14
96 #define I8XX_P2_LVDS_FAST             7
97 #define I8XX_P2_SLOW_LIMIT       165000
98
99 #define I9XX_DOT_MIN              20000
100 #define I9XX_DOT_MAX             400000
101 #define I9XX_VCO_MIN            1400000
102 #define I9XX_VCO_MAX            2800000
103 #define PINEVIEW_VCO_MIN                1700000
104 #define PINEVIEW_VCO_MAX                3500000
105 #define I9XX_N_MIN                    1
106 #define I9XX_N_MAX                    6
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN                3
109 #define PINEVIEW_N_MAX                6
110 #define I9XX_M_MIN                   70
111 #define I9XX_M_MAX                  120
112 #define PINEVIEW_M_MIN                2
113 #define PINEVIEW_M_MAX              256
114 #define I9XX_M1_MIN                  10
115 #define I9XX_M1_MAX                  22
116 #define I9XX_M2_MIN                   5
117 #define I9XX_M2_MAX                   9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN               0
120 #define PINEVIEW_M1_MAX               0
121 #define PINEVIEW_M2_MIN               0
122 #define PINEVIEW_M2_MAX               254
123 #define I9XX_P_SDVO_DAC_MIN           5
124 #define I9XX_P_SDVO_DAC_MAX          80
125 #define I9XX_P_LVDS_MIN               7
126 #define I9XX_P_LVDS_MAX              98
127 #define PINEVIEW_P_LVDS_MIN                   7
128 #define PINEVIEW_P_LVDS_MAX                  112
129 #define I9XX_P1_MIN                   1
130 #define I9XX_P1_MAX                   8
131 #define I9XX_P2_SDVO_DAC_SLOW                10
132 #define I9XX_P2_SDVO_DAC_FAST                 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
134 #define I9XX_P2_LVDS_SLOW                    14
135 #define I9XX_P2_LVDS_FAST                     7
136 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
137
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN           25000
140 #define G4X_DOT_SDVO_MAX           270000
141 #define G4X_VCO_MIN                1750000
142 #define G4X_VCO_MAX                3500000
143 #define G4X_N_SDVO_MIN             1
144 #define G4X_N_SDVO_MAX             4
145 #define G4X_M_SDVO_MIN             104
146 #define G4X_M_SDVO_MAX             138
147 #define G4X_M1_SDVO_MIN            17
148 #define G4X_M1_SDVO_MAX            23
149 #define G4X_M2_SDVO_MIN            5
150 #define G4X_M2_SDVO_MAX            11
151 #define G4X_P_SDVO_MIN             10
152 #define G4X_P_SDVO_MAX             30
153 #define G4X_P1_SDVO_MIN            1
154 #define G4X_P1_SDVO_MAX            3
155 #define G4X_P2_SDVO_SLOW           10
156 #define G4X_P2_SDVO_FAST           10
157 #define G4X_P2_SDVO_LIMIT          270000
158
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN           22000
161 #define G4X_DOT_HDMI_DAC_MAX           400000
162 #define G4X_N_HDMI_DAC_MIN             1
163 #define G4X_N_HDMI_DAC_MAX             4
164 #define G4X_M_HDMI_DAC_MIN             104
165 #define G4X_M_HDMI_DAC_MAX             138
166 #define G4X_M1_HDMI_DAC_MIN            16
167 #define G4X_M1_HDMI_DAC_MAX            23
168 #define G4X_M2_HDMI_DAC_MIN            5
169 #define G4X_M2_HDMI_DAC_MAX            11
170 #define G4X_P_HDMI_DAC_MIN             5
171 #define G4X_P_HDMI_DAC_MAX             80
172 #define G4X_P1_HDMI_DAC_MIN            1
173 #define G4X_P1_HDMI_DAC_MAX            8
174 #define G4X_P2_HDMI_DAC_SLOW           10
175 #define G4X_P2_HDMI_DAC_FAST           5
176 #define G4X_P2_HDMI_DAC_LIMIT          165000
177
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
196
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
215
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN           161670
218 #define G4X_DOT_DISPLAY_PORT_MAX           227000
219 #define G4X_N_DISPLAY_PORT_MIN             1
220 #define G4X_N_DISPLAY_PORT_MAX             2
221 #define G4X_M_DISPLAY_PORT_MIN             97
222 #define G4X_M_DISPLAY_PORT_MAX             108
223 #define G4X_M1_DISPLAY_PORT_MIN            0x10
224 #define G4X_M1_DISPLAY_PORT_MAX            0x12
225 #define G4X_M2_DISPLAY_PORT_MIN            0x05
226 #define G4X_M2_DISPLAY_PORT_MAX            0x06
227 #define G4X_P_DISPLAY_PORT_MIN             10
228 #define G4X_P_DISPLAY_PORT_MAX             20
229 #define G4X_P1_DISPLAY_PORT_MIN            1
230 #define G4X_P1_DISPLAY_PORT_MAX            2
231 #define G4X_P2_DISPLAY_PORT_SLOW           10
232 #define G4X_P2_DISPLAY_PORT_FAST           10
233 #define G4X_P2_DISPLAY_PORT_LIMIT          0
234
235 /* Ironlake */
236 /* as we calculate clock using (register_value + 2) for
237    N/M1/M2, so here the range value for them is (actual_value-2).
238  */
239 #define IRONLAKE_DOT_MIN         25000
240 #define IRONLAKE_DOT_MAX         350000
241 #define IRONLAKE_VCO_MIN         1760000
242 #define IRONLAKE_VCO_MAX         3510000
243 #define IRONLAKE_N_MIN           1
244 #define IRONLAKE_N_MAX           6
245 #define IRONLAKE_M_MIN           79
246 #define IRONLAKE_M_MAX           127
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P_SDVO_DAC_MIN  5
252 #define IRONLAKE_P_SDVO_DAC_MAX  80
253 #define IRONLAKE_P_LVDS_MIN      28
254 #define IRONLAKE_P_LVDS_MAX      112
255 #define IRONLAKE_P1_MIN          1
256 #define IRONLAKE_P1_MAX          8
257 #define IRONLAKE_P2_SDVO_DAC_SLOW 10
258 #define IRONLAKE_P2_SDVO_DAC_FAST 5
259 #define IRONLAKE_P2_LVDS_SLOW    14 /* single channel */
260 #define IRONLAKE_P2_LVDS_FAST    7  /* double channel */
261 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
262
263 #define IRONLAKE_P_DISPLAY_PORT_MIN     10
264 #define IRONLAKE_P_DISPLAY_PORT_MAX     20
265 #define IRONLAKE_P2_DISPLAY_PORT_FAST   10
266 #define IRONLAKE_P2_DISPLAY_PORT_SLOW   10
267 #define IRONLAKE_P2_DISPLAY_PORT_LIMIT  0
268 #define IRONLAKE_P1_DISPLAY_PORT_MIN    1
269 #define IRONLAKE_P1_DISPLAY_PORT_MAX    2
270
271 static bool
272 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                     int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                            int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_i8xx_lvds = {
300         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
301         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
302         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
303         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
304         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
305         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
306         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
307         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
308         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
309                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
310         .find_pll = intel_find_best_PLL,
311 };
312         
313 static const intel_limit_t intel_limits_i9xx_sdvo = {
314         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
315         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
316         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
317         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
318         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
319         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
320         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
321         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
322         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
323                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
324         .find_pll = intel_find_best_PLL,
325 };
326
327 static const intel_limit_t intel_limits_i9xx_lvds = {
328         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
329         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
330         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
331         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
332         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
333         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
334         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
335         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
336         /* The single-channel range is 25-112Mhz, and dual-channel
337          * is 80-224Mhz.  Prefer single channel as much as possible.
338          */
339         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
340                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
341         .find_pll = intel_find_best_PLL,
342 };
343
344     /* below parameter and function is for G4X Chipset Family*/
345 static const intel_limit_t intel_limits_g4x_sdvo = {
346         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
347         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
348         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
349         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
350         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
351         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
352         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
353         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
354         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
355                  .p2_slow = G4X_P2_SDVO_SLOW,
356                  .p2_fast = G4X_P2_SDVO_FAST
357         },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_g4x_hdmi = {
362         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
363         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
364         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
365         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
366         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
367         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
368         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
369         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
370         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
371                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
372                  .p2_fast = G4X_P2_HDMI_DAC_FAST
373         },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
378         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
379                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
380         .vco = { .min = G4X_VCO_MIN,
381                  .max = G4X_VCO_MAX },
382         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
383                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
384         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
386         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
387                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
388         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
390         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
392         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
394         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
395                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
396                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
397         },
398         .find_pll = intel_g4x_find_best_PLL,
399 };
400
401 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
402         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
403                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
404         .vco = { .min = G4X_VCO_MIN,
405                  .max = G4X_VCO_MAX },
406         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
407                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
408         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
409                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
410         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
411                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
412         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
413                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
414         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
415                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
416         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
417                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
418         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
419                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
420                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
421         },
422         .find_pll = intel_g4x_find_best_PLL,
423 };
424
425 static const intel_limit_t intel_limits_g4x_display_port = {
426         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
427                  .max = G4X_DOT_DISPLAY_PORT_MAX },
428         .vco = { .min = G4X_VCO_MIN,
429                  .max = G4X_VCO_MAX},
430         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
431                  .max = G4X_N_DISPLAY_PORT_MAX },
432         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
433                  .max = G4X_M_DISPLAY_PORT_MAX },
434         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
435                  .max = G4X_M1_DISPLAY_PORT_MAX },
436         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
437                  .max = G4X_M2_DISPLAY_PORT_MAX },
438         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
439                  .max = G4X_P_DISPLAY_PORT_MAX },
440         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
441                  .max = G4X_P1_DISPLAY_PORT_MAX},
442         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
443                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
444                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
445         .find_pll = intel_find_pll_g4x_dp,
446 };
447
448 static const intel_limit_t intel_limits_pineview_sdvo = {
449         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
450         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
451         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
452         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
453         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
454         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
455         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
456         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
457         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
458                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
459         .find_pll = intel_find_best_PLL,
460 };
461
462 static const intel_limit_t intel_limits_pineview_lvds = {
463         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
464         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
465         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
466         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
467         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
468         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
469         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
470         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
471         /* Pineview only supports single-channel mode. */
472         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
473                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
474         .find_pll = intel_find_best_PLL,
475 };
476
477 static const intel_limit_t intel_limits_ironlake_sdvo = {
478         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
479         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
480         .n   = { .min = IRONLAKE_N_MIN,            .max = IRONLAKE_N_MAX },
481         .m   = { .min = IRONLAKE_M_MIN,            .max = IRONLAKE_M_MAX },
482         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
483         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
484         .p   = { .min = IRONLAKE_P_SDVO_DAC_MIN,   .max = IRONLAKE_P_SDVO_DAC_MAX },
485         .p1  = { .min = IRONLAKE_P1_MIN,           .max = IRONLAKE_P1_MAX },
486         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
487                  .p2_slow = IRONLAKE_P2_SDVO_DAC_SLOW,
488                  .p2_fast = IRONLAKE_P2_SDVO_DAC_FAST },
489         .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_ironlake_lvds = {
493         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
494         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
495         .n   = { .min = IRONLAKE_N_MIN,            .max = IRONLAKE_N_MAX },
496         .m   = { .min = IRONLAKE_M_MIN,            .max = IRONLAKE_M_MAX },
497         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
498         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
499         .p   = { .min = IRONLAKE_P_LVDS_MIN,       .max = IRONLAKE_P_LVDS_MAX },
500         .p1  = { .min = IRONLAKE_P1_MIN,           .max = IRONLAKE_P1_MAX },
501         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
502                  .p2_slow = IRONLAKE_P2_LVDS_SLOW,
503                  .p2_fast = IRONLAKE_P2_LVDS_FAST },
504         .find_pll = intel_g4x_find_best_PLL,
505 };
506
507 static const intel_limit_t intel_limits_ironlake_display_port = {
508         .dot = { .min = IRONLAKE_DOT_MIN,
509                  .max = IRONLAKE_DOT_MAX },
510         .vco = { .min = IRONLAKE_VCO_MIN,
511                  .max = IRONLAKE_VCO_MAX},
512         .n   = { .min = IRONLAKE_N_MIN,
513                  .max = IRONLAKE_N_MAX },
514         .m   = { .min = IRONLAKE_M_MIN,
515                  .max = IRONLAKE_M_MAX },
516         .m1  = { .min = IRONLAKE_M1_MIN,
517                  .max = IRONLAKE_M1_MAX },
518         .m2  = { .min = IRONLAKE_M2_MIN,
519                  .max = IRONLAKE_M2_MAX },
520         .p   = { .min = IRONLAKE_P_DISPLAY_PORT_MIN,
521                  .max = IRONLAKE_P_DISPLAY_PORT_MAX },
522         .p1  = { .min = IRONLAKE_P1_DISPLAY_PORT_MIN,
523                  .max = IRONLAKE_P1_DISPLAY_PORT_MAX},
524         .p2  = { .dot_limit = IRONLAKE_P2_DISPLAY_PORT_LIMIT,
525                  .p2_slow = IRONLAKE_P2_DISPLAY_PORT_SLOW,
526                  .p2_fast = IRONLAKE_P2_DISPLAY_PORT_FAST },
527         .find_pll = intel_find_pll_ironlake_dp,
528 };
529
530 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
531 {
532         const intel_limit_t *limit;
533         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
534                 limit = &intel_limits_ironlake_lvds;
535         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
536                         HAS_eDP)
537                 limit = &intel_limits_ironlake_display_port;
538         else
539                 limit = &intel_limits_ironlake_sdvo;
540
541         return limit;
542 }
543
544 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
545 {
546         struct drm_device *dev = crtc->dev;
547         struct drm_i915_private *dev_priv = dev->dev_private;
548         const intel_limit_t *limit;
549
550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
552                     LVDS_CLKB_POWER_UP)
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_dual_channel_lvds;
555                 else
556                         /* LVDS with dual channel */
557                         limit = &intel_limits_g4x_single_channel_lvds;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
559                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
560                 limit = &intel_limits_g4x_hdmi;
561         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
562                 limit = &intel_limits_g4x_sdvo;
563         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
564                 limit = &intel_limits_g4x_display_port;
565         } else /* The option is for other outputs */
566                 limit = &intel_limits_i9xx_sdvo;
567
568         return limit;
569 }
570
571 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
572 {
573         struct drm_device *dev = crtc->dev;
574         const intel_limit_t *limit;
575
576         if (IS_IRONLAKE(dev))
577                 limit = intel_ironlake_limit(crtc);
578         else if (IS_G4X(dev)) {
579                 limit = intel_g4x_limit(crtc);
580         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
581                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
582                         limit = &intel_limits_i9xx_lvds;
583                 else
584                         limit = &intel_limits_i9xx_sdvo;
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
592                         limit = &intel_limits_i8xx_lvds;
593                 else
594                         limit = &intel_limits_i8xx_dvo;
595         }
596         return limit;
597 }
598
599 /* m1 is reserved as 0 in Pineview, n is a ring counter */
600 static void pineview_clock(int refclk, intel_clock_t *clock)
601 {
602         clock->m = clock->m2 + 2;
603         clock->p = clock->p1 * clock->p2;
604         clock->vco = refclk * clock->m / clock->n;
605         clock->dot = clock->vco / clock->p;
606 }
607
608 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
609 {
610         if (IS_PINEVIEW(dev)) {
611                 pineview_clock(refclk, clock);
612                 return;
613         }
614         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / (clock->n + 2);
617         clock->dot = clock->vco / clock->p;
618 }
619
620 /**
621  * Returns whether any output on the specified pipe is of the specified type
622  */
623 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
624 {
625     struct drm_device *dev = crtc->dev;
626     struct drm_mode_config *mode_config = &dev->mode_config;
627     struct drm_connector *l_entry;
628
629     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
630             if (l_entry->encoder &&
631                 l_entry->encoder->crtc == crtc) {
632                     struct intel_output *intel_output = to_intel_output(l_entry);
633                     if (intel_output->type == type)
634                             return true;
635             }
636     }
637     return false;
638 }
639
640 struct drm_connector *
641 intel_pipe_get_output (struct drm_crtc *crtc)
642 {
643     struct drm_device *dev = crtc->dev;
644     struct drm_mode_config *mode_config = &dev->mode_config;
645     struct drm_connector *l_entry, *ret = NULL;
646
647     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
648             if (l_entry->encoder &&
649                 l_entry->encoder->crtc == crtc) {
650                     ret = l_entry;
651                     break;
652             }
653     }
654     return ret;
655 }
656
657 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
658 /**
659  * Returns whether the given set of divisors are valid for a given refclk with
660  * the given connectors.
661  */
662
663 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
664 {
665         const intel_limit_t *limit = intel_limit (crtc);
666         struct drm_device *dev = crtc->dev;
667
668         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
669                 INTELPllInvalid ("p1 out of range\n");
670         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
671                 INTELPllInvalid ("p out of range\n");
672         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
673                 INTELPllInvalid ("m2 out of range\n");
674         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
675                 INTELPllInvalid ("m1 out of range\n");
676         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
677                 INTELPllInvalid ("m1 <= m2\n");
678         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
679                 INTELPllInvalid ("m out of range\n");
680         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
681                 INTELPllInvalid ("n out of range\n");
682         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
683                 INTELPllInvalid ("vco out of range\n");
684         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
685          * connector, etc., rather than just a single range.
