drm/i915: Add CxSR support on Pineview DDR3
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requirement, prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirement, prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033         u32 fbc_ctl;
1034
1035         if (!I915_HAS_FBC(dev))
1036                 return;
1037
1038         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039                 return; /* Already off, just return */
1040
1041         /* Disable compression */
1042         fbc_ctl = I915_READ(FBC_CONTROL);
1043         fbc_ctl &= ~FBC_CTL_EN;
1044         I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046         /* Wait for compressing bit to clear */
1047         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048                 if (time_after(jiffies, timeout)) {
1049                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050                         break;
1051                 }
1052                 ; /* do nothing */
1053         }
1054
1055         intel_wait_for_vblank(dev);
1056
1057         DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct drm_framebuffer *fb = crtc->fb;
1072         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076                      DPFC_CTL_PLANEB);
1077         unsigned long stall_watermark = 200;
1078         u32 dpfc_ctl;
1079
1080         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081         dev_priv->cfb_fence = obj_priv->fence_reg;
1082         dev_priv->cfb_plane = intel_crtc->plane;
1083
1084         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088         } else {
1089                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090         }
1091
1092         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098         /* enable it... */
1099         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 dpfc_ctl;
1108
1109         /* Disable compression */
1110         dpfc_ctl = I915_READ(DPFC_CONTROL);
1111         dpfc_ctl &= ~DPFC_CTL_EN;
1112         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113         intel_wait_for_vblank(dev);
1114
1115         DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129         if (!dev_priv->display.fbc_enabled)
1130                 return false;
1131
1132         return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139         if (!dev_priv->display.enable_fbc)
1140                 return;
1141
1142         dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (!dev_priv->display.disable_fbc)
1150                 return;
1151
1152         dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156  * intel_update_fbc - enable/disable FBC as needed
1157  * @crtc: CRTC to point the compressor at
1158  * @mode: mode in use
1159  *
1160  * Set up the framebuffer compression hardware at mode set time.  We
1161  * enable it if possible:
1162  *   - plane A only (on pre-965)
1163  *   - no pixel mulitply/line duplication
1164  *   - no alpha buffer discard
1165  *   - no dual wide
1166  *   - framebuffer <= 2048 in width, 1536 in height
1167  *
1168  * We can't assume that any compression will take place (worst case),
1169  * so the compressed buffer has to be the same size as the uncompressed
1170  * one.  It also must reside (along with the line length buffer) in
1171  * stolen memory.
1172  *
1173  * We need to enable/disable FBC on a global basis.
1174  */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176                              struct drm_display_mode *mode)
1177 {
1178         struct drm_device *dev = crtc->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct drm_framebuffer *fb = crtc->fb;
1181         struct intel_framebuffer *intel_fb;
1182         struct drm_i915_gem_object *obj_priv;
1183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184         int plane = intel_crtc->plane;
1185
1186         if (!i915_powersave)
1187                 return;
1188
1189         if (!I915_HAS_FBC(dev))
1190                 return;
1191
1192         if (!crtc->fb)
1193                 return;
1194
1195         intel_fb = to_intel_framebuffer(fb);
1196         obj_priv = to_intel_bo(intel_fb->obj);
1197
1198         /*
1199          * If FBC is already on, we just have to verify that we can
1200          * keep it that way...
1201          * Need to disable if:
1202          *   - changing FBC params (stride, fence, mode)
1203          *   - new fb is too large to fit in compressed buffer
1204          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1205          */
1206         if (intel_fb->obj->size > dev_priv->cfb_size) {
1207                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1208                                 "compression\n");
1209                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1210                 goto out_disable;
1211         }
1212         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214                 DRM_DEBUG_KMS("mode incompatible with compression, "
1215                                 "disabling\n");
1216                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1217                 goto out_disable;
1218         }
1219         if ((mode->hdisplay > 2048) ||
1220             (mode->vdisplay > 1536)) {
1221                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1223                 goto out_disable;
1224         }
1225         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1228                 goto out_disable;
1229         }
1230         if (obj_priv->tiling_mode != I915_TILING_X) {
1231                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1233                 goto out_disable;
1234         }
1235
1236         if (intel_fbc_enabled(dev)) {
1237                 /* We can re-enable it in this case, but need to update pitch */
1238                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240                     (plane != dev_priv->cfb_plane))
1241                         intel_disable_fbc(dev);
1242         }
1243
1244         /* Now try to turn it back on if possible */
1245         if (!intel_fbc_enabled(dev))
1246                 intel_enable_fbc(crtc, 500);
1247
1248         return;
1249
1250 out_disable:
1251         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1252         /* Multiple disables should be harmless */
1253         if (intel_fbc_enabled(dev))
1254                 intel_disable_fbc(dev);
1255 }
1256
1257 static int
1258 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1259 {
1260         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1261         u32 alignment;
1262         int ret;
1263
1264         switch (obj_priv->tiling_mode) {
1265         case I915_TILING_NONE:
1266                 alignment = 64 * 1024;
1267                 break;
1268         case I915_TILING_X:
1269                 /* pin() will align the object as required by fence */
1270                 alignment = 0;
1271                 break;
1272         case I915_TILING_Y:
1273                 /* FIXME: Is this true? */
1274                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1275                 return -EINVAL;
1276         default:
1277                 BUG();
1278         }
1279
1280         ret = i915_gem_object_pin(obj, alignment);
1281         if (ret != 0)
1282                 return ret;
1283
1284         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1285          * fence, whereas 965+ only requires a fence if using
1286          * framebuffer compression.  For simplicity, we always install
1287          * a fence as the cost is not that onerous.
1288          */
1289         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1290             obj_priv->tiling_mode != I915_TILING_NONE) {
1291                 ret = i915_gem_object_get_fence_reg(obj);
1292                 if (ret != 0) {
1293                         i915_gem_object_unpin(obj);
1294                         return ret;
1295                 }
1296         }
1297
1298         return 0;
1299 }
1300
1301 static int
1302 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1303                     struct drm_framebuffer *old_fb)
1304 {
1305         struct drm_device *dev = crtc->dev;
1306         struct drm_i915_private *dev_priv = dev->dev_private;
1307         struct drm_i915_master_private *master_priv;
1308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309         struct intel_framebuffer *intel_fb;
1310         struct drm_i915_gem_object *obj_priv;
1311         struct drm_gem_object *obj;
1312         int pipe = intel_crtc->pipe;
1313         int plane = intel_crtc->plane;
1314         unsigned long Start, Offset;
1315         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1316         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1317         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1318         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1319         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1320         u32 dspcntr;
1321         int ret;
1322
1323         /* no fb bound */
1324         if (!crtc->fb) {
1325                 DRM_DEBUG_KMS("No FB bound\n");
1326                 return 0;
1327         }
1328
1329         switch (plane) {
1330         case 0:
1331         case 1:
1332                 break;
1333         default:
1334                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1335                 return -EINVAL;
1336         }
1337
1338         intel_fb = to_intel_framebuffer(crtc->fb);
1339         obj = intel_fb->obj;
1340         obj_priv = to_intel_bo(obj);
1341
1342         mutex_lock(&dev->struct_mutex);
1343         ret = intel_pin_and_fence_fb_obj(dev, obj);
1344         if (ret != 0) {
1345                 mutex_unlock(&dev->struct_mutex);
1346                 return ret;
1347         }
1348
1349         ret = i915_gem_object_set_to_display_plane(obj);
1350         if (ret != 0) {
1351                 i915_gem_object_unpin(obj);
1352                 mutex_unlock(&dev->struct_mutex);
1353                 return ret;
1354         }
1355
1356         dspcntr = I915_READ(dspcntr_reg);
1357         /* Mask out pixel format bits in case we change it */
1358         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1359         switch (crtc->fb->bits_per_pixel) {
1360         case 8:
1361                 dspcntr |= DISPPLANE_8BPP;
1362                 break;
1363         case 16:
1364                 if (crtc->fb->depth == 15)
1365                         dspcntr |= DISPPLANE_15_16BPP;
1366                 else
1367                         dspcntr |= DISPPLANE_16BPP;
1368                 break;
1369         case 24:
1370         case 32:
1371                 if (crtc->fb->depth == 30)
1372                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1373                 else
1374                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1375                 break;
1376         default:
1377                 DRM_ERROR("Unknown color depth\n");
1378                 i915_gem_object_unpin(obj);
1379                 mutex_unlock(&dev->struct_mutex);
1380                 return -EINVAL;
1381         }
1382         if (IS_I965G(dev)) {
1383                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1384                         dspcntr |= DISPPLANE_TILED;
1385                 else
1386                         dspcntr &= ~DISPPLANE_TILED;
1387         }
1388
1389         if (HAS_PCH_SPLIT(dev))
1390                 /* must disable */
1391                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1392
1393         I915_WRITE(dspcntr_reg, dspcntr);
1394
1395         Start = obj_priv->gtt_offset;
1396         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1397
1398         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1399         I915_WRITE(dspstride, crtc->fb->pitch);
1400         if (IS_I965G(dev)) {
1401                 I915_WRITE(dspbase, Offset);
1402                 I915_READ(dspbase);
1403                 I915_WRITE(dspsurf, Start);
1404                 I915_READ(dspsurf);
1405                 I915_WRITE(dsptileoff, (y << 16) | x);
1406         } else {
1407                 I915_WRITE(dspbase, Start + Offset);
1408                 I915_READ(dspbase);
1409         }
1410
1411         if ((IS_I965G(dev) || plane == 0))
1412                 intel_update_fbc(crtc, &crtc->mode);
1413
1414         intel_wait_for_vblank(dev);
1415
1416         if (old_fb) {
1417                 intel_fb = to_intel_framebuffer(old_fb);
1418                 obj_priv = to_intel_bo(intel_fb->obj);
1419                 i915_gem_object_unpin(intel_fb->obj);
1420         }
1421         intel_increase_pllclock(crtc, true);
1422
1423         mutex_unlock(&dev->struct_mutex);
1424
1425         if (!dev->primary->master)
1426                 return 0;
1427
1428         master_priv = dev->primary->master->driver_priv;
1429         if (!master_priv->sarea_priv)
1430                 return 0;
1431
1432         if (pipe) {
1433                 master_priv->sarea_priv->pipeB_x = x;
1434                 master_priv->sarea_priv->pipeB_y = y;
1435         } else {
1436                 master_priv->sarea_priv->pipeA_x = x;
1437                 master_priv->sarea_priv->pipeA_y = y;
1438         }
1439
1440         return 0;
1441 }
1442
1443 /* Disable the VGA plane that we never use */
1444 static void i915_disable_vga (struct drm_device *dev)
1445 {
1446         struct drm_i915_private *dev_priv = dev->dev_private;
1447         u8 sr1;
1448         u32 vga_reg;
1449
1450         if (HAS_PCH_SPLIT(dev))
1451                 vga_reg = CPU_VGACNTRL;
1452         else
1453                 vga_reg = VGACNTRL;
1454
1455         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1456                 return;
1457
1458         I915_WRITE8(VGA_SR_INDEX, 1);
