drm/i915: Only print "nothing to do" debug message as required.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requirement, prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirement, prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033         u32 fbc_ctl;
1034
1035         if (!I915_HAS_FBC(dev))
1036                 return;
1037
1038         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039                 return; /* Already off, just return */
1040
1041         /* Disable compression */
1042         fbc_ctl = I915_READ(FBC_CONTROL);
1043         fbc_ctl &= ~FBC_CTL_EN;
1044         I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046         /* Wait for compressing bit to clear */
1047         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048                 if (time_after(jiffies, timeout)) {
1049                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050                         break;
1051                 }
1052                 ; /* do nothing */
1053         }
1054
1055         intel_wait_for_vblank(dev);
1056
1057         DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct drm_framebuffer *fb = crtc->fb;
1072         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076                      DPFC_CTL_PLANEB);
1077         unsigned long stall_watermark = 200;
1078         u32 dpfc_ctl;
1079
1080         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081         dev_priv->cfb_fence = obj_priv->fence_reg;
1082         dev_priv->cfb_plane = intel_crtc->plane;
1083
1084         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088         } else {
1089                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090         }
1091
1092         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098         /* enable it... */
1099         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 dpfc_ctl;
1108
1109         /* Disable compression */
1110         dpfc_ctl = I915_READ(DPFC_CONTROL);
1111         dpfc_ctl &= ~DPFC_CTL_EN;
1112         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113         intel_wait_for_vblank(dev);
1114
1115         DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129         if (!dev_priv->display.fbc_enabled)
1130                 return false;
1131
1132         return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139         if (!dev_priv->display.enable_fbc)
1140                 return;
1141
1142         dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (!dev_priv->display.disable_fbc)
1150                 return;
1151
1152         dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156  * intel_update_fbc - enable/disable FBC as needed
1157  * @crtc: CRTC to point the compressor at
1158  * @mode: mode in use
1159  *
1160  * Set up the framebuffer compression hardware at mode set time.  We
1161  * enable it if possible:
1162  *   - plane A only (on pre-965)
1163  *   - no pixel mulitply/line duplication
1164  *   - no alpha buffer discard
1165  *   - no dual wide
1166  *   - framebuffer <= 2048 in width, 1536 in height
1167  *
1168  * We can't assume that any compression will take place (worst case),
1169  * so the compressed buffer has to be the same size as the uncompressed
1170  * one.  It also must reside (along with the line length buffer) in
1171  * stolen memory.
1172  *
1173  * We need to enable/disable FBC on a global basis.
1174  */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176                              struct drm_display_mode *mode)
1177 {
1178         struct drm_device *dev = crtc->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct drm_framebuffer *fb = crtc->fb;
1181         struct intel_framebuffer *intel_fb;
1182         struct drm_i915_gem_object *obj_priv;
1183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184         int plane = intel_crtc->plane;
1185
1186         if (!i915_powersave)
1187                 return;
1188
1189         if (!I915_HAS_FBC(dev))
1190                 return;
1191
1192         if (!crtc->fb)
1193                 return;
1194
1195         intel_fb = to_intel_framebuffer(fb);
1196         obj_priv = to_intel_bo(intel_fb->obj);
1197
1198         /*
1199          * If FBC is already on, we just have to verify that we can
1200          * keep it that way...
1201          * Need to disable if:
1202          *   - changing FBC params (stride, fence, mode)
1203          *   - new fb is too large to fit in compressed buffer
1204          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1205          */
1206         if (intel_fb->obj->size > dev_priv->cfb_size) {
1207                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1208                                 "compression\n");
1209                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1210                 goto out_disable;
1211         }
1212         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214                 DRM_DEBUG_KMS("mode incompatible with compression, "
1215                                 "disabling\n");
1216                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1217                 goto out_disable;
1218         }
1219         if ((mode->hdisplay > 2048) ||
1220             (mode->vdisplay > 1536)) {
1221                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1223                 goto out_disable;
1224         }
1225         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1228                 goto out_disable;
1229         }
1230         if (obj_priv->tiling_mode != I915_TILING_X) {
1231                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1233                 goto out_disable;
1234         }
1235
1236         if (intel_fbc_enabled(dev)) {
1237                 /* We can re-enable it in this case, but need to update pitch */
1238                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240                     (plane != dev_priv->cfb_plane))
1241                         intel_disable_fbc(dev);
1242         }
1243
1244         /* Now try to turn it back on if possible */
1245         if (!intel_fbc_enabled(dev))
1246                 intel_enable_fbc(crtc, 500);
1247
1248         return;
1249
1250 out_disable:
1251         /* Multiple disables should be harmless */
1252         if (intel_fbc_enabled(dev)) {
1253                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1254                 intel_disable_fbc(dev);
1255         }
1256 }
1257
1258 static int
1259 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1260 {
1261         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1262         u32 alignment;
1263         int ret;
1264
1265         switch (obj_priv->tiling_mode) {
1266         case I915_TILING_NONE:
1267                 alignment = 64 * 1024;
1268                 break;
1269         case I915_TILING_X:
1270                 /* pin() will align the object as required by fence */
1271                 alignment = 0;
1272                 break;
1273         case I915_TILING_Y:
1274                 /* FIXME: Is this true? */
1275                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1276                 return -EINVAL;
1277         default:
1278                 BUG();
1279         }
1280
1281         ret = i915_gem_object_pin(obj, alignment);
1282         if (ret != 0)
1283                 return ret;
1284
1285         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1286          * fence, whereas 965+ only requires a fence if using
1287          * framebuffer compression.  For simplicity, we always install
1288          * a fence as the cost is not that onerous.
1289          */
1290         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1291             obj_priv->tiling_mode != I915_TILING_NONE) {
1292                 ret = i915_gem_object_get_fence_reg(obj);
1293                 if (ret != 0) {
1294                         i915_gem_object_unpin(obj);
1295                         return ret;
1296                 }
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int
1303 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1304                     struct drm_framebuffer *old_fb)
1305 {
1306         struct drm_device *dev = crtc->dev;
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         struct drm_i915_master_private *master_priv;
1309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1310         struct intel_framebuffer *intel_fb;
1311         struct drm_i915_gem_object *obj_priv;
1312         struct drm_gem_object *obj;
1313         int pipe = intel_crtc->pipe;
1314         int plane = intel_crtc->plane;
1315         unsigned long Start, Offset;
1316         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1317         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1318         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1319         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1320         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1321         u32 dspcntr;
1322         int ret;
1323
1324         /* no fb bound */
1325         if (!crtc->fb) {
1326                 DRM_DEBUG_KMS("No FB bound\n");
1327                 return 0;
1328         }
1329
1330         switch (plane) {
1331         case 0:
1332         case 1:
1333                 break;
1334         default:
1335                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1336                 return -EINVAL;
1337         }
1338
1339         intel_fb = to_intel_framebuffer(crtc->fb);
1340         obj = intel_fb->obj;
1341         obj_priv = to_intel_bo(obj);
1342
1343         mutex_lock(&dev->struct_mutex);
1344         ret = intel_pin_and_fence_fb_obj(dev, obj);
1345         if (ret != 0) {
1346                 mutex_unlock(&dev->struct_mutex);
1347                 return ret;
1348         }
1349
1350         ret = i915_gem_object_set_to_display_plane(obj);
1351         if (ret != 0) {
1352                 i915_gem_object_unpin(obj);
1353                 mutex_unlock(&dev->struct_mutex);
1354                 return ret;
1355         }
1356
1357         dspcntr = I915_READ(dspcntr_reg);
1358         /* Mask out pixel format bits in case we change it */
1359         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1360         switch (crtc->fb->bits_per_pixel) {
1361         case 8:
1362                 dspcntr |= DISPPLANE_8BPP;
1363                 break;
1364         case 16:
1365                 if (crtc->fb->depth == 15)
1366                         dspcntr |= DISPPLANE_15_16BPP;
1367                 else
1368                         dspcntr |= DISPPLANE_16BPP;
1369                 break;
1370         case 24:
1371         case 32:
1372                 if (crtc->fb->depth == 30)
1373                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1374                 else
1375                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1376                 break;
1377         default:
1378                 DRM_ERROR("Unknown color depth\n");
1379                 i915_gem_object_unpin(obj);
1380                 mutex_unlock(&dev->struct_mutex);
1381                 return -EINVAL;
1382         }
1383         if (IS_I965G(dev)) {
1384                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1385                         dspcntr |= DISPPLANE_TILED;
1386                 else
1387                         dspcntr &= ~DISPPLANE_TILED;
1388         }
1389
1390         if (HAS_PCH_SPLIT(dev))
1391                 /* must disable */
1392                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1393
1394         I915_WRITE(dspcntr_reg, dspcntr);
1395
1396         Start = obj_priv->gtt_offset;
1397         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1398
1399         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1400         I915_WRITE(dspstride, crtc->fb->pitch);
1401         if (IS_I965G(dev)) {
1402                 I915_WRITE(dspbase, Offset);
1403                 I915_READ(dspbase);
1404                 I915_WRITE(dspsurf, Start);
1405                 I915_READ(dspsurf);
1406                 I915_WRITE(dsptileoff, (y << 16) | x);
1407         } else {
1408                 I915_WRITE(dspbase, Start + Offset);
1409                 I915_READ(dspbase);
1410         }
1411
1412         if ((IS_I965G(dev) || plane == 0))
1413                 intel_update_fbc(crtc, &crtc->mode);
1414
1415         intel_wait_for_vblank(dev);
1416
1417         if (old_fb) {
1418                 intel_fb = to_intel_framebuffer(old_fb);
1419                 obj_priv = to_intel_bo(intel_fb->obj);
1420                 i915_gem_object_unpin(intel_fb->obj);
1421         }
1422         intel_increase_pllclock(crtc, true);
1423
1424         mutex_unlock(&dev->struct_mutex);
1425
1426         if (!dev->primary->master)
1427                 return 0;
1428
1429         master_priv = dev->primary->master->driver_priv;
1430         if (!master_priv->sarea_priv)
1431                 return 0;
1432
1433         if (pipe) {
1434                 master_priv->sarea_priv->pipeB_x = x;
1435                 master_priv->sarea_priv->pipeB_y = y;
1436         } else {
1437                 master_priv->sarea_priv->pipeA_x = x;
1438                 master_priv->sarea_priv->pipeA_y = y;
1439         }
1440
1441         return 0;
1442 }
1443
1444 /* Disable the VGA plane that we never use */
1445 static void i915_disable_vga (struct drm_device *dev)
1446 {
1447         struct drm_i915_private *dev_priv = dev->dev_private;
1448         u8 sr1;
1449         u32 vga_reg;
1450
1451         if (HAS_PCH_SPLIT(dev))
1452                 vga_reg = CPU_VGACNTRL;
1453         else
1454                 vga_reg = VGACNTRL;
1455
1456         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1457                 return;
1458
1459         I915_WRITE8(VGA_SR_INDEX, 1);
1460         sr1 = I915_READ8(VGA_SR_DATA);
1461         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1462         udelay(100);
1463
1464         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1465 }
1466
1467 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1468 {
1469         struct drm_device *dev = crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         u32 dpa_ctl;
1472
1473         DRM_DEBUG_KMS("\n");
1474         dpa_ctl = I915_READ(DP_A);
1475         dpa_ctl &= ~DP_PLL_ENABLE;
1476         I915_WRITE(DP_A, dpa_ctl);
1477 }
1478
1479 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1480 {
1481         struct drm_device *dev = crtc->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 dpa_ctl;
1484
1485         dpa_ctl = I915_READ(DP_A);
1486         dpa_ctl |= DP_PLL_ENABLE;
1487         I915_WRITE(DP_A, dpa_ctl);
1488         udelay(200);
1489 }
1490
1491
1492 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1493 {
1494         struct drm_device *dev = crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         u32 dpa_ctl;
1497
1498         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1499         dpa_ctl = I915_READ(DP_A);
1500         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1501
1502         if (clock < 200000) {
1503                 u32 temp;
1504                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1505                 /* workaround for 160Mhz:
1506                    1) program 0x4600c bits 15:0 = 0x8124
1507                    2) program 0x46010 bit 0 = 1
1508                    3) program 0x46034 bit 24 = 1
1509                    4) program 0x64000 bit 14 = 1
1510                    */
1511                 temp = I915_READ(0x4600c);
1512                 temp &= 0xffff0000;
1513                 I915_WRITE(0x4600c, temp | 0x8124);
1514
1515                 temp = I915_READ(0x46010);
1516                 I915_WRITE(0x46010, temp | 1);
1517
1518                 temp = I915_READ(0x46034);
1519                 I915_WRITE(0x46034, temp | (1 << 24));
1520         } else {
1521                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1522         }
1523         I915_WRITE(DP_A, dpa_ctl);
1524
1525         udelay(500);
1526 }
1527
1528 /* The FDI link training functions for ILK/Ibexpeak. */
1529 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1530 {
1531         struct drm_device *dev = crtc->dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1534         int pipe = intel_crtc->pipe;
1535         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1536         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1537         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1538         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1539         u32 temp, tries = 0;
1540
1541         /* enable CPU FDI TX and PCH FDI RX */
1542         temp = I915_READ(fdi_tx_reg);
1543         temp |= FDI_TX_ENABLE;
1544         temp &= ~(7 << 19);
1545         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1546         temp &= ~FDI_LINK_TRAIN_NONE;
1547         temp |= FDI_LINK_TRAIN_PATTERN_1;
1548         I915_WRITE(fdi_tx_reg, temp);
1549         I915_READ(fdi_tx_reg);
1550
1551         temp = I915_READ(fdi_rx_reg);
1552         temp &= ~FDI_LINK_TRAIN_NONE;
1553         temp |= FDI_LINK_TRAIN_PATTERN_1;
1554         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1555         I915_READ(fdi_rx_reg);
1556         udelay(150);
1557
1558         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1559            for train result */
1560         temp = I915_READ(fdi_rx_imr_reg);
1561         temp &= ~FDI_RX_SYMBOL_LOCK;
1562         temp &= ~FDI_RX_BIT_LOCK;
1563         I915_WRITE(fdi_rx_imr_reg, temp);
1564         I915_READ(fdi_rx_imr_reg);
1565         udelay(150);
1566
1567         for (;;) {
1568                 temp = I915_READ(fdi_rx_iir_reg);
1569                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1570
1571                 if ((temp & FDI_RX_BIT_LOCK)) {
1572                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1573                         I915_WRITE(fdi_rx_iir_reg,
1574                                    temp | FDI_RX_BIT_LOCK);
1575                         break;
1576                 }
1577
1578                 tries++;
1579
1580                 if (tries > 5) {
1581                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1582                         break;
1583                 }
1584         }
1585
1586         /* Train 2 */
1587         temp = I915_READ(fdi_tx_reg);
1588         temp &= ~FDI_LINK_TRAIN_NONE;
1589         temp |= FDI_LINK_TRAIN_PATTERN_2;
1590         I915_WRITE(fdi_tx_reg, temp);
1591
1592         temp = I915_READ(fdi_rx_reg);
1593         temp &= ~FDI_LINK_TRAIN_NONE;
1594         temp |= FDI_LINK_TRAIN_PATTERN_2;
1595         I915_WRITE(fdi_rx_reg, temp);
1596         udelay(150);
1597
1598         tries = 0;
1599
1600         for (;;) {
1601                 temp = I915_READ(fdi_rx_iir_reg);
1602                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1603
1604                 if (temp & FDI_RX_SYMBOL_LOCK) {
1605                         I915_WRITE(fdi_rx_iir_reg,
1606                                    temp | FDI_RX_SYMBOL_LOCK);
1607                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1608                         break;
1609                 }
1610
1611                 tries++;
1612
1613                 if (tries > 5) {
1614                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1615                         break;
1616                 }
1617         }
1618
1619         DRM_DEBUG_KMS("FDI train done\n");
1620 }
1621
1622 static int snb_b_fdi_train_param [] = {
1623         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1624         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1625         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1626         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1627 };
1628
1629 /* The FDI link training functions for SNB/Cougarpoint. */
1630 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1631 {
1632         struct drm_device *dev = crtc->dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1635         int pipe = intel_crtc->pipe;
1636         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1637         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1638         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1639         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1640         u32 temp, i;
1641
1642         /* enable CPU FDI TX and PCH FDI RX */
1643         temp = I915_READ(fdi_tx_reg);
1644         temp |= FDI_TX_ENABLE;
1645         temp &= ~(7 << 19);
1646         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1647         temp &= ~FDI_LINK_TRAIN_NONE;
1648         temp |= FDI_LINK_TRAIN_PATTERN_1;
1649         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1650         /* SNB-B */
1651         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1652         I915_WRITE(fdi_tx_reg, temp);
1653         I915_READ(fdi_tx_reg);
1654
1655         temp = I915_READ(fdi_rx_reg);
1656         if (HAS_PCH_CPT(dev)) {
1657                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1658                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1659         } else {
1660                 temp &= ~FDI_LINK_TRAIN_NONE;
1661                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1662         }
1663         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1664         I915_READ(fdi_rx_reg);
1665         udelay(150);
1666
1667         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1668            for train result */
1669         temp = I915_READ(fdi_rx_imr_reg);
1670         temp &= ~FDI_RX_SYMBOL_LOCK;
1671         temp &= ~FDI_RX_BIT_LOCK;
1672         I915_WRITE(fdi_rx_imr_reg, temp);
1673         I915_READ(fdi_rx_imr_reg);
1674         udelay(150);
1675
1676         for (i = 0; i < 4; i++ ) {
1677                 temp = I915_READ(fdi_tx_reg);
1678                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1679                 temp |= snb_b_fdi_train_param[i];
1680                 I915_WRITE(fdi_tx_reg, temp);
1681                 udelay(500);
1682
1683                 temp = I915_READ(fdi_rx_iir_reg);
1684                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1685
1686                 if (temp & FDI_RX_BIT_LOCK) {
1687                         I915_WRITE(fdi_rx_iir_reg,
1688                                    temp | FDI_RX_BIT_LOCK);
1689                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1690                         break;
1691                 }
1692         }
1693         if (i == 4)
1694                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1695
1696         /* Train 2 */
1697         temp = I915_READ(fdi_tx_reg);
1698         temp &= ~FDI_LINK_TRAIN_NONE;
1699         temp |= FDI_LINK_TRAIN_PATTERN_2;
1700         if (IS_GEN6(dev)) {
1701                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1702                 /* SNB-B */
1703                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1704         }
1705         I915_WRITE(fdi_tx_reg, temp);
1706
1707         temp = I915_READ(fdi_rx_reg);
1708         if (HAS_PCH_CPT(dev)) {
1709                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1710                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1711         } else {
1712                 temp &= ~FDI_LINK_TRAIN_NONE;
1713                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1714         }
1715         I915_WRITE(fdi_rx_reg, temp);
1716         udelay(150);
1717
1718         for (i = 0; i < 4; i++ ) {
1719                 temp = I915_READ(fdi_tx_reg);
1720                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1721                 temp |= snb_b_fdi_train_param[i];
1722                 I915_WRITE(fdi_tx_reg, temp);
1723                 udelay(500);
1724
1725                 temp = I915_READ(fdi_rx_iir_reg);
1726                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1727
1728                 if (temp & FDI_RX_SYMBOL_LOCK) {
1729                         I915_WRITE(fdi_rx_iir_reg,
1730                                    temp | FDI_RX_SYMBOL_LOCK);
1731                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1732                         break;
1733                 }
1734         }
1735         if (i == 4)
1736                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1737
1738         DRM_DEBUG_KMS("FDI train done.\n");
1739 }
1740
1741 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1742 {
1743         struct drm_device *dev = crtc->dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1746         int pipe = intel_crtc->pipe;
1747         int plane = intel_crtc->plane;
1748         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1749         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1750         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1751         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1752         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1753         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1754         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1755         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1756         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1757         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1758         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1759         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1760         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1761         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1762         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1763         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1764         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1765         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1766         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1767         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1768         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1769         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1770         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1771         u32 temp;
1772         int n;
1773         u32 pipe_bpc;
1774
1775         temp = I915_READ(pipeconf_reg);
1776         pipe_bpc = temp & PIPE_BPC_MASK;
1777
1778         /* XXX: When our outputs are all unaware of DPMS modes other than off
1779          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1780          */
1781         switch (mode) {
1782         case DRM_MODE_DPMS_ON:
1783         case DRM_MODE_DPMS_STANDBY:
1784         case DRM_MODE_DPMS_SUSPEND:
1785                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1786
1787                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1788                         temp = I915_READ(PCH_LVDS);
1789                         if ((temp & LVDS_PORT_EN) == 0) {
1790                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1791                                 POSTING_READ(PCH_LVDS);
1792                         }
1793                 }
1794
1795                 if (HAS_eDP) {
1796                         /* enable eDP PLL */
1797                         ironlake_enable_pll_edp(crtc);
1798                 } else {
1799
1800                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1801                         temp = I915_READ(fdi_rx_reg);
1802                         /*
1803                          * make the BPC in FDI Rx be consistent with that in
1804                          * pipeconf reg.