686          */
687         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
688                 INTELPllInvalid ("dot out of range\n");
689
690         return true;
691 }
692
693 static bool
694 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
695                     int target, int refclk, intel_clock_t *best_clock)
696
697 {
698         struct drm_device *dev = crtc->dev;
699         struct drm_i915_private *dev_priv = dev->dev_private;
700         intel_clock_t clock;
701         int err = target;
702
703         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
704             (I915_READ(LVDS)) != 0) {
705                 /*
706                  * For LVDS, if the panel is on, just rely on its current
707                  * settings for dual-channel.  We haven't figured out how to
708                  * reliably set up different single/dual channel state, if we
709                  * even can.
710                  */
711                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
712                     LVDS_CLKB_POWER_UP)
713                         clock.p2 = limit->p2.p2_fast;
714                 else
715                         clock.p2 = limit->p2.p2_slow;
716         } else {
717                 if (target < limit->p2.dot_limit)
718                         clock.p2 = limit->p2.p2_slow;
719                 else
720                         clock.p2 = limit->p2.p2_fast;
721         }
722
723         memset (best_clock, 0, sizeof (*best_clock));
724
725         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
726              clock.m1++) {
727                 for (clock.m2 = limit->m2.min;
728                      clock.m2 <= limit->m2.max; clock.m2++) {
729                         /* m1 is always 0 in Pineview */
730                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
731                                 break;
732                         for (clock.n = limit->n.min;
733                              clock.n <= limit->n.max; clock.n++) {
734                                 for (clock.p1 = limit->p1.min;
735                                         clock.p1 <= limit->p1.max; clock.p1++) {
736                                         int this_err;
737
738                                         intel_clock(dev, refclk, &clock);
739
740                                         if (!intel_PLL_is_valid(crtc, &clock))
741                                                 continue;
742
743                                         this_err = abs(clock.dot - target);
744                                         if (this_err < err) {
745                                                 *best_clock = clock;
746                                                 err = this_err;
747                                         }
748                                 }
749                         }
750                 }
751         }
752
753         return (err != target);
754 }
755
756 static bool
757 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
758                         int target, int refclk, intel_clock_t *best_clock)
759 {
760         struct drm_device *dev = crtc->dev;
761         struct drm_i915_private *dev_priv = dev->dev_private;
762         intel_clock_t clock;
763         int max_n;
764         bool found;
765         /* approximately equals target * 0.00488 */
766         int err_most = (target >> 8) + (target >> 10);
767         found = false;
768
769         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
770                 int lvds_reg;
771
772                 if (IS_IRONLAKE(dev))
773                         lvds_reg = PCH_LVDS;
774                 else
775                         lvds_reg = LVDS;
776                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
777                     LVDS_CLKB_POWER_UP)
778                         clock.p2 = limit->p2.p2_fast;
779                 else
780                         clock.p2 = limit->p2.p2_slow;
781         } else {
782                 if (target < limit->p2.dot_limit)
783                         clock.p2 = limit->p2.p2_slow;
784                 else
785                         clock.p2 = limit->p2.p2_fast;
786         }
787
788         memset(best_clock, 0, sizeof(*best_clock));
789         max_n = limit->n.max;
790         /* based on hardware requriment prefer smaller n to precision */
791         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
792                 /* based on hardware requirment prefere larger m1,m2 */
793                 for (clock.m1 = limit->m1.max;
794                      clock.m1 >= limit->m1.min; clock.m1--) {
795                         for (clock.m2 = limit->m2.max;
796                              clock.m2 >= limit->m2.min; clock.m2--) {
797                                 for (clock.p1 = limit->p1.max;
798                                      clock.p1 >= limit->p1.min; clock.p1--) {
799                                         int this_err;
800
801                                         intel_clock(dev, refclk, &clock);
802                                         if (!intel_PLL_is_valid(crtc, &clock))
803                                                 continue;
804                                         this_err = abs(clock.dot - target) ;
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *best_clock)
821 {
822         struct drm_device *dev = crtc->dev;
823         intel_clock_t clock;
824
825         /* return directly when it is eDP */
826         if (HAS_eDP)
827                 return true;
828
829         if (target < 200000) {
830                 clock.n = 1;
831                 clock.p1 = 2;
832                 clock.p2 = 10;
833                 clock.m1 = 12;
834                 clock.m2 = 9;
835         } else {
836                 clock.n = 2;
837                 clock.p1 = 1;
838                 clock.p2 = 10;
839                 clock.m1 = 14;
840                 clock.m2 = 8;
841         }
842         intel_clock(dev, refclk, &clock);
843         memcpy(best_clock, &clock, sizeof(intel_clock_t));
844         return true;
845 }
846
847 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
848 static bool
849 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
850                       int target, int refclk, intel_clock_t *best_clock)
851 {
852     intel_clock_t clock;
853     if (target < 200000) {
854         clock.p1 = 2;
855         clock.p2 = 10;
856         clock.n = 2;
857         clock.m1 = 23;
858         clock.m2 = 8;
859     } else {
860         clock.p1 = 1;
861         clock.p2 = 10;
862         clock.n = 1;
863         clock.m1 = 14;
864         clock.m2 = 2;
865     }
866     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
867     clock.p = (clock.p1 * clock.p2);
868     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
869     clock.vco = 0;
870     memcpy(best_clock, &clock, sizeof(intel_clock_t));
871     return true;
872 }
873
874 void
875 intel_wait_for_vblank(struct drm_device *dev)
876 {
877         /* Wait for 20ms, i.e. one cycle at 50hz. */
878         msleep(20);
879 }
880
881 /* Parameters have changed, update FBC info */
882 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
883 {
884         struct drm_device *dev = crtc->dev;
885         struct drm_i915_private *dev_priv = dev->dev_private;
886         struct drm_framebuffer *fb = crtc->fb;
887         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
888         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890         int plane, i;
891         u32 fbc_ctl, fbc_ctl2;
892
893         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
894
895         if (fb->pitch < dev_priv->cfb_pitch)
896                 dev_priv->cfb_pitch = fb->pitch;
897
898         /* FBC_CTL wants 64B units */
899         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
900         dev_priv->cfb_fence = obj_priv->fence_reg;
901         dev_priv->cfb_plane = intel_crtc->plane;
902         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
903
904         /* Clear old tags */
905         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
906                 I915_WRITE(FBC_TAG + (i * 4), 0);
907
908         /* Set it up... */
909         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
910         if (obj_priv->tiling_mode != I915_TILING_NONE)
911                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
912         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
913         I915_WRITE(FBC_FENCE_OFF, crtc->y);
914
915         /* enable it... */
916         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
917         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
918         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
919         if (obj_priv->tiling_mode != I915_TILING_NONE)
920                 fbc_ctl |= dev_priv->cfb_fence;
921         I915_WRITE(FBC_CONTROL, fbc_ctl);
922
923         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
924                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
925 }
926
927 void i8xx_disable_fbc(struct drm_device *dev)
928 {
929         struct drm_i915_private *dev_priv = dev->dev_private;
930         u32 fbc_ctl;
931
932         if (!I915_HAS_FBC(dev))
933                 return;
934
935         /* Disable compression */
936         fbc_ctl = I915_READ(FBC_CONTROL);
937         fbc_ctl &= ~FBC_CTL_EN;
938         I915_WRITE(FBC_CONTROL, fbc_ctl);
939
940         /* Wait for compressing bit to clear */
941         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
942                 ; /* nothing */
943
944         intel_wait_for_vblank(dev);
945
946         DRM_DEBUG_KMS("disabled FBC\n");
947 }
948
949 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
950 {
951         struct drm_device *dev = crtc->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953
954         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
955 }
956
957 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
958 {
959         struct drm_device *dev = crtc->dev;
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         struct drm_framebuffer *fb = crtc->fb;
962         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
963         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
965         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
966                      DPFC_CTL_PLANEB);
967         unsigned long stall_watermark = 200;
968         u32 dpfc_ctl;
969
970         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
971         dev_priv->cfb_fence = obj_priv->fence_reg;
972         dev_priv->cfb_plane = intel_crtc->plane;
973
974         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
975         if (obj_priv->tiling_mode != I915_TILING_NONE) {
976                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
977                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
978         } else {
979                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
980         }
981
982         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
983         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
984                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
985                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
986         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
987
988         /* enable it... */
989         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
990
991         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
992 }
993
994 void g4x_disable_fbc(struct drm_device *dev)
995 {
996         struct drm_i915_private *dev_priv = dev->dev_private;
997         u32 dpfc_ctl;
998
999         /* Disable compression */
1000         dpfc_ctl = I915_READ(DPFC_CONTROL);
1001         dpfc_ctl &= ~DPFC_CTL_EN;
1002         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1003         intel_wait_for_vblank(dev);
1004
1005         DRM_DEBUG_KMS("disabled FBC\n");
1006 }
1007
1008 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1009 {
1010         struct drm_device *dev = crtc->dev;
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012
1013         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1014 }
1015
1016 /**
1017  * intel_update_fbc - enable/disable FBC as needed
1018  * @crtc: CRTC to point the compressor at
1019  * @mode: mode in use
1020  *
1021  * Set up the framebuffer compression hardware at mode set time.  We
1022  * enable it if possible:
1023  *   - plane A only (on pre-965)
1024  *   - no pixel mulitply/line duplication
1025  *   - no alpha buffer discard
1026  *   - no dual wide
1027  *   - framebuffer <= 2048 in width, 1536 in height
1028  *
1029  * We can't assume that any compression will take place (worst case),
1030  * so the compressed buffer has to be the same size as the uncompressed
1031  * one.  It also must reside (along with the line length buffer) in
1032  * stolen memory.
1033  *
1034  * We need to enable/disable FBC on a global basis.
1035  */
1036 static void intel_update_fbc(struct drm_crtc *crtc,
1037                              struct drm_display_mode *mode)
1038 {
1039         struct drm_device *dev = crtc->dev;
1040         struct drm_i915_private *dev_priv = dev->dev_private;
1041         struct drm_framebuffer *fb = crtc->fb;
1042         struct intel_framebuffer *intel_fb;
1043         struct drm_i915_gem_object *obj_priv;
1044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1045         int plane = intel_crtc->plane;
1046
1047         if (!i915_powersave)
1048                 return;
1049
1050         if (!dev_priv->display.fbc_enabled ||
1051             !dev_priv->display.enable_fbc ||
1052             !dev_priv->display.disable_fbc)
1053                 return;
1054
1055         if (!crtc->fb)
1056                 return;
1057
1058         intel_fb = to_intel_framebuffer(fb);
1059         obj_priv = intel_fb->obj->driver_private;
1060
1061         /*
1062          * If FBC is already on, we just have to verify that we can
1063          * keep it that way...
1064          * Need to disable if:
1065          *   - changing FBC params (stride, fence, mode)
1066          *   - new fb is too large to fit in compressed buffer
1067          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1068          */
1069         if (intel_fb->obj->size > dev_priv->cfb_size) {
1070                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1071                                 "compression\n");
1072                 goto out_disable;
1073         }
1074         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1075             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1076                 DRM_DEBUG_KMS("mode incompatible with compression, "
1077                                 "disabling\n");
1078                 goto out_disable;
1079         }
1080         if ((mode->hdisplay > 2048) ||
1081             (mode->vdisplay > 1536)) {
1082                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1083                 goto out_disable;
1084         }
1085         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1086                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1087                 goto out_disable;
1088         }
1089         if (obj_priv->tiling_mode != I915_TILING_X) {
1090                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1091                 goto out_disable;
1092         }
1093
1094         if (dev_priv->display.fbc_enabled(crtc)) {
1095                 /* We can re-enable it in this case, but need to update pitch */
1096                 if (fb->pitch > dev_priv->cfb_pitch)
1097                         dev_priv->display.disable_fbc(dev);
1098                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1099                         dev_priv->display.disable_fbc(dev);
1100                 if (plane != dev_priv->cfb_plane)
1101                         dev_priv->display.disable_fbc(dev);
1102         }
1103
1104         if (!dev_priv->display.fbc_enabled(crtc)) {
1105                 /* Now try to turn it back on if possible */
1106                 dev_priv->display.enable_fbc(crtc, 500);
1107         }
1108
1109         return;
1110
1111 out_disable:
1112         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1113         /* Multiple disables should be harmless */
1114         if (dev_priv->display.fbc_enabled(crtc))
1115                 dev_priv->display.disable_fbc(dev);
1116 }
1117
1118 static int
1119 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1120 {
1121         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1122         u32 alignment;
1123         int ret;
1124
1125         switch (obj_priv->tiling_mode) {
1126         case I915_TILING_NONE:
1127                 alignment = 64 * 1024;
1128                 break;
1129         case I915_TILING_X:
1130                 /* pin() will align the object as required by fence */
1131                 alignment = 0;
1132                 break;
1133         case I915_TILING_Y:
1134                 /* FIXME: Is this true? */
1135                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1136                 return -EINVAL;
1137         default:
1138                 BUG();
1139         }
1140
1141         ret = i915_gem_object_pin(obj, alignment);
1142         if (ret != 0)
1143                 return ret;
1144
1145         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1146          * fence, whereas 965+ only requires a fence if using
1147          * framebuffer compression.  For simplicity, we always install
1148          * a fence as the cost is not that onerous.