1459         sr1 = I915_READ8(VGA_SR_DATA);
1460         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1461         udelay(100);
1462
1463         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1464 }
1465
1466 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1467 {
1468         struct drm_device *dev = crtc->dev;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         u32 dpa_ctl;
1471
1472         DRM_DEBUG_KMS("\n");
1473         dpa_ctl = I915_READ(DP_A);
1474         dpa_ctl &= ~DP_PLL_ENABLE;
1475         I915_WRITE(DP_A, dpa_ctl);
1476 }
1477
1478 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1479 {
1480         struct drm_device *dev = crtc->dev;
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 dpa_ctl;
1483
1484         dpa_ctl = I915_READ(DP_A);
1485         dpa_ctl |= DP_PLL_ENABLE;
1486         I915_WRITE(DP_A, dpa_ctl);
1487         udelay(200);
1488 }
1489
1490
1491 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1492 {
1493         struct drm_device *dev = crtc->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         u32 dpa_ctl;
1496
1497         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1498         dpa_ctl = I915_READ(DP_A);
1499         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1500
1501         if (clock < 200000) {
1502                 u32 temp;
1503                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1504                 /* workaround for 160Mhz:
1505                    1) program 0x4600c bits 15:0 = 0x8124
1506                    2) program 0x46010 bit 0 = 1
1507                    3) program 0x46034 bit 24 = 1
1508                    4) program 0x64000 bit 14 = 1
1509                    */
1510                 temp = I915_READ(0x4600c);
1511                 temp &= 0xffff0000;
1512                 I915_WRITE(0x4600c, temp | 0x8124);
1513
1514                 temp = I915_READ(0x46010);
1515                 I915_WRITE(0x46010, temp | 1);
1516
1517                 temp = I915_READ(0x46034);
1518                 I915_WRITE(0x46034, temp | (1 << 24));
1519         } else {
1520                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1521         }
1522         I915_WRITE(DP_A, dpa_ctl);
1523
1524         udelay(500);
1525 }
1526
1527 /* The FDI link training functions for ILK/Ibexpeak. */
1528 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1529 {
1530         struct drm_device *dev = crtc->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1533         int pipe = intel_crtc->pipe;
1534         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1535         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1536         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1537         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1538         u32 temp, tries = 0;
1539
1540         /* enable CPU FDI TX and PCH FDI RX */
1541         temp = I915_READ(fdi_tx_reg);
1542         temp |= FDI_TX_ENABLE;
1543         temp &= ~(7 << 19);
1544         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1545         temp &= ~FDI_LINK_TRAIN_NONE;
1546         temp |= FDI_LINK_TRAIN_PATTERN_1;
1547         I915_WRITE(fdi_tx_reg, temp);
1548         I915_READ(fdi_tx_reg);
1549
1550         temp = I915_READ(fdi_rx_reg);
1551         temp &= ~FDI_LINK_TRAIN_NONE;
1552         temp |= FDI_LINK_TRAIN_PATTERN_1;
1553         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1554         I915_READ(fdi_rx_reg);
1555         udelay(150);
1556
1557         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1558            for train result */
1559         temp = I915_READ(fdi_rx_imr_reg);
1560         temp &= ~FDI_RX_SYMBOL_LOCK;
1561         temp &= ~FDI_RX_BIT_LOCK;
1562         I915_WRITE(fdi_rx_imr_reg, temp);
1563         I915_READ(fdi_rx_imr_reg);
1564         udelay(150);
1565
1566         for (;;) {
1567                 temp = I915_READ(fdi_rx_iir_reg);
1568                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1569
1570                 if ((temp & FDI_RX_BIT_LOCK)) {
1571                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1572                         I915_WRITE(fdi_rx_iir_reg,
1573                                    temp | FDI_RX_BIT_LOCK);
1574                         break;
1575                 }
1576
1577                 tries++;
1578
1579                 if (tries > 5) {
1580                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1581                         break;
1582                 }
1583         }
1584
1585         /* Train 2 */
1586         temp = I915_READ(fdi_tx_reg);
1587         temp &= ~FDI_LINK_TRAIN_NONE;
1588         temp |= FDI_LINK_TRAIN_PATTERN_2;
1589         I915_WRITE(fdi_tx_reg, temp);
1590
1591         temp = I915_READ(fdi_rx_reg);
1592         temp &= ~FDI_LINK_TRAIN_NONE;
1593         temp |= FDI_LINK_TRAIN_PATTERN_2;
1594         I915_WRITE(fdi_rx_reg, temp);
1595         udelay(150);
1596
1597         tries = 0;
1598
1599         for (;;) {
1600                 temp = I915_READ(fdi_rx_iir_reg);
1601                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1602
1603                 if (temp & FDI_RX_SYMBOL_LOCK) {
1604                         I915_WRITE(fdi_rx_iir_reg,
1605                                    temp | FDI_RX_SYMBOL_LOCK);
1606                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1607                         break;
1608                 }
1609
1610                 tries++;
1611
1612                 if (tries > 5) {
1613                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1614                         break;
1615                 }
1616         }
1617
1618         DRM_DEBUG_KMS("FDI train done\n");
1619 }
1620
1621 static int snb_b_fdi_train_param [] = {
1622         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1623         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1624         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1625         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1626 };
1627
1628 /* The FDI link training functions for SNB/Cougarpoint. */
1629 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1630 {
1631         struct drm_device *dev = crtc->dev;
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1634         int pipe = intel_crtc->pipe;
1635         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1636         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1637         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1638         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1639         u32 temp, i;
1640
1641         /* enable CPU FDI TX and PCH FDI RX */
1642         temp = I915_READ(fdi_tx_reg);
1643         temp |= FDI_TX_ENABLE;
1644         temp &= ~(7 << 19);
1645         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1646         temp &= ~FDI_LINK_TRAIN_NONE;
1647         temp |= FDI_LINK_TRAIN_PATTERN_1;
1648         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1649         /* SNB-B */
1650         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1651         I915_WRITE(fdi_tx_reg, temp);
1652         I915_READ(fdi_tx_reg);
1653
1654         temp = I915_READ(fdi_rx_reg);
1655         if (HAS_PCH_CPT(dev)) {
1656                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1657                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1658         } else {
1659                 temp &= ~FDI_LINK_TRAIN_NONE;
1660                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1661         }
1662         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1663         I915_READ(fdi_rx_reg);
1664         udelay(150);
1665
1666         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1667            for train result */
1668         temp = I915_READ(fdi_rx_imr_reg);
1669         temp &= ~FDI_RX_SYMBOL_LOCK;
1670         temp &= ~FDI_RX_BIT_LOCK;
1671         I915_WRITE(fdi_rx_imr_reg, temp);
1672         I915_READ(fdi_rx_imr_reg);
1673         udelay(150);
1674
1675         for (i = 0; i < 4; i++ ) {
1676                 temp = I915_READ(fdi_tx_reg);
1677                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1678                 temp |= snb_b_fdi_train_param[i];
1679                 I915_WRITE(fdi_tx_reg, temp);
1680                 udelay(500);
1681
1682                 temp = I915_READ(fdi_rx_iir_reg);
1683                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1684
1685                 if (temp & FDI_RX_BIT_LOCK) {
1686                         I915_WRITE(fdi_rx_iir_reg,
1687                                    temp | FDI_RX_BIT_LOCK);
1688                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1689                         break;
1690                 }
1691         }
1692         if (i == 4)
1693                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1694
1695         /* Train 2 */
1696         temp = I915_READ(fdi_tx_reg);
1697         temp &= ~FDI_LINK_TRAIN_NONE;
1698         temp |= FDI_LINK_TRAIN_PATTERN_2;
1699         if (IS_GEN6(dev)) {
1700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1701                 /* SNB-B */
1702                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1703         }
1704         I915_WRITE(fdi_tx_reg, temp);
1705
1706         temp = I915_READ(fdi_rx_reg);
1707         if (HAS_PCH_CPT(dev)) {
1708                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1709                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1710         } else {
1711                 temp &= ~FDI_LINK_TRAIN_NONE;
1712                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1713         }
1714         I915_WRITE(fdi_rx_reg, temp);
1715         udelay(150);
1716
1717         for (i = 0; i < 4; i++ ) {
1718                 temp = I915_READ(fdi_tx_reg);
1719                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1720                 temp |= snb_b_fdi_train_param[i];
1721                 I915_WRITE(fdi_tx_reg, temp);
1722                 udelay(500);
1723
1724                 temp = I915_READ(fdi_rx_iir_reg);
1725                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1726
1727                 if (temp & FDI_RX_SYMBOL_LOCK) {
1728                         I915_WRITE(fdi_rx_iir_reg,
1729                                    temp | FDI_RX_SYMBOL_LOCK);
1730                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1731                         break;
1732                 }
1733         }
1734         if (i == 4)
1735                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1736
1737         DRM_DEBUG_KMS("FDI train done.\n");
1738 }
1739
1740 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1741 {
1742         struct drm_device *dev = crtc->dev;
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1745         int pipe = intel_crtc->pipe;
1746         int plane = intel_crtc->plane;
1747         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1748         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1749         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1750         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1751         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1752         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1753         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1754         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1755         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1756         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1757         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1758         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1759         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1760         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1761         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1762         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1763         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1764         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1765         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1766         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1767         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1768         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1769         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1770         u32 temp;
1771         int n;
1772         u32 pipe_bpc;
1773
1774         temp = I915_READ(pipeconf_reg);
1775         pipe_bpc = temp & PIPE_BPC_MASK;
1776
1777         /* XXX: When our outputs are all unaware of DPMS modes other than off
1778          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1779          */
1780         switch (mode) {
1781         case DRM_MODE_DPMS_ON:
1782         case DRM_MODE_DPMS_STANDBY:
1783         case DRM_MODE_DPMS_SUSPEND:
1784                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1785
1786                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1787                         temp = I915_READ(PCH_LVDS);
1788                         if ((temp & LVDS_PORT_EN) == 0) {
1789                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1790                                 POSTING_READ(PCH_LVDS);
1791                         }
1792                 }
1793
1794                 if (HAS_eDP) {
1795                         /* enable eDP PLL */
1796                         ironlake_enable_pll_edp(crtc);
1797                 } else {
1798
1799                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1800                         temp = I915_READ(fdi_rx_reg);
1801                         /*
1802                          * make the BPC in FDI Rx be consistent with that in
1803                          * pipeconf reg.