1805                          */
1806                         temp &= ~(0x7 << 16);
1807                         temp |= (pipe_bpc << 11);
1808                         temp &= ~(7 << 19);
1809                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1810                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1811                         I915_READ(fdi_rx_reg);
1812                         udelay(200);
1813
1814                         /* Switch from Rawclk to PCDclk */
1815                         temp = I915_READ(fdi_rx_reg);
1816                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1817                         I915_READ(fdi_rx_reg);
1818                         udelay(200);
1819
1820                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1821                         temp = I915_READ(fdi_tx_reg);
1822                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1823                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1824                                 I915_READ(fdi_tx_reg);
1825                                 udelay(100);
1826                         }
1827                 }
1828
1829                 /* Enable panel fitting for LVDS */
1830                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1831                         temp = I915_READ(pf_ctl_reg);
1832                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1833
1834                         /* currently full aspect */
1835                         I915_WRITE(pf_win_pos, 0);
1836
1837                         I915_WRITE(pf_win_size,
1838                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1839                                    (dev_priv->panel_fixed_mode->vdisplay));
1840                 }
1841
1842                 /* Enable CPU pipe */
1843                 temp = I915_READ(pipeconf_reg);
1844                 if ((temp & PIPEACONF_ENABLE) == 0) {
1845                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1846                         I915_READ(pipeconf_reg);
1847                         udelay(100);
1848                 }
1849
1850                 /* configure and enable CPU plane */
1851                 temp = I915_READ(dspcntr_reg);
1852                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1853                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1854                         /* Flush the plane changes */
1855                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1856                 }
1857
1858                 if (!HAS_eDP) {
1859                         /* For PCH output, training FDI link */
1860                         if (IS_GEN6(dev))
1861                                 gen6_fdi_link_train(crtc);
1862                         else
1863                                 ironlake_fdi_link_train(crtc);
1864
1865                         /* enable PCH DPLL */
1866                         temp = I915_READ(pch_dpll_reg);
1867                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1868                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1869                                 I915_READ(pch_dpll_reg);
1870                         }
1871                         udelay(200);
1872
1873                         if (HAS_PCH_CPT(dev)) {
1874                                 /* Be sure PCH DPLL SEL is set */
1875                                 temp = I915_READ(PCH_DPLL_SEL);
1876                                 if (trans_dpll_sel == 0 &&
1877                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1878                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1879                                 else if (trans_dpll_sel == 1 &&
1880                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1881                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1882                                 I915_WRITE(PCH_DPLL_SEL, temp);
1883                                 I915_READ(PCH_DPLL_SEL);
1884                         }
1885
1886                         /* set transcoder timing */
1887                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1888                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1889                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1890
1891                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1892                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1893                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1894
1895                         /* enable normal train */
1896                         temp = I915_READ(fdi_tx_reg);
1897                         temp &= ~FDI_LINK_TRAIN_NONE;
1898                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1899                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1900                         I915_READ(fdi_tx_reg);
1901
1902                         temp = I915_READ(fdi_rx_reg);
1903                         if (HAS_PCH_CPT(dev)) {
1904                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1905                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1906                         } else {
1907                                 temp &= ~FDI_LINK_TRAIN_NONE;
1908                                 temp |= FDI_LINK_TRAIN_NONE;
1909                         }
1910                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1911                         I915_READ(fdi_rx_reg);
1912
1913                         /* wait one idle pattern time */
1914                         udelay(100);
1915
1916                         /* For PCH DP, enable TRANS_DP_CTL */
1917                         if (HAS_PCH_CPT(dev) &&
1918                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1919                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1920                                 int reg;
1921
1922                                 reg = I915_READ(trans_dp_ctl);
1923                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1924                                 reg = TRANS_DP_OUTPUT_ENABLE |
1925                                       TRANS_DP_ENH_FRAMING |
1926                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1927                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1928
1929                                 switch (intel_trans_dp_port_sel(crtc)) {
1930                                 case PCH_DP_B:
1931                                         reg |= TRANS_DP_PORT_SEL_B;
1932                                         break;
1933                                 case PCH_DP_C:
1934                                         reg |= TRANS_DP_PORT_SEL_C;
1935                                         break;
1936                                 case PCH_DP_D:
1937                                         reg |= TRANS_DP_PORT_SEL_D;
1938                                         break;
1939                                 default:
1940                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1941                                         reg |= TRANS_DP_PORT_SEL_B;
1942                                         break;
1943                                 }
1944
1945                                 I915_WRITE(trans_dp_ctl, reg);
1946                                 POSTING_READ(trans_dp_ctl);
1947                         }
1948
1949                         /* enable PCH transcoder */
1950                         temp = I915_READ(transconf_reg);
1951                         /*
1952                          * make the BPC in transcoder be consistent with
1953                          * that in pipeconf reg.
1954                          */
1955                         temp &= ~PIPE_BPC_MASK;
1956                         temp |= pipe_bpc;
1957                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1958                         I915_READ(transconf_reg);
1959
1960                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1961                                 ;
1962
1963                 }
1964
1965                 intel_crtc_load_lut(crtc);
1966
1967         break;
1968         case DRM_MODE_DPMS_OFF:
1969                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1970
1971                 drm_vblank_off(dev, pipe);
1972                 /* Disable display plane */
1973                 temp = I915_READ(dspcntr_reg);
1974                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1975                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1976                         /* Flush the plane changes */
1977                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1978                         I915_READ(dspbase_reg);
1979                 }
1980
1981                 i915_disable_vga(dev);
1982
1983                 /* disable cpu pipe, disable after all planes disabled */
1984                 temp = I915_READ(pipeconf_reg);
1985                 if ((temp & PIPEACONF_ENABLE) != 0) {
1986                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1987                         I915_READ(pipeconf_reg);
1988                         n = 0;
1989                         /* wait for cpu pipe off, pipe state */
1990                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1991                                 n++;
1992                                 if (n < 60) {
1993                                         udelay(500);
1994                                         continue;
1995                                 } else {
1996                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1997                                                                 pipe);
1998                                         break;
1999                                 }
2000                         }
2001                 } else
2002                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2003
2004                 udelay(100);
2005
2006                 /* Disable PF */
2007                 temp = I915_READ(pf_ctl_reg);
2008                 if ((temp & PF_ENABLE) != 0) {
2009                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2010                         I915_READ(pf_ctl_reg);
2011                 }
2012                 I915_WRITE(pf_win_size, 0);
2013                 POSTING_READ(pf_win_size);
2014
2015
2016                 /* disable CPU FDI tx and PCH FDI rx */
2017                 temp = I915_READ(fdi_tx_reg);
2018                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2019                 I915_READ(fdi_tx_reg);
2020
2021                 temp = I915_READ(fdi_rx_reg);
2022                 /* BPC in FDI rx is consistent with that in pipeconf */
2023                 temp &= ~(0x07 << 16);
2024                 temp |= (pipe_bpc << 11);
2025                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2026                 I915_READ(fdi_rx_reg);
2027
2028                 udelay(100);
2029
2030                 /* still set train pattern 1 */
2031                 temp = I915_READ(fdi_tx_reg);
2032                 temp &= ~FDI_LINK_TRAIN_NONE;
2033                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2034                 I915_WRITE(fdi_tx_reg, temp);
2035                 POSTING_READ(fdi_tx_reg);
2036
2037                 temp = I915_READ(fdi_rx_reg);
2038                 if (HAS_PCH_CPT(dev)) {
2039                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2040                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2041                 } else {
2042                         temp &= ~FDI_LINK_TRAIN_NONE;
2043                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2044                 }
2045                 I915_WRITE(fdi_rx_reg, temp);
2046                 POSTING_READ(fdi_rx_reg);
2047
2048                 udelay(100);
2049
2050                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2051                         temp = I915_READ(PCH_LVDS);
2052                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2053                         I915_READ(PCH_LVDS);
2054                         udelay(100);
2055                 }
2056
2057                 /* disable PCH transcoder */
2058                 temp = I915_READ(transconf_reg);
2059                 if ((temp & TRANS_ENABLE) != 0) {
2060                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2061                         I915_READ(transconf_reg);
2062                         n = 0;
2063                         /* wait for PCH transcoder off, transcoder state */
2064                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2065                                 n++;
2066                                 if (n < 60) {
2067                                         udelay(500);
2068                                         continue;
2069                                 } else {
2070                                         DRM_DEBUG_KMS("transcoder %d off "
2071                                                         "delay\n", pipe);
2072                                         break;
2073                                 }
2074                         }
2075                 }
2076
2077                 temp = I915_READ(transconf_reg);
2078                 /* BPC in transcoder is consistent with that in pipeconf */
2079                 temp &= ~PIPE_BPC_MASK;
2080                 temp |= pipe_bpc;
2081                 I915_WRITE(transconf_reg, temp);
2082                 I915_READ(transconf_reg);
2083                 udelay(100);
2084
2085                 if (HAS_PCH_CPT(dev)) {
2086                         /* disable TRANS_DP_CTL */
2087                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2088                         int reg;
2089
2090                         reg = I915_READ(trans_dp_ctl);
2091                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2092                         I915_WRITE(trans_dp_ctl, reg);
2093                         POSTING_READ(trans_dp_ctl);
2094
2095                         /* disable DPLL_SEL */
2096                         temp = I915_READ(PCH_DPLL_SEL);
2097                         if (trans_dpll_sel == 0)
2098                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2099                         else
2100                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2101                         I915_WRITE(PCH_DPLL_SEL, temp);
2102                         I915_READ(PCH_DPLL_SEL);
2103
2104                 }
2105
2106                 /* disable PCH DPLL */
2107                 temp = I915_READ(pch_dpll_reg);
2108                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2109                 I915_READ(pch_dpll_reg);
2110
2111                 if (HAS_eDP) {
2112                         ironlake_disable_pll_edp(crtc);
2113                 }
2114
2115                 /* Switch from PCDclk to Rawclk */
2116                 temp = I915_READ(fdi_rx_reg);
2117                 temp &= ~FDI_SEL_PCDCLK;
2118                 I915_WRITE(fdi_rx_reg, temp);
2119                 I915_READ(fdi_rx_reg);
2120
2121                 /* Disable CPU FDI TX PLL */
2122                 temp = I915_READ(fdi_tx_reg);
2123                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2124                 I915_READ(fdi_tx_reg);
2125                 udelay(100);
2126
2127                 temp = I915_READ(fdi_rx_reg);
2128                 temp &= ~FDI_RX_PLL_ENABLE;
2129                 I915_WRITE(fdi_rx_reg, temp);
2130                 I915_READ(fdi_rx_reg);
2131
2132                 /* Wait for the clocks to turn off. */
2133                 udelay(100);
2134                 break;
2135         }
2136 }
2137
2138 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2139 {
2140         struct intel_overlay *overlay;
2141         int ret;
2142
2143         if (!enable && intel_crtc->overlay) {
2144                 overlay = intel_crtc->overlay;
2145                 mutex_lock(&overlay->dev->struct_mutex);
2146                 for (;;) {
2147                         ret = intel_overlay_switch_off(overlay);
2148                         if (ret == 0)
2149                                 break;
2150
2151                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2152                         if (ret != 0) {
2153                                 /* overlay doesn't react anymore. Usually
2154                                  * results in a black screen and an unkillable
2155                                  * X server. */
2156                                 BUG();
2157                                 overlay->hw_wedged = HW_WEDGED;
2158                                 break;
2159                         }
2160                 }
2161                 mutex_unlock(&overlay->dev->struct_mutex);
2162         }
2163         /* Let userspace switch the overlay on again. In most cases userspace
2164          * has to recompute where to put it anyway. */
2165
2166         return;
2167 }
2168
2169 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2170 {
2171         struct drm_device *dev = crtc->dev;
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2174         int pipe = intel_crtc->pipe;
2175         int plane = intel_crtc->plane;
2176         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2177         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2178         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2179         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2180         u32 temp;
2181
2182         /* XXX: When our outputs are all unaware of DPMS modes other than off
2183          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2184          */
2185         switch (mode) {
2186         case DRM_MODE_DPMS_ON:
2187         case DRM_MODE_DPMS_STANDBY:
2188         case DRM_MODE_DPMS_SUSPEND:
2189                 intel_update_watermarks(dev);
2190
2191                 /* Enable the DPLL */
2192                 temp = I915_READ(dpll_reg);
2193                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2194                         I915_WRITE(dpll_reg, temp);
2195                         I915_READ(dpll_reg);
2196                         /* Wait for the clocks to stabilize. */
2197                         udelay(150);
2198                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2199                         I915_READ(dpll_reg);
2200                         /* Wait for the clocks to stabilize. */
2201                         udelay(150);
2202                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2203                         I915_READ(dpll_reg);
2204                         /* Wait for the clocks to stabilize. */
2205                         udelay(150);
2206                 }
2207
2208                 /* Enable the pipe */
2209                 temp = I915_READ(pipeconf_reg);
2210                 if ((temp & PIPEACONF_ENABLE) == 0)
2211                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2212
2213                 /* Enable the plane */
2214                 temp = I915_READ(dspcntr_reg);
2215                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2216                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2217                         /* Flush the plane changes */
2218                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2219                 }
2220
2221                 intel_crtc_load_lut(crtc);
2222
2223                 if ((IS_I965G(dev) || plane == 0))
2224                         intel_update_fbc(crtc, &crtc->mode);
2225
2226                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2227                 intel_crtc_dpms_overlay(intel_crtc, true);
2228         break;
2229         case DRM_MODE_DPMS_OFF:
2230                 intel_update_watermarks(dev);
2231
2232                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2233                 intel_crtc_dpms_overlay(intel_crtc, false);
2234                 drm_vblank_off(dev, pipe);
2235
2236                 if (dev_priv->cfb_plane == plane &&
2237                     dev_priv->display.disable_fbc)
2238                         dev_priv->display.disable_fbc(dev);
2239
2240                 /* Disable the VGA plane that we never use */
2241                 i915_disable_vga(dev);
2242
2243                 /* Disable display plane */
2244                 temp = I915_READ(dspcntr_reg);
2245                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2246                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2247                         /* Flush the plane changes */
2248                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2249                         I915_READ(dspbase_reg);
2250                 }
2251
2252                 if (!IS_I9XX(dev)) {
2253                         /* Wait for vblank for the disable to take effect */
2254                         intel_wait_for_vblank(dev);
2255                 }
2256
2257                 /* Next, disable display pipes */
2258                 temp = I915_READ(pipeconf_reg);
2259                 if ((temp & PIPEACONF_ENABLE) != 0) {
2260                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2261                         I915_READ(pipeconf_reg);
2262                 }
2263
2264                 /* Wait for vblank for the disable to take effect. */
2265                 intel_wait_for_vblank(dev);
2266
2267                 temp = I915_READ(dpll_reg);
2268                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2269                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2270                         I915_READ(dpll_reg);
2271                 }
2272
2273                 /* Wait for the clocks to turn off. */
2274                 udelay(150);
2275                 break;
2276         }
2277 }
2278
2279 /**
2280  * Sets the power management mode of the pipe and plane.