1149          */
1150         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1151             obj_priv->tiling_mode != I915_TILING_NONE) {
1152                 ret = i915_gem_object_get_fence_reg(obj);
1153                 if (ret != 0) {
1154                         i915_gem_object_unpin(obj);
1155                         return ret;
1156                 }
1157         }
1158
1159         return 0;
1160 }
1161
1162 static int
1163 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1164                     struct drm_framebuffer *old_fb)
1165 {
1166         struct drm_device *dev = crtc->dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         struct drm_i915_master_private *master_priv;
1169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1170         struct intel_framebuffer *intel_fb;
1171         struct drm_i915_gem_object *obj_priv;
1172         struct drm_gem_object *obj;
1173         int pipe = intel_crtc->pipe;
1174         int plane = intel_crtc->plane;
1175         unsigned long Start, Offset;
1176         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1177         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1178         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1179         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1180         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1181         u32 dspcntr;
1182         int ret;
1183
1184         /* no fb bound */
1185         if (!crtc->fb) {
1186                 DRM_DEBUG_KMS("No FB bound\n");
1187                 return 0;
1188         }
1189
1190         switch (plane) {
1191         case 0:
1192         case 1:
1193                 break;
1194         default:
1195                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1196                 return -EINVAL;
1197         }
1198
1199         intel_fb = to_intel_framebuffer(crtc->fb);
1200         obj = intel_fb->obj;
1201         obj_priv = obj->driver_private;
1202
1203         mutex_lock(&dev->struct_mutex);
1204         ret = intel_pin_and_fence_fb_obj(dev, obj);
1205         if (ret != 0) {
1206                 mutex_unlock(&dev->struct_mutex);
1207                 return ret;
1208         }
1209
1210         ret = i915_gem_object_set_to_display_plane(obj);
1211         if (ret != 0) {
1212                 i915_gem_object_unpin(obj);
1213                 mutex_unlock(&dev->struct_mutex);
1214                 return ret;
1215         }
1216
1217         dspcntr = I915_READ(dspcntr_reg);
1218         /* Mask out pixel format bits in case we change it */
1219         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1220         switch (crtc->fb->bits_per_pixel) {
1221         case 8:
1222                 dspcntr |= DISPPLANE_8BPP;
1223                 break;
1224         case 16:
1225                 if (crtc->fb->depth == 15)
1226                         dspcntr |= DISPPLANE_15_16BPP;
1227                 else
1228                         dspcntr |= DISPPLANE_16BPP;
1229                 break;
1230         case 24:
1231         case 32:
1232                 if (crtc->fb->depth == 30)
1233                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1234                 else
1235                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1236                 break;
1237         default:
1238                 DRM_ERROR("Unknown color depth\n");
1239                 i915_gem_object_unpin(obj);
1240                 mutex_unlock(&dev->struct_mutex);
1241                 return -EINVAL;
1242         }
1243         if (IS_I965G(dev)) {
1244                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1245                         dspcntr |= DISPPLANE_TILED;
1246                 else
1247                         dspcntr &= ~DISPPLANE_TILED;
1248         }
1249
1250         if (IS_IRONLAKE(dev))
1251                 /* must disable */
1252                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1253
1254         I915_WRITE(dspcntr_reg, dspcntr);
1255
1256         Start = obj_priv->gtt_offset;
1257         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1258
1259         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1260         I915_WRITE(dspstride, crtc->fb->pitch);
1261         if (IS_I965G(dev)) {
1262                 I915_WRITE(dspbase, Offset);
1263                 I915_READ(dspbase);
1264                 I915_WRITE(dspsurf, Start);
1265                 I915_READ(dspsurf);
1266                 I915_WRITE(dsptileoff, (y << 16) | x);
1267         } else {
1268                 I915_WRITE(dspbase, Start + Offset);
1269                 I915_READ(dspbase);
1270         }
1271
1272         if ((IS_I965G(dev) || plane == 0))
1273                 intel_update_fbc(crtc, &crtc->mode);
1274
1275         intel_wait_for_vblank(dev);
1276
1277         if (old_fb) {
1278                 intel_fb = to_intel_framebuffer(old_fb);
1279                 obj_priv = intel_fb->obj->driver_private;
1280                 i915_gem_object_unpin(intel_fb->obj);
1281         }
1282         intel_increase_pllclock(crtc, true);
1283
1284         mutex_unlock(&dev->struct_mutex);
1285
1286         if (!dev->primary->master)
1287                 return 0;
1288
1289         master_priv = dev->primary->master->driver_priv;
1290         if (!master_priv->sarea_priv)
1291                 return 0;
1292
1293         if (pipe) {
1294                 master_priv->sarea_priv->pipeB_x = x;
1295                 master_priv->sarea_priv->pipeB_y = y;
1296         } else {
1297                 master_priv->sarea_priv->pipeA_x = x;
1298                 master_priv->sarea_priv->pipeA_y = y;
1299         }
1300
1301         return 0;
1302 }
1303
1304 /* Disable the VGA plane that we never use */
1305 static void i915_disable_vga (struct drm_device *dev)
1306 {
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         u8 sr1;
1309         u32 vga_reg;
1310
1311         if (IS_IRONLAKE(dev))
1312                 vga_reg = CPU_VGACNTRL;
1313         else
1314                 vga_reg = VGACNTRL;
1315
1316         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1317                 return;
1318
1319         I915_WRITE8(VGA_SR_INDEX, 1);
1320         sr1 = I915_READ8(VGA_SR_DATA);
1321         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1322         udelay(100);
1323
1324         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1325 }
1326
1327 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1328 {
1329         struct drm_device *dev = crtc->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         u32 dpa_ctl;
1332
1333         DRM_DEBUG_KMS("\n");
1334         dpa_ctl = I915_READ(DP_A);
1335         dpa_ctl &= ~DP_PLL_ENABLE;
1336         I915_WRITE(DP_A, dpa_ctl);
1337 }
1338
1339 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1340 {
1341         struct drm_device *dev = crtc->dev;
1342         struct drm_i915_private *dev_priv = dev->dev_private;
1343         u32 dpa_ctl;
1344
1345         dpa_ctl = I915_READ(DP_A);
1346         dpa_ctl |= DP_PLL_ENABLE;
1347         I915_WRITE(DP_A, dpa_ctl);
1348         udelay(200);
1349 }
1350
1351
1352 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1353 {
1354         struct drm_device *dev = crtc->dev;
1355         struct drm_i915_private *dev_priv = dev->dev_private;
1356         u32 dpa_ctl;
1357
1358         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1359         dpa_ctl = I915_READ(DP_A);
1360         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1361
1362         if (clock < 200000) {
1363                 u32 temp;
1364                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1365                 /* workaround for 160Mhz:
1366                    1) program 0x4600c bits 15:0 = 0x8124
1367                    2) program 0x46010 bit 0 = 1
1368                    3) program 0x46034 bit 24 = 1
1369                    4) program 0x64000 bit 14 = 1
1370                    */
1371                 temp = I915_READ(0x4600c);
1372                 temp &= 0xffff0000;
1373                 I915_WRITE(0x4600c, temp | 0x8124);
1374
1375                 temp = I915_READ(0x46010);
1376                 I915_WRITE(0x46010, temp | 1);
1377
1378                 temp = I915_READ(0x46034);
1379                 I915_WRITE(0x46034, temp | (1 << 24));
1380         } else {
1381                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1382         }
1383         I915_WRITE(DP_A, dpa_ctl);
1384
1385         udelay(500);
1386 }
1387
1388 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1389 {
1390         struct drm_device *dev = crtc->dev;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1393         int pipe = intel_crtc->pipe;
1394         int plane = intel_crtc->plane;
1395         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1396         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1397         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1398         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1399         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1400         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1401         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1402         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1403         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1404         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1405         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1406         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1407         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1408         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1409         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1410         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1411         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1412         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1413         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1414         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1415         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1416         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1417         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1418         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1419         u32 temp;
1420         int tries = 5, j, n;
1421         u32 pipe_bpc;
1422
1423         temp = I915_READ(pipeconf_reg);
1424         pipe_bpc = temp & PIPE_BPC_MASK;
1425
1426         /* XXX: When our outputs are all unaware of DPMS modes other than off
1427          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1428          */
1429         switch (mode) {
1430         case DRM_MODE_DPMS_ON:
1431         case DRM_MODE_DPMS_STANDBY:
1432         case DRM_MODE_DPMS_SUSPEND:
1433                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1434
1435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1436                         temp = I915_READ(PCH_LVDS);
1437                         if ((temp & LVDS_PORT_EN) == 0) {
1438                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1439                                 POSTING_READ(PCH_LVDS);
1440                         }
1441                 }
1442
1443                 if (HAS_eDP) {
1444                         /* enable eDP PLL */
1445                         ironlake_enable_pll_edp(crtc);
1446                 } else {
1447                         /* enable PCH DPLL */
1448                         temp = I915_READ(pch_dpll_reg);
1449                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1450                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1451                                 I915_READ(pch_dpll_reg);
1452                         }
1453
1454                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1455                         temp = I915_READ(fdi_rx_reg);
1456                         /*
1457                          * make the BPC in FDI Rx be consistent with that in
1458                          * pipeconf reg.
1459                          */
1460                         temp &= ~(0x7 << 16);
1461                         temp |= (pipe_bpc << 11);
1462                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1463                                         FDI_SEL_PCDCLK |
1464                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1465                         I915_READ(fdi_rx_reg);
1466                         udelay(200);
1467
1468                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1469                         temp = I915_READ(fdi_tx_reg);
1470                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1471                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1472                                 I915_READ(fdi_tx_reg);
1473                                 udelay(100);
1474                         }
1475                 }
1476
1477                 /* Enable panel fitting for LVDS */
1478                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1479                         temp = I915_READ(pf_ctl_reg);
1480                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1481
1482                         /* currently full aspect */
1483                         I915_WRITE(pf_win_pos, 0);
1484
1485                         I915_WRITE(pf_win_size,
1486                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1487                                    (dev_priv->panel_fixed_mode->vdisplay));
1488                 }
1489
1490                 /* Enable CPU pipe */
1491                 temp = I915_READ(pipeconf_reg);
1492                 if ((temp & PIPEACONF_ENABLE) == 0) {
1493                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1494                         I915_READ(pipeconf_reg);
1495                         udelay(100);
1496                 }
1497
1498                 /* configure and enable CPU plane */
1499                 temp = I915_READ(dspcntr_reg);
1500                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1501                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1502                         /* Flush the plane changes */
1503                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1504                 }
1505
1506                 if (!HAS_eDP) {
1507                         /* enable CPU FDI TX and PCH FDI RX */
1508                         temp = I915_READ(fdi_tx_reg);
1509                         temp |= FDI_TX_ENABLE;
1510                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1511                         temp &= ~FDI_LINK_TRAIN_NONE;
1512                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1513                         I915_WRITE(fdi_tx_reg, temp);
1514                         I915_READ(fdi_tx_reg);
1515
1516                         temp = I915_READ(fdi_rx_reg);
1517                         temp &= ~FDI_LINK_TRAIN_NONE;
1518                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1519                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1520                         I915_READ(fdi_rx_reg);
1521
1522                         udelay(150);
1523
1524                         /* Train FDI. */
1525                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1526                            for train result */
1527                         temp = I915_READ(fdi_rx_imr_reg);
1528                         temp &= ~FDI_RX_SYMBOL_LOCK;
1529                         temp &= ~FDI_RX_BIT_LOCK;
1530                         I915_WRITE(fdi_rx_imr_reg, temp);
1531                         I915_READ(fdi_rx_imr_reg);
1532                         udelay(150);
1533
1534                         temp = I915_READ(fdi_rx_iir_reg);
1535                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1536
1537                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1538                                 for (j = 0; j < tries; j++) {
1539                                         temp = I915_READ(fdi_rx_iir_reg);
1540                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1541                                                                 temp);
1542                                         if (temp & FDI_RX_BIT_LOCK)
1543                                                 break;
1544                                         udelay(200);
1545                                 }
1546                                 if (j != tries)
1547                                         I915_WRITE(fdi_rx_iir_reg,
1548                                                         temp | FDI_RX_BIT_LOCK);
1549                                 else
1550                                         DRM_DEBUG_KMS("train 1 fail\n");
1551                         } else {
1552                                 I915_WRITE(fdi_rx_iir_reg,
1553                                                 temp | FDI_RX_BIT_LOCK);
1554                                 DRM_DEBUG_KMS("train 1 ok 2!\n");
1555                         }
1556                         temp = I915_READ(fdi_tx_reg);
1557                         temp &= ~FDI_LINK_TRAIN_NONE;
1558                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1559                         I915_WRITE(fdi_tx_reg, temp);
1560
1561                         temp = I915_READ(fdi_rx_reg);
1562                         temp &= ~FDI_LINK_TRAIN_NONE;
1563                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1564                         I915_WRITE(fdi_rx_reg, temp);
1565
1566                         udelay(150);
1567
1568                         temp = I915_READ(fdi_rx_iir_reg);
1569                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1570
1571                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1572                                 for (j = 0; j < tries; j++) {
1573                                         temp = I915_READ(fdi_rx_iir_reg);
1574                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1575                                                                 temp);
1576                                         if (temp & FDI_RX_SYMBOL_LOCK)
1577                                                 break;
1578                                         udelay(200);
1579                                 }
1580                                 if (j != tries) {
1581                                         I915_WRITE(fdi_rx_iir_reg,
1582                                                         temp | FDI_RX_SYMBOL_LOCK);
1583                                         DRM_DEBUG_KMS("train 2 ok 1!\n");
1584                                 } else
1585                                         DRM_DEBUG_KMS("train 2 fail\n");
1586                         } else {
1587                                 I915_WRITE(fdi_rx_iir_reg,
1588                                                 temp | FDI_RX_SYMBOL_LOCK);
1589                                 DRM_DEBUG_KMS("train 2 ok 2!\n");
1590                         }
1591                         DRM_DEBUG_KMS("train done\n");
1592
1593                         /* set transcoder timing */
1594                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1595                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1596                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1597
1598                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1599                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1600                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1601
1602                         /* enable PCH transcoder */
1603                         temp = I915_READ(transconf_reg);
1604                         /*
1605                          * make the BPC in transcoder be consistent with
1606                          * that in pipeconf reg.
1607                          */
1608                         temp &= ~PIPE_BPC_MASK;
1609                         temp |= pipe_bpc;
1610                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1611                         I915_READ(transconf_reg);
1612
1613                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1614                                 ;
1615
1616                         /* enable normal */
1617
1618                         temp = I915_READ(fdi_tx_reg);
1619                         temp &= ~FDI_LINK_TRAIN_NONE;
1620                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1621                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1622                         I915_READ(fdi_tx_reg);
1623
1624                         temp = I915_READ(fdi_rx_reg);
1625                         temp &= ~FDI_LINK_TRAIN_NONE;
1626                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1627                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1628                         I915_READ(fdi_rx_reg);
1629
1630                         /* wait one idle pattern time */
1631                         udelay(100);
1632
1633                 }
1634
1635                 intel_crtc_load_lut(crtc);
1636
1637         break;
1638         case DRM_MODE_DPMS_OFF:
1639                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1640
1641                 drm_vblank_off(dev, pipe);
1642                 /* Disable display plane */
1643                 temp = I915_READ(dspcntr_reg);
1644                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1645                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1646                         /* Flush the plane changes */
1647                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1648                         I915_READ(dspbase_reg);
1649                 }
1650
1651                 i915_disable_vga(dev);
1652
1653                 /* disable cpu pipe, disable after all planes disabled */
1654                 temp = I915_READ(pipeconf_reg);
1655                 if ((temp & PIPEACONF_ENABLE) != 0) {
1656                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1657                         I915_READ(pipeconf_reg);
1658                         n = 0;
1659                         /* wait for cpu pipe off, pipe state */
1660                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1661                                 n++;
1662                                 if (n < 60) {
1663                                         udelay(500);
1664                                         continue;
1665                                 } else {
1666                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1667                                                                 pipe);
1668                                         break;
1669                                 }
1670                         }
1671                 } else
1672                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1673
1674                 udelay(100);
1675
1676                 /* Disable PF */
1677                 temp = I915_READ(pf_ctl_reg);
1678                 if ((temp & PF_ENABLE) != 0) {
1679                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1680                         I915_READ(pf_ctl_reg);
1681                 }
1682                 I915_WRITE(pf_win_size, 0);
1683
1684                 /* disable CPU FDI tx and PCH FDI rx */
1685                 temp = I915_READ(fdi_tx_reg);
1686                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1687                 I915_READ(fdi_tx_reg);
1688
1689                 temp = I915_READ(fdi_rx_reg);
1690                 /* BPC in FDI rx is consistent with that in pipeconf */
1691                 temp &= ~(0x07 << 16);
1692                 temp |= (pipe_bpc << 11);
1693                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1694                 I915_READ(fdi_rx_reg);
1695
1696                 udelay(100);
1697
1698                 /* still set train pattern 1 */
1699                 temp = I915_READ(fdi_tx_reg);
1700                 temp &= ~FDI_LINK_TRAIN_NONE;
1701                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1702                 I915_WRITE(fdi_tx_reg, temp);
1703
1704                 temp = I915_READ(fdi_rx_reg);
1705                 temp &= ~FDI_LINK_TRAIN_NONE;
1706                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1707                 I915_WRITE(fdi_rx_reg, temp);
1708
1709                 udelay(100);
1710
1711                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1712                         temp = I915_READ(PCH_LVDS);
1713                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1714                         I915_READ(PCH_LVDS);
1715                         udelay(100);
1716                 }
1717
1718                 /* disable PCH transcoder */
1719                 temp = I915_READ(transconf_reg);
1720                 if ((temp & TRANS_ENABLE) != 0) {
1721                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1722                         I915_READ(transconf_reg);
1723                         n = 0;
1724                         /* wait for PCH transcoder off, transcoder state */
1725                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1726                                 n++;
1727                                 if (n < 60) {
1728                                         udelay(500);
1729                                         continue;
1730                                 } else {
1731                                         DRM_DEBUG_KMS("transcoder %d off "
1732                                                         "delay\n", pipe);
1733                                         break;
1734                                 }
1735                         }
1736                 }
1737                 temp = I915_READ(transconf_reg);
1738                 /* BPC in transcoder is consistent with that in pipeconf */
1739                 temp &= ~PIPE_BPC_MASK;
1740                 temp |= pipe_bpc;
1741                 I915_WRITE(transconf_reg, temp);
1742                 I915_READ(transconf_reg);
1743                 udelay(100);
1744
1745                 /* disable PCH DPLL */
1746                 temp = I915_READ(pch_dpll_reg);
1747                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1748                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1749                         I915_READ(pch_dpll_reg);
1750                 }
1751
1752                 if (HAS_eDP) {
1753                         ironlake_disable_pll_edp(crtc);
1754                 }
1755
1756                 temp = I915_READ(fdi_rx_reg);
1757                 temp &= ~FDI_SEL_PCDCLK;
1758                 I915_WRITE(fdi_rx_reg, temp);
1759                 I915_READ(fdi_rx_reg);
1760
1761                 temp = I915_READ(fdi_rx_reg);
1762                 temp &= ~FDI_RX_PLL_ENABLE;
1763                 I915_WRITE(fdi_rx_reg, temp);
1764                 I915_READ(fdi_rx_reg);
1765
1766                 /* Disable CPU FDI TX PLL */
1767                 temp = I915_READ(fdi_tx_reg);
1768                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1769                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1770                         I915_READ(fdi_tx_reg);
1771                         udelay(100);
1772                 }
1773
1774                 /* Wait for the clocks to turn off. */
1775                 udelay(100);
1776                 break;
1777         }
1778 }
1779
1780 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1781 {
1782         struct intel_overlay *overlay;
1783         int ret;
1784
1785         if (!enable && intel_crtc->overlay) {
1786                 overlay = intel_crtc->overlay;
1787                 mutex_lock(&overlay->dev->struct_mutex);
1788                 for (;;) {
1789                         ret = intel_overlay_switch_off(overlay);
1790                         if (ret == 0)
1791                                 break;
1792
1793                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
1794                         if (ret != 0) {
1795                                 /* overlay doesn't react anymore. Usually
1796                                  * results in a black screen and an unkillable
1797                                  * X server. */
1798                                 BUG();
1799                                 overlay->hw_wedged = HW_WEDGED;
1800                                 break;
1801                         }
1802                 }
1803                 mutex_unlock(&overlay->dev->struct_mutex);
1804         }
1805         /* Let userspace switch the overlay on again. In most cases userspace
1806          * has to recompute where to put it anyway. */
1807
1808         return;
1809 }
1810
1811 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1812 {
1813         struct drm_device *dev = crtc->dev;
1814         struct drm_i915_private *dev_priv = dev->dev_private;
1815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1816         int pipe = intel_crtc->pipe;
1817         int plane = intel_crtc->plane;
1818         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1819         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1820         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1821         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1822         u32 temp;
1823
1824         /* XXX: When our outputs are all unaware of DPMS modes other than off
1825          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1826          */
1827         switch (mode) {
1828         case DRM_MODE_DPMS_ON:
1829         case DRM_MODE_DPMS_STANDBY:
1830         case DRM_MODE_DPMS_SUSPEND:
1831                 intel_update_watermarks(dev);
1832
1833                 /* Enable the DPLL */
1834                 temp = I915_READ(dpll_reg);
1835                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1836                         I915_WRITE(dpll_reg, temp);
1837                         I915_READ(dpll_reg);
1838                         /* Wait for the clocks to stabilize. */
1839                         udelay(150);
1840                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1841                         I915_READ(dpll_reg);
1842                         /* Wait for the clocks to stabilize. */
1843                         udelay(150);
1844                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1845                         I915_READ(dpll_reg);
1846                         /* Wait for the clocks to stabilize. */
1847                         udelay(150);
1848                 }
1849
1850                 /* Enable the pipe */
1851                 temp = I915_READ(pipeconf_reg);
1852                 if ((temp & PIPEACONF_ENABLE) == 0)
1853                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1854
1855                 /* Enable the plane */
1856                 temp = I915_READ(dspcntr_reg);
1857                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1858                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1859                         /* Flush the plane changes */
1860                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1861                 }
1862
1863                 intel_crtc_load_lut(crtc);
1864
1865                 if ((IS_I965G(dev) || plane == 0))
1866                         intel_update_fbc(crtc, &crtc->mode);
1867
1868                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1869                 intel_crtc_dpms_overlay(intel_crtc, true);
1870         break;
1871         case DRM_MODE_DPMS_OFF:
1872                 intel_update_watermarks(dev);
1873
1874                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1875                 intel_crtc_dpms_overlay(intel_crtc, false);
1876                 drm_vblank_off(dev, pipe);
1877
1878                 if (dev_priv->cfb_plane == plane &&
1879                     dev_priv->display.disable_fbc)
1880                         dev_priv->display.disable_fbc(dev);
1881
1882                 /* Disable the VGA plane that we never use */
1883                 i915_disable_vga(dev);
1884
1885                 /* Disable display plane */
1886                 temp = I915_READ(dspcntr_reg);
1887                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1888                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1889                         /* Flush the plane changes */
1890                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1891                         I915_READ(dspbase_reg);
1892                 }
1893
1894                 if (!IS_I9XX(dev)) {
1895                         /* Wait for vblank for the disable to take effect */
1896                         intel_wait_for_vblank(dev);
1897                 }
1898
1899                 /* Next, disable display pipes */
1900                 temp = I915_READ(pipeconf_reg);
1901                 if ((temp & PIPEACONF_ENABLE) != 0) {
1902                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1903                         I915_READ(pipeconf_reg);
1904                 }
1905
1906                 /* Wait for vblank for the disable to take effect. */
1907                 intel_wait_for_vblank(dev);
1908
1909                 temp = I915_READ(dpll_reg);
1910                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1911                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1912                         I915_READ(dpll_reg);
1913                 }
1914
1915                 /* Wait for the clocks to turn off. */
1916                 udelay(150);
1917                 break;
1918         }
1919 }
1920
1921 /**
1922  * Sets the power management mode of the pipe and plane.