1804                          */
1805                         temp &= ~(0x7 << 16);
1806                         temp |= (pipe_bpc << 11);
1807                         temp &= ~(7 << 19);
1808                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1809                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1810                         I915_READ(fdi_rx_reg);
1811                         udelay(200);
1812
1813                         /* Switch from Rawclk to PCDclk */
1814                         temp = I915_READ(fdi_rx_reg);
1815                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1816                         I915_READ(fdi_rx_reg);
1817                         udelay(200);
1818
1819                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1820                         temp = I915_READ(fdi_tx_reg);
1821                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1822                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1823                                 I915_READ(fdi_tx_reg);
1824                                 udelay(100);
1825                         }
1826                 }
1827
1828                 /* Enable panel fitting for LVDS */
1829                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1830                         temp = I915_READ(pf_ctl_reg);
1831                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1832
1833                         /* currently full aspect */
1834                         I915_WRITE(pf_win_pos, 0);
1835
1836                         I915_WRITE(pf_win_size,
1837                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1838                                    (dev_priv->panel_fixed_mode->vdisplay));
1839                 }
1840
1841                 /* Enable CPU pipe */
1842                 temp = I915_READ(pipeconf_reg);
1843                 if ((temp & PIPEACONF_ENABLE) == 0) {
1844                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1845                         I915_READ(pipeconf_reg);
1846                         udelay(100);
1847                 }
1848
1849                 /* configure and enable CPU plane */
1850                 temp = I915_READ(dspcntr_reg);
1851                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1852                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1853                         /* Flush the plane changes */
1854                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1855                 }
1856
1857                 if (!HAS_eDP) {
1858                         /* For PCH output, training FDI link */
1859                         if (IS_GEN6(dev))
1860                                 gen6_fdi_link_train(crtc);
1861                         else
1862                                 ironlake_fdi_link_train(crtc);
1863
1864                         /* enable PCH DPLL */
1865                         temp = I915_READ(pch_dpll_reg);
1866                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1867                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1868                                 I915_READ(pch_dpll_reg);
1869                         }
1870                         udelay(200);
1871
1872                         if (HAS_PCH_CPT(dev)) {
1873                                 /* Be sure PCH DPLL SEL is set */
1874                                 temp = I915_READ(PCH_DPLL_SEL);
1875                                 if (trans_dpll_sel == 0 &&
1876                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1877                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1878                                 else if (trans_dpll_sel == 1 &&
1879                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1880                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1881                                 I915_WRITE(PCH_DPLL_SEL, temp);
1882                                 I915_READ(PCH_DPLL_SEL);
1883                         }
1884
1885                         /* set transcoder timing */
1886                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1887                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1888                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1889
1890                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1891                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1892                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1893
1894                         /* enable normal train */
1895                         temp = I915_READ(fdi_tx_reg);
1896                         temp &= ~FDI_LINK_TRAIN_NONE;
1897                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1898                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1899                         I915_READ(fdi_tx_reg);
1900
1901                         temp = I915_READ(fdi_rx_reg);
1902                         if (HAS_PCH_CPT(dev)) {
1903                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1904                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1905                         } else {
1906                                 temp &= ~FDI_LINK_TRAIN_NONE;
1907                                 temp |= FDI_LINK_TRAIN_NONE;
1908                         }
1909                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1910                         I915_READ(fdi_rx_reg);
1911
1912                         /* wait one idle pattern time */
1913                         udelay(100);
1914
1915                         /* For PCH DP, enable TRANS_DP_CTL */
1916                         if (HAS_PCH_CPT(dev) &&
1917                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1918                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1919                                 int reg;
1920
1921                                 reg = I915_READ(trans_dp_ctl);
1922                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1923                                 reg = TRANS_DP_OUTPUT_ENABLE |
1924                                       TRANS_DP_ENH_FRAMING |
1925                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1926                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1927
1928                                 switch (intel_trans_dp_port_sel(crtc)) {
1929                                 case PCH_DP_B:
1930                                         reg |= TRANS_DP_PORT_SEL_B;
1931                                         break;
1932                                 case PCH_DP_C:
1933                                         reg |= TRANS_DP_PORT_SEL_C;
1934                                         break;
1935                                 case PCH_DP_D:
1936                                         reg |= TRANS_DP_PORT_SEL_D;
1937                                         break;
1938                                 default:
1939                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1940                                         reg |= TRANS_DP_PORT_SEL_B;
1941                                         break;
1942                                 }
1943
1944                                 I915_WRITE(trans_dp_ctl, reg);
1945                                 POSTING_READ(trans_dp_ctl);
1946                         }
1947
1948                         /* enable PCH transcoder */
1949                         temp = I915_READ(transconf_reg);
1950                         /*
1951                          * make the BPC in transcoder be consistent with
1952                          * that in pipeconf reg.
1953                          */
1954                         temp &= ~PIPE_BPC_MASK;
1955                         temp |= pipe_bpc;
1956                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1957                         I915_READ(transconf_reg);
1958
1959                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1960                                 ;
1961
1962                 }
1963
1964                 intel_crtc_load_lut(crtc);
1965
1966         break;
1967         case DRM_MODE_DPMS_OFF:
1968                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1969
1970                 drm_vblank_off(dev, pipe);
1971                 /* Disable display plane */
1972                 temp = I915_READ(dspcntr_reg);
1973                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1974                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1975                         /* Flush the plane changes */
1976                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1977                         I915_READ(dspbase_reg);
1978                 }
1979
1980                 i915_disable_vga(dev);
1981
1982                 /* disable cpu pipe, disable after all planes disabled */
1983                 temp = I915_READ(pipeconf_reg);
1984                 if ((temp & PIPEACONF_ENABLE) != 0) {
1985                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1986                         I915_READ(pipeconf_reg);
1987                         n = 0;
1988                         /* wait for cpu pipe off, pipe state */
1989                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1990                                 n++;
1991                                 if (n < 60) {
1992                                         udelay(500);
1993                                         continue;
1994                                 } else {
1995                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1996                                                                 pipe);
1997                                         break;
1998                                 }
1999                         }
2000                 } else
2001                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2002
2003                 udelay(100);
2004
2005                 /* Disable PF */
2006                 temp = I915_READ(pf_ctl_reg);
2007                 if ((temp & PF_ENABLE) != 0) {
2008                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2009                         I915_READ(pf_ctl_reg);
2010                 }
2011                 I915_WRITE(pf_win_size, 0);
2012                 POSTING_READ(pf_win_size);
2013
2014
2015                 /* disable CPU FDI tx and PCH FDI rx */
2016                 temp = I915_READ(fdi_tx_reg);
2017                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2018                 I915_READ(fdi_tx_reg);
2019
2020                 temp = I915_READ(fdi_rx_reg);
2021                 /* BPC in FDI rx is consistent with that in pipeconf */
2022                 temp &= ~(0x07 << 16);
2023                 temp |= (pipe_bpc << 11);
2024                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2025                 I915_READ(fdi_rx_reg);
2026
2027                 udelay(100);
2028
2029                 /* still set train pattern 1 */
2030                 temp = I915_READ(fdi_tx_reg);
2031                 temp &= ~FDI_LINK_TRAIN_NONE;
2032                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2033                 I915_WRITE(fdi_tx_reg, temp);
2034                 POSTING_READ(fdi_tx_reg);
2035
2036                 temp = I915_READ(fdi_rx_reg);
2037                 if (HAS_PCH_CPT(dev)) {
2038                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2039                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2040                 } else {
2041                         temp &= ~FDI_LINK_TRAIN_NONE;
2042                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2043                 }
2044                 I915_WRITE(fdi_rx_reg, temp);
2045                 POSTING_READ(fdi_rx_reg);
2046
2047                 udelay(100);
2048
2049                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2050                         temp = I915_READ(PCH_LVDS);
2051                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2052                         I915_READ(PCH_LVDS);
2053                         udelay(100);
2054                 }
2055
2056                 /* disable PCH transcoder */
2057                 temp = I915_READ(transconf_reg);
2058                 if ((temp & TRANS_ENABLE) != 0) {
2059                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2060                         I915_READ(transconf_reg);
2061                         n = 0;
2062                         /* wait for PCH transcoder off, transcoder state */
2063                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2064                                 n++;
2065                                 if (n < 60) {
2066                                         udelay(500);
2067                                         continue;
2068                                 } else {
2069                                         DRM_DEBUG_KMS("transcoder %d off "
2070                                                         "delay\n", pipe);
2071                                         break;
2072                                 }
2073                         }
2074                 }
2075
2076                 temp = I915_READ(transconf_reg);
2077                 /* BPC in transcoder is consistent with that in pipeconf */
2078                 temp &= ~PIPE_BPC_MASK;
2079                 temp |= pipe_bpc;
2080                 I915_WRITE(transconf_reg, temp);
2081                 I915_READ(transconf_reg);
2082                 udelay(100);
2083
2084                 if (HAS_PCH_CPT(dev)) {
2085                         /* disable TRANS_DP_CTL */
2086                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2087                         int reg;
2088
2089                         reg = I915_READ(trans_dp_ctl);
2090                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2091                         I915_WRITE(trans_dp_ctl, reg);
2092                         POSTING_READ(trans_dp_ctl);
2093
2094                         /* disable DPLL_SEL */
2095                         temp = I915_READ(PCH_DPLL_SEL);
2096                         if (trans_dpll_sel == 0)
2097                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2098                         else
2099                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2100                         I915_WRITE(PCH_DPLL_SEL, temp);
2101                         I915_READ(PCH_DPLL_SEL);
2102
2103                 }
2104
2105                 /* disable PCH DPLL */
2106                 temp = I915_READ(pch_dpll_reg);
2107                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2108                 I915_READ(pch_dpll_reg);
2109
2110                 if (HAS_eDP) {
2111                         ironlake_disable_pll_edp(crtc);
2112                 }
2113
2114                 /* Switch from PCDclk to Rawclk */
2115                 temp = I915_READ(fdi_rx_reg);
2116                 temp &= ~FDI_SEL_PCDCLK;
2117                 I915_WRITE(fdi_rx_reg, temp);
2118                 I915_READ(fdi_rx_reg);
2119
2120                 /* Disable CPU FDI TX PLL */
2121                 temp = I915_READ(fdi_tx_reg);
2122                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2123                 I915_READ(fdi_tx_reg);
2124                 udelay(100);
2125
2126                 temp = I915_READ(fdi_rx_reg);
2127                 temp &= ~FDI_RX_PLL_ENABLE;
2128                 I915_WRITE(fdi_rx_reg, temp);
2129                 I915_READ(fdi_rx_reg);
2130
2131                 /* Wait for the clocks to turn off. */
2132                 udelay(100);
2133                 break;
2134         }
2135 }
2136
2137 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2138 {
2139         struct intel_overlay *overlay;
2140         int ret;
2141
2142         if (!enable && intel_crtc->overlay) {
2143                 overlay = intel_crtc->overlay;
2144                 mutex_lock(&overlay->dev->struct_mutex);
2145                 for (;;) {
2146                         ret = intel_overlay_switch_off(overlay);
2147                         if (ret == 0)