2281  *
2282  * This code should probably grow support for turning the cursor off and back
2283  * on appropriately at the same time as we're turning the pipe off/on.
2284  */
2285 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2286 {
2287         struct drm_device *dev = crtc->dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         struct drm_i915_master_private *master_priv;
2290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2291         int pipe = intel_crtc->pipe;
2292         bool enabled;
2293
2294         dev_priv->display.dpms(crtc, mode);
2295
2296         intel_crtc->dpms_mode = mode;
2297
2298         if (!dev->primary->master)
2299                 return;
2300
2301         master_priv = dev->primary->master->driver_priv;
2302         if (!master_priv->sarea_priv)
2303                 return;
2304
2305         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2306
2307         switch (pipe) {
2308         case 0:
2309                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2310                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2311                 break;
2312         case 1:
2313                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2314                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2315                 break;
2316         default:
2317                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2318                 break;
2319         }
2320 }
2321
2322 static void intel_crtc_prepare (struct drm_crtc *crtc)
2323 {
2324         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2325         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2326 }
2327
2328 static void intel_crtc_commit (struct drm_crtc *crtc)
2329 {
2330         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2331         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2332 }
2333
2334 void intel_encoder_prepare (struct drm_encoder *encoder)
2335 {
2336         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2337         /* lvds has its own version of prepare see intel_lvds_prepare */
2338         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2339 }
2340
2341 void intel_encoder_commit (struct drm_encoder *encoder)
2342 {
2343         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2344         /* lvds has its own version of commit see intel_lvds_commit */
2345         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2346 }
2347
2348 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2349                                   struct drm_display_mode *mode,
2350                                   struct drm_display_mode *adjusted_mode)
2351 {
2352         struct drm_device *dev = crtc->dev;
2353         if (HAS_PCH_SPLIT(dev)) {
2354                 /* FDI link clock is fixed at 2.7G */
2355                 if (mode->clock * 3 > 27000 * 4)
2356                         return MODE_CLOCK_HIGH;
2357         }
2358
2359         drm_mode_set_crtcinfo(adjusted_mode, 0);
2360         return true;
2361 }
2362
2363 static int i945_get_display_clock_speed(struct drm_device *dev)
2364 {
2365         return 400000;
2366 }
2367
2368 static int i915_get_display_clock_speed(struct drm_device *dev)
2369 {
2370         return 333000;
2371 }
2372
2373 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2374 {
2375         return 200000;
2376 }
2377
2378 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2379 {
2380         u16 gcfgc = 0;
2381
2382         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2383
2384         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2385                 return 133000;
2386         else {
2387                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2388                 case GC_DISPLAY_CLOCK_333_MHZ:
2389                         return 333000;
2390                 default:
2391                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2392                         return 190000;
2393                 }
2394         }
2395 }
2396
2397 static int i865_get_display_clock_speed(struct drm_device *dev)
2398 {
2399         return 266000;
2400 }
2401
2402 static int i855_get_display_clock_speed(struct drm_device *dev)
2403 {
2404         u16 hpllcc = 0;
2405         /* Assume that the hardware is in the high speed state.  This
2406          * should be the default.
2407          */
2408         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2409         case GC_CLOCK_133_200:
2410         case GC_CLOCK_100_200:
2411                 return 200000;
2412         case GC_CLOCK_166_250:
2413                 return 250000;
2414         case GC_CLOCK_100_133:
2415                 return 133000;
2416         }
2417
2418         /* Shouldn't happen */
2419         return 0;
2420 }
2421
2422 static int i830_get_display_clock_speed(struct drm_device *dev)
2423 {
2424         return 133000;
2425 }
2426
2427 /**
2428  * Return the pipe currently connected to the panel fitter,
2429  * or -1 if the panel fitter is not present or not in use
2430  */
2431 int intel_panel_fitter_pipe (struct drm_device *dev)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         u32  pfit_control;
2435
2436         /* i830 doesn't have a panel fitter */
2437         if (IS_I830(dev))
2438                 return -1;
2439
2440         pfit_control = I915_READ(PFIT_CONTROL);
2441
2442         /* See if the panel fitter is in use */
2443         if ((pfit_control & PFIT_ENABLE) == 0)
2444                 return -1;
2445
2446         /* 965 can place panel fitter on either pipe */
2447         if (IS_I965G(dev))
2448                 return (pfit_control >> 29) & 0x3;
2449
2450         /* older chips can only use pipe 1 */
2451         return 1;
2452 }
2453
2454 struct fdi_m_n {
2455         u32        tu;
2456         u32        gmch_m;
2457         u32        gmch_n;
2458         u32        link_m;
2459         u32        link_n;
2460 };
2461
2462 static void
2463 fdi_reduce_ratio(u32 *num, u32 *den)
2464 {
2465         while (*num > 0xffffff || *den > 0xffffff) {
2466                 *num >>= 1;
2467                 *den >>= 1;
2468         }
2469 }
2470
2471 #define DATA_N 0x800000
2472 #define LINK_N 0x80000
2473
2474 static void
2475 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2476                      int link_clock, struct fdi_m_n *m_n)
2477 {
2478         u64 temp;
2479
2480         m_n->tu = 64; /* default size */
2481
2482         temp = (u64) DATA_N * pixel_clock;
2483         temp = div_u64(temp, link_clock);
2484         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2485         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2486         m_n->gmch_n = DATA_N;
2487         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2488
2489         temp = (u64) LINK_N * pixel_clock;
2490         m_n->link_m = div_u64(temp, link_clock);
2491         m_n->link_n = LINK_N;
2492         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2493 }
2494
2495
2496 struct intel_watermark_params {
2497         unsigned long fifo_size;
2498         unsigned long max_wm;
2499         unsigned long default_wm;
2500         unsigned long guard_size;
2501         unsigned long cacheline_size;
2502 };
2503
2504 /* Pineview has different values for various configs */
2505 static struct intel_watermark_params pineview_display_wm = {
2506         PINEVIEW_DISPLAY_FIFO,
2507         PINEVIEW_MAX_WM,
2508         PINEVIEW_DFT_WM,
2509         PINEVIEW_GUARD_WM,
2510         PINEVIEW_FIFO_LINE_SIZE
2511 };
2512 static struct intel_watermark_params pineview_display_hplloff_wm = {
2513         PINEVIEW_DISPLAY_FIFO,
2514         PINEVIEW_MAX_WM,
2515         PINEVIEW_DFT_HPLLOFF_WM,
2516         PINEVIEW_GUARD_WM,
2517         PINEVIEW_FIFO_LINE_SIZE
2518 };
2519 static struct intel_watermark_params pineview_cursor_wm = {
2520         PINEVIEW_CURSOR_FIFO,
2521         PINEVIEW_CURSOR_MAX_WM,
2522         PINEVIEW_CURSOR_DFT_WM,
2523         PINEVIEW_CURSOR_GUARD_WM,
2524         PINEVIEW_FIFO_LINE_SIZE,
2525 };
2526 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2527         PINEVIEW_CURSOR_FIFO,
2528         PINEVIEW_CURSOR_MAX_WM,
2529         PINEVIEW_CURSOR_DFT_WM,
2530         PINEVIEW_CURSOR_GUARD_WM,
2531         PINEVIEW_FIFO_LINE_SIZE
2532 };
2533 static struct intel_watermark_params g4x_wm_info = {
2534         G4X_FIFO_SIZE,
2535         G4X_MAX_WM,
2536         G4X_MAX_WM,
2537         2,
2538         G4X_FIFO_LINE_SIZE,
2539 };
2540 static struct intel_watermark_params i945_wm_info = {
2541         I945_FIFO_SIZE,
2542         I915_MAX_WM,
2543         1,
2544         2,
2545         I915_FIFO_LINE_SIZE
2546 };
2547 static struct intel_watermark_params i915_wm_info = {
2548         I915_FIFO_SIZE,
2549         I915_MAX_WM,
2550         1,
2551         2,
2552         I915_FIFO_LINE_SIZE
2553 };
2554 static struct intel_watermark_params i855_wm_info = {
2555         I855GM_FIFO_SIZE,
2556         I915_MAX_WM,
2557         1,
2558         2,
2559         I830_FIFO_LINE_SIZE
2560 };
2561 static struct intel_watermark_params i830_wm_info = {
2562         I830_FIFO_SIZE,
2563         I915_MAX_WM,
2564         1,
2565         2,
2566         I830_FIFO_LINE_SIZE
2567 };
2568
2569 static struct intel_watermark_params ironlake_display_wm_info = {
2570         ILK_DISPLAY_FIFO,
2571         ILK_DISPLAY_MAXWM,
2572         ILK_DISPLAY_DFTWM,
2573         2,
2574         ILK_FIFO_LINE_SIZE
2575 };
2576
2577 static struct intel_watermark_params ironlake_display_srwm_info = {
2578         ILK_DISPLAY_SR_FIFO,
2579         ILK_DISPLAY_MAX_SRWM,
2580         ILK_DISPLAY_DFT_SRWM,
2581         2,
2582         ILK_FIFO_LINE_SIZE
2583 };
2584
2585 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2586         ILK_CURSOR_SR_FIFO,
2587         ILK_CURSOR_MAX_SRWM,
2588         ILK_CURSOR_DFT_SRWM,
2589         2,
2590         ILK_FIFO_LINE_SIZE
2591 };
2592
2593 /**
2594  * intel_calculate_wm - calculate watermark level
2595  * @clock_in_khz: pixel clock
2596  * @wm: chip FIFO params
2597  * @pixel_size: display pixel size
2598  * @latency_ns: memory latency for the platform
2599  *
2600  * Calculate the watermark level (the level at which the display plane will
2601  * start fetching from memory again).  Each chip has a different display
2602  * FIFO size and allocation, so the caller needs to figure that out and pass
2603  * in the correct intel_watermark_params structure.
2604  *
2605  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2606  * on the pixel size.  When it reaches the watermark level, it'll start
2607  * fetching FIFO line sized based chunks from memory until the FIFO fills
2608  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2609  * will occur, and a display engine hang could result.
2610  */
2611 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2612                                         struct intel_watermark_params *wm,
2613                                         int pixel_size,
2614                                         unsigned long latency_ns)
2615 {
2616         long entries_required, wm_size;
2617
2618         /*
2619          * Note: we need to make sure we don't overflow for various clock &
2620          * latency values.
2621          * clocks go from a few thousand to several hundred thousand.
2622          * latency is usually a few thousand
2623          */
2624         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2625                 1000;
2626         entries_required /= wm->cacheline_size;
2627
2628         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2629
2630         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2631
2632         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2633
2634         /* Don't promote wm_size to unsigned... */
2635         if (wm_size > (long)wm->max_wm)
2636                 wm_size = wm->max_wm;
2637         if (wm_size <= 0)
2638                 wm_size = wm->default_wm;
2639         return wm_size;
2640 }
2641
2642 struct cxsr_latency {
2643         int is_desktop;
2644         int is_ddr3;
2645         unsigned long fsb_freq;
2646         unsigned long mem_freq;
2647         unsigned long display_sr;
2648         unsigned long display_hpll_disable;
2649         unsigned long cursor_sr;
2650         unsigned long cursor_hpll_disable;
2651 };
2652
2653 static struct cxsr_latency cxsr_latency_table[] = {
2654         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2655         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2656         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2657         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2658         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2659
2660         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2661         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2662         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2663         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2664         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2665
2666         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2667         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2668         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2669         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2670         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2671
2672         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2673         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2674         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2675         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2676         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2677
2678         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2679         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2680         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2681         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2682         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2683
2684         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2685         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2686         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2687         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2688         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2689 };
2690
2691 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, 
2692                                                    int fsb, int mem)
2693 {
2694         int i;
2695         struct cxsr_latency *latency;
2696
2697         if (fsb == 0 || mem == 0)
2698                 return NULL;
2699
2700         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2701                 latency = &cxsr_latency_table[i];
2702                 if (is_desktop == latency->is_desktop &&
2703                     is_ddr3 == latency->is_ddr3 &&
2704                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2705                         return latency;
2706         }
2707
2708         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2709
2710         return NULL;
2711 }
2712
2713 static void pineview_disable_cxsr(struct drm_device *dev)
2714 {
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         u32 reg;
2717
2718         /* deactivate cxsr */
2719         reg = I915_READ(DSPFW3);
2720         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2721         I915_WRITE(DSPFW3, reg);
2722         DRM_INFO("Big FIFO is disabled\n");
2723 }
2724
2725 /*
2726  * Latency for FIFO fetches is dependent on several factors:
2727  *   - memory configuration (speed, channels)
2728  *   - chipset
2729  *   - current MCH state
2730  * It can be fairly high in some situations, so here we assume a fairly
2731  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2732  * set this value too high, the FIFO will fetch frequently to stay full)
2733  * and power consumption (set it too low to save power and we might see
2734  * FIFO underruns and display "flicker").
2735  *
2736  * A value of 5us seems to be a good balance; safe for very low end
2737  * platforms but not overly aggressive on lower latency configs.
2738  */
2739 static const int latency_ns = 5000;
2740
2741 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2742 {
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744         uint32_t dsparb = I915_READ(DSPARB);
2745         int size;
2746
2747         if (plane == 0)
2748                 size = dsparb & 0x7f;
2749         else
2750                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2751                         (dsparb & 0x7f);
2752
2753         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2754                         plane ? "B" : "A", size);
2755
2756         return size;
2757 }
2758
2759 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2760 {
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762         uint32_t dsparb = I915_READ(DSPARB);
2763         int size;
2764
2765         if (plane == 0)
2766                 size = dsparb & 0x1ff;
2767         else
2768                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2769                         (dsparb & 0x1ff);
2770         size >>= 1; /* Convert to cachelines */
2771
2772         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2773                         plane ? "B" : "A", size);
2774
2775         return size;
2776 }
2777
2778 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2779 {
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         uint32_t dsparb = I915_READ(DSPARB);
2782         int size;
2783
2784         size = dsparb & 0x7f;
2785         size >>= 2; /* Convert to cachelines */
2786
2787         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2788                         plane ? "B" : "A",
2789                   size);
2790
2791         return size;
2792 }
2793
2794 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2795 {
2796         struct drm_i915_private *dev_priv = dev->dev_private;
2797         uint32_t dsparb = I915_READ(DSPARB);
2798         int size;
2799
2800         size = dsparb & 0x7f;
2801         size >>= 1; /* Convert to cachelines */
2802
2803         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2804                         plane ? "B" : "A", size);
2805
2806         return size;
2807 }
2808
2809 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2810                           int planeb_clock, int sr_hdisplay, int pixel_size)
2811 {
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         u32 reg;
2814         unsigned long wm;
2815         struct cxsr_latency *latency;
2816         int sr_clock;
2817
2818         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 
2819                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2820         if (!latency) {
2821                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2822                 pineview_disable_cxsr(dev);
2823                 return;
2824         }
2825
2826         if (!planea_clock || !planeb_clock) {
2827                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2828
2829                 /* Display SR */
2830                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2831                                         pixel_size, latency->display_sr);
2832                 reg = I915_READ(DSPFW1);
2833                 reg &= ~DSPFW_SR_MASK;
2834                 reg |= wm << DSPFW_SR_SHIFT;
2835                 I915_WRITE(DSPFW1, reg);
2836                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2837
2838                 /* cursor SR */
2839                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2840                                         pixel_size, latency->cursor_sr);
2841                 reg = I915_READ(DSPFW3);
2842                 reg &= ~DSPFW_CURSOR_SR_MASK;
2843                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2844                 I915_WRITE(DSPFW3, reg);
2845
2846                 /* Display HPLL off SR */
2847                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2848                                         pixel_size, latency->display_hpll_disable);
2849                 reg = I915_READ(DSPFW3);
2850                 reg &= ~DSPFW_HPLL_SR_MASK;
2851                 reg |= wm & DSPFW_HPLL_SR_MASK;
2852                 I915_WRITE(DSPFW3, reg);
2853
2854                 /* cursor HPLL off SR */
2855                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2856                                         pixel_size, latency->cursor_hpll_disable);
2857                 reg = I915_READ(DSPFW3);
2858                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2859                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2860                 I915_WRITE(DSPFW3, reg);
2861                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2862
2863                 /* activate cxsr */
2864                 reg = I915_READ(DSPFW3);
2865                 reg |= PINEVIEW_SELF_REFRESH_EN;
2866                 I915_WRITE(DSPFW3, reg);
2867                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2868         } else {
2869                 pineview_disable_cxsr(dev);
2870                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2871         }
2872 }
2873
2874 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2875                           int planeb_clock, int sr_hdisplay, int pixel_size)
2876 {
2877         struct drm_i915_private *dev_priv = dev->dev_private;
2878         int total_size, cacheline_size;
2879         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2880         struct intel_watermark_params planea_params, planeb_params;
2881         unsigned long line_time_us;
2882         int sr_clock, sr_entries = 0, entries_required;
2883
2884         /* Create copies of the base settings for each pipe */
2885         planea_params = planeb_params = g4x_wm_info;
2886
2887         /* Grab a couple of global values before we overwrite them */
2888         total_size = planea_params.fifo_size;
2889         cacheline_size = planea_params.cacheline_size;
2890
2891         /*
2892          * Note: we need to make sure we don't overflow for various clock &
2893          * latency values.