1923  *
1924  * This code should probably grow support for turning the cursor off and back
1925  * on appropriately at the same time as we're turning the pipe off/on.
1926  */
1927 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1928 {
1929         struct drm_device *dev = crtc->dev;
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         struct drm_i915_master_private *master_priv;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933         int pipe = intel_crtc->pipe;
1934         bool enabled;
1935
1936         dev_priv->display.dpms(crtc, mode);
1937
1938         intel_crtc->dpms_mode = mode;
1939
1940         if (!dev->primary->master)
1941                 return;
1942
1943         master_priv = dev->primary->master->driver_priv;
1944         if (!master_priv->sarea_priv)
1945                 return;
1946
1947         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1948
1949         switch (pipe) {
1950         case 0:
1951                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1952                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1953                 break;
1954         case 1:
1955                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1956                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1957                 break;
1958         default:
1959                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1960                 break;
1961         }
1962 }
1963
1964 static void intel_crtc_prepare (struct drm_crtc *crtc)
1965 {
1966         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1967         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1968 }
1969
1970 static void intel_crtc_commit (struct drm_crtc *crtc)
1971 {
1972         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1973         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1974 }
1975
1976 void intel_encoder_prepare (struct drm_encoder *encoder)
1977 {
1978         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1979         /* lvds has its own version of prepare see intel_lvds_prepare */
1980         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1981 }
1982
1983 void intel_encoder_commit (struct drm_encoder *encoder)
1984 {
1985         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1986         /* lvds has its own version of commit see intel_lvds_commit */
1987         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1988 }
1989
1990 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1991                                   struct drm_display_mode *mode,
1992                                   struct drm_display_mode *adjusted_mode)
1993 {
1994         struct drm_device *dev = crtc->dev;
1995         if (IS_IRONLAKE(dev)) {
1996                 /* FDI link clock is fixed at 2.7G */
1997                 if (mode->clock * 3 > 27000 * 4)
1998                         return MODE_CLOCK_HIGH;
1999         }
2000         return true;
2001 }
2002
2003 static int i945_get_display_clock_speed(struct drm_device *dev)
2004 {
2005         return 400000;
2006 }
2007
2008 static int i915_get_display_clock_speed(struct drm_device *dev)
2009 {
2010         return 333000;
2011 }
2012
2013 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2014 {
2015         return 200000;
2016 }
2017
2018 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2019 {
2020         u16 gcfgc = 0;
2021
2022         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2023
2024         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2025                 return 133000;
2026         else {
2027                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2028                 case GC_DISPLAY_CLOCK_333_MHZ:
2029                         return 333000;
2030                 default:
2031                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2032                         return 190000;
2033                 }
2034         }
2035 }
2036
2037 static int i865_get_display_clock_speed(struct drm_device *dev)
2038 {
2039         return 266000;
2040 }
2041
2042 static int i855_get_display_clock_speed(struct drm_device *dev)
2043 {
2044         u16 hpllcc = 0;
2045         /* Assume that the hardware is in the high speed state.  This
2046          * should be the default.
2047          */
2048         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2049         case GC_CLOCK_133_200:
2050         case GC_CLOCK_100_200:
2051                 return 200000;
2052         case GC_CLOCK_166_250:
2053                 return 250000;
2054         case GC_CLOCK_100_133:
2055                 return 133000;
2056         }
2057
2058         /* Shouldn't happen */
2059         return 0;
2060 }
2061
2062 static int i830_get_display_clock_speed(struct drm_device *dev)
2063 {
2064         return 133000;
2065 }
2066
2067 /**
2068  * Return the pipe currently connected to the panel fitter,
2069  * or -1 if the panel fitter is not present or not in use
2070  */
2071 int intel_panel_fitter_pipe (struct drm_device *dev)
2072 {
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         u32  pfit_control;
2075
2076         /* i830 doesn't have a panel fitter */
2077         if (IS_I830(dev))
2078                 return -1;
2079
2080         pfit_control = I915_READ(PFIT_CONTROL);
2081
2082         /* See if the panel fitter is in use */
2083         if ((pfit_control & PFIT_ENABLE) == 0)
2084                 return -1;
2085
2086         /* 965 can place panel fitter on either pipe */
2087         if (IS_I965G(dev))
2088                 return (pfit_control >> 29) & 0x3;
2089
2090         /* older chips can only use pipe 1 */
2091         return 1;
2092 }
2093
2094 struct fdi_m_n {
2095         u32        tu;
2096         u32        gmch_m;
2097         u32        gmch_n;
2098         u32        link_m;
2099         u32        link_n;
2100 };
2101
2102 static void
2103 fdi_reduce_ratio(u32 *num, u32 *den)
2104 {
2105         while (*num > 0xffffff || *den > 0xffffff) {
2106                 *num >>= 1;
2107                 *den >>= 1;
2108         }
2109 }
2110
2111 #define DATA_N 0x800000
2112 #define LINK_N 0x80000
2113
2114 static void
2115 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2116                      int link_clock, struct fdi_m_n *m_n)
2117 {
2118         u64 temp;
2119
2120         m_n->tu = 64; /* default size */
2121
2122         temp = (u64) DATA_N * pixel_clock;
2123         temp = div_u64(temp, link_clock);
2124         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2125         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2126         m_n->gmch_n = DATA_N;
2127         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2128
2129         temp = (u64) LINK_N * pixel_clock;
2130         m_n->link_m = div_u64(temp, link_clock);
2131         m_n->link_n = LINK_N;
2132         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2133 }
2134
2135
2136 struct intel_watermark_params {
2137         unsigned long fifo_size;
2138         unsigned long max_wm;
2139         unsigned long default_wm;
2140         unsigned long guard_size;
2141         unsigned long cacheline_size;
2142 };
2143
2144 /* Pineview has different values for various configs */
2145 static struct intel_watermark_params pineview_display_wm = {
2146         PINEVIEW_DISPLAY_FIFO,
2147         PINEVIEW_MAX_WM,
2148         PINEVIEW_DFT_WM,
2149         PINEVIEW_GUARD_WM,
2150         PINEVIEW_FIFO_LINE_SIZE
2151 };
2152 static struct intel_watermark_params pineview_display_hplloff_wm = {
2153         PINEVIEW_DISPLAY_FIFO,
2154         PINEVIEW_MAX_WM,
2155         PINEVIEW_DFT_HPLLOFF_WM,
2156         PINEVIEW_GUARD_WM,
2157         PINEVIEW_FIFO_LINE_SIZE
2158 };
2159 static struct intel_watermark_params pineview_cursor_wm = {
2160         PINEVIEW_CURSOR_FIFO,
2161         PINEVIEW_CURSOR_MAX_WM,
2162         PINEVIEW_CURSOR_DFT_WM,
2163         PINEVIEW_CURSOR_GUARD_WM,
2164         PINEVIEW_FIFO_LINE_SIZE,
2165 };
2166 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2167         PINEVIEW_CURSOR_FIFO,
2168         PINEVIEW_CURSOR_MAX_WM,
2169         PINEVIEW_CURSOR_DFT_WM,
2170         PINEVIEW_CURSOR_GUARD_WM,
2171         PINEVIEW_FIFO_LINE_SIZE
2172 };
2173 static struct intel_watermark_params g4x_wm_info = {
2174         G4X_FIFO_SIZE,
2175         G4X_MAX_WM,
2176         G4X_MAX_WM,
2177         2,
2178         G4X_FIFO_LINE_SIZE,
2179 };
2180 static struct intel_watermark_params i945_wm_info = {
2181         I945_FIFO_SIZE,
2182         I915_MAX_WM,
2183         1,
2184         2,
2185         I915_FIFO_LINE_SIZE
2186 };
2187 static struct intel_watermark_params i915_wm_info = {
2188         I915_FIFO_SIZE,
2189         I915_MAX_WM,
2190         1,
2191         2,
2192         I915_FIFO_LINE_SIZE
2193 };
2194 static struct intel_watermark_params i855_wm_info = {
2195         I855GM_FIFO_SIZE,
2196         I915_MAX_WM,
2197         1,
2198         2,
2199         I830_FIFO_LINE_SIZE
2200 };
2201 static struct intel_watermark_params i830_wm_info = {
2202         I830_FIFO_SIZE,
2203         I915_MAX_WM,
2204         1,
2205         2,
2206         I830_FIFO_LINE_SIZE
2207 };
2208
2209 /**
2210  * intel_calculate_wm - calculate watermark level
2211  * @clock_in_khz: pixel clock
2212  * @wm: chip FIFO params
2213  * @pixel_size: display pixel size
2214  * @latency_ns: memory latency for the platform
2215  *
2216  * Calculate the watermark level (the level at which the display plane will
2217  * start fetching from memory again).  Each chip has a different display
2218  * FIFO size and allocation, so the caller needs to figure that out and pass
2219  * in the correct intel_watermark_params structure.
2220  *
2221  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2222  * on the pixel size.  When it reaches the watermark level, it'll start
2223  * fetching FIFO line sized based chunks from memory until the FIFO fills
2224  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2225  * will occur, and a display engine hang could result.
2226  */
2227 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2228                                         struct intel_watermark_params *wm,
2229                                         int pixel_size,
2230                                         unsigned long latency_ns)
2231 {
2232         long entries_required, wm_size;
2233
2234         /*
2235          * Note: we need to make sure we don't overflow for various clock &
2236          * latency values.
2237          * clocks go from a few thousand to several hundred thousand.
2238          * latency is usually a few thousand
2239          */
2240         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2241                 1000;
2242         entries_required /= wm->cacheline_size;
2243
2244         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2245
2246         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2247
2248         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2249
2250         /* Don't promote wm_size to unsigned... */
2251         if (wm_size > (long)wm->max_wm)
2252                 wm_size = wm->max_wm;
2253         if (wm_size <= 0)
2254                 wm_size = wm->default_wm;
2255         return wm_size;
2256 }
2257
2258 struct cxsr_latency {
2259         int is_desktop;
2260         unsigned long fsb_freq;
2261         unsigned long mem_freq;
2262         unsigned long display_sr;
2263         unsigned long display_hpll_disable;
2264         unsigned long cursor_sr;
2265         unsigned long cursor_hpll_disable;
2266 };
2267
2268 static struct cxsr_latency cxsr_latency_table[] = {
2269         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2270         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2271         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2272
2273         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2274         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2275         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2276
2277         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2278         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2279         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2280
2281         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2282         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2283         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2284
2285         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2286         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2287         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2288
2289         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2290         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2291         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2292 };
2293
2294 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2295                                                    int mem)
2296 {
2297         int i;
2298         struct cxsr_latency *latency;
2299
2300         if (fsb == 0 || mem == 0)
2301                 return NULL;
2302
2303         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2304                 latency = &cxsr_latency_table[i];
2305                 if (is_desktop == latency->is_desktop &&
2306                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2307                         return latency;
2308         }
2309
2310         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2311
2312         return NULL;
2313 }
2314
2315 static void pineview_disable_cxsr(struct drm_device *dev)
2316 {
2317         struct drm_i915_private *dev_priv = dev->dev_private;
2318         u32 reg;
2319
2320         /* deactivate cxsr */
2321         reg = I915_READ(DSPFW3);
2322         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2323         I915_WRITE(DSPFW3, reg);
2324         DRM_INFO("Big FIFO is disabled\n");
2325 }
2326
2327 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2328                                  int pixel_size)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         u32 reg;
2332         unsigned long wm;
2333         struct cxsr_latency *latency;
2334
2335         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2336                 dev_priv->mem_freq);
2337         if (!latency) {
2338                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2339                 pineview_disable_cxsr(dev);
2340                 return;
2341         }
2342
2343         /* Display SR */
2344         wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2345                                 latency->display_sr);
2346         reg = I915_READ(DSPFW1);
2347         reg &= 0x7fffff;
2348         reg |= wm << 23;
2349         I915_WRITE(DSPFW1, reg);
2350         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2351
2352         /* cursor SR */
2353         wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2354                                 latency->cursor_sr);
2355         reg = I915_READ(DSPFW3);
2356         reg &= ~(0x3f << 24);
2357         reg |= (wm & 0x3f) << 24;
2358         I915_WRITE(DSPFW3, reg);
2359
2360         /* Display HPLL off SR */
2361         wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2362                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2363         reg = I915_READ(DSPFW3);
2364         reg &= 0xfffffe00;
2365         reg |= wm & 0x1ff;
2366         I915_WRITE(DSPFW3, reg);
2367
2368         /* cursor HPLL off SR */
2369         wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2370                                 latency->cursor_hpll_disable);
2371         reg = I915_READ(DSPFW3);
2372         reg &= ~(0x3f << 16);
2373         reg |= (wm & 0x3f) << 16;
2374         I915_WRITE(DSPFW3, reg);
2375         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2376
2377         /* activate cxsr */
2378         reg = I915_READ(DSPFW3);
2379         reg |= PINEVIEW_SELF_REFRESH_EN;
2380         I915_WRITE(DSPFW3, reg);
2381
2382         DRM_INFO("Big FIFO is enabled\n");
2383
2384         return;
2385 }
2386
2387 /*
2388  * Latency for FIFO fetches is dependent on several factors:
2389  *   - memory configuration (speed, channels)
2390  *   - chipset
2391  *   - current MCH state
2392  * It can be fairly high in some situations, so here we assume a fairly
2393  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2394  * set this value too high, the FIFO will fetch frequently to stay full)
2395  * and power consumption (set it too low to save power and we might see
2396  * FIFO underruns and display "flicker").
2397  *
2398  * A value of 5us seems to be a good balance; safe for very low end
2399  * platforms but not overly aggressive on lower latency configs.