2148                                 break;
2149
2150                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2151                         if (ret != 0) {
2152                                 /* overlay doesn't react anymore. Usually
2153                                  * results in a black screen and an unkillable
2154                                  * X server. */
2155                                 BUG();
2156                                 overlay->hw_wedged = HW_WEDGED;
2157                                 break;
2158                         }
2159                 }
2160                 mutex_unlock(&overlay->dev->struct_mutex);
2161         }
2162         /* Let userspace switch the overlay on again. In most cases userspace
2163          * has to recompute where to put it anyway. */
2164
2165         return;
2166 }
2167
2168 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2169 {
2170         struct drm_device *dev = crtc->dev;
2171         struct drm_i915_private *dev_priv = dev->dev_private;
2172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2173         int pipe = intel_crtc->pipe;
2174         int plane = intel_crtc->plane;
2175         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2176         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2177         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2178         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2179         u32 temp;
2180
2181         /* XXX: When our outputs are all unaware of DPMS modes other than off
2182          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2183          */
2184         switch (mode) {
2185         case DRM_MODE_DPMS_ON:
2186         case DRM_MODE_DPMS_STANDBY:
2187         case DRM_MODE_DPMS_SUSPEND:
2188                 intel_update_watermarks(dev);
2189
2190                 /* Enable the DPLL */
2191                 temp = I915_READ(dpll_reg);
2192                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2193                         I915_WRITE(dpll_reg, temp);
2194                         I915_READ(dpll_reg);
2195                         /* Wait for the clocks to stabilize. */
2196                         udelay(150);
2197                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2198                         I915_READ(dpll_reg);
2199                         /* Wait for the clocks to stabilize. */
2200                         udelay(150);
2201                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2202                         I915_READ(dpll_reg);
2203                         /* Wait for the clocks to stabilize. */
2204                         udelay(150);
2205                 }
2206
2207                 /* Enable the pipe */
2208                 temp = I915_READ(pipeconf_reg);
2209                 if ((temp & PIPEACONF_ENABLE) == 0)
2210                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2211
2212                 /* Enable the plane */
2213                 temp = I915_READ(dspcntr_reg);
2214                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2215                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2216                         /* Flush the plane changes */
2217                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2218                 }
2219
2220                 intel_crtc_load_lut(crtc);
2221
2222                 if ((IS_I965G(dev) || plane == 0))
2223                         intel_update_fbc(crtc, &crtc->mode);
2224
2225                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2226                 intel_crtc_dpms_overlay(intel_crtc, true);
2227         break;
2228         case DRM_MODE_DPMS_OFF:
2229                 intel_update_watermarks(dev);
2230
2231                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2232                 intel_crtc_dpms_overlay(intel_crtc, false);
2233                 drm_vblank_off(dev, pipe);
2234
2235                 if (dev_priv->cfb_plane == plane &&
2236                     dev_priv->display.disable_fbc)
2237                         dev_priv->display.disable_fbc(dev);
2238
2239                 /* Disable the VGA plane that we never use */
2240                 i915_disable_vga(dev);
2241
2242                 /* Disable display plane */
2243                 temp = I915_READ(dspcntr_reg);
2244                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2245                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2246                         /* Flush the plane changes */
2247                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2248                         I915_READ(dspbase_reg);
2249                 }
2250
2251                 if (!IS_I9XX(dev)) {
2252                         /* Wait for vblank for the disable to take effect */
2253                         intel_wait_for_vblank(dev);
2254                 }
2255
2256                 /* Next, disable display pipes */
2257                 temp = I915_READ(pipeconf_reg);
2258                 if ((temp & PIPEACONF_ENABLE) != 0) {
2259                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2260                         I915_READ(pipeconf_reg);
2261                 }
2262
2263                 /* Wait for vblank for the disable to take effect. */
2264                 intel_wait_for_vblank(dev);
2265
2266                 temp = I915_READ(dpll_reg);
2267                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2268                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2269                         I915_READ(dpll_reg);
2270                 }
2271
2272                 /* Wait for the clocks to turn off. */
2273                 udelay(150);
2274                 break;
2275         }
2276 }
2277
2278 /**
2279  * Sets the power management mode of the pipe and plane.
2280  *
2281  * This code should probably grow support for turning the cursor off and back
2282  * on appropriately at the same time as we're turning the pipe off/on.
2283  */
2284 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2285 {
2286         struct drm_device *dev = crtc->dev;
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct drm_i915_master_private *master_priv;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290         int pipe = intel_crtc->pipe;
2291         bool enabled;
2292
2293         dev_priv->display.dpms(crtc, mode);
2294
2295         intel_crtc->dpms_mode = mode;
2296
2297         if (!dev->primary->master)
2298                 return;
2299
2300         master_priv = dev->primary->master->driver_priv;
2301         if (!master_priv->sarea_priv)
2302                 return;
2303
2304         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2305
2306         switch (pipe) {
2307         case 0:
2308                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2309                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2310                 break;
2311         case 1:
2312                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2313                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2314                 break;
2315         default:
2316                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2317                 break;
2318         }
2319 }
2320
2321 static void intel_crtc_prepare (struct drm_crtc *crtc)
2322 {
2323         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2324         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2325 }
2326
2327 static void intel_crtc_commit (struct drm_crtc *crtc)
2328 {
2329         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2330         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2331 }
2332
2333 void intel_encoder_prepare (struct drm_encoder *encoder)
2334 {
2335         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2336         /* lvds has its own version of prepare see intel_lvds_prepare */
2337         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2338 }
2339
2340 void intel_encoder_commit (struct drm_encoder *encoder)
2341 {
2342         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2343         /* lvds has its own version of commit see intel_lvds_commit */
2344         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2345 }
2346
2347 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2348                                   struct drm_display_mode *mode,
2349                                   struct drm_display_mode *adjusted_mode)
2350 {
2351         struct drm_device *dev = crtc->dev;
2352         if (HAS_PCH_SPLIT(dev)) {
2353                 /* FDI link clock is fixed at 2.7G */
2354                 if (mode->clock * 3 > 27000 * 4)
2355                         return MODE_CLOCK_HIGH;
2356         }
2357
2358         drm_mode_set_crtcinfo(adjusted_mode, 0);
2359         return true;
2360 }
2361
2362 static int i945_get_display_clock_speed(struct drm_device *dev)
2363 {
2364         return 400000;
2365 }
2366
2367 static int i915_get_display_clock_speed(struct drm_device *dev)
2368 {
2369         return 333000;
2370 }
2371
2372 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2373 {
2374         return 200000;
2375 }
2376
2377 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2378 {
2379         u16 gcfgc = 0;
2380
2381         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2382
2383         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2384                 return 133000;
2385         else {
2386                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2387                 case GC_DISPLAY_CLOCK_333_MHZ:
2388                         return 333000;
2389                 default:
2390                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2391                         return 190000;
2392                 }
2393         }
2394 }
2395
2396 static int i865_get_display_clock_speed(struct drm_device *dev)
2397 {
2398         return 266000;
2399 }
2400
2401 static int i855_get_display_clock_speed(struct drm_device *dev)
2402 {
2403         u16 hpllcc = 0;
2404         /* Assume that the hardware is in the high speed state.  This
2405          * should be the default.
2406          */
2407         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2408         case GC_CLOCK_133_200:
2409         case GC_CLOCK_100_200:
2410                 return 200000;
2411         case GC_CLOCK_166_250:
2412                 return 250000;
2413         case GC_CLOCK_100_133:
2414                 return 133000;
2415         }
2416
2417         /* Shouldn't happen */
2418         return 0;
2419 }
2420
2421 static int i830_get_display_clock_speed(struct drm_device *dev)
2422 {
2423         return 133000;
2424 }
2425
2426 /**
2427  * Return the pipe currently connected to the panel fitter,
2428  * or -1 if the panel fitter is not present or not in use
2429  */
2430 int intel_panel_fitter_pipe (struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         u32  pfit_control;
2434
2435         /* i830 doesn't have a panel fitter */
2436         if (IS_I830(dev))
2437                 return -1;
2438
2439         pfit_control = I915_READ(PFIT_CONTROL);
2440
2441         /* See if the panel fitter is in use */
2442         if ((pfit_control & PFIT_ENABLE) == 0)
2443                 return -1;
2444
2445         /* 965 can place panel fitter on either pipe */
2446         if (IS_I965G(dev))
2447                 return (pfit_control >> 29) & 0x3;
2448
2449         /* older chips can only use pipe 1 */
2450         return 1;
2451 }
2452
2453 struct fdi_m_n {
2454         u32        tu;
2455         u32        gmch_m;
2456         u32        gmch_n;
2457         u32        link_m;
2458         u32        link_n;
2459 };
2460
2461 static void
2462 fdi_reduce_ratio(u32 *num, u32 *den)
2463 {
2464         while (*num > 0xffffff || *den > 0xffffff) {
2465                 *num >>= 1;
2466                 *den >>= 1;
2467         }
2468 }
2469
2470 #define DATA_N 0x800000
2471 #define LINK_N 0x80000
2472
2473 static void
2474 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2475                      int link_clock, struct fdi_m_n *m_n)
2476 {
2477         u64 temp;
2478
2479         m_n->tu = 64; /* default size */
2480
2481         temp = (u64) DATA_N * pixel_clock;
2482         temp = div_u64(temp, link_clock);
2483         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2484         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2485         m_n->gmch_n = DATA_N;
2486         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2487
2488         temp = (u64) LINK_N * pixel_clock;
2489         m_n->link_m = div_u64(temp, link_clock);
2490         m_n->link_n = LINK_N;
2491         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2492 }
2493
2494
2495 struct intel_watermark_params {
2496         unsigned long fifo_size;
2497         unsigned long max_wm;
2498         unsigned long default_wm;
2499         unsigned long guard_size;
2500         unsigned long cacheline_size;
2501 };
2502
2503 /* Pineview has different values for various configs */
2504 static struct intel_watermark_params pineview_display_wm = {
2505         PINEVIEW_DISPLAY_FIFO,
2506         PINEVIEW_MAX_WM,
2507         PINEVIEW_DFT_WM,
2508         PINEVIEW_GUARD_WM,
2509         PINEVIEW_FIFO_LINE_SIZE
2510 };
2511 static struct intel_watermark_params pineview_display_hplloff_wm = {
2512         PINEVIEW_DISPLAY_FIFO,
2513         PINEVIEW_MAX_WM,
2514         PINEVIEW_DFT_HPLLOFF_WM,
2515         PINEVIEW_GUARD_WM,
2516         PINEVIEW_FIFO_LINE_SIZE
2517 };
2518 static struct intel_watermark_params pineview_cursor_wm = {
2519         PINEVIEW_CURSOR_FIFO,
2520         PINEVIEW_CURSOR_MAX_WM,
2521         PINEVIEW_CURSOR_DFT_WM,
2522         PINEVIEW_CURSOR_GUARD_WM,
2523         PINEVIEW_FIFO_LINE_SIZE,
2524 };
2525 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2526         PINEVIEW_CURSOR_FIFO,
2527         PINEVIEW_CURSOR_MAX_WM,
2528         PINEVIEW_CURSOR_DFT_WM,
2529         PINEVIEW_CURSOR_GUARD_WM,
2530         PINEVIEW_FIFO_LINE_SIZE
2531 };
2532 static struct intel_watermark_params g4x_wm_info = {
2533         G4X_FIFO_SIZE,
2534         G4X_MAX_WM,
2535         G4X_MAX_WM,
2536         2,
2537         G4X_FIFO_LINE_SIZE,
2538 };
2539 static struct intel_watermark_params i945_wm_info = {
2540         I945_FIFO_SIZE,
2541         I915_MAX_WM,
2542         1,
2543         2,
2544         I915_FIFO_LINE_SIZE
2545 };
2546 static struct intel_watermark_params i915_wm_info = {
2547         I915_FIFO_SIZE,
2548         I915_MAX_WM,
2549         1,
2550         2,
2551         I915_FIFO_LINE_SIZE
2552 };
2553 static struct intel_watermark_params i855_wm_info = {
2554         I855GM_FIFO_SIZE,
2555         I915_MAX_WM,
2556         1,
2557         2,
2558         I830_FIFO_LINE_SIZE
2559 };
2560 static struct intel_watermark_params i830_wm_info = {
2561         I830_FIFO_SIZE,
2562         I915_MAX_WM,
2563         1,
2564         2,
2565         I830_FIFO_LINE_SIZE
2566 };
2567
2568 static struct intel_watermark_params ironlake_display_wm_info = {
2569         ILK_DISPLAY_FIFO,
2570         ILK_DISPLAY_MAXWM,
2571         ILK_DISPLAY_DFTWM,
2572         2,
2573         ILK_FIFO_LINE_SIZE
2574 };
2575
2576 static struct intel_watermark_params ironlake_display_srwm_info = {
2577         ILK_DISPLAY_SR_FIFO,
2578         ILK_DISPLAY_MAX_SRWM,
2579         ILK_DISPLAY_DFT_SRWM,
2580         2,
2581         ILK_FIFO_LINE_SIZE
2582 };
2583
2584 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2585         ILK_CURSOR_SR_FIFO,
2586         ILK_CURSOR_MAX_SRWM,
2587         ILK_CURSOR_DFT_SRWM,
2588         2,
2589         ILK_FIFO_LINE_SIZE
2590 };
2591
2592 /**
2593  * intel_calculate_wm - calculate watermark level
2594  * @clock_in_khz: pixel clock
2595  * @wm: chip FIFO params
2596  * @pixel_size: display pixel size
2597  * @latency_ns: memory latency for the platform
2598  *
2599  * Calculate the watermark level (the level at which the display plane will
2600  * start fetching from memory again).  Each chip has a different display
2601  * FIFO size and allocation, so the caller needs to figure that out and pass
2602  * in the correct intel_watermark_params structure.