2894          * clocks go from a few thousand to several hundred thousand.
2895          * latency is usually a few thousand
2896          */
2897         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2898                 1000;
2899         entries_required /= G4X_FIFO_LINE_SIZE;
2900         planea_wm = entries_required + planea_params.guard_size;
2901
2902         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2903                 1000;
2904         entries_required /= G4X_FIFO_LINE_SIZE;
2905         planeb_wm = entries_required + planeb_params.guard_size;
2906
2907         cursora_wm = cursorb_wm = 16;
2908         cursor_sr = 32;
2909
2910         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2911
2912         /* Calc sr entries for one plane configs */
2913         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2914                 /* self-refresh has much higher latency */
2915                 static const int sr_latency_ns = 12000;
2916
2917                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2918                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2919
2920                 /* Use ns/us then divide to preserve precision */
2921                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2922                               pixel_size * sr_hdisplay) / 1000;
2923                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2924                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2925                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2926         } else {
2927                 /* Turn off self refresh if both pipes are enabled */
2928                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2929                                         & ~FW_BLC_SELF_EN);
2930         }
2931
2932         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2933                   planea_wm, planeb_wm, sr_entries);
2934
2935         planea_wm &= 0x3f;
2936         planeb_wm &= 0x3f;
2937
2938         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2939                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2940                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2941         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2942                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2943         /* HPLL off in SR has some issues on G4x... disable it */
2944         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2945                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2946 }
2947
2948 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2949                            int planeb_clock, int sr_hdisplay, int pixel_size)
2950 {
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         unsigned long line_time_us;
2953         int sr_clock, sr_entries, srwm = 1;
2954
2955         /* Calc sr entries for one plane configs */
2956         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2957                 /* self-refresh has much higher latency */
2958                 static const int sr_latency_ns = 12000;
2959
2960                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2961                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2962
2963                 /* Use ns/us then divide to preserve precision */
2964                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2965                               pixel_size * sr_hdisplay) / 1000;
2966                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2967                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2968                 srwm = I945_FIFO_SIZE - sr_entries;
2969                 if (srwm < 0)
2970                         srwm = 1;
2971                 srwm &= 0x3f;
2972                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2973         } else {
2974                 /* Turn off self refresh if both pipes are enabled */
2975                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2976                                         & ~FW_BLC_SELF_EN);
2977         }
2978
2979         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2980                       srwm);
2981
2982         /* 965 has limitations... */
2983         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2984                    (8 << 0));
2985         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2986 }
2987
2988 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2989                            int planeb_clock, int sr_hdisplay, int pixel_size)
2990 {
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         uint32_t fwater_lo;
2993         uint32_t fwater_hi;
2994         int total_size, cacheline_size, cwm, srwm = 1;
2995         int planea_wm, planeb_wm;
2996         struct intel_watermark_params planea_params, planeb_params;
2997         unsigned long line_time_us;
2998         int sr_clock, sr_entries = 0;
2999
3000         /* Create copies of the base settings for each pipe */
3001         if (IS_I965GM(dev) || IS_I945GM(dev))
3002                 planea_params = planeb_params = i945_wm_info;
3003         else if (IS_I9XX(dev))
3004                 planea_params = planeb_params = i915_wm_info;
3005         else
3006                 planea_params = planeb_params = i855_wm_info;
3007
3008         /* Grab a couple of global values before we overwrite them */
3009         total_size = planea_params.fifo_size;
3010         cacheline_size = planea_params.cacheline_size;
3011
3012         /* Update per-plane FIFO sizes */
3013         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3014         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3015
3016         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3017                                        pixel_size, latency_ns);
3018         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3019                                        pixel_size, latency_ns);
3020         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3021
3022         /*
3023          * Overlay gets an aggressive default since video jitter is bad.
3024          */
3025         cwm = 2;
3026
3027         /* Calc sr entries for one plane configs */
3028         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3029             (!planea_clock || !planeb_clock)) {
3030                 /* self-refresh has much higher latency */
3031                 static const int sr_latency_ns = 6000;
3032
3033                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3034                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3035
3036                 /* Use ns/us then divide to preserve precision */
3037                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3038                               pixel_size * sr_hdisplay) / 1000;
3039                 sr_entries = roundup(sr_entries / cacheline_size, 1);
3040                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3041                 srwm = total_size - sr_entries;
3042                 if (srwm < 0)
3043                         srwm = 1;
3044
3045                 if (IS_I945G(dev) || IS_I945GM(dev))
3046                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3047                 else if (IS_I915GM(dev)) {
3048                         /* 915M has a smaller SRWM field */
3049                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3050                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3051                 }
3052         } else {
3053                 /* Turn off self refresh if both pipes are enabled */
3054                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3055                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3056                                    & ~FW_BLC_SELF_EN);
3057                 } else if (IS_I915GM(dev)) {
3058                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3059                 }
3060         }
3061
3062         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3063                   planea_wm, planeb_wm, cwm, srwm);
3064
3065         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3066         fwater_hi = (cwm & 0x1f);
3067
3068         /* Set request length to 8 cachelines per fetch */
3069         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3070         fwater_hi = fwater_hi | (1 << 8);
3071
3072         I915_WRITE(FW_BLC, fwater_lo);
3073         I915_WRITE(FW_BLC2, fwater_hi);
3074 }
3075
3076 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3077                            int unused2, int pixel_size)
3078 {
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3081         int planea_wm;
3082
3083         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3084
3085         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3086                                        pixel_size, latency_ns);
3087         fwater_lo |= (3<<8) | planea_wm;
3088
3089         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3090
3091         I915_WRITE(FW_BLC, fwater_lo);
3092 }
3093
3094 #define ILK_LP0_PLANE_LATENCY           700
3095
3096 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3097                        int planeb_clock, int sr_hdisplay, int pixel_size)
3098 {
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3101         int sr_wm, cursor_wm;
3102         unsigned long line_time_us;
3103         int sr_clock, entries_required;
3104         u32 reg_value;
3105
3106         /* Calculate and update the watermark for plane A */
3107         if (planea_clock) {
3108                 entries_required = ((planea_clock / 1000) * pixel_size *
3109                                      ILK_LP0_PLANE_LATENCY) / 1000;
3110                 entries_required = DIV_ROUND_UP(entries_required,
3111                                    ironlake_display_wm_info.cacheline_size);
3112                 planea_wm = entries_required +
3113                             ironlake_display_wm_info.guard_size;
3114
3115                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3116                         planea_wm = ironlake_display_wm_info.max_wm;
3117
3118                 cursora_wm = 16;
3119                 reg_value = I915_READ(WM0_PIPEA_ILK);
3120                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3121                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3122                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3123                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3124                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3125                                 "cursor: %d\n", planea_wm, cursora_wm);
3126         }
3127         /* Calculate and update the watermark for plane B */
3128         if (planeb_clock) {
3129                 entries_required = ((planeb_clock / 1000) * pixel_size *
3130                                      ILK_LP0_PLANE_LATENCY) / 1000;
3131                 entries_required = DIV_ROUND_UP(entries_required,
3132                                    ironlake_display_wm_info.cacheline_size);
3133                 planeb_wm = entries_required +
3134                             ironlake_display_wm_info.guard_size;
3135
3136                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3137                         planeb_wm = ironlake_display_wm_info.max_wm;
3138
3139                 cursorb_wm = 16;
3140                 reg_value = I915_READ(WM0_PIPEB_ILK);
3141                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3142                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3143                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3144                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3145                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3146                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3147         }
3148
3149         /*
3150          * Calculate and update the self-refresh watermark only when one
3151          * display plane is used.
3152          */
3153         if (!planea_clock || !planeb_clock) {
3154                 int line_count;
3155                 /* Read the self-refresh latency. The unit is 0.5us */
3156                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3157
3158                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3159                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3160
3161                 /* Use ns/us then divide to preserve precision */
3162                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3163                                / 1000;
3164
3165                 /* calculate the self-refresh watermark for display plane */
3166                 entries_required = line_count * sr_hdisplay * pixel_size;
3167                 entries_required = DIV_ROUND_UP(entries_required,
3168                                    ironlake_display_srwm_info.cacheline_size);
3169                 sr_wm = entries_required +
3170                         ironlake_display_srwm_info.guard_size;
3171
3172                 /* calculate the self-refresh watermark for display cursor */
3173                 entries_required = line_count * pixel_size * 64;
3174                 entries_required = DIV_ROUND_UP(entries_required,
3175                                    ironlake_cursor_srwm_info.cacheline_size);
3176                 cursor_wm = entries_required +
3177                             ironlake_cursor_srwm_info.guard_size;
3178
3179                 /* configure watermark and enable self-refresh */
3180                 reg_value = I915_READ(WM1_LP_ILK);
3181                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3182                                WM1_LP_CURSOR_MASK);
3183                 reg_value |= WM1_LP_SR_EN |
3184                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3185                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3186
3187                 I915_WRITE(WM1_LP_ILK, reg_value);
3188                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3189                                 "cursor %d\n", sr_wm, cursor_wm);
3190
3191         } else {
3192                 /* Turn off self refresh if both pipes are enabled */
3193                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3194         }
3195 }
3196 /**
3197  * intel_update_watermarks - update FIFO watermark values based on current modes
3198  *
3199  * Calculate watermark values for the various WM regs based on current mode
3200  * and plane configuration.
3201  *
3202  * There are several cases to deal with here:
3203  *   - normal (i.e. non-self-refresh)
3204  *   - self-refresh (SR) mode
3205  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3206  *   - lines are small relative to FIFO size (buffer can hold more than 2
3207  *     lines), so need to account for TLB latency
3208  *
3209  *   The normal calculation is:
3210  *     watermark = dotclock * bytes per pixel * latency
3211  *   where latency is platform & configuration dependent (we assume pessimal
3212  *   values here).
3213  *
3214  *   The SR calculation is:
3215  *     watermark = (trunc(latency/line time)+1) * surface width *
3216  *       bytes per pixel
3217  *   where
3218  *     line time = htotal / dotclock
3219  *   and latency is assumed to be high, as above.
3220  *
3221  * The final value programmed to the register should always be rounded up,
3222  * and include an extra 2 entries to account for clock crossings.
3223  *
3224  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3225  * to set the non-SR watermarks to 8.
3226   */
3227 static void intel_update_watermarks(struct drm_device *dev)
3228 {
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230         struct drm_crtc *crtc;
3231         struct intel_crtc *intel_crtc;
3232         int sr_hdisplay = 0;
3233         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3234         int enabled = 0, pixel_size = 0;
3235
3236         if (!dev_priv->display.update_wm)
3237                 return;
3238
3239         /* Get the clock config from both planes */
3240         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3241                 intel_crtc = to_intel_crtc(crtc);
3242                 if (crtc->enabled) {
3243                         enabled++;
3244                         if (intel_crtc->plane == 0) {
3245                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3246                                           intel_crtc->pipe, crtc->mode.clock);
3247                                 planea_clock = crtc->mode.clock;
3248                         } else {
3249                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3250                                           intel_crtc->pipe, crtc->mode.clock);
3251                                 planeb_clock = crtc->mode.clock;
3252                         }
3253                         sr_hdisplay = crtc->mode.hdisplay;
3254                         sr_clock = crtc->mode.clock;
3255                         if (crtc->fb)
3256                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3257                         else
3258                                 pixel_size = 4; /* by default */
3259                 }
3260         }
3261
3262         if (enabled <= 0)
3263                 return;
3264
3265         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3266                                     sr_hdisplay, pixel_size);
3267 }
3268
3269 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3270                                struct drm_display_mode *mode,
3271                                struct drm_display_mode *adjusted_mode,
3272                                int x, int y,
3273                                struct drm_framebuffer *old_fb)
3274 {
3275         struct drm_device *dev = crtc->dev;
3276         struct drm_i915_private *dev_priv = dev->dev_private;
3277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278         int pipe = intel_crtc->pipe;
3279         int plane = intel_crtc->plane;
3280         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3281         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3282         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3283         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3284         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3285         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3286         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3287         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3288         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3289         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3290         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3291         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3292         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3293         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3294         int refclk, num_connectors = 0;
3295         intel_clock_t clock, reduced_clock;
3296         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3297         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3298         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3299         bool is_edp = false;
3300         struct drm_mode_config *mode_config = &dev->mode_config;
3301         struct drm_encoder *encoder;
3302         struct intel_encoder *intel_encoder = NULL;
3303         const intel_limit_t *limit;
3304         int ret;
3305         struct fdi_m_n m_n = {0};
3306         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3307         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3308         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3309         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3310         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3311         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3312         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3313         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3314         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3315         int lvds_reg = LVDS;
3316         u32 temp;
3317         int sdvo_pixel_multiply;
3318         int target_clock;
3319
3320         drm_vblank_pre_modeset(dev, pipe);
3321
3322         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3323
3324                 if (!encoder || encoder->crtc != crtc)
3325                         continue;
3326
3327                 intel_encoder = enc_to_intel_encoder(encoder);
3328
3329                 switch (intel_encoder->type) {
3330                 case INTEL_OUTPUT_LVDS:
3331                         is_lvds = true;
3332                         break;
3333                 case INTEL_OUTPUT_SDVO:
3334                 case INTEL_OUTPUT_HDMI:
3335                         is_sdvo = true;
3336                         if (intel_encoder->needs_tv_clock)
3337                                 is_tv = true;
3338                         break;
3339                 case INTEL_OUTPUT_DVO:
3340                         is_dvo = true;
3341                         break;
3342                 case INTEL_OUTPUT_TVOUT:
3343                         is_tv = true;
3344                         break;
3345                 case INTEL_OUTPUT_ANALOG:
3346                         is_crt = true;
3347                         break;
3348                 case INTEL_OUTPUT_DISPLAYPORT:
3349                         is_dp = true;
3350                         break;
3351                 case INTEL_OUTPUT_EDP:
3352                         is_edp = true;
3353                         break;
3354                 }
3355
3356                 num_connectors++;
3357         }
3358
3359         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3360                 refclk = dev_priv->lvds_ssc_freq * 1000;
3361                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3362                                         refclk / 1000);
3363         } else if (IS_I9XX(dev)) {
3364                 refclk = 96000;
3365                 if (HAS_PCH_SPLIT(dev))
3366                         refclk = 120000; /* 120Mhz refclk */
3367         } else {
3368                 refclk = 48000;
3369         }
3370         
3371
3372         /*
3373          * Returns a set of divisors for the desired target clock with the given
3374          * refclk, or FALSE.  The returned values represent the clock equation:
3375          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3376          */
3377         limit = intel_limit(crtc);
3378         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3379         if (!ok) {
3380                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3381                 drm_vblank_post_modeset(dev, pipe);
3382                 return -EINVAL;
3383         }
3384
3385         if (is_lvds && dev_priv->lvds_downclock_avail) {
3386                 has_reduced_clock = limit->find_pll(limit, crtc,
3387                                                             dev_priv->lvds_downclock,
3388                                                             refclk,
3389                                                             &reduced_clock);
3390                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3391                         /*
3392                          * If the different P is found, it means that we can't
3393                          * switch the display clock by using the FP0/FP1.