2400  */
2401 static const int latency_ns = 5000;
2402
2403 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2404 {
2405         struct drm_i915_private *dev_priv = dev->dev_private;
2406         uint32_t dsparb = I915_READ(DSPARB);
2407         int size;
2408
2409         if (plane == 0)
2410                 size = dsparb & 0x7f;
2411         else
2412                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2413                         (dsparb & 0x7f);
2414
2415         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2416                         plane ? "B" : "A", size);
2417
2418         return size;
2419 }
2420
2421 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2422 {
2423         struct drm_i915_private *dev_priv = dev->dev_private;
2424         uint32_t dsparb = I915_READ(DSPARB);
2425         int size;
2426
2427         if (plane == 0)
2428                 size = dsparb & 0x1ff;
2429         else
2430                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2431                         (dsparb & 0x1ff);
2432         size >>= 1; /* Convert to cachelines */
2433
2434         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2435                         plane ? "B" : "A", size);
2436
2437         return size;
2438 }
2439
2440 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         uint32_t dsparb = I915_READ(DSPARB);
2444         int size;
2445
2446         size = dsparb & 0x7f;
2447         size >>= 2; /* Convert to cachelines */
2448
2449         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2450                         plane ? "B" : "A",
2451                   size);
2452
2453         return size;
2454 }
2455
2456 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2457 {
2458         struct drm_i915_private *dev_priv = dev->dev_private;
2459         uint32_t dsparb = I915_READ(DSPARB);
2460         int size;
2461
2462         size = dsparb & 0x7f;
2463         size >>= 1; /* Convert to cachelines */
2464
2465         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2466                         plane ? "B" : "A", size);
2467
2468         return size;
2469 }
2470
2471 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2472                           int planeb_clock, int sr_hdisplay, int pixel_size)
2473 {
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475         int total_size, cacheline_size;
2476         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2477         struct intel_watermark_params planea_params, planeb_params;
2478         unsigned long line_time_us;
2479         int sr_clock, sr_entries = 0, entries_required;
2480
2481         /* Create copies of the base settings for each pipe */
2482         planea_params = planeb_params = g4x_wm_info;
2483
2484         /* Grab a couple of global values before we overwrite them */
2485         total_size = planea_params.fifo_size;
2486         cacheline_size = planea_params.cacheline_size;
2487
2488         /*
2489          * Note: we need to make sure we don't overflow for various clock &
2490          * latency values.
2491          * clocks go from a few thousand to several hundred thousand.
2492          * latency is usually a few thousand
2493          */
2494         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2495                 1000;
2496         entries_required /= G4X_FIFO_LINE_SIZE;
2497         planea_wm = entries_required + planea_params.guard_size;
2498
2499         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2500                 1000;
2501         entries_required /= G4X_FIFO_LINE_SIZE;
2502         planeb_wm = entries_required + planeb_params.guard_size;
2503
2504         cursora_wm = cursorb_wm = 16;
2505         cursor_sr = 32;
2506
2507         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2508
2509         /* Calc sr entries for one plane configs */
2510         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2511                 /* self-refresh has much higher latency */
2512                 static const int sr_latency_ns = 12000;
2513
2514                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2515                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2516
2517                 /* Use ns/us then divide to preserve precision */
2518                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2519                               pixel_size * sr_hdisplay) / 1000;
2520                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2521                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2522                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2523         } else {
2524                 /* Turn off self refresh if both pipes are enabled */
2525                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2526                                         & ~FW_BLC_SELF_EN);
2527         }
2528
2529         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2530                   planea_wm, planeb_wm, sr_entries);
2531
2532         planea_wm &= 0x3f;
2533         planeb_wm &= 0x3f;
2534
2535         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2536                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2537                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2538         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2539                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2540         /* HPLL off in SR has some issues on G4x... disable it */
2541         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2542                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2543 }
2544
2545 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2546                            int planeb_clock, int sr_hdisplay, int pixel_size)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         unsigned long line_time_us;
2550         int sr_clock, sr_entries, srwm = 1;
2551
2552         /* Calc sr entries for one plane configs */
2553         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2554                 /* self-refresh has much higher latency */
2555                 static const int sr_latency_ns = 12000;
2556
2557                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2558                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2559
2560                 /* Use ns/us then divide to preserve precision */
2561                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2562                               pixel_size * sr_hdisplay) / 1000;
2563                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2564                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2565                 srwm = I945_FIFO_SIZE - sr_entries;
2566                 if (srwm < 0)
2567                         srwm = 1;
2568                 srwm &= 0x3f;
2569                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2570         } else {
2571                 /* Turn off self refresh if both pipes are enabled */
2572                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2573                                         & ~FW_BLC_SELF_EN);
2574         }
2575
2576         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2577                       srwm);
2578
2579         /* 965 has limitations... */
2580         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2581                    (8 << 0));
2582         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2583 }
2584
2585 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2586                            int planeb_clock, int sr_hdisplay, int pixel_size)
2587 {
2588         struct drm_i915_private *dev_priv = dev->dev_private;
2589         uint32_t fwater_lo;
2590         uint32_t fwater_hi;
2591         int total_size, cacheline_size, cwm, srwm = 1;
2592         int planea_wm, planeb_wm;
2593         struct intel_watermark_params planea_params, planeb_params;
2594         unsigned long line_time_us;
2595         int sr_clock, sr_entries = 0;
2596
2597         /* Create copies of the base settings for each pipe */
2598         if (IS_I965GM(dev) || IS_I945GM(dev))
2599                 planea_params = planeb_params = i945_wm_info;
2600         else if (IS_I9XX(dev))
2601                 planea_params = planeb_params = i915_wm_info;
2602         else
2603                 planea_params = planeb_params = i855_wm_info;
2604
2605         /* Grab a couple of global values before we overwrite them */
2606         total_size = planea_params.fifo_size;
2607         cacheline_size = planea_params.cacheline_size;
2608
2609         /* Update per-plane FIFO sizes */
2610         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2611         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2612
2613         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2614                                        pixel_size, latency_ns);
2615         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2616                                        pixel_size, latency_ns);
2617         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2618
2619         /*
2620          * Overlay gets an aggressive default since video jitter is bad.
2621          */
2622         cwm = 2;
2623
2624         /* Calc sr entries for one plane configs */
2625         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2626             (!planea_clock || !planeb_clock)) {
2627                 /* self-refresh has much higher latency */
2628                 static const int sr_latency_ns = 6000;
2629
2630                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2631                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2632
2633                 /* Use ns/us then divide to preserve precision */
2634                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2635                               pixel_size * sr_hdisplay) / 1000;
2636                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2637                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2638                 srwm = total_size - sr_entries;
2639                 if (srwm < 0)
2640                         srwm = 1;
2641                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2642         } else {
2643                 /* Turn off self refresh if both pipes are enabled */
2644                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2645                                         & ~FW_BLC_SELF_EN);
2646         }
2647
2648         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2649                   planea_wm, planeb_wm, cwm, srwm);
2650
2651         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2652         fwater_hi = (cwm & 0x1f);
2653
2654         /* Set request length to 8 cachelines per fetch */
2655         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2656         fwater_hi = fwater_hi | (1 << 8);
2657
2658         I915_WRITE(FW_BLC, fwater_lo);
2659         I915_WRITE(FW_BLC2, fwater_hi);
2660 }
2661
2662 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2663                            int unused2, int pixel_size)
2664 {
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2667         int planea_wm;
2668
2669         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2670
2671         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2672                                        pixel_size, latency_ns);
2673         fwater_lo |= (3<<8) | planea_wm;
2674
2675         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2676
2677         I915_WRITE(FW_BLC, fwater_lo);
2678 }
2679
2680 /**
2681  * intel_update_watermarks - update FIFO watermark values based on current modes
2682  *
2683  * Calculate watermark values for the various WM regs based on current mode
2684  * and plane configuration.
2685  *
2686  * There are several cases to deal with here:
2687  *   - normal (i.e. non-self-refresh)
2688  *   - self-refresh (SR) mode
2689  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2690  *   - lines are small relative to FIFO size (buffer can hold more than 2
2691  *     lines), so need to account for TLB latency
2692  *
2693  *   The normal calculation is:
2694  *     watermark = dotclock * bytes per pixel * latency
2695  *   where latency is platform & configuration dependent (we assume pessimal
2696  *   values here).
2697  *
2698  *   The SR calculation is:
2699  *     watermark = (trunc(latency/line time)+1) * surface width *
2700  *       bytes per pixel
2701  *   where
2702  *     line time = htotal / dotclock
2703  *   and latency is assumed to be high, as above.
2704  *
2705  * The final value programmed to the register should always be rounded up,
2706  * and include an extra 2 entries to account for clock crossings.
2707  *
2708  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2709  * to set the non-SR watermarks to 8.
2710   */
2711 static void intel_update_watermarks(struct drm_device *dev)
2712 {
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct drm_crtc *crtc;
2715         struct intel_crtc *intel_crtc;
2716         int sr_hdisplay = 0;
2717         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2718         int enabled = 0, pixel_size = 0;
2719
2720         if (!dev_priv->display.update_wm)
2721                 return;
2722
2723         /* Get the clock config from both planes */
2724         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2725                 intel_crtc = to_intel_crtc(crtc);
2726                 if (crtc->enabled) {
2727                         enabled++;
2728                         if (intel_crtc->plane == 0) {
2729                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2730                                           intel_crtc->pipe, crtc->mode.clock);
2731                                 planea_clock = crtc->mode.clock;
2732                         } else {
2733                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2734                                           intel_crtc->pipe, crtc->mode.clock);
2735                                 planeb_clock = crtc->mode.clock;
2736                         }
2737                         sr_hdisplay = crtc->mode.hdisplay;
2738                         sr_clock = crtc->mode.clock;
2739                         if (crtc->fb)
2740                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2741                         else
2742                                 pixel_size = 4; /* by default */
2743                 }
2744         }
2745
2746         if (enabled <= 0)
2747                 return;
2748
2749         /* Single plane configs can enable self refresh */
2750         if (enabled == 1 && IS_PINEVIEW(dev))
2751                 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2752         else if (IS_PINEVIEW(dev))
2753                 pineview_disable_cxsr(dev);
2754
2755         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2756                                     sr_hdisplay, pixel_size);
2757 }
2758
2759 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2760                                struct drm_display_mode *mode,
2761                                struct drm_display_mode *adjusted_mode,
2762                                int x, int y,
2763                                struct drm_framebuffer *old_fb)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768         int pipe = intel_crtc->pipe;
2769         int plane = intel_crtc->plane;
2770         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2771         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2772         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2773         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2774         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2775         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2776         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2777         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2778         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2779         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2780         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2781         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2782         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2783         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2784         int refclk, num_outputs = 0;
2785         intel_clock_t clock, reduced_clock;
2786         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2787         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2788         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2789         bool is_edp = false;
2790         struct drm_mode_config *mode_config = &dev->mode_config;
2791         struct drm_connector *connector;
2792         const intel_limit_t *limit;
2793         int ret;
2794         struct fdi_m_n m_n = {0};
2795         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2796         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2797         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2798         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2799         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2800         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2801         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2802         int lvds_reg = LVDS;
2803         u32 temp;
2804         int sdvo_pixel_multiply;
2805         int target_clock;
2806
2807         drm_vblank_pre_modeset(dev, pipe);
2808
2809         list_for_each_entry(connector, &mode_config->connector_list, head) {
2810                 struct intel_output *intel_output = to_intel_output(connector);
2811
2812                 if (!connector->encoder || connector->encoder->crtc != crtc)
2813                         continue;
2814
2815                 switch (intel_output->type) {
2816                 case INTEL_OUTPUT_LVDS:
2817                         is_lvds = true;
2818                         break;
2819                 case INTEL_OUTPUT_SDVO:
2820                 case INTEL_OUTPUT_HDMI:
2821                         is_sdvo = true;
2822                         if (intel_output->needs_tv_clock)
2823                                 is_tv = true;
2824                         break;
2825                 case INTEL_OUTPUT_DVO:
2826                         is_dvo = true;
2827                         break;
2828                 case INTEL_OUTPUT_TVOUT:
2829                         is_tv = true;
2830                         break;
2831                 case INTEL_OUTPUT_ANALOG:
2832                         is_crt = true;
2833                         break;
2834                 case INTEL_OUTPUT_DISPLAYPORT:
2835                         is_dp = true;
2836                         break;
2837                 case INTEL_OUTPUT_EDP:
2838                         is_edp = true;
2839                         break;
2840                 }
2841
2842                 num_outputs++;
2843         }
2844
2845         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2846                 refclk = dev_priv->lvds_ssc_freq * 1000;
2847                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2848                                         refclk / 1000);
2849         } else if (IS_I9XX(dev)) {
2850                 refclk = 96000;
2851                 if (IS_IRONLAKE(dev))
2852                         refclk = 120000; /* 120Mhz refclk */
2853         } else {
2854                 refclk = 48000;
2855         }
2856         
2857
2858         /*
2859          * Returns a set of divisors for the desired target clock with the given
2860          * refclk, or FALSE.  The returned values represent the clock equation:
2861          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2862          */
2863         limit = intel_limit(crtc);
2864         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2865         if (!ok) {
2866                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2867                 drm_vblank_post_modeset(dev, pipe);
2868                 return -EINVAL;
2869         }
2870
2871         if (is_lvds && dev_priv->lvds_downclock_avail) {
2872                 has_reduced_clock = limit->find_pll(limit, crtc,
2873                                                             dev_priv->lvds_downclock,
2874                                                             refclk,
2875                                                             &reduced_clock);
2876                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
2877                         /*
2878                          * If the different P is found, it means that we can't
2879                          * switch the display clock by using the FP0/FP1.
2880                          * In such case we will disable the LVDS downclock
2881                          * feature.
2882                          */
2883                         DRM_DEBUG_KMS("Different P is found for "
2884                                                 "LVDS clock/downclock\n");
2885                         has_reduced_clock = 0;
2886                 }
2887         }
2888         /* SDVO TV has fixed PLL values depend on its clock range,
2889            this mirrors vbios setting. */
2890         if (is_sdvo && is_tv) {
2891                 if (adjusted_mode->clock >= 100000
2892                                 && adjusted_mode->clock < 140500) {
2893                         clock.p1 = 2;
2894                         clock.p2 = 10;
2895                         clock.n = 3;
2896                         clock.m1 = 16;
2897                         clock.m2 = 8;
2898                 } else if (adjusted_mode->clock >= 140500
2899                                 && adjusted_mode->clock <= 200000) {
2900                         clock.p1 = 1;
2901                         clock.p2 = 10;
2902                         clock.n = 6;
2903                         clock.m1 = 12;
2904                         clock.m2 = 8;
2905                 }
2906         }
2907
2908         /* FDI link */
2909         if (IS_IRONLAKE(dev)) {
2910                 int lane, link_bw, bpp;
2911                 /* eDP doesn't require FDI link, so just set DP M/N
2912                    according to current link config */
2913                 if (is_edp) {
2914                         struct drm_connector *edp;
2915                         target_clock = mode->clock;
2916                         edp = intel_pipe_get_output(crtc);
2917                         intel_edp_link_config(to_intel_output(edp),
2918                                         &lane, &link_bw);
2919                 } else {
2920                         /* DP over FDI requires target mode clock
2921                            instead of link clock */
2922                         if (is_dp)
2923                                 target_clock = mode->clock;
2924                         else
2925                                 target_clock = adjusted_mode->clock;
2926                         lane = 4;
2927                         link_bw = 270000;
2928                 }
2929
2930                 /* determine panel color depth */
2931                 temp = I915_READ(pipeconf_reg);
2932                 temp &= ~PIPE_BPC_MASK;
2933                 if (is_lvds) {
2934                         int lvds_reg = I915_READ(PCH_LVDS);
2935                         /* the BPC will be 6 if it is 18-bit LVDS panel */
2936                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
2937                                 temp |= PIPE_8BPC;
2938                         else
2939                                 temp |= PIPE_6BPC;
2940                 } else if (is_edp) {
2941                         switch (dev_priv->edp_bpp/3) {
2942                         case 8:
2943                                 temp |= PIPE_8BPC;
2944                                 break;
2945                         case 10:
2946                                 temp |= PIPE_10BPC;
2947                                 break;
2948                         case 6:
2949                                 temp |= PIPE_6BPC;
2950                                 break;
2951                         case 12:
2952                                 temp |= PIPE_12BPC;
2953                                 break;
2954                         }
2955                 } else
2956                         temp |= PIPE_8BPC;
2957                 I915_WRITE(pipeconf_reg, temp);
2958                 I915_READ(pipeconf_reg);
2959
2960                 switch (temp & PIPE_BPC_MASK) {
2961                 case PIPE_8BPC:
2962                         bpp = 24;
2963                         break;
2964                 case PIPE_10BPC:
2965                         bpp = 30;
2966                         break;
2967                 case PIPE_6BPC:
2968                         bpp = 18;
2969                         break;
2970                 case PIPE_12BPC:
2971                         bpp = 36;
2972                         break;
2973                 default:
2974                         DRM_ERROR("unknown pipe bpc value\n");
2975                         bpp = 24;
2976                 }
2977
2978                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
2979         }
2980
2981         /* Ironlake: try to setup display ref clock before DPLL
2982          * enabling. This is only under driver's control after
2983          * PCH B stepping, previous chipset stepping should be
2984          * ignoring this setting.