2603  *
2604  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2605  * on the pixel size.  When it reaches the watermark level, it'll start
2606  * fetching FIFO line sized based chunks from memory until the FIFO fills
2607  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2608  * will occur, and a display engine hang could result.
2609  */
2610 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2611                                         struct intel_watermark_params *wm,
2612                                         int pixel_size,
2613                                         unsigned long latency_ns)
2614 {
2615         long entries_required, wm_size;
2616
2617         /*
2618          * Note: we need to make sure we don't overflow for various clock &
2619          * latency values.
2620          * clocks go from a few thousand to several hundred thousand.
2621          * latency is usually a few thousand
2622          */
2623         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2624                 1000;
2625         entries_required /= wm->cacheline_size;
2626
2627         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2628
2629         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2630
2631         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2632
2633         /* Don't promote wm_size to unsigned... */
2634         if (wm_size > (long)wm->max_wm)
2635                 wm_size = wm->max_wm;
2636         if (wm_size <= 0)
2637                 wm_size = wm->default_wm;
2638         return wm_size;
2639 }
2640
2641 struct cxsr_latency {
2642         int is_desktop;
2643         int is_ddr3;
2644         unsigned long fsb_freq;
2645         unsigned long mem_freq;
2646         unsigned long display_sr;
2647         unsigned long display_hpll_disable;
2648         unsigned long cursor_sr;
2649         unsigned long cursor_hpll_disable;
2650 };
2651
2652 static struct cxsr_latency cxsr_latency_table[] = {
2653         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2654         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2655         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2656         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2657         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2658
2659         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2660         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2661         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2662         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2663         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2664
2665         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2666         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2667         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2668         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2669         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2670
2671         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2672         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2673         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2674         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2675         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2676
2677         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2678         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2679         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2680         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2681         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2682
2683         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2684         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2685         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2686         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2687         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2688 };
2689
2690 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, 
2691                                                    int fsb, int mem)
2692 {
2693         int i;
2694         struct cxsr_latency *latency;
2695
2696         if (fsb == 0 || mem == 0)
2697                 return NULL;
2698
2699         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2700                 latency = &cxsr_latency_table[i];
2701                 if (is_desktop == latency->is_desktop &&
2702                     is_ddr3 == latency->is_ddr3 &&
2703                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2704                         return latency;
2705         }
2706
2707         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2708
2709         return NULL;
2710 }
2711
2712 static void pineview_disable_cxsr(struct drm_device *dev)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         u32 reg;
2716
2717         /* deactivate cxsr */
2718         reg = I915_READ(DSPFW3);
2719         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2720         I915_WRITE(DSPFW3, reg);
2721         DRM_INFO("Big FIFO is disabled\n");
2722 }
2723
2724 /*
2725  * Latency for FIFO fetches is dependent on several factors:
2726  *   - memory configuration (speed, channels)
2727  *   - chipset
2728  *   - current MCH state
2729  * It can be fairly high in some situations, so here we assume a fairly
2730  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2731  * set this value too high, the FIFO will fetch frequently to stay full)
2732  * and power consumption (set it too low to save power and we might see
2733  * FIFO underruns and display "flicker").
2734  *
2735  * A value of 5us seems to be a good balance; safe for very low end
2736  * platforms but not overly aggressive on lower latency configs.
2737  */
2738 static const int latency_ns = 5000;
2739
2740 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2741 {
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         uint32_t dsparb = I915_READ(DSPARB);
2744         int size;
2745
2746         if (plane == 0)
2747                 size = dsparb & 0x7f;
2748         else
2749                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2750                         (dsparb & 0x7f);
2751
2752         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2753                         plane ? "B" : "A", size);
2754
2755         return size;
2756 }
2757
2758 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2759 {
2760         struct drm_i915_private *dev_priv = dev->dev_private;
2761         uint32_t dsparb = I915_READ(DSPARB);
2762         int size;
2763
2764         if (plane == 0)
2765                 size = dsparb & 0x1ff;
2766         else
2767                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2768                         (dsparb & 0x1ff);
2769         size >>= 1; /* Convert to cachelines */
2770
2771         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2772                         plane ? "B" : "A", size);
2773
2774         return size;
2775 }
2776
2777 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2778 {
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         uint32_t dsparb = I915_READ(DSPARB);
2781         int size;
2782
2783         size = dsparb & 0x7f;
2784         size >>= 2; /* Convert to cachelines */
2785
2786         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2787                         plane ? "B" : "A",
2788                   size);
2789
2790         return size;
2791 }
2792
2793 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         uint32_t dsparb = I915_READ(DSPARB);
2797         int size;
2798
2799         size = dsparb & 0x7f;
2800         size >>= 1; /* Convert to cachelines */
2801
2802         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2803                         plane ? "B" : "A", size);
2804
2805         return size;
2806 }
2807
2808 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2809                           int planeb_clock, int sr_hdisplay, int pixel_size)
2810 {
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         u32 reg;
2813         unsigned long wm;
2814         struct cxsr_latency *latency;
2815         int sr_clock;
2816
2817         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 
2818                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2819         if (!latency) {
2820                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2821                 pineview_disable_cxsr(dev);
2822                 return;
2823         }
2824
2825         if (!planea_clock || !planeb_clock) {
2826                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2827
2828                 /* Display SR */
2829                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2830                                         pixel_size, latency->display_sr);
2831                 reg = I915_READ(DSPFW1);
2832                 reg &= ~DSPFW_SR_MASK;
2833                 reg |= wm << DSPFW_SR_SHIFT;
2834                 I915_WRITE(DSPFW1, reg);
2835                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2836
2837                 /* cursor SR */
2838                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2839                                         pixel_size, latency->cursor_sr);
2840                 reg = I915_READ(DSPFW3);
2841                 reg &= ~DSPFW_CURSOR_SR_MASK;
2842                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2843                 I915_WRITE(DSPFW3, reg);
2844
2845                 /* Display HPLL off SR */
2846                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2847                                         pixel_size, latency->display_hpll_disable);
2848                 reg = I915_READ(DSPFW3);
2849                 reg &= ~DSPFW_HPLL_SR_MASK;
2850                 reg |= wm & DSPFW_HPLL_SR_MASK;
2851                 I915_WRITE(DSPFW3, reg);
2852
2853                 /* cursor HPLL off SR */
2854                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2855                                         pixel_size, latency->cursor_hpll_disable);
2856                 reg = I915_READ(DSPFW3);
2857                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2858                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2859                 I915_WRITE(DSPFW3, reg);
2860                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2861
2862                 /* activate cxsr */
2863                 reg = I915_READ(DSPFW3);
2864                 reg |= PINEVIEW_SELF_REFRESH_EN;
2865                 I915_WRITE(DSPFW3, reg);
2866                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2867         } else {
2868                 pineview_disable_cxsr(dev);
2869                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2870         }
2871 }
2872
2873 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2874                           int planeb_clock, int sr_hdisplay, int pixel_size)
2875 {
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         int total_size, cacheline_size;
2878         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2879         struct intel_watermark_params planea_params, planeb_params;
2880         unsigned long line_time_us;
2881         int sr_clock, sr_entries = 0, entries_required;
2882
2883         /* Create copies of the base settings for each pipe */
2884         planea_params = planeb_params = g4x_wm_info;
2885
2886         /* Grab a couple of global values before we overwrite them */
2887         total_size = planea_params.fifo_size;
2888         cacheline_size = planea_params.cacheline_size;
2889
2890         /*
2891          * Note: we need to make sure we don't overflow for various clock &
2892          * latency values.
2893          * clocks go from a few thousand to several hundred thousand.