3394                          * In such case we will disable the LVDS downclock
3395                          * feature.
3396                          */
3397                         DRM_DEBUG_KMS("Different P is found for "
3398                                                 "LVDS clock/downclock\n");
3399                         has_reduced_clock = 0;
3400                 }
3401         }
3402         /* SDVO TV has fixed PLL values depend on its clock range,
3403            this mirrors vbios setting. */
3404         if (is_sdvo && is_tv) {
3405                 if (adjusted_mode->clock >= 100000
3406                                 && adjusted_mode->clock < 140500) {
3407                         clock.p1 = 2;
3408                         clock.p2 = 10;
3409                         clock.n = 3;
3410                         clock.m1 = 16;
3411                         clock.m2 = 8;
3412                 } else if (adjusted_mode->clock >= 140500
3413                                 && adjusted_mode->clock <= 200000) {
3414                         clock.p1 = 1;
3415                         clock.p2 = 10;
3416                         clock.n = 6;
3417                         clock.m1 = 12;
3418                         clock.m2 = 8;
3419                 }
3420         }
3421
3422         /* FDI link */
3423         if (HAS_PCH_SPLIT(dev)) {
3424                 int lane = 0, link_bw, bpp;
3425                 /* eDP doesn't require FDI link, so just set DP M/N
3426                    according to current link config */
3427                 if (is_edp) {
3428                         target_clock = mode->clock;
3429                         intel_edp_link_config(intel_encoder,
3430                                         &lane, &link_bw);
3431                 } else {
3432                         /* DP over FDI requires target mode clock
3433                            instead of link clock */
3434                         if (is_dp)
3435                                 target_clock = mode->clock;
3436                         else
3437                                 target_clock = adjusted_mode->clock;
3438                         link_bw = 270000;
3439                 }
3440
3441                 /* determine panel color depth */
3442                 temp = I915_READ(pipeconf_reg);
3443                 temp &= ~PIPE_BPC_MASK;
3444                 if (is_lvds) {
3445                         int lvds_reg = I915_READ(PCH_LVDS);
3446                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3447                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3448                                 temp |= PIPE_8BPC;
3449                         else
3450                                 temp |= PIPE_6BPC;
3451                 } else if (is_edp) {
3452                         switch (dev_priv->edp_bpp/3) {
3453                         case 8:
3454                                 temp |= PIPE_8BPC;
3455                                 break;
3456                         case 10:
3457                                 temp |= PIPE_10BPC;
3458                                 break;
3459                         case 6:
3460                                 temp |= PIPE_6BPC;
3461                                 break;
3462                         case 12:
3463                                 temp |= PIPE_12BPC;
3464                                 break;
3465                         }
3466                 } else
3467                         temp |= PIPE_8BPC;
3468                 I915_WRITE(pipeconf_reg, temp);
3469                 I915_READ(pipeconf_reg);
3470
3471                 switch (temp & PIPE_BPC_MASK) {
3472                 case PIPE_8BPC:
3473                         bpp = 24;
3474                         break;
3475                 case PIPE_10BPC:
3476                         bpp = 30;
3477                         break;
3478                 case PIPE_6BPC:
3479                         bpp = 18;
3480                         break;
3481                 case PIPE_12BPC:
3482                         bpp = 36;
3483                         break;
3484                 default:
3485                         DRM_ERROR("unknown pipe bpc value\n");
3486                         bpp = 24;
3487                 }
3488
3489                 if (!lane) {
3490                         /* 
3491                          * Account for spread spectrum to avoid
3492                          * oversubscribing the link. Max center spread
3493                          * is 2.5%; use 5% for safety's sake.
3494                          */
3495                         u32 bps = target_clock * bpp * 21 / 20;
3496                         lane = bps / (link_bw * 8) + 1;
3497                 }
3498
3499                 intel_crtc->fdi_lanes = lane;
3500
3501                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3502         }
3503
3504         /* Ironlake: try to setup display ref clock before DPLL
3505          * enabling. This is only under driver's control after
3506          * PCH B stepping, previous chipset stepping should be
3507          * ignoring this setting.
3508          */
3509         if (HAS_PCH_SPLIT(dev)) {
3510                 temp = I915_READ(PCH_DREF_CONTROL);
3511                 /* Always enable nonspread source */
3512                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3513                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3514                 I915_WRITE(PCH_DREF_CONTROL, temp);
3515                 POSTING_READ(PCH_DREF_CONTROL);
3516
3517                 temp &= ~DREF_SSC_SOURCE_MASK;
3518                 temp |= DREF_SSC_SOURCE_ENABLE;
3519                 I915_WRITE(PCH_DREF_CONTROL, temp);
3520                 POSTING_READ(PCH_DREF_CONTROL);
3521
3522                 udelay(200);
3523
3524                 if (is_edp) {
3525                         if (dev_priv->lvds_use_ssc) {
3526                                 temp |= DREF_SSC1_ENABLE;
3527                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3528                                 POSTING_READ(PCH_DREF_CONTROL);
3529
3530                                 udelay(200);
3531
3532                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3533                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3534                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3535                                 POSTING_READ(PCH_DREF_CONTROL);
3536                         } else {
3537                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3538                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3539                                 POSTING_READ(PCH_DREF_CONTROL);
3540                         }
3541                 }
3542         }
3543
3544         if (IS_PINEVIEW(dev)) {
3545                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3546                 if (has_reduced_clock)
3547                         fp2 = (1 << reduced_clock.n) << 16 |
3548                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3549         } else {
3550                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3551                 if (has_reduced_clock)
3552                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3553                                 reduced_clock.m2;
3554         }
3555
3556         if (!HAS_PCH_SPLIT(dev))
3557                 dpll = DPLL_VGA_MODE_DIS;
3558
3559         if (IS_I9XX(dev)) {
3560                 if (is_lvds)
3561                         dpll |= DPLLB_MODE_LVDS;
3562                 else
3563                         dpll |= DPLLB_MODE_DAC_SERIAL;
3564                 if (is_sdvo) {
3565                         dpll |= DPLL_DVO_HIGH_SPEED;
3566                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3567                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3568                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3569                         else if (HAS_PCH_SPLIT(dev))
3570                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3571                 }
3572                 if (is_dp)
3573                         dpll |= DPLL_DVO_HIGH_SPEED;
3574
3575                 /* compute bitmask from p1 value */
3576                 if (IS_PINEVIEW(dev))
3577                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3578                 else {
3579                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3580                         /* also FPA1 */
3581                         if (HAS_PCH_SPLIT(dev))
3582                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3583                         if (IS_G4X(dev) && has_reduced_clock)
3584                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3585                 }
3586                 switch (clock.p2) {
3587                 case 5:
3588                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3589                         break;
3590                 case 7:
3591                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3592                         break;
3593                 case 10:
3594                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3595                         break;
3596                 case 14:
3597                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3598                         break;
3599                 }
3600                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3601                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3602         } else {
3603                 if (is_lvds) {
3604                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3605                 } else {
3606                         if (clock.p1 == 2)
3607                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3608                         else
3609                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3610                         if (clock.p2 == 4)
3611                                 dpll |= PLL_P2_DIVIDE_BY_4;
3612                 }
3613         }
3614
3615         if (is_sdvo && is_tv)
3616                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3617         else if (is_tv)
3618                 /* XXX: just matching BIOS for now */
3619                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3620                 dpll |= 3;
3621         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3622                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3623         else
3624                 dpll |= PLL_REF_INPUT_DREFCLK;
3625
3626         /* setup pipeconf */
3627         pipeconf = I915_READ(pipeconf_reg);
3628
3629         /* Set up the display plane register */
3630         dspcntr = DISPPLANE_GAMMA_ENABLE;
3631
3632         /* Ironlake's plane is forced to pipe, bit 24 is to
3633            enable color space conversion */
3634         if (!HAS_PCH_SPLIT(dev)) {
3635                 if (pipe == 0)
3636                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3637                 else
3638                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3639         }
3640
3641         if (pipe == 0 && !IS_I965G(dev)) {
3642                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3643                  * core speed.
3644                  *
3645                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3646                  * pipe == 0 check?
3647                  */
3648                 if (mode->clock >
3649                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3650                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3651                 else
3652                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3653         }
3654
3655         /* Disable the panel fitter if it was on our pipe */
3656         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3657                 I915_WRITE(PFIT_CONTROL, 0);
3658
3659         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3660         drm_mode_debug_printmodeline(mode);
3661
3662         /* assign to Ironlake registers */
3663         if (HAS_PCH_SPLIT(dev)) {
3664                 fp_reg = pch_fp_reg;
3665                 dpll_reg = pch_dpll_reg;
3666         }
3667
3668         if (is_edp) {
3669                 ironlake_disable_pll_edp(crtc);
3670         } else if ((dpll & DPLL_VCO_ENABLE)) {
3671                 I915_WRITE(fp_reg, fp);
3672                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3673                 I915_READ(dpll_reg);
3674                 udelay(150);
3675         }
3676
3677         /* enable transcoder DPLL */
3678         if (HAS_PCH_CPT(dev)) {
3679                 temp = I915_READ(PCH_DPLL_SEL);
3680                 if (trans_dpll_sel == 0)
3681                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3682                 else
3683                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3684                 I915_WRITE(PCH_DPLL_SEL, temp);
3685                 I915_READ(PCH_DPLL_SEL);
3686                 udelay(150);
3687         }
3688
3689         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3690          * This is an exception to the general rule that mode_set doesn't turn
3691          * things on.
3692          */
3693         if (is_lvds) {
3694                 u32 lvds;
3695
3696                 if (HAS_PCH_SPLIT(dev))
3697                         lvds_reg = PCH_LVDS;
3698
3699                 lvds = I915_READ(lvds_reg);
3700                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3701                 if (pipe == 1) {
3702                         if (HAS_PCH_CPT(dev))
3703                                 lvds |= PORT_TRANS_B_SEL_CPT;
3704                         else
3705                                 lvds |= LVDS_PIPEB_SELECT;
3706                 } else {
3707                         if (HAS_PCH_CPT(dev))
3708                                 lvds &= ~PORT_TRANS_SEL_MASK;
3709                         else
3710                                 lvds &= ~LVDS_PIPEB_SELECT;
3711                 }
3712                 /* set the corresponsding LVDS_BORDER bit */
3713                 lvds |= dev_priv->lvds_border_bits;
3714                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3715                  * set the DPLLs for dual-channel mode or not.
3716                  */
3717                 if (clock.p2 == 7)
3718                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3719                 else
3720                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3721
3722                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3723                  * appropriately here, but we need to look more thoroughly into how
3724                  * panels behave in the two modes.
3725                  */
3726                 /* set the dithering flag */
3727                 if (IS_I965G(dev)) {
3728                         if (dev_priv->lvds_dither) {
3729                                 if (HAS_PCH_SPLIT(dev)) {
3730                                         pipeconf |= PIPE_ENABLE_DITHER;
3731                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3732                                 } else
3733                                         lvds |= LVDS_ENABLE_DITHER;
3734                         } else {
3735                                 if (HAS_PCH_SPLIT(dev)) {
3736                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3737                                         pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3738                                 } else
3739                                         lvds &= ~LVDS_ENABLE_DITHER;
3740                         }
3741                 }
3742                 I915_WRITE(lvds_reg, lvds);
3743                 I915_READ(lvds_reg);
3744         }
3745         if (is_dp)
3746                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3747         else if (HAS_PCH_SPLIT(dev)) {
3748                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3749                 if (pipe == 0) {
3750                         I915_WRITE(TRANSA_DATA_M1, 0);
3751                         I915_WRITE(TRANSA_DATA_N1, 0);
3752                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3753                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3754                 } else {
3755                         I915_WRITE(TRANSB_DATA_M1, 0);
3756                         I915_WRITE(TRANSB_DATA_N1, 0);
3757                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3758                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3759                 }
3760         }
3761
3762         if (!is_edp) {
3763                 I915_WRITE(fp_reg, fp);
3764                 I915_WRITE(dpll_reg, dpll);
3765                 I915_READ(dpll_reg);
3766                 /* Wait for the clocks to stabilize. */
3767                 udelay(150);
3768
3769                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3770                         if (is_sdvo) {
3771                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3772                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3773                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3774                         } else
3775                                 I915_WRITE(dpll_md_reg, 0);
3776                 } else {
3777                         /* write it again -- the BIOS does, after all */
3778                         I915_WRITE(dpll_reg, dpll);
3779                 }
3780                 I915_READ(dpll_reg);
3781                 /* Wait for the clocks to stabilize. */
3782                 udelay(150);
3783         }
3784
3785         if (is_lvds && has_reduced_clock && i915_powersave) {
3786                 I915_WRITE(fp_reg + 4, fp2);
3787                 intel_crtc->lowfreq_avail = true;
3788                 if (HAS_PIPE_CXSR(dev)) {
3789                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3790                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3791                 }
3792         } else {
3793                 I915_WRITE(fp_reg + 4, fp);
3794                 intel_crtc->lowfreq_avail = false;
3795                 if (HAS_PIPE_CXSR(dev)) {
3796                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3797                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3798                 }
3799         }
3800
3801         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3802                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3803                 /* the chip adds 2 halflines automatically */
3804                 adjusted_mode->crtc_vdisplay -= 1;
3805                 adjusted_mode->crtc_vtotal -= 1;
3806                 adjusted_mode->crtc_vblank_start -= 1;
3807                 adjusted_mode->crtc_vblank_end -= 1;
3808                 adjusted_mode->crtc_vsync_end -= 1;
3809                 adjusted_mode->crtc_vsync_start -= 1;
3810         } else
3811                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3812
3813         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3814                    ((adjusted_mode->crtc_htotal - 1) << 16));
3815         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3816                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3817         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3818                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3819         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3820                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3821         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3822                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3823         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3824                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3825         /* pipesrc and dspsize control the size that is scaled from, which should
3826          * always be the user's requested size.