2985          */
2986         if (IS_IRONLAKE(dev)) {
2987                 temp = I915_READ(PCH_DREF_CONTROL);
2988                 /* Always enable nonspread source */
2989                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2990                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2991                 I915_WRITE(PCH_DREF_CONTROL, temp);
2992                 POSTING_READ(PCH_DREF_CONTROL);
2993
2994                 temp &= ~DREF_SSC_SOURCE_MASK;
2995                 temp |= DREF_SSC_SOURCE_ENABLE;
2996                 I915_WRITE(PCH_DREF_CONTROL, temp);
2997                 POSTING_READ(PCH_DREF_CONTROL);
2998
2999                 udelay(200);
3000
3001                 if (is_edp) {
3002                         if (dev_priv->lvds_use_ssc) {
3003                                 temp |= DREF_SSC1_ENABLE;
3004                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3005                                 POSTING_READ(PCH_DREF_CONTROL);
3006
3007                                 udelay(200);
3008
3009                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3010                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3011                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3012                                 POSTING_READ(PCH_DREF_CONTROL);
3013                         } else {
3014                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3015                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3016                                 POSTING_READ(PCH_DREF_CONTROL);
3017                         }
3018                 }
3019         }
3020
3021         if (IS_PINEVIEW(dev)) {
3022                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3023                 if (has_reduced_clock)
3024                         fp2 = (1 << reduced_clock.n) << 16 |
3025                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3026         } else {
3027                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3028                 if (has_reduced_clock)
3029                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3030                                 reduced_clock.m2;
3031         }
3032
3033         if (!IS_IRONLAKE(dev))
3034                 dpll = DPLL_VGA_MODE_DIS;
3035
3036         if (IS_I9XX(dev)) {
3037                 if (is_lvds)
3038                         dpll |= DPLLB_MODE_LVDS;
3039                 else
3040                         dpll |= DPLLB_MODE_DAC_SERIAL;
3041                 if (is_sdvo) {
3042                         dpll |= DPLL_DVO_HIGH_SPEED;
3043                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3044                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3045                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3046                         else if (IS_IRONLAKE(dev))
3047                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3048                 }
3049                 if (is_dp)
3050                         dpll |= DPLL_DVO_HIGH_SPEED;
3051
3052                 /* compute bitmask from p1 value */
3053                 if (IS_PINEVIEW(dev))
3054                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3055                 else {
3056                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3057                         /* also FPA1 */
3058                         if (IS_IRONLAKE(dev))
3059                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3060                         if (IS_G4X(dev) && has_reduced_clock)
3061                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3062                 }
3063                 switch (clock.p2) {
3064                 case 5:
3065                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3066                         break;
3067                 case 7:
3068                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3069                         break;
3070                 case 10:
3071                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3072                         break;
3073                 case 14:
3074                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3075                         break;
3076                 }
3077                 if (IS_I965G(dev) && !IS_IRONLAKE(dev))
3078                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3079         } else {
3080                 if (is_lvds) {
3081                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3082                 } else {
3083                         if (clock.p1 == 2)
3084                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3085                         else
3086                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3087                         if (clock.p2 == 4)
3088                                 dpll |= PLL_P2_DIVIDE_BY_4;
3089                 }
3090         }
3091
3092         if (is_sdvo && is_tv)
3093                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3094         else if (is_tv)
3095                 /* XXX: just matching BIOS for now */
3096                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3097                 dpll |= 3;
3098         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3099                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3100         else
3101                 dpll |= PLL_REF_INPUT_DREFCLK;
3102
3103         /* setup pipeconf */
3104         pipeconf = I915_READ(pipeconf_reg);
3105
3106         /* Set up the display plane register */
3107         dspcntr = DISPPLANE_GAMMA_ENABLE;
3108
3109         /* Ironlake's plane is forced to pipe, bit 24 is to
3110            enable color space conversion */
3111         if (!IS_IRONLAKE(dev)) {
3112                 if (pipe == 0)
3113                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3114                 else
3115                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3116         }
3117
3118         if (pipe == 0 && !IS_I965G(dev)) {
3119                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3120                  * core speed.
3121                  *
3122                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3123                  * pipe == 0 check?
3124                  */
3125                 if (mode->clock >
3126                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3127                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3128                 else
3129                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3130         }
3131
3132         dspcntr |= DISPLAY_PLANE_ENABLE;
3133         pipeconf |= PIPEACONF_ENABLE;
3134         dpll |= DPLL_VCO_ENABLE;
3135
3136
3137         /* Disable the panel fitter if it was on our pipe */
3138         if (!IS_IRONLAKE(dev) && intel_panel_fitter_pipe(dev) == pipe)
3139                 I915_WRITE(PFIT_CONTROL, 0);
3140
3141         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3142         drm_mode_debug_printmodeline(mode);
3143
3144         /* assign to Ironlake registers */
3145         if (IS_IRONLAKE(dev)) {
3146                 fp_reg = pch_fp_reg;
3147                 dpll_reg = pch_dpll_reg;
3148         }
3149
3150         if (is_edp) {
3151                 ironlake_disable_pll_edp(crtc);
3152         } else if ((dpll & DPLL_VCO_ENABLE)) {
3153                 I915_WRITE(fp_reg, fp);
3154                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3155                 I915_READ(dpll_reg);
3156                 udelay(150);
3157         }
3158
3159         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3160          * This is an exception to the general rule that mode_set doesn't turn
3161          * things on.
3162          */
3163         if (is_lvds) {
3164                 u32 lvds;
3165
3166                 if (IS_IRONLAKE(dev))
3167                         lvds_reg = PCH_LVDS;
3168
3169                 lvds = I915_READ(lvds_reg);
3170                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3171                 /* set the corresponsding LVDS_BORDER bit */
3172                 lvds |= dev_priv->lvds_border_bits;
3173                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3174                  * set the DPLLs for dual-channel mode or not.
3175                  */
3176                 if (clock.p2 == 7)
3177                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3178                 else
3179                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3180
3181                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3182                  * appropriately here, but we need to look more thoroughly into how
3183                  * panels behave in the two modes.
3184                  */
3185                 /* set the dithering flag */
3186                 if (IS_I965G(dev)) {
3187                         if (dev_priv->lvds_dither) {
3188                                 if (IS_IRONLAKE(dev))
3189                                         pipeconf |= PIPE_ENABLE_DITHER;
3190                                 else
3191                                         lvds |= LVDS_ENABLE_DITHER;
3192                         } else {
3193                                 if (IS_IRONLAKE(dev))
3194                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3195                                 else
3196                                         lvds &= ~LVDS_ENABLE_DITHER;
3197                         }
3198                 }
3199                 I915_WRITE(lvds_reg, lvds);
3200                 I915_READ(lvds_reg);
3201         }
3202         if (is_dp)
3203                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3204
3205         if (!is_edp) {
3206                 I915_WRITE(fp_reg, fp);
3207                 I915_WRITE(dpll_reg, dpll);
3208                 I915_READ(dpll_reg);
3209                 /* Wait for the clocks to stabilize. */
3210                 udelay(150);
3211
3212                 if (IS_I965G(dev) && !IS_IRONLAKE(dev)) {
3213                         if (is_sdvo) {
3214                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3215                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3216                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3217                         } else
3218                                 I915_WRITE(dpll_md_reg, 0);
3219                 } else {
3220                         /* write it again -- the BIOS does, after all */
3221                         I915_WRITE(dpll_reg, dpll);
3222                 }
3223                 I915_READ(dpll_reg);
3224                 /* Wait for the clocks to stabilize. */
3225                 udelay(150);
3226         }
3227
3228         if (is_lvds && has_reduced_clock && i915_powersave) {
3229                 I915_WRITE(fp_reg + 4, fp2);
3230                 intel_crtc->lowfreq_avail = true;
3231                 if (HAS_PIPE_CXSR(dev)) {
3232                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3233                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3234                 }
3235         } else {
3236                 I915_WRITE(fp_reg + 4, fp);
3237                 intel_crtc->lowfreq_avail = false;
3238                 if (HAS_PIPE_CXSR(dev)) {
3239                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3240                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3241                 }
3242         }
3243
3244         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3245                    ((adjusted_mode->crtc_htotal - 1) << 16));
3246         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3247                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3248         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3249                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3250         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3251                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3252         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3253                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3254         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3255                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3256         /* pipesrc and dspsize control the size that is scaled from, which should
3257          * always be the user's requested size.
3258          */
3259         if (!IS_IRONLAKE(dev)) {
3260                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3261                                 (mode->hdisplay - 1));
3262                 I915_WRITE(dsppos_reg, 0);
3263         }
3264         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3265
3266         if (IS_IRONLAKE(dev)) {
3267                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3268                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3269                 I915_WRITE(link_m1_reg, m_n.link_m);
3270                 I915_WRITE(link_n1_reg, m_n.link_n);
3271
3272                 if (is_edp) {
3273                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3274                 } else {
3275                         /* enable FDI RX PLL too */
3276                         temp = I915_READ(fdi_rx_reg);
3277                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3278                         udelay(200);
3279                 }
3280         }
3281
3282         I915_WRITE(pipeconf_reg, pipeconf);
3283         I915_READ(pipeconf_reg);
3284
3285         intel_wait_for_vblank(dev);
3286
3287         if (IS_IRONLAKE(dev)) {
3288                 /* enable address swizzle for tiling buffer */
3289                 temp = I915_READ(DISP_ARB_CTL);
3290                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3291         }
3292
3293         I915_WRITE(dspcntr_reg, dspcntr);
3294
3295         /* Flush the plane changes */
3296         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3297
3298         if ((IS_I965G(dev) || plane == 0))
3299                 intel_update_fbc(crtc, &crtc->mode);
3300
3301         intel_update_watermarks(dev);
3302
3303         drm_vblank_post_modeset(dev, pipe);
3304
3305         return ret;
3306 }
3307
3308 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3309 void intel_crtc_load_lut(struct drm_crtc *crtc)
3310 {
3311         struct drm_device *dev = crtc->dev;
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3314         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3315         int i;
3316
3317         /* The clocks have to be on to load the palette. */
3318         if (!crtc->enabled)
3319                 return;
3320
3321         /* use legacy palette for Ironlake */
3322         if (IS_IRONLAKE(dev))
3323                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3324                                                    LGC_PALETTE_B;
3325
3326         for (i = 0; i < 256; i++) {
3327                 I915_WRITE(palreg + 4 * i,
3328                            (intel_crtc->lut_r[i] << 16) |
3329                            (intel_crtc->lut_g[i] << 8) |
3330                            intel_crtc->lut_b[i]);
3331         }
3332 }
3333
3334 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3335                                  struct drm_file *file_priv,
3336                                  uint32_t handle,
3337                                  uint32_t width, uint32_t height)
3338 {
3339         struct drm_device *dev = crtc->dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342         struct drm_gem_object *bo;
3343         struct drm_i915_gem_object *obj_priv;
3344         int pipe = intel_crtc->pipe;
3345         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3346         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3347         uint32_t temp = I915_READ(control);
3348         size_t addr;
3349         int ret;
3350
3351         DRM_DEBUG_KMS("\n");
3352
3353         /* if we want to turn off the cursor ignore width and height */
3354         if (!handle) {
3355                 DRM_DEBUG_KMS("cursor off\n");
3356                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3357                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3358                         temp |= CURSOR_MODE_DISABLE;
3359                 } else {
3360                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3361                 }
3362                 addr = 0;
3363                 bo = NULL;
3364                 mutex_lock(&dev->struct_mutex);
3365                 goto finish;
3366         }
3367
3368         /* Currently we only support 64x64 cursors */
3369         if (width != 64 || height != 64) {
3370                 DRM_ERROR("we currently only support 64x64 cursors\n");
3371                 return -EINVAL;
3372         }
3373
3374         bo = drm_gem_object_lookup(dev, file_priv, handle);
3375         if (!bo)
3376                 return -ENOENT;
3377
3378         obj_priv = bo->driver_private;
3379
3380         if (bo->size < width * height * 4) {
3381                 DRM_ERROR("buffer is to small\n");
3382                 ret = -ENOMEM;
3383                 goto fail;
3384         }
3385
3386         /* we only need to pin inside GTT if cursor is non-phy */
3387         mutex_lock(&dev->struct_mutex);
3388         if (!dev_priv->info->cursor_needs_physical) {
3389                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3390                 if (ret) {
3391                         DRM_ERROR("failed to pin cursor bo\n");
3392                         goto fail_locked;
3393                 }
3394                 addr = obj_priv->gtt_offset;
3395         } else {
3396                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3397                 if (ret) {
3398                         DRM_ERROR("failed to attach phys object\n");
3399                         goto fail_locked;
3400                 }
3401                 addr = obj_priv->phys_obj->handle->busaddr;
3402         }
3403
3404         if (!IS_I9XX(dev))
3405                 I915_WRITE(CURSIZE, (height << 12) | width);
3406
3407         /* Hooray for CUR*CNTR differences */
3408         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3409                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3410                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3411                 temp |= (pipe << 28); /* Connect to correct pipe */
3412         } else {
3413                 temp &= ~(CURSOR_FORMAT_MASK);
3414                 temp |= CURSOR_ENABLE;
3415                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3416         }
3417
3418  finish:
3419         I915_WRITE(control, temp);
3420         I915_WRITE(base, addr);
3421
3422         if (intel_crtc->cursor_bo) {
3423                 if (dev_priv->info->cursor_needs_physical) {
3424                         if (intel_crtc->cursor_bo != bo)
3425                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3426                 } else
3427                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3428                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3429         }
3430
3431         mutex_unlock(&dev->struct_mutex);
3432
3433         intel_crtc->cursor_addr = addr;
3434         intel_crtc->cursor_bo = bo;
3435
3436         return 0;
3437 fail_locked:
3438         mutex_unlock(&dev->struct_mutex);
3439 fail:
3440         drm_gem_object_unreference_unlocked(bo);
3441         return ret;
3442 }
3443
3444 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3445 {
3446         struct drm_device *dev = crtc->dev;
3447         struct drm_i915_private *dev_priv = dev->dev_private;
3448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449         struct intel_framebuffer *intel_fb;
3450         int pipe = intel_crtc->pipe;
3451         uint32_t temp = 0;
3452         uint32_t adder;
3453
3454         if (crtc->fb) {
3455                 intel_fb = to_intel_framebuffer(crtc->fb);
3456                 intel_mark_busy(dev, intel_fb->obj);
3457         }
3458
3459         if (x < 0) {
3460                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3461                 x = -x;
3462         }
3463         if (y < 0) {
3464                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3465                 y = -y;
3466         }
3467
3468         temp |= x << CURSOR_X_SHIFT;
3469         temp |= y << CURSOR_Y_SHIFT;
3470
3471         adder = intel_crtc->cursor_addr;
3472         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3473         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3474
3475         return 0;
3476 }
3477
3478 /** Sets the color ramps on behalf of RandR */
3479 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3480                                  u16 blue, int regno)
3481 {
3482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483
3484         intel_crtc->lut_r[regno] = red >> 8;
3485         intel_crtc->lut_g[regno] = green >> 8;
3486         intel_crtc->lut_b[regno] = blue >> 8;
3487 }
3488
3489 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3490                              u16 *blue, int regno)
3491 {
3492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493
3494         *red = intel_crtc->lut_r[regno] << 8;
3495         *green = intel_crtc->lut_g[regno] << 8;
3496         *blue = intel_crtc->lut_b[regno] << 8;
3497 }
3498
3499 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3500                                  u16 *blue, uint32_t size)
3501 {
3502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3503         int i;
3504
3505         if (size != 256)
3506                 return;
3507
3508         for (i = 0; i < 256; i++) {
3509                 intel_crtc->lut_r[i] = red[i] >> 8;
3510                 intel_crtc->lut_g[i] = green[i] >> 8;
3511                 intel_crtc->lut_b[i] = blue[i] >> 8;
3512         }
3513
3514         intel_crtc_load_lut(crtc);
3515 }
3516
3517 /**
3518  * Get a pipe with a simple mode set on it for doing load-based monitor
3519  * detection.
3520  *
3521  * It will be up to the load-detect code to adjust the pipe as appropriate for
3522  * its requirements.  The pipe will be connected to no other outputs.
3523  *
3524  * Currently this code will only succeed if there is a pipe with no outputs
3525  * configured for it.  In the future, it could choose to temporarily disable
3526  * some outputs to free up a pipe for its use.
3527  *
3528  * \return crtc, or NULL if no pipes are available.
3529  */
3530
3531 /* VESA 640x480x72Hz mode to set on the pipe */
3532 static struct drm_display_mode load_detect_mode = {
3533         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3534                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3535 };
3536
3537 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3538                                             struct drm_display_mode *mode,
3539                                             int *dpms_mode)
3540 {
3541         struct intel_crtc *intel_crtc;
3542         struct drm_crtc *possible_crtc;
3543         struct drm_crtc *supported_crtc =NULL;
3544         struct drm_encoder *encoder = &intel_output->enc;
3545         struct drm_crtc *crtc = NULL;
3546         struct drm_device *dev = encoder->dev;
3547         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3548         struct drm_crtc_helper_funcs *crtc_funcs;
3549         int i = -1;
3550
3551         /*
3552          * Algorithm gets a little messy:
3553          *   - if the connector already has an assigned crtc, use it (but make
3554          *     sure it's on first)
3555          *   - try to find the first unused crtc that can drive this connector,
3556          *     and use that if we find one
3557          *   - if there are no unused crtcs available, try to use the first
3558          *     one we found that supports the connector
3559          */
3560
3561         /* See if we already have a CRTC for this connector */
3562         if (encoder->crtc) {
3563                 crtc = encoder->crtc;
3564                 /* Make sure the crtc and connector are running */
3565                 intel_crtc = to_intel_crtc(crtc);
3566                 *dpms_mode = intel_crtc->dpms_mode;
3567                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3568                         crtc_funcs = crtc->helper_private;
3569                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3570                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3571                 }
3572                 return crtc;
3573         }
3574
3575         /* Find an unused one (if possible) */
3576         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3577                 i++;
3578                 if (!(encoder->possible_crtcs & (1 << i)))
3579                         continue;
3580                 if (!possible_crtc->enabled) {
3581                         crtc = possible_crtc;
3582                         break;
3583                 }
3584                 if (!supported_crtc)
3585                         supported_crtc = possible_crtc;
3586         }
3587
3588         /*
3589          * If we didn't find an unused CRTC, don't use any.