2894          * latency is usually a few thousand
2895          */
2896         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2897                 1000;
2898         entries_required /= G4X_FIFO_LINE_SIZE;
2899         planea_wm = entries_required + planea_params.guard_size;
2900
2901         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2902                 1000;
2903         entries_required /= G4X_FIFO_LINE_SIZE;
2904         planeb_wm = entries_required + planeb_params.guard_size;
2905
2906         cursora_wm = cursorb_wm = 16;
2907         cursor_sr = 32;
2908
2909         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2910
2911         /* Calc sr entries for one plane configs */
2912         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2913                 /* self-refresh has much higher latency */
2914                 static const int sr_latency_ns = 12000;
2915
2916                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2917                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2918
2919                 /* Use ns/us then divide to preserve precision */
2920                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2921                               pixel_size * sr_hdisplay) / 1000;
2922                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2923                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2924                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2925         } else {
2926                 /* Turn off self refresh if both pipes are enabled */
2927                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2928                                         & ~FW_BLC_SELF_EN);
2929         }
2930
2931         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2932                   planea_wm, planeb_wm, sr_entries);
2933
2934         planea_wm &= 0x3f;
2935         planeb_wm &= 0x3f;
2936
2937         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2938                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2939                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2940         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2941                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2942         /* HPLL off in SR has some issues on G4x... disable it */
2943         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2944                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2945 }
2946
2947 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2948                            int planeb_clock, int sr_hdisplay, int pixel_size)
2949 {
2950         struct drm_i915_private *dev_priv = dev->dev_private;
2951         unsigned long line_time_us;
2952         int sr_clock, sr_entries, srwm = 1;
2953
2954         /* Calc sr entries for one plane configs */
2955         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2956                 /* self-refresh has much higher latency */
2957                 static const int sr_latency_ns = 12000;
2958
2959                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2960                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2961
2962                 /* Use ns/us then divide to preserve precision */
2963                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2964                               pixel_size * sr_hdisplay) / 1000;
2965                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2966                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2967                 srwm = I945_FIFO_SIZE - sr_entries;
2968                 if (srwm < 0)
2969                         srwm = 1;
2970                 srwm &= 0x3f;
2971                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2972         } else {
2973                 /* Turn off self refresh if both pipes are enabled */
2974                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2975                                         & ~FW_BLC_SELF_EN);
2976         }
2977
2978         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2979                       srwm);
2980
2981         /* 965 has limitations... */
2982         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2983                    (8 << 0));
2984         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2985 }
2986
2987 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2988                            int planeb_clock, int sr_hdisplay, int pixel_size)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         uint32_t fwater_lo;
2992         uint32_t fwater_hi;
2993         int total_size, cacheline_size, cwm, srwm = 1;
2994         int planea_wm, planeb_wm;
2995         struct intel_watermark_params planea_params, planeb_params;
2996         unsigned long line_time_us;
2997         int sr_clock, sr_entries = 0;
2998
2999         /* Create copies of the base settings for each pipe */
3000         if (IS_I965GM(dev) || IS_I945GM(dev))
3001                 planea_params = planeb_params = i945_wm_info;
3002         else if (IS_I9XX(dev))
3003                 planea_params = planeb_params = i915_wm_info;
3004         else
3005                 planea_params = planeb_params = i855_wm_info;
3006
3007         /* Grab a couple of global values before we overwrite them */
3008         total_size = planea_params.fifo_size;
3009         cacheline_size = planea_params.cacheline_size;
3010
3011         /* Update per-plane FIFO sizes */
3012         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3013         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3014
3015         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3016                                        pixel_size, latency_ns);
3017         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3018                                        pixel_size, latency_ns);
3019         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3020
3021         /*
3022          * Overlay gets an aggressive default since video jitter is bad.
3023          */
3024         cwm = 2;
3025
3026         /* Calc sr entries for one plane configs */
3027         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3028             (!planea_clock || !planeb_clock)) {
3029                 /* self-refresh has much higher latency */
3030                 static const int sr_latency_ns = 6000;
3031
3032                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3033                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3034
3035                 /* Use ns/us then divide to preserve precision */
3036                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3037                               pixel_size * sr_hdisplay) / 1000;
3038                 sr_entries = roundup(sr_entries / cacheline_size, 1);
3039                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3040                 srwm = total_size - sr_entries;
3041                 if (srwm < 0)
3042                         srwm = 1;
3043
3044                 if (IS_I945G(dev) || IS_I945GM(dev))
3045                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3046                 else if (IS_I915GM(dev)) {
3047                         /* 915M has a smaller SRWM field */
3048                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3049                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3050                 }
3051         } else {
3052                 /* Turn off self refresh if both pipes are enabled */
3053                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3054                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3055                                    & ~FW_BLC_SELF_EN);
3056                 } else if (IS_I915GM(dev)) {
3057                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3058                 }
3059         }
3060
3061         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3062                   planea_wm, planeb_wm, cwm, srwm);
3063
3064         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3065         fwater_hi = (cwm & 0x1f);
3066
3067         /* Set request length to 8 cachelines per fetch */
3068         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3069         fwater_hi = fwater_hi | (1 << 8);
3070
3071         I915_WRITE(FW_BLC, fwater_lo);
3072         I915_WRITE(FW_BLC2, fwater_hi);
3073 }
3074
3075 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3076                            int unused2, int pixel_size)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3080         int planea_wm;
3081
3082         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3083
3084         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3085                                        pixel_size, latency_ns);
3086         fwater_lo |= (3<<8) | planea_wm;
3087
3088         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3089
3090         I915_WRITE(FW_BLC, fwater_lo);
3091 }
3092
3093 #define ILK_LP0_PLANE_LATENCY           700
3094
3095 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3096                        int planeb_clock, int sr_hdisplay, int pixel_size)
3097 {
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3100         int sr_wm, cursor_wm;
3101         unsigned long line_time_us;
3102         int sr_clock, entries_required;
3103         u32 reg_value;
3104
3105         /* Calculate and update the watermark for plane A */
3106         if (planea_clock) {
3107                 entries_required = ((planea_clock / 1000) * pixel_size *
3108                                      ILK_LP0_PLANE_LATENCY) / 1000;
3109                 entries_required = DIV_ROUND_UP(entries_required,
3110                                    ironlake_display_wm_info.cacheline_size);
3111                 planea_wm = entries_required +
3112                             ironlake_display_wm_info.guard_size;
3113
3114                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3115                         planea_wm = ironlake_display_wm_info.max_wm;
3116
3117                 cursora_wm = 16;
3118                 reg_value = I915_READ(WM0_PIPEA_ILK);
3119                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3120                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3121                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3122                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3123                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3124                                 "cursor: %d\n", planea_wm, cursora_wm);
3125         }
3126         /* Calculate and update the watermark for plane B */
3127         if (planeb_clock) {
3128                 entries_required = ((planeb_clock / 1000) * pixel_size *
3129                                      ILK_LP0_PLANE_LATENCY) / 1000;
3130                 entries_required = DIV_ROUND_UP(entries_required,
3131                                    ironlake_display_wm_info.cacheline_size);
3132                 planeb_wm = entries_required +
3133                             ironlake_display_wm_info.guard_size;
3134
3135                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3136                         planeb_wm = ironlake_display_wm_info.max_wm;
3137
3138                 cursorb_wm = 16;
3139                 reg_value = I915_READ(WM0_PIPEB_ILK);
3140                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3141                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3142                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3143                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3144                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3145                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3146         }
3147
3148         /*
3149          * Calculate and update the self-refresh watermark only when one
3150          * display plane is used.
3151          */
3152         if (!planea_clock || !planeb_clock) {
3153                 int line_count;
3154                 /* Read the self-refresh latency. The unit is 0.5us */
3155                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3156
3157                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3158                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3159
3160                 /* Use ns/us then divide to preserve precision */
3161                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3162                                / 1000;
3163
3164                 /* calculate the self-refresh watermark for display plane */
3165                 entries_required = line_count * sr_hdisplay * pixel_size;
3166                 entries_required = DIV_ROUND_UP(entries_required,
3167                                    ironlake_display_srwm_info.cacheline_size);
3168                 sr_wm = entries_required +
3169                         ironlake_display_srwm_info.guard_size;
3170
3171                 /* calculate the self-refresh watermark for display cursor */
3172                 entries_required = line_count * pixel_size * 64;
3173                 entries_required = DIV_ROUND_UP(entries_required,
3174                                    ironlake_cursor_srwm_info.cacheline_size);
3175                 cursor_wm = entries_required +
3176                             ironlake_cursor_srwm_info.guard_size;
3177
3178                 /* configure watermark and enable self-refresh */
3179                 reg_value = I915_READ(WM1_LP_ILK);
3180                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3181                                WM1_LP_CURSOR_MASK);
3182                 reg_value |= WM1_LP_SR_EN |
3183                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3184                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3185
3186                 I915_WRITE(WM1_LP_ILK, reg_value);
3187                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3188                                 "cursor %d\n", sr_wm, cursor_wm);
3189
3190         } else {
3191                 /* Turn off self refresh if both pipes are enabled */
3192                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3193         }
3194 }
3195 /**
3196  * intel_update_watermarks - update FIFO watermark values based on current modes
3197  *
3198  * Calculate watermark values for the various WM regs based on current mode
3199  * and plane configuration.
3200  *
3201  * There are several cases to deal with here:
3202  *   - normal (i.e. non-self-refresh)
3203  *   - self-refresh (SR) mode
3204  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3205  *   - lines are small relative to FIFO size (buffer can hold more than 2
3206  *     lines), so need to account for TLB latency
3207  *
3208  *   The normal calculation is:
3209  *     watermark = dotclock * bytes per pixel * latency
3210  *   where latency is platform & configuration dependent (we assume pessimal
3211  *   values here).
3212  *
3213  *   The SR calculation is:
3214  *     watermark = (trunc(latency/line time)+1) * surface width *
3215  *       bytes per pixel
3216  *   where
3217  *     line time = htotal / dotclock
3218  *   and latency is assumed to be high, as above.
3219  *
3220  * The final value programmed to the register should always be rounded up,
3221  * and include an extra 2 entries to account for clock crossings.
3222  *
3223  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3224  * to set the non-SR watermarks to 8.