3827          */
3828         if (!HAS_PCH_SPLIT(dev)) {
3829                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3830                                 (mode->hdisplay - 1));
3831                 I915_WRITE(dsppos_reg, 0);
3832         }
3833         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3834
3835         if (HAS_PCH_SPLIT(dev)) {
3836                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3837                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3838                 I915_WRITE(link_m1_reg, m_n.link_m);
3839                 I915_WRITE(link_n1_reg, m_n.link_n);
3840
3841                 if (is_edp) {
3842                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3843                 } else {
3844                         /* enable FDI RX PLL too */
3845                         temp = I915_READ(fdi_rx_reg);
3846                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3847                         I915_READ(fdi_rx_reg);
3848                         udelay(200);
3849
3850                         /* enable FDI TX PLL too */
3851                         temp = I915_READ(fdi_tx_reg);
3852                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3853                         I915_READ(fdi_tx_reg);
3854
3855                         /* enable FDI RX PCDCLK */
3856                         temp = I915_READ(fdi_rx_reg);
3857                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3858                         I915_READ(fdi_rx_reg);
3859                         udelay(200);
3860                 }
3861         }
3862
3863         I915_WRITE(pipeconf_reg, pipeconf);
3864         I915_READ(pipeconf_reg);
3865
3866         intel_wait_for_vblank(dev);
3867
3868         if (IS_IRONLAKE(dev)) {
3869                 /* enable address swizzle for tiling buffer */
3870                 temp = I915_READ(DISP_ARB_CTL);
3871                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3872         }
3873
3874         I915_WRITE(dspcntr_reg, dspcntr);
3875
3876         /* Flush the plane changes */
3877         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3878
3879         if ((IS_I965G(dev) || plane == 0))
3880                 intel_update_fbc(crtc, &crtc->mode);
3881
3882         intel_update_watermarks(dev);
3883
3884         drm_vblank_post_modeset(dev, pipe);
3885
3886         return ret;
3887 }
3888
3889 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3890 void intel_crtc_load_lut(struct drm_crtc *crtc)
3891 {
3892         struct drm_device *dev = crtc->dev;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3895         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3896         int i;
3897
3898         /* The clocks have to be on to load the palette. */
3899         if (!crtc->enabled)
3900                 return;
3901
3902         /* use legacy palette for Ironlake */
3903         if (HAS_PCH_SPLIT(dev))
3904                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3905                                                    LGC_PALETTE_B;
3906
3907         for (i = 0; i < 256; i++) {
3908                 I915_WRITE(palreg + 4 * i,
3909                            (intel_crtc->lut_r[i] << 16) |
3910                            (intel_crtc->lut_g[i] << 8) |
3911                            intel_crtc->lut_b[i]);
3912         }
3913 }
3914
3915 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3916                                  struct drm_file *file_priv,
3917                                  uint32_t handle,
3918                                  uint32_t width, uint32_t height)
3919 {
3920         struct drm_device *dev = crtc->dev;
3921         struct drm_i915_private *dev_priv = dev->dev_private;
3922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3923         struct drm_gem_object *bo;
3924         struct drm_i915_gem_object *obj_priv;
3925         int pipe = intel_crtc->pipe;
3926         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3927         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3928         uint32_t temp = I915_READ(control);
3929         size_t addr;
3930         int ret;
3931
3932         DRM_DEBUG_KMS("\n");
3933
3934         /* if we want to turn off the cursor ignore width and height */
3935         if (!handle) {
3936                 DRM_DEBUG_KMS("cursor off\n");
3937                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3938                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3939                         temp |= CURSOR_MODE_DISABLE;
3940                 } else {
3941                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3942                 }
3943                 addr = 0;
3944                 bo = NULL;
3945                 mutex_lock(&dev->struct_mutex);
3946                 goto finish;
3947         }
3948
3949         /* Currently we only support 64x64 cursors */
3950         if (width != 64 || height != 64) {
3951                 DRM_ERROR("we currently only support 64x64 cursors\n");
3952                 return -EINVAL;
3953         }
3954
3955         bo = drm_gem_object_lookup(dev, file_priv, handle);
3956         if (!bo)
3957                 return -ENOENT;
3958
3959         obj_priv = to_intel_bo(bo);
3960
3961         if (bo->size < width * height * 4) {
3962                 DRM_ERROR("buffer is to small\n");
3963                 ret = -ENOMEM;
3964                 goto fail;
3965         }
3966
3967         /* we only need to pin inside GTT if cursor is non-phy */
3968         mutex_lock(&dev->struct_mutex);
3969         if (!dev_priv->info->cursor_needs_physical) {
3970                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3971                 if (ret) {
3972                         DRM_ERROR("failed to pin cursor bo\n");
3973                         goto fail_locked;
3974                 }
3975                 addr = obj_priv->gtt_offset;
3976         } else {
3977                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3978                 if (ret) {
3979                         DRM_ERROR("failed to attach phys object\n");
3980                         goto fail_locked;
3981                 }
3982                 addr = obj_priv->phys_obj->handle->busaddr;
3983         }
3984
3985         if (!IS_I9XX(dev))
3986                 I915_WRITE(CURSIZE, (height << 12) | width);
3987
3988         /* Hooray for CUR*CNTR differences */
3989         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3990                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3991                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3992                 temp |= (pipe << 28); /* Connect to correct pipe */
3993         } else {
3994                 temp &= ~(CURSOR_FORMAT_MASK);
3995                 temp |= CURSOR_ENABLE;
3996                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3997         }
3998
3999  finish:
4000         I915_WRITE(control, temp);
4001         I915_WRITE(base, addr);
4002
4003         if (intel_crtc->cursor_bo) {
4004                 if (dev_priv->info->cursor_needs_physical) {
4005                         if (intel_crtc->cursor_bo != bo)
4006                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4007                 } else
4008                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4009                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4010         }
4011
4012         mutex_unlock(&dev->struct_mutex);
4013
4014         intel_crtc->cursor_addr = addr;
4015         intel_crtc->cursor_bo = bo;
4016
4017         return 0;
4018 fail_locked:
4019         mutex_unlock(&dev->struct_mutex);
4020 fail:
4021         drm_gem_object_unreference_unlocked(bo);
4022         return ret;
4023 }
4024
4025 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4026 {
4027         struct drm_device *dev = crtc->dev;
4028         struct drm_i915_private *dev_priv = dev->dev_private;
4029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4030         struct intel_framebuffer *intel_fb;
4031         int pipe = intel_crtc->pipe;
4032         uint32_t temp = 0;
4033         uint32_t adder;
4034
4035         if (crtc->fb) {
4036                 intel_fb = to_intel_framebuffer(crtc->fb);
4037                 intel_mark_busy(dev, intel_fb->obj);
4038         }
4039
4040         if (x < 0) {
4041                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4042                 x = -x;
4043         }
4044         if (y < 0) {
4045                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4046                 y = -y;
4047         }
4048
4049         temp |= x << CURSOR_X_SHIFT;
4050         temp |= y << CURSOR_Y_SHIFT;
4051
4052         adder = intel_crtc->cursor_addr;
4053         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4054         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4055
4056         return 0;
4057 }
4058
4059 /** Sets the color ramps on behalf of RandR */
4060 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4061                                  u16 blue, int regno)
4062 {
4063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4064
4065         intel_crtc->lut_r[regno] = red >> 8;
4066         intel_crtc->lut_g[regno] = green >> 8;
4067         intel_crtc->lut_b[regno] = blue >> 8;
4068 }
4069
4070 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4071                              u16 *blue, int regno)
4072 {
4073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074
4075         *red = intel_crtc->lut_r[regno] << 8;
4076         *green = intel_crtc->lut_g[regno] << 8;
4077         *blue = intel_crtc->lut_b[regno] << 8;
4078 }
4079
4080 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4081                                  u16 *blue, uint32_t size)
4082 {
4083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4084         int i;
4085
4086         if (size != 256)
4087                 return;
4088
4089         for (i = 0; i < 256; i++) {
4090                 intel_crtc->lut_r[i] = red[i] >> 8;
4091                 intel_crtc->lut_g[i] = green[i] >> 8;
4092                 intel_crtc->lut_b[i] = blue[i] >> 8;
4093         }
4094
4095         intel_crtc_load_lut(crtc);
4096 }
4097
4098 /**
4099  * Get a pipe with a simple mode set on it for doing load-based monitor
4100  * detection.
4101  *
4102  * It will be up to the load-detect code to adjust the pipe as appropriate for
4103  * its requirements.  The pipe will be connected to no other encoders.
4104  *
4105  * Currently this code will only succeed if there is a pipe with no encoders
4106  * configured for it.  In the future, it could choose to temporarily disable
4107  * some outputs to free up a pipe for its use.
4108  *
4109  * \return crtc, or NULL if no pipes are available.
4110  */
4111
4112 /* VESA 640x480x72Hz mode to set on the pipe */
4113 static struct drm_display_mode load_detect_mode = {
4114         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4115                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4116 };
4117
4118 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4119                                             struct drm_connector *connector,
4120                                             struct drm_display_mode *mode,
4121                                             int *dpms_mode)
4122 {
4123         struct intel_crtc *intel_crtc;
4124         struct drm_crtc *possible_crtc;
4125         struct drm_crtc *supported_crtc =NULL;
4126         struct drm_encoder *encoder = &intel_encoder->enc;
4127         struct drm_crtc *crtc = NULL;
4128         struct drm_device *dev = encoder->dev;
4129         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4130         struct drm_crtc_helper_funcs *crtc_funcs;
4131         int i = -1;
4132
4133         /*
4134          * Algorithm gets a little messy:
4135          *   - if the connector already has an assigned crtc, use it (but make
4136          *     sure it's on first)
4137          *   - try to find the first unused crtc that can drive this connector,
4138          *     and use that if we find one
4139          *   - if there are no unused crtcs available, try to use the first
4140          *     one we found that supports the connector
4141          */
4142
4143         /* See if we already have a CRTC for this connector */
4144         if (encoder->crtc) {
4145                 crtc = encoder->crtc;
4146                 /* Make sure the crtc and connector are running */
4147                 intel_crtc = to_intel_crtc(crtc);
4148                 *dpms_mode = intel_crtc->dpms_mode;
4149                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4150                         crtc_funcs = crtc->helper_private;
4151                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4152                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4153                 }
4154                 return crtc;
4155         }
4156
4157         /* Find an unused one (if possible) */
4158         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4159                 i++;
4160                 if (!(encoder->possible_crtcs & (1 << i)))
4161                         continue;
4162                 if (!possible_crtc->enabled) {
4163                         crtc = possible_crtc;
4164                         break;
4165                 }
4166                 if (!supported_crtc)
4167                         supported_crtc = possible_crtc;
4168         }
4169
4170         /*
4171          * If we didn't find an unused CRTC, don't use any.
4172          */
4173         if (!crtc) {
4174                 return NULL;
4175         }
4176
4177         encoder->crtc = crtc;
4178         connector->encoder = encoder;
4179         intel_encoder->load_detect_temp = true;
4180
4181         intel_crtc = to_intel_crtc(crtc);
4182         *dpms_mode = intel_crtc->dpms_mode;
4183
4184         if (!crtc->enabled) {
4185                 if (!mode)
4186                         mode = &load_detect_mode;
4187                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4188         } else {
4189                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4190                         crtc_funcs = crtc->helper_private;
4191                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4192                 }
4193
4194                 /* Add this connector to the crtc */
4195                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4196                 encoder_funcs->commit(encoder);
4197         }
4198         /* let the connector get through one full cycle before testing */
4199         intel_wait_for_vblank(dev);
4200
4201         return crtc;
4202 }
4203
4204 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4205                                     struct drm_connector *connector, int dpms_mode)
4206 {
4207         struct drm_encoder *encoder = &intel_encoder->enc;
4208         struct drm_device *dev = encoder->dev;
4209         struct drm_crtc *crtc = encoder->crtc;
4210         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4211         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4212
4213         if (intel_encoder->load_detect_temp) {
4214                 encoder->crtc = NULL;
4215                 connector->encoder = NULL;
4216                 intel_encoder->load_detect_temp = false;
4217                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4218                 drm_helper_disable_unused_functions(dev);
4219         }
4220
4221         /* Switch crtc and encoder back off if necessary */
4222         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4223                 if (encoder->crtc == crtc)
4224                         encoder_funcs->dpms(encoder, dpms_mode);
4225                 crtc_funcs->dpms(crtc, dpms_mode);
4226         }
4227 }
4228
4229 /* Returns the clock of the currently programmed mode of the given pipe. */
4230 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4231 {
4232         struct drm_i915_private *dev_priv = dev->dev_private;
4233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234         int pipe = intel_crtc->pipe;
4235         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4236         u32 fp;
4237         intel_clock_t clock;
4238
4239         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4240                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4241         else
4242                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4243
4244         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4245         if (IS_PINEVIEW(dev)) {
4246                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4247                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4248         } else {
4249                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4250                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4251         }
4252
4253         if (IS_I9XX(dev)) {
4254                 if (IS_PINEVIEW(dev))
4255                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4256                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4257                 else
4258                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4259                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4260
4261                 switch (dpll & DPLL_MODE_MASK) {
4262                 case DPLLB_MODE_DAC_SERIAL:
4263                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4264                                 5 : 10;
4265                         break;
4266                 case DPLLB_MODE_LVDS:
4267                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4268                                 7 : 14;
4269                         break;
4270                 default:
4271                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4272                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4273                         return 0;
4274                 }
4275
4276                 /* XXX: Handle the 100Mhz refclk */
4277                 intel_clock(dev, 96000, &clock);
4278         } else {
4279                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4280
4281                 if (is_lvds) {
4282                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4283                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4284                         clock.p2 = 14;
4285
4286                         if ((dpll & PLL_REF_INPUT_MASK) ==
4287                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4288                                 /* XXX: might not be 66MHz */
4289                                 intel_clock(dev, 66000, &clock);
4290                         } else
4291                                 intel_clock(dev, 48000, &clock);
4292                 } else {
4293                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4294                                 clock.p1 = 2;
4295                         else {
4296                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4297                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4298                         }
4299                         if (dpll & PLL_P2_DIVIDE_BY_4)
4300                                 clock.p2 = 4;
4301                         else
4302                                 clock.p2 = 2;
4303
4304                         intel_clock(dev, 48000, &clock);
4305                 }
4306         }
4307
4308         /* XXX: It would be nice to validate the clocks, but we can't reuse
4309          * i830PllIsValid() because it relies on the xf86_config connector
4310          * configuration being accurate, which it isn't necessarily.
4311          */
4312
4313         return clock.dot;
4314 }
4315
4316 /** Returns the currently programmed mode of the given pipe. */
4317 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4318                                              struct drm_crtc *crtc)
4319 {
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322         int pipe = intel_crtc->pipe;
4323         struct drm_display_mode *mode;
4324         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4325         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4326         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4327         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4328
4329         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4330         if (!mode)
4331                 return NULL;
4332
4333         mode->clock = intel_crtc_clock_get(dev, crtc);
4334         mode->hdisplay = (htot & 0xffff) + 1;
4335         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4336         mode->hsync_start = (hsync & 0xffff) + 1;
4337         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4338         mode->vdisplay = (vtot & 0xffff) + 1;
4339         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4340         mode->vsync_start = (vsync & 0xffff) + 1;
4341         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4342
4343         drm_mode_set_name(mode);
4344         drm_mode_set_crtcinfo(mode, 0);
4345
4346         return mode;
4347 }
4348
4349 #define GPU_IDLE_TIMEOUT 500 /* ms */
4350
4351 /* When this timer fires, we've been idle for awhile */
4352 static void intel_gpu_idle_timer(unsigned long arg)
4353 {
4354         struct drm_device *dev = (struct drm_device *)arg;
4355         drm_i915_private_t *dev_priv = dev->dev_private;
4356
4357         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4358
4359         dev_priv->busy = false;
4360
4361         queue_work(dev_priv->wq, &dev_priv->idle_work);
4362 }
4363
4364 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4365
4366 static void intel_crtc_idle_timer(unsigned long arg)
4367 {
4368         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4369         struct drm_crtc *crtc = &intel_crtc->base;
4370         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4371
4372         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4373
4374         intel_crtc->busy = false;
4375
4376         queue_work(dev_priv->wq, &dev_priv->idle_work);
4377 }
4378
4379 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4380 {
4381         struct drm_device *dev = crtc->dev;
4382         drm_i915_private_t *dev_priv = dev->dev_private;
4383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4384         int pipe = intel_crtc->pipe;
4385         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4386         int dpll = I915_READ(dpll_reg);
4387
4388         if (HAS_PCH_SPLIT(dev))
4389                 return;
4390
4391         if (!dev_priv->lvds_downclock_avail)
4392                 return;
4393
4394         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4395                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4396
4397                 /* Unlock panel regs */
4398                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4399
4400                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4401                 I915_WRITE(dpll_reg, dpll);
4402                 dpll = I915_READ(dpll_reg);
4403                 intel_wait_for_vblank(dev);
4404                 dpll = I915_READ(dpll_reg);
4405                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4406                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4407
4408                 /* ...and lock them again */
4409                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4410         }
4411
4412         /* Schedule downclock */
4413         if (schedule)
4414                 mod_timer(&intel_crtc->idle_timer, jiffies +
4415                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4416 }
4417
4418 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->dev;
4421         drm_i915_private_t *dev_priv = dev->dev_private;
4422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4423         int pipe = intel_crtc->pipe;
4424         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4425         int dpll = I915_READ(dpll_reg);
4426
4427         if (HAS_PCH_SPLIT(dev))
4428                 return;
4429
4430         if (!dev_priv->lvds_downclock_avail)
4431                 return;
4432
4433         /*
4434          * Since this is called by a timer, we should never get here in
4435          * the manual case.
4436          */
4437         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4438                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4439
4440                 /* Unlock panel regs */
4441                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4442
4443                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4444                 I915_WRITE(dpll_reg, dpll);
4445                 dpll = I915_READ(dpll_reg);
4446                 intel_wait_for_vblank(dev);
4447                 dpll = I915_READ(dpll_reg);
4448                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4449                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4450
4451                 /* ...and lock them again */
4452                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4453         }
4454
4455 }
4456
4457 /**
4458  * intel_idle_update - adjust clocks for idleness
4459  * @work: work struct
4460  *
4461  * Either the GPU or display (or both) went idle.  Check the busy status
4462  * here and adjust the CRTC and GPU clocks as necessary.
4463  */
4464 static void intel_idle_update(struct work_struct *work)
4465 {
4466         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4467                                                     idle_work);
4468         struct drm_device *dev = dev_priv->dev;
4469         struct drm_crtc *crtc;
4470         struct intel_crtc *intel_crtc;
4471
4472         if (!i915_powersave)
4473                 return;
4474
4475         mutex_lock(&dev->struct_mutex);
4476
4477         i915_update_gfx_val(dev_priv);
4478
4479         if (IS_I945G(dev) || IS_I945GM(dev)) {
4480                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4481                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4482         }
4483
4484         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4485                 /* Skip inactive CRTCs */
4486                 if (!crtc->fb)
4487                         continue;
4488
4489                 intel_crtc = to_intel_crtc(crtc);
4490                 if (!intel_crtc->busy)
4491                         intel_decrease_pllclock(crtc);
4492         }
4493
4494         mutex_unlock(&dev->struct_mutex);
4495 }
4496
4497 /**
4498  * intel_mark_busy - mark the GPU and possibly the display busy
4499  * @dev: drm device
4500  * @obj: object we're operating on
4501  *
4502  * Callers can use this function to indicate that the GPU is busy processing
4503  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4504  * buffer), we'll also mark the display as busy, so we know to increase its
4505  * clock frequency.