3590          */
3591         if (!crtc) {
3592                 return NULL;
3593         }
3594
3595         encoder->crtc = crtc;
3596         intel_output->base.encoder = encoder;
3597         intel_output->load_detect_temp = true;
3598
3599         intel_crtc = to_intel_crtc(crtc);
3600         *dpms_mode = intel_crtc->dpms_mode;
3601
3602         if (!crtc->enabled) {
3603                 if (!mode)
3604                         mode = &load_detect_mode;
3605                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3606         } else {
3607                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3608                         crtc_funcs = crtc->helper_private;
3609                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3610                 }
3611
3612                 /* Add this connector to the crtc */
3613                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3614                 encoder_funcs->commit(encoder);
3615         }
3616         /* let the connector get through one full cycle before testing */
3617         intel_wait_for_vblank(dev);
3618
3619         return crtc;
3620 }
3621
3622 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3623 {
3624         struct drm_encoder *encoder = &intel_output->enc;
3625         struct drm_device *dev = encoder->dev;
3626         struct drm_crtc *crtc = encoder->crtc;
3627         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3628         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3629
3630         if (intel_output->load_detect_temp) {
3631                 encoder->crtc = NULL;
3632                 intel_output->base.encoder = NULL;
3633                 intel_output->load_detect_temp = false;
3634                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3635                 drm_helper_disable_unused_functions(dev);
3636         }
3637
3638         /* Switch crtc and output back off if necessary */
3639         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3640                 if (encoder->crtc == crtc)
3641                         encoder_funcs->dpms(encoder, dpms_mode);
3642                 crtc_funcs->dpms(crtc, dpms_mode);
3643         }
3644 }
3645
3646 /* Returns the clock of the currently programmed mode of the given pipe. */
3647 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3648 {
3649         struct drm_i915_private *dev_priv = dev->dev_private;
3650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651         int pipe = intel_crtc->pipe;
3652         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3653         u32 fp;
3654         intel_clock_t clock;
3655
3656         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3657                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3658         else
3659                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3660
3661         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3662         if (IS_PINEVIEW(dev)) {
3663                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3664                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3665         } else {
3666                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3667                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3668         }
3669
3670         if (IS_I9XX(dev)) {
3671                 if (IS_PINEVIEW(dev))
3672                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3673                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3674                 else
3675                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3676                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3677
3678                 switch (dpll & DPLL_MODE_MASK) {
3679                 case DPLLB_MODE_DAC_SERIAL:
3680                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3681                                 5 : 10;
3682                         break;
3683                 case DPLLB_MODE_LVDS:
3684                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3685                                 7 : 14;
3686                         break;
3687                 default:
3688                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3689                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3690                         return 0;
3691                 }
3692
3693                 /* XXX: Handle the 100Mhz refclk */
3694                 intel_clock(dev, 96000, &clock);
3695         } else {
3696                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3697
3698                 if (is_lvds) {
3699                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3700                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3701                         clock.p2 = 14;
3702
3703                         if ((dpll & PLL_REF_INPUT_MASK) ==
3704                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3705                                 /* XXX: might not be 66MHz */
3706                                 intel_clock(dev, 66000, &clock);
3707                         } else
3708                                 intel_clock(dev, 48000, &clock);
3709                 } else {
3710                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3711                                 clock.p1 = 2;
3712                         else {
3713                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3714                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3715                         }
3716                         if (dpll & PLL_P2_DIVIDE_BY_4)
3717                                 clock.p2 = 4;
3718                         else
3719                                 clock.p2 = 2;
3720
3721                         intel_clock(dev, 48000, &clock);
3722                 }
3723         }
3724
3725         /* XXX: It would be nice to validate the clocks, but we can't reuse
3726          * i830PllIsValid() because it relies on the xf86_config connector
3727          * configuration being accurate, which it isn't necessarily.
3728          */
3729
3730         return clock.dot;
3731 }
3732
3733 /** Returns the currently programmed mode of the given pipe. */
3734 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3735                                              struct drm_crtc *crtc)
3736 {
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3739         int pipe = intel_crtc->pipe;
3740         struct drm_display_mode *mode;
3741         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3742         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3743         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3744         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3745
3746         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3747         if (!mode)
3748                 return NULL;
3749
3750         mode->clock = intel_crtc_clock_get(dev, crtc);
3751         mode->hdisplay = (htot & 0xffff) + 1;
3752         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3753         mode->hsync_start = (hsync & 0xffff) + 1;
3754         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3755         mode->vdisplay = (vtot & 0xffff) + 1;
3756         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3757         mode->vsync_start = (vsync & 0xffff) + 1;
3758         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3759
3760         drm_mode_set_name(mode);
3761         drm_mode_set_crtcinfo(mode, 0);
3762
3763         return mode;
3764 }
3765
3766 #define GPU_IDLE_TIMEOUT 500 /* ms */
3767
3768 /* When this timer fires, we've been idle for awhile */
3769 static void intel_gpu_idle_timer(unsigned long arg)
3770 {
3771         struct drm_device *dev = (struct drm_device *)arg;
3772         drm_i915_private_t *dev_priv = dev->dev_private;
3773
3774         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3775
3776         dev_priv->busy = false;
3777
3778         queue_work(dev_priv->wq, &dev_priv->idle_work);
3779 }
3780
3781 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3782
3783 static void intel_crtc_idle_timer(unsigned long arg)
3784 {
3785         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3786         struct drm_crtc *crtc = &intel_crtc->base;
3787         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3788
3789         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3790
3791         intel_crtc->busy = false;
3792
3793         queue_work(dev_priv->wq, &dev_priv->idle_work);
3794 }
3795
3796 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3797 {
3798         struct drm_device *dev = crtc->dev;
3799         drm_i915_private_t *dev_priv = dev->dev_private;
3800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801         int pipe = intel_crtc->pipe;
3802         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3803         int dpll = I915_READ(dpll_reg);
3804
3805         if (IS_IRONLAKE(dev))
3806                 return;
3807
3808         if (!dev_priv->lvds_downclock_avail)
3809                 return;
3810
3811         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3812                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3813
3814                 /* Unlock panel regs */
3815                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3816
3817                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3818                 I915_WRITE(dpll_reg, dpll);
3819                 dpll = I915_READ(dpll_reg);
3820                 intel_wait_for_vblank(dev);
3821                 dpll = I915_READ(dpll_reg);
3822                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3823                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3824
3825                 /* ...and lock them again */
3826                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3827         }
3828
3829         /* Schedule downclock */
3830         if (schedule)
3831                 mod_timer(&intel_crtc->idle_timer, jiffies +
3832                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3833 }
3834
3835 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3836 {
3837         struct drm_device *dev = crtc->dev;
3838         drm_i915_private_t *dev_priv = dev->dev_private;
3839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3840         int pipe = intel_crtc->pipe;
3841         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3842         int dpll = I915_READ(dpll_reg);
3843
3844         if (IS_IRONLAKE(dev))
3845                 return;
3846
3847         if (!dev_priv->lvds_downclock_avail)
3848                 return;
3849
3850         /*
3851          * Since this is called by a timer, we should never get here in
3852          * the manual case.
3853          */
3854         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3855                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3856
3857                 /* Unlock panel regs */
3858                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3859
3860                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3861                 I915_WRITE(dpll_reg, dpll);
3862                 dpll = I915_READ(dpll_reg);
3863                 intel_wait_for_vblank(dev);
3864                 dpll = I915_READ(dpll_reg);
3865                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3866                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3867
3868                 /* ...and lock them again */
3869                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3870         }
3871
3872 }
3873
3874 /**
3875  * intel_idle_update - adjust clocks for idleness
3876  * @work: work struct
3877  *
3878  * Either the GPU or display (or both) went idle.  Check the busy status
3879  * here and adjust the CRTC and GPU clocks as necessary.
3880  */
3881 static void intel_idle_update(struct work_struct *work)
3882 {
3883         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3884                                                     idle_work);
3885         struct drm_device *dev = dev_priv->dev;
3886         struct drm_crtc *crtc;
3887         struct intel_crtc *intel_crtc;
3888
3889         if (!i915_powersave)
3890                 return;
3891
3892         mutex_lock(&dev->struct_mutex);
3893
3894         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3895                 /* Skip inactive CRTCs */
3896                 if (!crtc->fb)
3897                         continue;
3898
3899                 intel_crtc = to_intel_crtc(crtc);
3900                 if (!intel_crtc->busy)
3901                         intel_decrease_pllclock(crtc);
3902         }
3903
3904         mutex_unlock(&dev->struct_mutex);
3905 }
3906
3907 /**
3908  * intel_mark_busy - mark the GPU and possibly the display busy
3909  * @dev: drm device
3910  * @obj: object we're operating on
3911  *
3912  * Callers can use this function to indicate that the GPU is busy processing
3913  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3914  * buffer), we'll also mark the display as busy, so we know to increase its
3915  * clock frequency.
3916  */
3917 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3918 {
3919         drm_i915_private_t *dev_priv = dev->dev_private;
3920         struct drm_crtc *crtc = NULL;
3921         struct intel_framebuffer *intel_fb;
3922         struct intel_crtc *intel_crtc;
3923
3924         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3925                 return;
3926
3927         if (!dev_priv->busy)
3928                 dev_priv->busy = true;
3929         else
3930                 mod_timer(&dev_priv->idle_timer, jiffies +
3931                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3932
3933         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3934                 if (!crtc->fb)
3935                         continue;
3936
3937                 intel_crtc = to_intel_crtc(crtc);
3938                 intel_fb = to_intel_framebuffer(crtc->fb);
3939                 if (intel_fb->obj == obj) {
3940                         if (!intel_crtc->busy) {
3941                                 /* Non-busy -> busy, upclock */
3942                                 intel_increase_pllclock(crtc, true);
3943                                 intel_crtc->busy = true;
3944                         } else {
3945                                 /* Busy -> busy, put off timer */
3946                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3947                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3948                         }
3949                 }
3950         }
3951 }
3952
3953 static void intel_crtc_destroy(struct drm_crtc *crtc)
3954 {
3955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3956
3957         drm_crtc_cleanup(crtc);
3958         kfree(intel_crtc);
3959 }
3960
3961 struct intel_unpin_work {
3962         struct work_struct work;
3963         struct drm_device *dev;
3964         struct drm_gem_object *obj;
3965         struct drm_pending_vblank_event *event;
3966         int pending;
3967 };
3968
3969 static void intel_unpin_work_fn(struct work_struct *__work)
3970 {
3971         struct intel_unpin_work *work =
3972                 container_of(__work, struct intel_unpin_work, work);
3973
3974         mutex_lock(&work->dev->struct_mutex);
3975         i915_gem_object_unpin(work->obj);
3976         drm_gem_object_unreference(work->obj);
3977         mutex_unlock(&work->dev->struct_mutex);
3978         kfree(work);
3979 }
3980
3981 void intel_finish_page_flip(struct drm_device *dev, int pipe)
3982 {
3983         drm_i915_private_t *dev_priv = dev->dev_private;
3984         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3986         struct intel_unpin_work *work;
3987         struct drm_i915_gem_object *obj_priv;
3988         struct drm_pending_vblank_event *e;
3989         struct timeval now;
3990         unsigned long flags;
3991
3992         /* Ignore early vblank irqs */
3993         if (intel_crtc == NULL)
3994                 return;
3995
3996         spin_lock_irqsave(&dev->event_lock, flags);
3997         work = intel_crtc->unpin_work;
3998         if (work == NULL || !work->pending) {
3999                 if (work && !work->pending) {
4000                         obj_priv = work->obj->driver_private;
4001                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4002                                          obj_priv,
4003                                          atomic_read(&obj_priv->pending_flip));
4004                 }
4005                 spin_unlock_irqrestore(&dev->event_lock, flags);
4006                 return;
4007         }
4008
4009         intel_crtc->unpin_work = NULL;
4010         drm_vblank_put(dev, intel_crtc->pipe);
4011
4012         if (work->event) {
4013                 e = work->event;
4014                 do_gettimeofday(&now);
4015                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4016                 e->event.tv_sec = now.tv_sec;
4017                 e->event.tv_usec = now.tv_usec;
4018                 list_add_tail(&e->base.link,
4019                               &e->base.file_priv->event_list);
4020                 wake_up_interruptible(&e->base.file_priv->event_wait);
4021         }
4022
4023         spin_unlock_irqrestore(&dev->event_lock, flags);
4024
4025         obj_priv = work->obj->driver_private;
4026
4027         /* Initial scanout buffer will have a 0 pending flip count */
4028         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4029             atomic_dec_and_test(&obj_priv->pending_flip))
4030                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4031         schedule_work(&work->work);
4032 }
4033
4034 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4035 {
4036         drm_i915_private_t *dev_priv = dev->dev_private;
4037         struct intel_crtc *intel_crtc =
4038                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4039         unsigned long flags;
4040
4041         spin_lock_irqsave(&dev->event_lock, flags);
4042         if (intel_crtc->unpin_work) {
4043                 intel_crtc->unpin_work->pending = 1;
4044         } else {
4045                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4046         }
4047         spin_unlock_irqrestore(&dev->event_lock, flags);
4048 }
4049
4050 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4051                                 struct drm_framebuffer *fb,
4052                                 struct drm_pending_vblank_event *event)
4053 {
4054         struct drm_device *dev = crtc->dev;
4055         struct drm_i915_private *dev_priv = dev->dev_private;
4056         struct intel_framebuffer *intel_fb;
4057         struct drm_i915_gem_object *obj_priv;
4058         struct drm_gem_object *obj;
4059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4060         struct intel_unpin_work *work;
4061         unsigned long flags;
4062         int ret;
4063         RING_LOCALS;
4064
4065         work = kzalloc(sizeof *work, GFP_KERNEL);
4066         if (work == NULL)
4067                 return -ENOMEM;
4068
4069         mutex_lock(&dev->struct_mutex);
4070
4071         work->event = event;
4072         work->dev = crtc->dev;
4073         intel_fb = to_intel_framebuffer(crtc->fb);
4074         work->obj = intel_fb->obj;
4075         INIT_WORK(&work->work, intel_unpin_work_fn);
4076
4077         /* We borrow the event spin lock for protecting unpin_work */
4078         spin_lock_irqsave(&dev->event_lock, flags);
4079         if (intel_crtc->unpin_work) {
4080                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4081                 spin_unlock_irqrestore(&dev->event_lock, flags);
4082                 kfree(work);
4083                 mutex_unlock(&dev->struct_mutex);
4084                 return -EBUSY;
4085         }
4086         intel_crtc->unpin_work = work;
4087         spin_unlock_irqrestore(&dev->event_lock, flags);
4088
4089         intel_fb = to_intel_framebuffer(fb);
4090         obj = intel_fb->obj;
4091
4092         ret = intel_pin_and_fence_fb_obj(dev, obj);
4093         if (ret != 0) {
4094                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4095                           obj->driver_private);
4096                 kfree(work);
4097                 intel_crtc->unpin_work = NULL;
4098                 mutex_unlock(&dev->struct_mutex);
4099                 return ret;
4100         }
4101
4102         /* Reference the old fb object for the scheduled work. */
4103         drm_gem_object_reference(work->obj);
4104
4105         crtc->fb = fb;
4106         i915_gem_object_flush_write_domain(obj);
4107         drm_vblank_get(dev, intel_crtc->pipe);
4108         obj_priv = obj->driver_private;
4109         atomic_inc(&obj_priv->pending_flip);
4110
4111         BEGIN_LP_RING(4);
4112         OUT_RING(MI_DISPLAY_FLIP |
4113                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4114         OUT_RING(fb->pitch);
4115         if (IS_I965G(dev)) {
4116                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4117                 OUT_RING((fb->width << 16) | fb->height);
4118         } else {
4119                 OUT_RING(obj_priv->gtt_offset);
4120                 OUT_RING(MI_NOOP);
4121         }
4122         ADVANCE_LP_RING();
4123
4124         mutex_unlock(&dev->struct_mutex);
4125
4126         return 0;
4127 }
4128
4129 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4130         .dpms = intel_crtc_dpms,
4131         .mode_fixup = intel_crtc_mode_fixup,
4132         .mode_set = intel_crtc_mode_set,
4133         .mode_set_base = intel_pipe_set_base,
4134         .prepare = intel_crtc_prepare,
4135         .commit = intel_crtc_commit,
4136         .load_lut = intel_crtc_load_lut,
4137 };
4138
4139 static const struct drm_crtc_funcs intel_crtc_funcs = {
4140         .cursor_set = intel_crtc_cursor_set,
4141         .cursor_move = intel_crtc_cursor_move,
4142         .gamma_set = intel_crtc_gamma_set,
4143         .set_config = drm_crtc_helper_set_config,
4144         .destroy = intel_crtc_destroy,
4145         .page_flip = intel_crtc_page_flip,
4146 };
4147
4148
4149 static void intel_crtc_init(struct drm_device *dev, int pipe)
4150 {
4151         drm_i915_private_t *dev_priv = dev->dev_private;
4152         struct intel_crtc *intel_crtc;
4153         int i;
4154
4155         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4156         if (intel_crtc == NULL)
4157                 return;
4158
4159         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4160
4161         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4162         intel_crtc->pipe = pipe;