3225   */
3226 static void intel_update_watermarks(struct drm_device *dev)
3227 {
3228         struct drm_i915_private *dev_priv = dev->dev_private;
3229         struct drm_crtc *crtc;
3230         struct intel_crtc *intel_crtc;
3231         int sr_hdisplay = 0;
3232         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3233         int enabled = 0, pixel_size = 0;
3234
3235         if (!dev_priv->display.update_wm)
3236                 return;
3237
3238         /* Get the clock config from both planes */
3239         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3240                 intel_crtc = to_intel_crtc(crtc);
3241                 if (crtc->enabled) {
3242                         enabled++;
3243                         if (intel_crtc->plane == 0) {
3244                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3245                                           intel_crtc->pipe, crtc->mode.clock);
3246                                 planea_clock = crtc->mode.clock;
3247                         } else {
3248                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3249                                           intel_crtc->pipe, crtc->mode.clock);
3250                                 planeb_clock = crtc->mode.clock;
3251                         }
3252                         sr_hdisplay = crtc->mode.hdisplay;
3253                         sr_clock = crtc->mode.clock;
3254                         if (crtc->fb)
3255                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3256                         else
3257                                 pixel_size = 4; /* by default */
3258                 }
3259         }
3260
3261         if (enabled <= 0)
3262                 return;
3263
3264         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3265                                     sr_hdisplay, pixel_size);
3266 }
3267
3268 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3269                                struct drm_display_mode *mode,
3270                                struct drm_display_mode *adjusted_mode,
3271                                int x, int y,
3272                                struct drm_framebuffer *old_fb)
3273 {
3274         struct drm_device *dev = crtc->dev;
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3277         int pipe = intel_crtc->pipe;
3278         int plane = intel_crtc->plane;
3279         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3280         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3281         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3282         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3283         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3284         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3285         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3286         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3287         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3288         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3289         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3290         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3291         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3292         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3293         int refclk, num_connectors = 0;
3294         intel_clock_t clock, reduced_clock;
3295         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3296         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3297         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3298         bool is_edp = false;
3299         struct drm_mode_config *mode_config = &dev->mode_config;
3300         struct drm_encoder *encoder;
3301         struct intel_encoder *intel_encoder = NULL;
3302         const intel_limit_t *limit;
3303         int ret;
3304         struct fdi_m_n m_n = {0};
3305         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3306         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3307         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3308         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3309         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3310         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3311         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3312         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3313         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3314         int lvds_reg = LVDS;
3315         u32 temp;
3316         int sdvo_pixel_multiply;
3317         int target_clock;
3318
3319         drm_vblank_pre_modeset(dev, pipe);
3320
3321         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3322
3323                 if (!encoder || encoder->crtc != crtc)
3324                         continue;
3325
3326                 intel_encoder = enc_to_intel_encoder(encoder);
3327
3328                 switch (intel_encoder->type) {
3329                 case INTEL_OUTPUT_LVDS:
3330                         is_lvds = true;
3331                         break;
3332                 case INTEL_OUTPUT_SDVO:
3333                 case INTEL_OUTPUT_HDMI:
3334                         is_sdvo = true;
3335                         if (intel_encoder->needs_tv_clock)
3336                                 is_tv = true;
3337                         break;
3338                 case INTEL_OUTPUT_DVO:
3339                         is_dvo = true;
3340                         break;
3341                 case INTEL_OUTPUT_TVOUT:
3342                         is_tv = true;
3343                         break;
3344                 case INTEL_OUTPUT_ANALOG:
3345                         is_crt = true;
3346                         break;
3347                 case INTEL_OUTPUT_DISPLAYPORT:
3348                         is_dp = true;
3349                         break;
3350                 case INTEL_OUTPUT_EDP:
3351                         is_edp = true;
3352                         break;
3353                 }
3354
3355                 num_connectors++;
3356         }
3357
3358         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3359                 refclk = dev_priv->lvds_ssc_freq * 1000;
3360                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3361                                         refclk / 1000);
3362         } else if (IS_I9XX(dev)) {
3363                 refclk = 96000;
3364                 if (HAS_PCH_SPLIT(dev))
3365                         refclk = 120000; /* 120Mhz refclk */
3366         } else {
3367                 refclk = 48000;
3368         }
3369         
3370
3371         /*
3372          * Returns a set of divisors for the desired target clock with the given
3373          * refclk, or FALSE.  The returned values represent the clock equation:
3374          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3375          */
3376         limit = intel_limit(crtc);
3377         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3378         if (!ok) {
3379                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3380                 drm_vblank_post_modeset(dev, pipe);
3381                 return -EINVAL;
3382         }
3383
3384         if (is_lvds && dev_priv->lvds_downclock_avail) {
3385                 has_reduced_clock = limit->find_pll(limit, crtc,
3386                                                             dev_priv->lvds_downclock,
3387                                                             refclk,
3388                                                             &reduced_clock);
3389                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3390                         /*
3391                          * If the different P is found, it means that we can't
3392                          * switch the display clock by using the FP0/FP1.
3393                          * In such case we will disable the LVDS downclock
3394                          * feature.
3395                          */
3396                         DRM_DEBUG_KMS("Different P is found for "
3397                                                 "LVDS clock/downclock\n");
3398                         has_reduced_clock = 0;
3399                 }
3400         }
3401         /* SDVO TV has fixed PLL values depend on its clock range,
3402            this mirrors vbios setting. */
3403         if (is_sdvo && is_tv) {
3404                 if (adjusted_mode->clock >= 100000
3405                                 && adjusted_mode->clock < 140500) {
3406                         clock.p1 = 2;
3407                         clock.p2 = 10;
3408                         clock.n = 3;
3409                         clock.m1 = 16;
3410                         clock.m2 = 8;
3411                 } else if (adjusted_mode->clock >= 140500
3412                                 && adjusted_mode->clock <= 200000) {
3413                         clock.p1 = 1;
3414                         clock.p2 = 10;
3415                         clock.n = 6;
3416                         clock.m1 = 12;
3417                         clock.m2 = 8;
3418                 }
3419         }
3420
3421         /* FDI link */
3422         if (HAS_PCH_SPLIT(dev)) {
3423                 int lane = 0, link_bw, bpp;
3424                 /* eDP doesn't require FDI link, so just set DP M/N
3425                    according to current link config */
3426                 if (is_edp) {
3427                         target_clock = mode->clock;
3428                         intel_edp_link_config(intel_encoder,
3429                                         &lane, &link_bw);
3430                 } else {
3431                         /* DP over FDI requires target mode clock
3432                            instead of link clock */
3433                         if (is_dp)
3434                                 target_clock = mode->clock;
3435                         else
3436                                 target_clock = adjusted_mode->clock;
3437                         link_bw = 270000;
3438                 }
3439
3440                 /* determine panel color depth */
3441                 temp = I915_READ(pipeconf_reg);
3442                 temp &= ~PIPE_BPC_MASK;
3443                 if (is_lvds) {
3444                         int lvds_reg = I915_READ(PCH_LVDS);
3445                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3446                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3447                                 temp |= PIPE_8BPC;
3448                         else
3449                                 temp |= PIPE_6BPC;
3450                 } else if (is_edp) {
3451                         switch (dev_priv->edp_bpp/3) {
3452                         case 8:
3453                                 temp |= PIPE_8BPC;
3454                                 break;
3455                         case 10:
3456                                 temp |= PIPE_10BPC;
3457                                 break;
3458                         case 6:
3459                                 temp |= PIPE_6BPC;
3460                                 break;
3461                         case 12:
3462                                 temp |= PIPE_12BPC;
3463                                 break;
3464                         }
3465                 } else
3466                         temp |= PIPE_8BPC;
3467                 I915_WRITE(pipeconf_reg, temp);
3468                 I915_READ(pipeconf_reg);
3469
3470                 switch (temp & PIPE_BPC_MASK) {
3471                 case PIPE_8BPC:
3472                         bpp = 24;
3473                         break;
3474                 case PIPE_10BPC:
3475                         bpp = 30;
3476                         break;
3477                 case PIPE_6BPC:
3478                         bpp = 18;
3479                         break;
3480                 case PIPE_12BPC:
3481                         bpp = 36;
3482                         break;
3483                 default:
3484                         DRM_ERROR("unknown pipe bpc value\n");
3485                         bpp = 24;
3486                 }
3487
3488                 if (!lane) {
3489                         /* 
3490                          * Account for spread spectrum to avoid
3491                          * oversubscribing the link. Max center spread
3492                          * is 2.5%; use 5% for safety's sake.
3493                          */
3494                         u32 bps = target_clock * bpp * 21 / 20;
3495                         lane = bps / (link_bw * 8) + 1;
3496                 }
3497
3498                 intel_crtc->fdi_lanes = lane;
3499
3500                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3501         }
3502
3503         /* Ironlake: try to setup display ref clock before DPLL
3504          * enabling. This is only under driver's control after
3505          * PCH B stepping, previous chipset stepping should be
3506          * ignoring this setting.
3507          */
3508         if (HAS_PCH_SPLIT(dev)) {
3509                 temp = I915_READ(PCH_DREF_CONTROL);
3510                 /* Always enable nonspread source */
3511                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3512                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3513                 I915_WRITE(PCH_DREF_CONTROL, temp);
3514                 POSTING_READ(PCH_DREF_CONTROL);
3515
3516                 temp &= ~DREF_SSC_SOURCE_MASK;
3517                 temp |= DREF_SSC_SOURCE_ENABLE;
3518                 I915_WRITE(PCH_DREF_CONTROL, temp);
3519                 POSTING_READ(PCH_DREF_CONTROL);
3520
3521                 udelay(200);
3522
3523                 if (is_edp) {
3524                         if (dev_priv->lvds_use_ssc) {
3525                                 temp |= DREF_SSC1_ENABLE;
3526                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3527                                 POSTING_READ(PCH_DREF_CONTROL);
3528
3529                                 udelay(200);
3530
3531                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3532                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3533                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3534                                 POSTING_READ(PCH_DREF_CONTROL);
3535                         } else {
3536                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3537                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3538                                 POSTING_READ(PCH_DREF_CONTROL);
3539                         }
3540                 }
3541         }
3542
3543         if (IS_PINEVIEW(dev)) {
3544                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3545                 if (has_reduced_clock)
3546                         fp2 = (1 << reduced_clock.n) << 16 |
3547                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3548         } else {
3549                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3550                 if (has_reduced_clock)
3551                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3552                                 reduced_clock.m2;
3553         }
3554
3555         if (!HAS_PCH_SPLIT(dev))
3556                 dpll = DPLL_VGA_MODE_DIS;
3557
3558         if (IS_I9XX(dev)) {
3559                 if (is_lvds)
3560                         dpll |= DPLLB_MODE_LVDS;
3561                 else
3562                         dpll |= DPLLB_MODE_DAC_SERIAL;
3563                 if (is_sdvo) {
3564                         dpll |= DPLL_DVO_HIGH_SPEED;
3565                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3566                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3567                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3568                         else if (HAS_PCH_SPLIT(dev))
3569                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3570                 }
3571                 if (is_dp)
3572                         dpll |= DPLL_DVO_HIGH_SPEED;
3573
3574                 /* compute bitmask from p1 value */
3575                 if (IS_PINEVIEW(dev))
3576                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3577                 else {
3578                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3579                         /* also FPA1 */
3580                         if (HAS_PCH_SPLIT(dev))
3581                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3582                         if (IS_G4X(dev) && has_reduced_clock)
3583                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3584                 }
3585                 switch (clock.p2) {
3586                 case 5:
3587                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3588                         break;
3589                 case 7:
3590                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3591                         break;
3592                 case 10:
3593                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3594                         break;
3595                 case 14:
3596                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3597                         break;
3598                 }
3599                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3600                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3601         } else {
3602                 if (is_lvds) {
3603                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3604                 } else {
3605                         if (clock.p1 == 2)
3606                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3607                         else
3608                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3609                         if (clock.p2 == 4)
3610                                 dpll |= PLL_P2_DIVIDE_BY_4;
3611                 }
3612         }
3613
3614         if (is_sdvo && is_tv)
3615                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3616         else if (is_tv)
3617                 /* XXX: just matching BIOS for now */
3618                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3619                 dpll |= 3;
3620         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3621                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3622         else
3623                 dpll |= PLL_REF_INPUT_DREFCLK;
3624
3625         /* setup pipeconf */
3626         pipeconf = I915_READ(pipeconf_reg);
3627
3628         /* Set up the display plane register */
3629         dspcntr = DISPPLANE_GAMMA_ENABLE;
3630
3631         /* Ironlake's plane is forced to pipe, bit 24 is to
3632            enable color space conversion */
3633         if (!HAS_PCH_SPLIT(dev)) {
3634                 if (pipe == 0)
3635                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3636                 else
3637                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3638         }
3639
3640         if (pipe == 0 && !IS_I965G(dev)) {
3641                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3642                  * core speed.
3643                  *
3644                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3645                  * pipe == 0 check?