4506  */
4507 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4508 {
4509         drm_i915_private_t *dev_priv = dev->dev_private;
4510         struct drm_crtc *crtc = NULL;
4511         struct intel_framebuffer *intel_fb;
4512         struct intel_crtc *intel_crtc;
4513
4514         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4515                 return;
4516
4517         if (!dev_priv->busy) {
4518                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4519                         u32 fw_blc_self;
4520
4521                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4522                         fw_blc_self = I915_READ(FW_BLC_SELF);
4523                         fw_blc_self &= ~FW_BLC_SELF_EN;
4524                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4525                 }
4526                 dev_priv->busy = true;
4527         } else
4528                 mod_timer(&dev_priv->idle_timer, jiffies +
4529                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4530
4531         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4532                 if (!crtc->fb)
4533                         continue;
4534
4535                 intel_crtc = to_intel_crtc(crtc);
4536                 intel_fb = to_intel_framebuffer(crtc->fb);
4537                 if (intel_fb->obj == obj) {
4538                         if (!intel_crtc->busy) {
4539                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4540                                         u32 fw_blc_self;
4541
4542                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4543                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4544                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4545                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4546                                 }
4547                                 /* Non-busy -> busy, upclock */
4548                                 intel_increase_pllclock(crtc, true);
4549                                 intel_crtc->busy = true;
4550                         } else {
4551                                 /* Busy -> busy, put off timer */
4552                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4553                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4554                         }
4555                 }
4556         }
4557 }
4558
4559 static void intel_crtc_destroy(struct drm_crtc *crtc)
4560 {
4561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4562
4563         drm_crtc_cleanup(crtc);
4564         kfree(intel_crtc);
4565 }
4566
4567 struct intel_unpin_work {
4568         struct work_struct work;
4569         struct drm_device *dev;
4570         struct drm_gem_object *old_fb_obj;
4571         struct drm_gem_object *pending_flip_obj;
4572         struct drm_pending_vblank_event *event;
4573         int pending;
4574 };
4575
4576 static void intel_unpin_work_fn(struct work_struct *__work)
4577 {
4578         struct intel_unpin_work *work =
4579                 container_of(__work, struct intel_unpin_work, work);
4580
4581         mutex_lock(&work->dev->struct_mutex);
4582         i915_gem_object_unpin(work->old_fb_obj);
4583         drm_gem_object_unreference(work->pending_flip_obj);
4584         drm_gem_object_unreference(work->old_fb_obj);
4585         mutex_unlock(&work->dev->struct_mutex);
4586         kfree(work);
4587 }
4588
4589 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4590 {
4591         drm_i915_private_t *dev_priv = dev->dev_private;
4592         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4594         struct intel_unpin_work *work;
4595         struct drm_i915_gem_object *obj_priv;
4596         struct drm_pending_vblank_event *e;
4597         struct timeval now;
4598         unsigned long flags;
4599
4600         /* Ignore early vblank irqs */
4601         if (intel_crtc == NULL)
4602                 return;
4603
4604         spin_lock_irqsave(&dev->event_lock, flags);
4605         work = intel_crtc->unpin_work;
4606         if (work == NULL || !work->pending) {
4607                 spin_unlock_irqrestore(&dev->event_lock, flags);
4608                 return;
4609         }
4610
4611         intel_crtc->unpin_work = NULL;
4612         drm_vblank_put(dev, intel_crtc->pipe);
4613
4614         if (work->event) {
4615                 e = work->event;
4616                 do_gettimeofday(&now);
4617                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4618                 e->event.tv_sec = now.tv_sec;
4619                 e->event.tv_usec = now.tv_usec;
4620                 list_add_tail(&e->base.link,
4621                               &e->base.file_priv->event_list);
4622                 wake_up_interruptible(&e->base.file_priv->event_wait);
4623         }
4624
4625         spin_unlock_irqrestore(&dev->event_lock, flags);
4626
4627         obj_priv = to_intel_bo(work->pending_flip_obj);
4628
4629         /* Initial scanout buffer will have a 0 pending flip count */
4630         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4631             atomic_dec_and_test(&obj_priv->pending_flip))
4632                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4633         schedule_work(&work->work);
4634 }
4635
4636 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4637 {
4638         drm_i915_private_t *dev_priv = dev->dev_private;
4639         struct intel_crtc *intel_crtc =
4640                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4641         unsigned long flags;
4642
4643         spin_lock_irqsave(&dev->event_lock, flags);
4644         if (intel_crtc->unpin_work) {
4645                 intel_crtc->unpin_work->pending = 1;
4646         } else {
4647                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4648         }
4649         spin_unlock_irqrestore(&dev->event_lock, flags);
4650 }
4651
4652 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4653                                 struct drm_framebuffer *fb,
4654                                 struct drm_pending_vblank_event *event)
4655 {
4656         struct drm_device *dev = crtc->dev;
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct intel_framebuffer *intel_fb;
4659         struct drm_i915_gem_object *obj_priv;
4660         struct drm_gem_object *obj;
4661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4662         struct intel_unpin_work *work;
4663         unsigned long flags;
4664         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4665         int ret, pipesrc;
4666
4667         work = kzalloc(sizeof *work, GFP_KERNEL);
4668         if (work == NULL)
4669                 return -ENOMEM;
4670
4671         work->event = event;
4672         work->dev = crtc->dev;
4673         intel_fb = to_intel_framebuffer(crtc->fb);
4674         work->old_fb_obj = intel_fb->obj;
4675         INIT_WORK(&work->work, intel_unpin_work_fn);
4676
4677         /* We borrow the event spin lock for protecting unpin_work */
4678         spin_lock_irqsave(&dev->event_lock, flags);
4679         if (intel_crtc->unpin_work) {
4680                 spin_unlock_irqrestore(&dev->event_lock, flags);
4681                 kfree(work);
4682
4683                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4684                 return -EBUSY;
4685         }
4686         intel_crtc->unpin_work = work;
4687         spin_unlock_irqrestore(&dev->event_lock, flags);
4688
4689         intel_fb = to_intel_framebuffer(fb);
4690         obj = intel_fb->obj;
4691
4692         mutex_lock(&dev->struct_mutex);
4693         ret = intel_pin_and_fence_fb_obj(dev, obj);
4694         if (ret != 0) {
4695                 mutex_unlock(&dev->struct_mutex);
4696
4697                 spin_lock_irqsave(&dev->event_lock, flags);
4698                 intel_crtc->unpin_work = NULL;
4699                 spin_unlock_irqrestore(&dev->event_lock, flags);
4700
4701                 kfree(work);
4702
4703                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4704                                  to_intel_bo(obj));
4705                 return ret;
4706         }
4707
4708         /* Reference the objects for the scheduled work. */
4709         drm_gem_object_reference(work->old_fb_obj);
4710         drm_gem_object_reference(obj);
4711
4712         crtc->fb = fb;
4713         i915_gem_object_flush_write_domain(obj);
4714         drm_vblank_get(dev, intel_crtc->pipe);
4715         obj_priv = to_intel_bo(obj);
4716         atomic_inc(&obj_priv->pending_flip);
4717         work->pending_flip_obj = obj;
4718
4719         BEGIN_LP_RING(4);
4720         OUT_RING(MI_DISPLAY_FLIP |
4721                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4722         OUT_RING(fb->pitch);
4723         if (IS_I965G(dev)) {
4724                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4725                 pipesrc = I915_READ(pipesrc_reg); 
4726                 OUT_RING(pipesrc & 0x0fff0fff);
4727         } else {
4728                 OUT_RING(obj_priv->gtt_offset);
4729                 OUT_RING(MI_NOOP);
4730         }
4731         ADVANCE_LP_RING();
4732
4733         mutex_unlock(&dev->struct_mutex);
4734
4735         return 0;
4736 }
4737
4738 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4739         .dpms = intel_crtc_dpms,
4740         .mode_fixup = intel_crtc_mode_fixup,
4741         .mode_set = intel_crtc_mode_set,
4742         .mode_set_base = intel_pipe_set_base,
4743         .prepare = intel_crtc_prepare,
4744         .commit = intel_crtc_commit,
4745         .load_lut = intel_crtc_load_lut,
4746 };
4747
4748 static const struct drm_crtc_funcs intel_crtc_funcs = {
4749         .cursor_set = intel_crtc_cursor_set,
4750         .cursor_move = intel_crtc_cursor_move,
4751         .gamma_set = intel_crtc_gamma_set,
4752         .set_config = drm_crtc_helper_set_config,
4753         .destroy = intel_crtc_destroy,
4754         .page_flip = intel_crtc_page_flip,
4755 };
4756
4757
4758 static void intel_crtc_init(struct drm_device *dev, int pipe)
4759 {
4760         drm_i915_private_t *dev_priv = dev->dev_private;
4761         struct intel_crtc *intel_crtc;
4762         int i;
4763
4764         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4765         if (intel_crtc == NULL)
4766                 return;
4767
4768         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4769
4770         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4771         intel_crtc->pipe = pipe;
4772         intel_crtc->plane = pipe;
4773         for (i = 0; i < 256; i++) {
4774                 intel_crtc->lut_r[i] = i;
4775                 intel_crtc->lut_g[i] = i;
4776                 intel_crtc->lut_b[i] = i;
4777         }
4778
4779         /* Swap pipes & planes for FBC on pre-965 */
4780         intel_crtc->pipe = pipe;
4781         intel_crtc->plane = pipe;
4782         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4783                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4784                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4785         }
4786
4787         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4788                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4789         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4790         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4791
4792         intel_crtc->cursor_addr = 0;
4793         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4794         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4795
4796         intel_crtc->busy = false;
4797
4798         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4799                     (unsigned long)intel_crtc);
4800 }
4801
4802 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4803                                 struct drm_file *file_priv)
4804 {
4805         drm_i915_private_t *dev_priv = dev->dev_private;
4806         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4807         struct drm_mode_object *drmmode_obj;
4808         struct intel_crtc *crtc;
4809
4810         if (!dev_priv) {
4811                 DRM_ERROR("called with no initialization\n");
4812                 return -EINVAL;
4813         }
4814
4815         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4816                         DRM_MODE_OBJECT_CRTC);
4817
4818         if (!drmmode_obj) {
4819                 DRM_ERROR("no such CRTC id\n");
4820                 return -EINVAL;
4821         }
4822
4823         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4824         pipe_from_crtc_id->pipe = crtc->pipe;
4825
4826         return 0;
4827 }
4828
4829 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4830 {
4831         struct drm_crtc *crtc = NULL;
4832
4833         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4834                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4835                 if (intel_crtc->pipe == pipe)
4836                         break;
4837         }
4838         return crtc;
4839 }
4840
4841 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4842 {
4843         int index_mask = 0;
4844         struct drm_encoder *encoder;
4845         int entry = 0;
4846
4847         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4848                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4849                 if (type_mask & intel_encoder->clone_mask)
4850                         index_mask |= (1 << entry);
4851                 entry++;
4852         }
4853         return index_mask;
4854 }
4855
4856
4857 static void intel_setup_outputs(struct drm_device *dev)
4858 {
4859         struct drm_i915_private *dev_priv = dev->dev_private;
4860         struct drm_encoder *encoder;
4861
4862         intel_crt_init(dev);
4863
4864         /* Set up integrated LVDS */
4865         if (IS_MOBILE(dev) && !IS_I830(dev))
4866                 intel_lvds_init(dev);
4867
4868         if (HAS_PCH_SPLIT(dev)) {
4869                 int found;
4870
4871                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4872                         intel_dp_init(dev, DP_A);
4873
4874                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4875                         /* PCH SDVOB multiplex with HDMIB */
4876                         found = intel_sdvo_init(dev, PCH_SDVOB);
4877                         if (!found)
4878                                 intel_hdmi_init(dev, HDMIB);
4879                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4880                                 intel_dp_init(dev, PCH_DP_B);
4881                 }
4882
4883                 if (I915_READ(HDMIC) & PORT_DETECTED)
4884                         intel_hdmi_init(dev, HDMIC);
4885
4886                 if (I915_READ(HDMID) & PORT_DETECTED)
4887                         intel_hdmi_init(dev, HDMID);
4888
4889                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4890                         intel_dp_init(dev, PCH_DP_C);
4891
4892                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4893                         intel_dp_init(dev, PCH_DP_D);
4894
4895         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4896                 bool found = false;
4897
4898                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4899                         DRM_DEBUG_KMS("probing SDVOB\n");
4900                         found = intel_sdvo_init(dev, SDVOB);
4901                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4902                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4903                                 intel_hdmi_init(dev, SDVOB);
4904                         }
4905
4906                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4907                                 DRM_DEBUG_KMS("probing DP_B\n");
4908                                 intel_dp_init(dev, DP_B);
4909                         }
4910                 }
4911
4912                 /* Before G4X SDVOC doesn't have its own detect register */
4913
4914                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4915                         DRM_DEBUG_KMS("probing SDVOC\n");
4916                         found = intel_sdvo_init(dev, SDVOC);
4917                 }
4918
4919                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4920
4921                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4922                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4923                                 intel_hdmi_init(dev, SDVOC);
4924                         }
4925                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4926                                 DRM_DEBUG_KMS("probing DP_C\n");
4927                                 intel_dp_init(dev, DP_C);
4928                         }
4929                 }
4930
4931                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4932                     (I915_READ(DP_D) & DP_DETECTED)) {
4933                         DRM_DEBUG_KMS("probing DP_D\n");
4934                         intel_dp_init(dev, DP_D);
4935                 }
4936         } else if (IS_GEN2(dev))
4937                 intel_dvo_init(dev);
4938
4939         if (SUPPORTS_TV(dev))
4940                 intel_tv_init(dev);
4941
4942         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4943                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4944
4945                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4946                 encoder->possible_clones = intel_encoder_clones(dev,
4947                                                 intel_encoder->clone_mask);
4948         }
4949 }
4950
4951 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4952 {
4953         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4954
4955         drm_framebuffer_cleanup(fb);
4956         drm_gem_object_unreference_unlocked(intel_fb->obj);
4957
4958         kfree(intel_fb);
4959 }
4960
4961 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4962                                                 struct drm_file *file_priv,
4963                                                 unsigned int *handle)
4964 {
4965         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4966         struct drm_gem_object *object = intel_fb->obj;
4967
4968         return drm_gem_handle_create(file_priv, object, handle);
4969 }
4970
4971 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4972         .destroy = intel_user_framebuffer_destroy,
4973         .create_handle = intel_user_framebuffer_create_handle,
4974 };
4975
4976 int intel_framebuffer_init(struct drm_device *dev,
4977                            struct intel_framebuffer *intel_fb,
4978                            struct drm_mode_fb_cmd *mode_cmd,
4979                            struct drm_gem_object *obj)
4980 {
4981         int ret;
4982
4983         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4984         if (ret) {
4985                 DRM_ERROR("framebuffer init failed %d\n", ret);
4986                 return ret;
4987         }
4988
4989         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4990         intel_fb->obj = obj;
4991         return 0;
4992 }
4993
4994 static struct drm_framebuffer *
4995 intel_user_framebuffer_create(struct drm_device *dev,
4996                               struct drm_file *filp,
4997                               struct drm_mode_fb_cmd *mode_cmd)
4998 {
4999         struct drm_gem_object *obj;
5000         struct intel_framebuffer *intel_fb;
5001         int ret;
5002
5003         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5004         if (!obj)
5005                 return NULL;
5006
5007         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5008         if (!intel_fb)
5009                 return NULL;
5010
5011         ret = intel_framebuffer_init(dev, intel_fb,
5012                                      mode_cmd, obj);
5013         if (ret) {
5014                 drm_gem_object_unreference_unlocked(obj);
5015                 kfree(intel_fb);
5016                 return NULL;
5017         }
5018
5019         return &intel_fb->base;
5020 }
5021
5022 static const struct drm_mode_config_funcs intel_mode_funcs = {
5023         .fb_create = intel_user_framebuffer_create,
5024         .output_poll_changed = intel_fb_output_poll_changed,
5025 };
5026
5027 static struct drm_gem_object *
5028 intel_alloc_power_context(struct drm_device *dev)
5029 {
5030         struct drm_gem_object *pwrctx;
5031         int ret;
5032
5033         pwrctx = i915_gem_alloc_object(dev, 4096);
5034         if (!pwrctx) {
5035                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5036                 return NULL;
5037         }
5038
5039         mutex_lock(&dev->struct_mutex);
5040         ret = i915_gem_object_pin(pwrctx, 4096);
5041         if (ret) {
5042                 DRM_ERROR("failed to pin power context: %d\n", ret);
5043                 goto err_unref;
5044         }
5045
5046         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5047         if (ret) {
5048                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5049                 goto err_unpin;
5050         }
5051         mutex_unlock(&dev->struct_mutex);
5052
5053         return pwrctx;
5054
5055 err_unpin:
5056         i915_gem_object_unpin(pwrctx);
5057 err_unref:
5058         drm_gem_object_unreference(pwrctx);
5059         mutex_unlock(&dev->struct_mutex);
5060         return NULL;
5061 }
5062
5063 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5064 {
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066         u16 rgvswctl;
5067
5068         rgvswctl = I915_READ16(MEMSWCTL);