4163         intel_crtc->plane = pipe;
4164         for (i = 0; i < 256; i++) {
4165                 intel_crtc->lut_r[i] = i;
4166                 intel_crtc->lut_g[i] = i;
4167                 intel_crtc->lut_b[i] = i;
4168         }
4169
4170         /* Swap pipes & planes for FBC on pre-965 */
4171         intel_crtc->pipe = pipe;
4172         intel_crtc->plane = pipe;
4173         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4174                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4175                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4176         }
4177
4178         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4179                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4180         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4181         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4182
4183         intel_crtc->cursor_addr = 0;
4184         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4185         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4186
4187         intel_crtc->busy = false;
4188
4189         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4190                     (unsigned long)intel_crtc);
4191 }
4192
4193 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4194                                 struct drm_file *file_priv)
4195 {
4196         drm_i915_private_t *dev_priv = dev->dev_private;
4197         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4198         struct drm_mode_object *drmmode_obj;
4199         struct intel_crtc *crtc;
4200
4201         if (!dev_priv) {
4202                 DRM_ERROR("called with no initialization\n");
4203                 return -EINVAL;
4204         }
4205
4206         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4207                         DRM_MODE_OBJECT_CRTC);
4208
4209         if (!drmmode_obj) {
4210                 DRM_ERROR("no such CRTC id\n");
4211                 return -EINVAL;
4212         }
4213
4214         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4215         pipe_from_crtc_id->pipe = crtc->pipe;
4216
4217         return 0;
4218 }
4219
4220 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4221 {
4222         struct drm_crtc *crtc = NULL;
4223
4224         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4225                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4226                 if (intel_crtc->pipe == pipe)
4227                         break;
4228         }
4229         return crtc;
4230 }
4231
4232 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4233 {
4234         int index_mask = 0;
4235         struct drm_connector *connector;
4236         int entry = 0;
4237
4238         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4239                 struct intel_output *intel_output = to_intel_output(connector);
4240                 if (type_mask & intel_output->clone_mask)
4241                         index_mask |= (1 << entry);
4242                 entry++;
4243         }
4244         return index_mask;
4245 }
4246
4247
4248 static void intel_setup_outputs(struct drm_device *dev)
4249 {
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         struct drm_connector *connector;
4252
4253         intel_crt_init(dev);
4254
4255         /* Set up integrated LVDS */
4256         if (IS_MOBILE(dev) && !IS_I830(dev))
4257                 intel_lvds_init(dev);
4258
4259         if (IS_IRONLAKE(dev)) {
4260                 int found;
4261
4262                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4263                         intel_dp_init(dev, DP_A);
4264
4265                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4266                         /* check SDVOB */
4267                         /* found = intel_sdvo_init(dev, HDMIB); */
4268                         found = 0;
4269                         if (!found)
4270                                 intel_hdmi_init(dev, HDMIB);
4271                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4272                                 intel_dp_init(dev, PCH_DP_B);
4273                 }
4274
4275                 if (I915_READ(HDMIC) & PORT_DETECTED)
4276                         intel_hdmi_init(dev, HDMIC);
4277
4278                 if (I915_READ(HDMID) & PORT_DETECTED)
4279                         intel_hdmi_init(dev, HDMID);
4280
4281                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4282                         intel_dp_init(dev, PCH_DP_C);
4283
4284                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4285                         intel_dp_init(dev, PCH_DP_D);
4286
4287         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4288                 bool found = false;
4289
4290                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4291                         DRM_DEBUG_KMS("probing SDVOB\n");
4292                         found = intel_sdvo_init(dev, SDVOB);
4293                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4294                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4295                                 intel_hdmi_init(dev, SDVOB);
4296                         }
4297
4298                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4299                                 DRM_DEBUG_KMS("probing DP_B\n");
4300                                 intel_dp_init(dev, DP_B);
4301                         }
4302                 }
4303
4304                 /* Before G4X SDVOC doesn't have its own detect register */
4305
4306                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4307                         DRM_DEBUG_KMS("probing SDVOC\n");
4308                         found = intel_sdvo_init(dev, SDVOC);
4309                 }
4310
4311                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4312
4313                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4314                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4315                                 intel_hdmi_init(dev, SDVOC);
4316                         }
4317                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4318                                 DRM_DEBUG_KMS("probing DP_C\n");
4319                                 intel_dp_init(dev, DP_C);
4320                         }
4321                 }
4322
4323                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4324                     (I915_READ(DP_D) & DP_DETECTED)) {
4325                         DRM_DEBUG_KMS("probing DP_D\n");
4326                         intel_dp_init(dev, DP_D);
4327                 }
4328         } else if (IS_I8XX(dev))
4329                 intel_dvo_init(dev);
4330
4331         if (SUPPORTS_TV(dev))
4332                 intel_tv_init(dev);
4333
4334         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4335                 struct intel_output *intel_output = to_intel_output(connector);
4336                 struct drm_encoder *encoder = &intel_output->enc;
4337
4338                 encoder->possible_crtcs = intel_output->crtc_mask;
4339                 encoder->possible_clones = intel_connector_clones(dev,
4340                                                 intel_output->clone_mask);
4341         }
4342 }
4343
4344 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4345 {
4346         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4347         struct drm_device *dev = fb->dev;
4348
4349         if (fb->fbdev)
4350                 intelfb_remove(dev, fb);
4351
4352         drm_framebuffer_cleanup(fb);
4353         drm_gem_object_unreference_unlocked(intel_fb->obj);
4354
4355         kfree(intel_fb);
4356 }
4357
4358 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4359                                                 struct drm_file *file_priv,
4360                                                 unsigned int *handle)
4361 {
4362         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4363         struct drm_gem_object *object = intel_fb->obj;
4364
4365         return drm_gem_handle_create(file_priv, object, handle);
4366 }
4367
4368 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4369         .destroy = intel_user_framebuffer_destroy,
4370         .create_handle = intel_user_framebuffer_create_handle,
4371 };
4372
4373 int intel_framebuffer_create(struct drm_device *dev,
4374                              struct drm_mode_fb_cmd *mode_cmd,
4375                              struct drm_framebuffer **fb,
4376                              struct drm_gem_object *obj)
4377 {
4378         struct intel_framebuffer *intel_fb;
4379         int ret;
4380
4381         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4382         if (!intel_fb)
4383                 return -ENOMEM;
4384
4385         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4386         if (ret) {
4387                 DRM_ERROR("framebuffer init failed %d\n", ret);
4388                 return ret;
4389         }
4390
4391         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4392
4393         intel_fb->obj = obj;
4394
4395         *fb = &intel_fb->base;
4396
4397         return 0;
4398 }
4399
4400
4401 static struct drm_framebuffer *
4402 intel_user_framebuffer_create(struct drm_device *dev,
4403                               struct drm_file *filp,
4404                               struct drm_mode_fb_cmd *mode_cmd)
4405 {
4406         struct drm_gem_object *obj;
4407         struct drm_framebuffer *fb;
4408         int ret;
4409
4410         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4411         if (!obj)
4412                 return NULL;
4413
4414         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4415         if (ret) {
4416                 drm_gem_object_unreference_unlocked(obj);
4417                 return NULL;
4418         }
4419
4420         return fb;
4421 }
4422
4423 static const struct drm_mode_config_funcs intel_mode_funcs = {
4424         .fb_create = intel_user_framebuffer_create,
4425         .fb_changed = intelfb_probe,
4426 };
4427
4428 static struct drm_gem_object *
4429 intel_alloc_power_context(struct drm_device *dev)
4430 {
4431         struct drm_gem_object *pwrctx;
4432         int ret;
4433
4434         pwrctx = drm_gem_object_alloc(dev, 4096);
4435         if (!pwrctx) {
4436                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4437                 return NULL;
4438         }
4439
4440         mutex_lock(&dev->struct_mutex);
4441         ret = i915_gem_object_pin(pwrctx, 4096);
4442         if (ret) {
4443                 DRM_ERROR("failed to pin power context: %d\n", ret);
4444                 goto err_unref;
4445         }
4446
4447         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4448         if (ret) {
4449                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4450                 goto err_unpin;
4451         }
4452         mutex_unlock(&dev->struct_mutex);
4453
4454         return pwrctx;
4455
4456 err_unpin:
4457         i915_gem_object_unpin(pwrctx);
4458 err_unref:
4459         drm_gem_object_unreference(pwrctx);
4460         mutex_unlock(&dev->struct_mutex);
4461         return NULL;
4462 }
4463
4464 void intel_init_clock_gating(struct drm_device *dev)
4465 {
4466         struct drm_i915_private *dev_priv = dev->dev_private;
4467
4468         /*
4469          * Disable clock gating reported to work incorrectly according to the
4470          * specs, but enable as much else as we can.
4471          */
4472         if (IS_IRONLAKE(dev)) {
4473                 return;
4474         } else if (IS_G4X(dev)) {
4475                 uint32_t dspclk_gate;
4476                 I915_WRITE(RENCLK_GATE_D1, 0);
4477                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4478                        GS_UNIT_CLOCK_GATE_DISABLE |
4479                        CL_UNIT_CLOCK_GATE_DISABLE);
4480                 I915_WRITE(RAMCLK_GATE_D, 0);
4481                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4482                         OVRUNIT_CLOCK_GATE_DISABLE |
4483                         OVCUNIT_CLOCK_GATE_DISABLE;
4484                 if (IS_GM45(dev))
4485                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4486                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4487         } else if (IS_I965GM(dev)) {
4488                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4489                 I915_WRITE(RENCLK_GATE_D2, 0);
4490                 I915_WRITE(DSPCLK_GATE_D, 0);
4491                 I915_WRITE(RAMCLK_GATE_D, 0);
4492                 I915_WRITE16(DEUC, 0);
4493         } else if (IS_I965G(dev)) {
4494                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4495                        I965_RCC_CLOCK_GATE_DISABLE |
4496                        I965_RCPB_CLOCK_GATE_DISABLE |
4497                        I965_ISC_CLOCK_GATE_DISABLE |
4498                        I965_FBC_CLOCK_GATE_DISABLE);
4499                 I915_WRITE(RENCLK_GATE_D2, 0);
4500         } else if (IS_I9XX(dev)) {
4501                 u32 dstate = I915_READ(D_STATE);
4502
4503                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4504                         DSTATE_DOT_CLOCK_GATING;
4505                 I915_WRITE(D_STATE, dstate);
4506         } else if (IS_I85X(dev) || IS_I865G(dev)) {
4507                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4508         } else if (IS_I830(dev)) {
4509                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4510         }
4511
4512         /*
4513          * GPU can automatically power down the render unit if given a page
4514          * to save state.
4515          */
4516         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4517                 struct drm_i915_gem_object *obj_priv = NULL;
4518
4519                 if (dev_priv->pwrctx) {
4520                         obj_priv = dev_priv->pwrctx->driver_private;
4521                 } else {
4522                         struct drm_gem_object *pwrctx;
4523
4524                         pwrctx = intel_alloc_power_context(dev);
4525                         if (pwrctx) {
4526                                 dev_priv->pwrctx = pwrctx;
4527                                 obj_priv = pwrctx->driver_private;
4528                         }
4529                 }
4530
4531                 if (obj_priv) {
4532                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4533                         I915_WRITE(MCHBAR_RENDER_STANDBY,
4534                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4535                 }
4536         }
4537 }
4538
4539 /* Set up chip specific display functions */
4540 static void intel_init_display(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543
4544         /* We always want a DPMS function */
4545         if (IS_IRONLAKE(dev))
4546                 dev_priv->display.dpms = ironlake_crtc_dpms;
4547         else
4548                 dev_priv->display.dpms = i9xx_crtc_dpms;
4549
4550         /* Only mobile has FBC, leave pointers NULL for other chips */
4551         if (IS_MOBILE(dev)) {
4552                 if (IS_GM45(dev)) {
4553                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4554                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4555                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4556                 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4557                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4558                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4559                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4560                 }
4561                 /* 855GM needs testing */
4562         }
4563
4564         /* Returns the core display clock speed */
4565         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4566                 dev_priv->display.get_display_clock_speed =
4567                         i945_get_display_clock_speed;
4568         else if (IS_I915G(dev))
4569                 dev_priv->display.get_display_clock_speed =
4570                         i915_get_display_clock_speed;
4571         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4572                 dev_priv->display.get_display_clock_speed =
4573                         i9xx_misc_get_display_clock_speed;
4574         else if (IS_I915GM(dev))
4575                 dev_priv->display.get_display_clock_speed =
4576                         i915gm_get_display_clock_speed;
4577         else if (IS_I865G(dev))
4578                 dev_priv->display.get_display_clock_speed =
4579                         i865_get_display_clock_speed;
4580         else if (IS_I85X(dev))
4581                 dev_priv->display.get_display_clock_speed =
4582                         i855_get_display_clock_speed;
4583         else /* 852, 830 */
4584                 dev_priv->display.get_display_clock_speed =
4585                         i830_get_display_clock_speed;
4586
4587         /* For FIFO watermark updates */
4588         if (IS_IRONLAKE(dev))
4589                 dev_priv->display.update_wm = NULL;
4590         else if (IS_G4X(dev))
4591                 dev_priv->display.update_wm = g4x_update_wm;
4592         else if (IS_I965G(dev))
4593                 dev_priv->display.update_wm = i965_update_wm;
4594         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4595                 dev_priv->display.update_wm = i9xx_update_wm;
4596                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4597         } else {
4598                 if (IS_I85X(dev))
4599                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4600                 else if (IS_845G(dev))
4601                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4602                 else
4603                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4604                 dev_priv->display.update_wm = i830_update_wm;
4605         }
4606 }
4607
4608 void intel_modeset_init(struct drm_device *dev)
4609 {
4610         struct drm_i915_private *dev_priv = dev->dev_private;
4611         int num_pipe;
4612         int i;
4613
4614         drm_mode_config_init(dev);
4615
4616         dev->mode_config.min_width = 0;
4617         dev->mode_config.min_height = 0;
4618
4619         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4620
4621         intel_init_display(dev);
4622
4623         if (IS_I965G(dev)) {
4624                 dev->mode_config.max_width = 8192;
4625                 dev->mode_config.max_height = 8192;
4626         } else if (IS_I9XX(dev)) {
4627                 dev->mode_config.max_width = 4096;
4628                 dev->mode_config.max_height = 4096;
4629         } else {
4630                 dev->mode_config.max_width = 2048;
4631                 dev->mode_config.max_height = 2048;
4632         }
4633
4634         /* set memory base */
4635         if (IS_I9XX(dev))
4636                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4637         else
4638                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4639
4640         if (IS_MOBILE(dev) || IS_I9XX(dev))
4641                 num_pipe = 2;
4642         else
4643                 num_pipe = 1;
4644         DRM_DEBUG_KMS("%d display pipe%s available.\n",
4645                   num_pipe, num_pipe > 1 ? "s" : "");
4646
4647         if (IS_I85X(dev))
4648                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4649         else if (IS_I9XX(dev) || IS_G4X(dev))
4650                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4651
4652         for (i = 0; i < num_pipe; i++) {
4653                 intel_crtc_init(dev, i);
4654         }
4655
4656         intel_setup_outputs(dev);
4657
4658         intel_init_clock_gating(dev);
4659
4660         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4661         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4662                     (unsigned long)dev);
4663
4664         intel_setup_overlay(dev);
4665
4666         if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4667                                                         dev_priv->fsb_freq,
4668                                                         dev_priv->mem_freq))
4669                 DRM_INFO("failed to find known CxSR latency "
4670                          "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4671                          dev_priv->fsb_freq, dev_priv->mem_freq);
4672 }
4673
4674 void intel_modeset_cleanup(struct drm_device *dev)
4675 {
4676         struct drm_i915_private *dev_priv = dev->dev_private;
4677         struct drm_crtc *crtc;
4678         struct intel_crtc *intel_crtc;
4679
4680         mutex_lock(&dev->struct_mutex);
4681
4682         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4683                 /* Skip inactive CRTCs */
4684                 if (!crtc->fb)
4685                         continue;
4686
4687                 intel_crtc = to_intel_crtc(crtc);
4688                 intel_increase_pllclock(crtc, false);
4689                 del_timer_sync(&intel_crtc->idle_timer);
4690         }
4691
4692         del_timer_sync(&dev_priv->idle_timer);
4693
4694         if (dev_priv->display.disable_fbc)
4695                 dev_priv->display.disable_fbc(dev);
4696
4697         if (dev_priv->pwrctx) {
4698                 struct drm_i915_gem_object *obj_priv;
4699
4700                 obj_priv = dev_priv->pwrctx->driver_private;
4701                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4702                 I915_READ(PWRCTXA);
4703                 i915_gem_object_unpin(dev_priv->pwrctx);
4704                 drm_gem_object_unreference(dev_priv->pwrctx);
4705         }
4706
4707         mutex_unlock(&dev->struct_mutex);
4708
4709         drm_mode_config_cleanup(dev);
4710 }
4711
4712
4713 /* current intel driver doesn't take advantage of encoders
4714    always give back the encoder for the connector
4715 */
4716 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4717 {
4718         struct intel_output *intel_output = to_intel_output(connector);
4719
4720         return &intel_output->enc;
4721 }
4722
4723 /*
4724  * set vga decode state - true == enable VGA decode
4725  */
4726 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         u16 gmch_ctrl;
4730
4731         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4732         if (state)
4733                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4734         else
4735                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4736         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4737         return 0;
4738 }