5069         if (rgvswctl & MEMCTL_CMD_STS) {
5070                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5071                 return false; /* still busy with another command */
5072         }
5073
5074         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5075                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5076         I915_WRITE16(MEMSWCTL, rgvswctl);
5077         POSTING_READ16(MEMSWCTL);
5078
5079         rgvswctl |= MEMCTL_CMD_STS;
5080         I915_WRITE16(MEMSWCTL, rgvswctl);
5081
5082         return true;
5083 }
5084
5085 void ironlake_enable_drps(struct drm_device *dev)
5086 {
5087         struct drm_i915_private *dev_priv = dev->dev_private;
5088         u32 rgvmodectl = I915_READ(MEMMODECTL);
5089         u8 fmax, fmin, fstart, vstart;
5090         int i = 0;
5091
5092         /* 100ms RC evaluation intervals */
5093         I915_WRITE(RCUPEI, 100000);
5094         I915_WRITE(RCDNEI, 100000);
5095
5096         /* Set max/min thresholds to 90ms and 80ms respectively */
5097         I915_WRITE(RCBMAXAVG, 90000);
5098         I915_WRITE(RCBMINAVG, 80000);
5099
5100         I915_WRITE(MEMIHYST, 1);
5101
5102         /* Set up min, max, and cur for interrupt handling */
5103         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5104         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5105         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5106                 MEMMODE_FSTART_SHIFT;
5107         fstart = fmax;
5108
5109         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5110                 PXVFREQ_PX_SHIFT;
5111
5112         dev_priv->fmax = fstart; /* IPS callback will increase this */
5113         dev_priv->fstart = fstart;
5114
5115         dev_priv->max_delay = fmax;
5116         dev_priv->min_delay = fmin;
5117         dev_priv->cur_delay = fstart;
5118
5119         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5120                          fstart);
5121
5122         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5123
5124         /*
5125          * Interrupts will be enabled in ironlake_irq_postinstall
5126          */
5127
5128         I915_WRITE(VIDSTART, vstart);
5129         POSTING_READ(VIDSTART);
5130
5131         rgvmodectl |= MEMMODE_SWMODE_EN;
5132         I915_WRITE(MEMMODECTL, rgvmodectl);
5133
5134         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5135                 if (i++ > 100) {
5136                         DRM_ERROR("stuck trying to change perf mode\n");
5137                         break;
5138                 }
5139                 msleep(1);
5140         }
5141         msleep(1);
5142
5143         ironlake_set_drps(dev, fstart);
5144
5145         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5146                 I915_READ(0x112e0);
5147         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5148         dev_priv->last_count2 = I915_READ(0x112f4);
5149         getrawmonotonic(&dev_priv->last_time2);
5150 }
5151
5152 void ironlake_disable_drps(struct drm_device *dev)
5153 {
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         u16 rgvswctl = I915_READ16(MEMSWCTL);
5156
5157         /* Ack interrupts, disable EFC interrupt */
5158         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5159         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5160         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5161         I915_WRITE(DEIIR, DE_PCU_EVENT);
5162         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5163
5164         /* Go back to the starting frequency */
5165         ironlake_set_drps(dev, dev_priv->fstart);
5166         msleep(1);
5167         rgvswctl |= MEMCTL_CMD_STS;
5168         I915_WRITE(MEMSWCTL, rgvswctl);
5169         msleep(1);
5170
5171 }
5172
5173 static unsigned long intel_pxfreq(u32 vidfreq)
5174 {
5175         unsigned long freq;
5176         int div = (vidfreq & 0x3f0000) >> 16;
5177         int post = (vidfreq & 0x3000) >> 12;
5178         int pre = (vidfreq & 0x7);
5179
5180         if (!pre)
5181                 return 0;
5182
5183         freq = ((div * 133333) / ((1<<post) * pre));
5184
5185         return freq;
5186 }
5187
5188 void intel_init_emon(struct drm_device *dev)
5189 {
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191         u32 lcfuse;
5192         u8 pxw[16];
5193         int i;
5194
5195         /* Disable to program */
5196         I915_WRITE(ECR, 0);
5197         POSTING_READ(ECR);
5198
5199         /* Program energy weights for various events */
5200         I915_WRITE(SDEW, 0x15040d00);
5201         I915_WRITE(CSIEW0, 0x007f0000);
5202         I915_WRITE(CSIEW1, 0x1e220004);
5203         I915_WRITE(CSIEW2, 0x04000004);
5204
5205         for (i = 0; i < 5; i++)
5206                 I915_WRITE(PEW + (i * 4), 0);
5207         for (i = 0; i < 3; i++)
5208                 I915_WRITE(DEW + (i * 4), 0);
5209
5210         /* Program P-state weights to account for frequency power adjustment */
5211         for (i = 0; i < 16; i++) {
5212                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5213                 unsigned long freq = intel_pxfreq(pxvidfreq);
5214                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5215                         PXVFREQ_PX_SHIFT;
5216                 unsigned long val;
5217
5218                 val = vid * vid;
5219                 val *= (freq / 1000);
5220                 val *= 255;
5221                 val /= (127*127*900);
5222                 if (val > 0xff)
5223                         DRM_ERROR("bad pxval: %ld\n", val);
5224                 pxw[i] = val;
5225         }
5226         /* Render standby states get 0 weight */
5227         pxw[14] = 0;
5228         pxw[15] = 0;
5229
5230         for (i = 0; i < 4; i++) {
5231                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5232                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5233                 I915_WRITE(PXW + (i * 4), val);
5234         }
5235
5236         /* Adjust magic regs to magic values (more experimental results) */
5237         I915_WRITE(OGW0, 0);
5238         I915_WRITE(OGW1, 0);
5239         I915_WRITE(EG0, 0x00007f00);
5240         I915_WRITE(EG1, 0x0000000e);
5241         I915_WRITE(EG2, 0x000e0000);
5242         I915_WRITE(EG3, 0x68000300);
5243         I915_WRITE(EG4, 0x42000000);
5244         I915_WRITE(EG5, 0x00140031);
5245         I915_WRITE(EG6, 0);
5246         I915_WRITE(EG7, 0);
5247
5248         for (i = 0; i < 8; i++)
5249                 I915_WRITE(PXWL + (i * 4), 0);
5250
5251         /* Enable PMON + select events */
5252         I915_WRITE(ECR, 0x80000019);
5253
5254         lcfuse = I915_READ(LCFUSE02);
5255
5256         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5257 }
5258
5259 void intel_init_clock_gating(struct drm_device *dev)
5260 {
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263         /*
5264          * Disable clock gating reported to work incorrectly according to the
5265          * specs, but enable as much else as we can.
5266          */
5267         if (HAS_PCH_SPLIT(dev)) {
5268                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5269
5270                 if (IS_IRONLAKE(dev)) {
5271                         /* Required for FBC */
5272                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5273                         /* Required for CxSR */
5274                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5275
5276                         I915_WRITE(PCH_3DCGDIS0,
5277                                    MARIUNIT_CLOCK_GATE_DISABLE |
5278                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5279                 }
5280
5281                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5282
5283                 /*
5284                  * According to the spec the following bits should be set in
5285                  * order to enable memory self-refresh
5286                  * The bit 22/21 of 0x42004
5287                  * The bit 5 of 0x42020
5288                  * The bit 15 of 0x45000
5289                  */
5290                 if (IS_IRONLAKE(dev)) {
5291                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5292                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5293                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5294                         I915_WRITE(ILK_DSPCLK_GATE,
5295                                         (I915_READ(ILK_DSPCLK_GATE) |
5296                                                 ILK_DPARB_CLK_GATE));
5297                         I915_WRITE(DISP_ARB_CTL,
5298                                         (I915_READ(DISP_ARB_CTL) |
5299                                                 DISP_FBC_WM_DIS));
5300                 }
5301                 return;
5302         } else if (IS_G4X(dev)) {
5303                 uint32_t dspclk_gate;
5304                 I915_WRITE(RENCLK_GATE_D1, 0);
5305                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5306                        GS_UNIT_CLOCK_GATE_DISABLE |
5307                        CL_UNIT_CLOCK_GATE_DISABLE);
5308                 I915_WRITE(RAMCLK_GATE_D, 0);
5309                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5310                         OVRUNIT_CLOCK_GATE_DISABLE |
5311                         OVCUNIT_CLOCK_GATE_DISABLE;
5312                 if (IS_GM45(dev))
5313                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5314                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5315         } else if (IS_I965GM(dev)) {
5316                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5317                 I915_WRITE(RENCLK_GATE_D2, 0);
5318                 I915_WRITE(DSPCLK_GATE_D, 0);
5319                 I915_WRITE(RAMCLK_GATE_D, 0);
5320                 I915_WRITE16(DEUC, 0);
5321         } else if (IS_I965G(dev)) {
5322                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5323                        I965_RCC_CLOCK_GATE_DISABLE |
5324                        I965_RCPB_CLOCK_GATE_DISABLE |
5325                        I965_ISC_CLOCK_GATE_DISABLE |
5326                        I965_FBC_CLOCK_GATE_DISABLE);
5327                 I915_WRITE(RENCLK_GATE_D2, 0);
5328         } else if (IS_I9XX(dev)) {
5329                 u32 dstate = I915_READ(D_STATE);
5330
5331                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5332                         DSTATE_DOT_CLOCK_GATING;
5333                 I915_WRITE(D_STATE, dstate);
5334         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5335                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5336         } else if (IS_I830(dev)) {
5337                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5338         }
5339
5340         /*
5341          * GPU can automatically power down the render unit if given a page
5342          * to save state.
5343          */
5344         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5345                 struct drm_i915_gem_object *obj_priv = NULL;
5346
5347                 if (dev_priv->pwrctx) {
5348                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5349                 } else {
5350                         struct drm_gem_object *pwrctx;
5351
5352                         pwrctx = intel_alloc_power_context(dev);
5353                         if (pwrctx) {
5354                                 dev_priv->pwrctx = pwrctx;
5355                                 obj_priv = to_intel_bo(pwrctx);
5356                         }
5357                 }
5358
5359                 if (obj_priv) {
5360                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5361                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5362                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5363                 }
5364         }
5365 }
5366
5367 /* Set up chip specific display functions */
5368 static void intel_init_display(struct drm_device *dev)
5369 {
5370         struct drm_i915_private *dev_priv = dev->dev_private;
5371
5372         /* We always want a DPMS function */
5373         if (HAS_PCH_SPLIT(dev))
5374                 dev_priv->display.dpms = ironlake_crtc_dpms;
5375         else
5376                 dev_priv->display.dpms = i9xx_crtc_dpms;
5377
5378         if (I915_HAS_FBC(dev)) {
5379                 if (IS_GM45(dev)) {
5380                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5381                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5382                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5383                 } else if (IS_I965GM(dev)) {
5384                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5385                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5386                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5387                 }
5388                 /* 855GM needs testing */
5389         }
5390
5391         /* Returns the core display clock speed */
5392         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5393                 dev_priv->display.get_display_clock_speed =
5394                         i945_get_display_clock_speed;
5395         else if (IS_I915G(dev))
5396                 dev_priv->display.get_display_clock_speed =
5397                         i915_get_display_clock_speed;
5398         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5399                 dev_priv->display.get_display_clock_speed =
5400                         i9xx_misc_get_display_clock_speed;
5401         else if (IS_I915GM(dev))
5402                 dev_priv->display.get_display_clock_speed =
5403                         i915gm_get_display_clock_speed;
5404         else if (IS_I865G(dev))
5405                 dev_priv->display.get_display_clock_speed =
5406                         i865_get_display_clock_speed;
5407         else if (IS_I85X(dev))
5408                 dev_priv->display.get_display_clock_speed =
5409                         i855_get_display_clock_speed;
5410         else /* 852, 830 */
5411                 dev_priv->display.get_display_clock_speed =
5412                         i830_get_display_clock_speed;
5413
5414         /* For FIFO watermark updates */
5415         if (HAS_PCH_SPLIT(dev)) {
5416                 if (IS_IRONLAKE(dev)) {
5417                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5418                                 dev_priv->display.update_wm = ironlake_update_wm;
5419                         else {
5420                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5421                                               "Disable CxSR\n");
5422                                 dev_priv->display.update_wm = NULL;
5423                         }
5424                 } else
5425                         dev_priv->display.update_wm = NULL;
5426         } else if (IS_PINEVIEW(dev)) {
5427                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5428                                             dev_priv->is_ddr3,
5429                                             dev_priv->fsb_freq,
5430                                             dev_priv->mem_freq)) {
5431                         DRM_INFO("failed to find known CxSR latency "
5432                                  "(found ddr%s fsb freq %d, mem freq %d), "
5433                                  "disabling CxSR\n",
5434                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5435                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5436                         /* Disable CxSR and never update its watermark again */
5437                         pineview_disable_cxsr(dev);
5438                         dev_priv->display.update_wm = NULL;
5439                 } else
5440                         dev_priv->display.update_wm = pineview_update_wm;
5441         } else if (IS_G4X(dev))
5442                 dev_priv->display.update_wm = g4x_update_wm;
5443         else if (IS_I965G(dev))
5444                 dev_priv->display.update_wm = i965_update_wm;
5445         else if (IS_I9XX(dev)) {
5446                 dev_priv->display.update_wm = i9xx_update_wm;
5447                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5448         } else if (IS_I85X(dev)) {
5449                 dev_priv->display.update_wm = i9xx_update_wm;
5450                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5451         } else {
5452                 dev_priv->display.update_wm = i830_update_wm;
5453                 if (IS_845G(dev))
5454                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5455                 else
5456                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5457         }
5458 }
5459
5460 void intel_modeset_init(struct drm_device *dev)
5461 {
5462         struct drm_i915_private *dev_priv = dev->dev_private;
5463         int num_pipe;
5464         int i;
5465
5466         drm_mode_config_init(dev);
5467
5468         dev->mode_config.min_width = 0;
5469         dev->mode_config.min_height = 0;
5470
5471         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5472
5473         intel_init_display(dev);
5474
5475         if (IS_I965G(dev)) {
5476                 dev->mode_config.max_width = 8192;
5477                 dev->mode_config.max_height = 8192;
5478         } else if (IS_I9XX(dev)) {
5479                 dev->mode_config.max_width = 4096;
5480                 dev->mode_config.max_height = 4096;
5481         } else {
5482                 dev->mode_config.max_width = 2048;
5483                 dev->mode_config.max_height = 2048;
5484         }
5485
5486         /* set memory base */
5487         if (IS_I9XX(dev))
5488                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5489         else
5490                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5491
5492         if (IS_MOBILE(dev) || IS_I9XX(dev))
5493                 num_pipe = 2;
5494         else
5495                 num_pipe = 1;
5496         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5497                   num_pipe, num_pipe > 1 ? "s" : "");
5498
5499         for (i = 0; i < num_pipe; i++) {
5500                 intel_crtc_init(dev, i);
5501         }
5502
5503         intel_setup_outputs(dev);
5504
5505         intel_init_clock_gating(dev);
5506
5507         if (IS_IRONLAKE_M(dev)) {
5508                 ironlake_enable_drps(dev);
5509                 intel_init_emon(dev);
5510         }
5511
5512         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5513         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5514                     (unsigned long)dev);
5515
5516         intel_setup_overlay(dev);
5517 }
5518
5519 void intel_modeset_cleanup(struct drm_device *dev)
5520 {
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522         struct drm_crtc *crtc;
5523         struct intel_crtc *intel_crtc;
5524
5525         mutex_lock(&dev->struct_mutex);
5526
5527         drm_kms_helper_poll_fini(dev);
5528         intel_fbdev_fini(dev);
5529
5530         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5531                 /* Skip inactive CRTCs */
5532                 if (!crtc->fb)
5533                         continue;
5534
5535                 intel_crtc = to_intel_crtc(crtc);
5536                 intel_increase_pllclock(crtc, false);
5537                 del_timer_sync(&intel_crtc->idle_timer);
5538         }
5539
5540         del_timer_sync(&dev_priv->idle_timer);
5541
5542         if (dev_priv->display.disable_fbc)
5543                 dev_priv->display.disable_fbc(dev);
5544
5545         if (dev_priv->pwrctx) {
5546                 struct drm_i915_gem_object *obj_priv;
5547
5548                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5549                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5550                 I915_READ(PWRCTXA);
5551                 i915_gem_object_unpin(dev_priv->pwrctx);
5552                 drm_gem_object_unreference(dev_priv->pwrctx);
5553         }
5554
5555         if (IS_IRONLAKE_M(dev))
5556                 ironlake_disable_drps(dev);
5557
5558         mutex_unlock(&dev->struct_mutex);
5559
5560         drm_mode_config_cleanup(dev);
5561 }
5562
5563
5564 /*
5565  * Return which encoder is currently attached for connector.
5566  */
5567 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5568 {
5569         struct drm_mode_object *obj;
5570         struct drm_encoder *encoder;
5571         int i;
5572
5573         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5574                 if (connector->encoder_ids[i] == 0)
5575                         break;
5576
5577                 obj = drm_mode_object_find(connector->dev,
5578                                            connector->encoder_ids[i],
5579                                            DRM_MODE_OBJECT_ENCODER);
5580                 if (!obj)
5581                         continue;
5582
5583                 encoder = obj_to_encoder(obj);
5584                 return encoder;
5585         }
5586         return NULL;
5587 }
5588
5589 /*
5590  * set vga decode state - true == enable VGA decode
5591  */
5592 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5593 {
5594         struct drm_i915_private *dev_priv = dev->dev_private;
5595         u16 gmch_ctrl;
5596
5597         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5598         if (state)
5599                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5600         else
5601                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5602         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5603         return 0;
5604 }