3646                  */
3647                 if (mode->clock >
3648                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3649                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3650                 else
3651                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3652         }
3653
3654         /* Disable the panel fitter if it was on our pipe */
3655         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3656                 I915_WRITE(PFIT_CONTROL, 0);
3657
3658         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3659         drm_mode_debug_printmodeline(mode);
3660
3661         /* assign to Ironlake registers */
3662         if (HAS_PCH_SPLIT(dev)) {
3663                 fp_reg = pch_fp_reg;
3664                 dpll_reg = pch_dpll_reg;
3665         }
3666
3667         if (is_edp) {
3668                 ironlake_disable_pll_edp(crtc);
3669         } else if ((dpll & DPLL_VCO_ENABLE)) {
3670                 I915_WRITE(fp_reg, fp);
3671                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3672                 I915_READ(dpll_reg);
3673                 udelay(150);
3674         }
3675
3676         /* enable transcoder DPLL */
3677         if (HAS_PCH_CPT(dev)) {
3678                 temp = I915_READ(PCH_DPLL_SEL);
3679                 if (trans_dpll_sel == 0)
3680                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3681                 else
3682                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3683                 I915_WRITE(PCH_DPLL_SEL, temp);
3684                 I915_READ(PCH_DPLL_SEL);
3685                 udelay(150);
3686         }
3687
3688         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3689          * This is an exception to the general rule that mode_set doesn't turn
3690          * things on.
3691          */
3692         if (is_lvds) {
3693                 u32 lvds;
3694
3695                 if (HAS_PCH_SPLIT(dev))
3696                         lvds_reg = PCH_LVDS;
3697
3698                 lvds = I915_READ(lvds_reg);
3699                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3700                 if (pipe == 1) {
3701                         if (HAS_PCH_CPT(dev))
3702                                 lvds |= PORT_TRANS_B_SEL_CPT;
3703                         else
3704                                 lvds |= LVDS_PIPEB_SELECT;
3705                 } else {
3706                         if (HAS_PCH_CPT(dev))
3707                                 lvds &= ~PORT_TRANS_SEL_MASK;
3708                         else
3709                                 lvds &= ~LVDS_PIPEB_SELECT;
3710                 }
3711                 /* set the corresponsding LVDS_BORDER bit */
3712                 lvds |= dev_priv->lvds_border_bits;
3713                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3714                  * set the DPLLs for dual-channel mode or not.
3715                  */
3716                 if (clock.p2 == 7)
3717                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3718                 else
3719                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3720
3721                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3722                  * appropriately here, but we need to look more thoroughly into how
3723                  * panels behave in the two modes.
3724                  */
3725                 /* set the dithering flag */
3726                 if (IS_I965G(dev)) {
3727                         if (dev_priv->lvds_dither) {
3728                                 if (HAS_PCH_SPLIT(dev)) {
3729                                         pipeconf |= PIPE_ENABLE_DITHER;
3730                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3731                                 } else
3732                                         lvds |= LVDS_ENABLE_DITHER;
3733                         } else {
3734                                 if (HAS_PCH_SPLIT(dev)) {
3735                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3736                                         pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3737                                 } else
3738                                         lvds &= ~LVDS_ENABLE_DITHER;
3739                         }
3740                 }
3741                 I915_WRITE(lvds_reg, lvds);
3742                 I915_READ(lvds_reg);
3743         }
3744         if (is_dp)
3745                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3746         else if (HAS_PCH_SPLIT(dev)) {
3747                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3748                 if (pipe == 0) {
3749                         I915_WRITE(TRANSA_DATA_M1, 0);
3750                         I915_WRITE(TRANSA_DATA_N1, 0);
3751                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3752                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3753                 } else {
3754                         I915_WRITE(TRANSB_DATA_M1, 0);
3755                         I915_WRITE(TRANSB_DATA_N1, 0);
3756                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3757                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3758                 }
3759         }
3760
3761         if (!is_edp) {
3762                 I915_WRITE(fp_reg, fp);
3763                 I915_WRITE(dpll_reg, dpll);
3764                 I915_READ(dpll_reg);
3765                 /* Wait for the clocks to stabilize. */
3766                 udelay(150);
3767
3768                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3769                         if (is_sdvo) {
3770                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3771                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3772                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3773                         } else
3774                                 I915_WRITE(dpll_md_reg, 0);
3775                 } else {
3776                         /* write it again -- the BIOS does, after all */
3777                         I915_WRITE(dpll_reg, dpll);
3778                 }
3779                 I915_READ(dpll_reg);
3780                 /* Wait for the clocks to stabilize. */
3781                 udelay(150);
3782         }
3783
3784         if (is_lvds && has_reduced_clock && i915_powersave) {
3785                 I915_WRITE(fp_reg + 4, fp2);
3786                 intel_crtc->lowfreq_avail = true;
3787                 if (HAS_PIPE_CXSR(dev)) {
3788                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3789                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3790                 }
3791         } else {
3792                 I915_WRITE(fp_reg + 4, fp);
3793                 intel_crtc->lowfreq_avail = false;
3794                 if (HAS_PIPE_CXSR(dev)) {
3795                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3796                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3797                 }
3798         }
3799
3800         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3801                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3802                 /* the chip adds 2 halflines automatically */
3803                 adjusted_mode->crtc_vdisplay -= 1;
3804                 adjusted_mode->crtc_vtotal -= 1;
3805                 adjusted_mode->crtc_vblank_start -= 1;
3806                 adjusted_mode->crtc_vblank_end -= 1;
3807                 adjusted_mode->crtc_vsync_end -= 1;
3808                 adjusted_mode->crtc_vsync_start -= 1;
3809         } else
3810                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3811
3812         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3813                    ((adjusted_mode->crtc_htotal - 1) << 16));
3814         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3815                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3816         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3817                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3818         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3819                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3820         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3821                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3822         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3823                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3824         /* pipesrc and dspsize control the size that is scaled from, which should
3825          * always be the user's requested size.
3826          */
3827         if (!HAS_PCH_SPLIT(dev)) {
3828                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3829                                 (mode->hdisplay - 1));
3830                 I915_WRITE(dsppos_reg, 0);
3831         }
3832         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3833
3834         if (HAS_PCH_SPLIT(dev)) {
3835                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3836                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3837                 I915_WRITE(link_m1_reg, m_n.link_m);
3838                 I915_WRITE(link_n1_reg, m_n.link_n);
3839
3840                 if (is_edp) {
3841                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3842                 } else {
3843                         /* enable FDI RX PLL too */
3844                         temp = I915_READ(fdi_rx_reg);
3845                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3846                         I915_READ(fdi_rx_reg);
3847                         udelay(200);
3848
3849                         /* enable FDI TX PLL too */
3850                         temp = I915_READ(fdi_tx_reg);
3851                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3852                         I915_READ(fdi_tx_reg);
3853
3854                         /* enable FDI RX PCDCLK */
3855                         temp = I915_READ(fdi_rx_reg);
3856                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3857                         I915_READ(fdi_rx_reg);
3858                         udelay(200);
3859                 }
3860         }
3861
3862         I915_WRITE(pipeconf_reg, pipeconf);
3863         I915_READ(pipeconf_reg);
3864
3865         intel_wait_for_vblank(dev);
3866
3867         if (IS_IRONLAKE(dev)) {
3868                 /* enable address swizzle for tiling buffer */
3869                 temp = I915_READ(DISP_ARB_CTL);
3870                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3871         }
3872
3873         I915_WRITE(dspcntr_reg, dspcntr);
3874
3875         /* Flush the plane changes */
3876         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3877
3878         if ((IS_I965G(dev) || plane == 0))
3879                 intel_update_fbc(crtc, &crtc->mode);
3880
3881         intel_update_watermarks(dev);
3882
3883         drm_vblank_post_modeset(dev, pipe);
3884
3885         return ret;
3886 }
3887
3888 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3889 void intel_crtc_load_lut(struct drm_crtc *crtc)
3890 {
3891         struct drm_device *dev = crtc->dev;
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3894         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3895         int i;
3896
3897         /* The clocks have to be on to load the palette. */
3898         if (!crtc->enabled)
3899                 return;
3900
3901         /* use legacy palette for Ironlake */
3902         if (HAS_PCH_SPLIT(dev))
3903                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3904                                                    LGC_PALETTE_B;
3905
3906         for (i = 0; i < 256; i++) {
3907                 I915_WRITE(palreg + 4 * i,
3908                            (intel_crtc->lut_r[i] << 16) |
3909                            (intel_crtc->lut_g[i] << 8) |
3910                            intel_crtc->lut_b[i]);
3911         }
3912 }
3913
3914 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3915                                  struct drm_file *file_priv,
3916                                  uint32_t handle,
3917                                  uint32_t width, uint32_t height)
3918 {
3919         struct drm_device *dev = crtc->dev;
3920         struct drm_i915_private *dev_priv = dev->dev_private;
3921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3922         struct drm_gem_object *bo;
3923         struct drm_i915_gem_object *obj_priv;
3924         int pipe = intel_crtc->pipe;
3925         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3926         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3927         uint32_t temp = I915_READ(control);
3928         size_t addr;
3929         int ret;
3930
3931         DRM_DEBUG_KMS("\n");
3932
3933         /* if we want to turn off the cursor ignore width and height */
3934         if (!handle) {
3935                 DRM_DEBUG_KMS("cursor off\n");
3936                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3937                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3938                         temp |= CURSOR_MODE_DISABLE;
3939                 } else {
3940                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3941                 }
3942                 addr = 0;
3943                 bo = NULL;
3944                 mutex_lock(&dev->struct_mutex);
3945                 goto finish;
3946         }
3947
3948         /* Currently we only support 64x64 cursors */
3949         if (width != 64 || height != 64) {
3950                 DRM_ERROR("we currently only support 64x64 cursors\n");
3951                 return -EINVAL;
3952         }
3953
3954         bo = drm_gem_object_lookup(dev, file_priv, handle);
3955         if (!bo)
3956                 return -ENOENT;
3957
3958         obj_priv = to_intel_bo(bo);
3959
3960         if (bo->size < width * height * 4) {
3961                 DRM_ERROR("buffer is to small\n");
3962                 ret = -ENOMEM;
3963                 goto fail;
3964         }
3965
3966         /* we only need to pin inside GTT if cursor is non-phy */
3967         mutex_lock(&dev->struct_mutex);
3968         if (!dev_priv->info->cursor_needs_physical) {
3969                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3970                 if (ret) {
3971                         DRM_ERROR("failed to pin cursor bo\n");
3972                         goto fail_locked;
3973                 }
3974                 addr = obj_priv->gtt_offset;
3975         } else {
3976                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3977                 if (ret) {
3978                         DRM_ERROR("failed to attach phys object\n");
3979                         goto fail_locked;
3980                 }
3981                 addr = obj_priv->phys_obj->handle->busaddr;
3982         }
3983
3984         if (!IS_I9XX(dev))
3985                 I915_WRITE(CURSIZE, (height << 12) | width);
3986
3987         /* Hooray for CUR*CNTR differences */
3988         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3989                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3990                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3991                 temp |= (pipe << 28); /* Connect to correct pipe */
3992         } else {
3993                 temp &= ~(CURSOR_FORMAT_MASK);
3994                 temp |= CURSOR_ENABLE;
3995                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3996         }
3997
3998  finish:
3999         I915_WRITE(control, temp);
4000         I915_WRITE(base, addr);
4001
4002         if (intel_crtc->cursor_bo) {
4003                 if (dev_priv->info->cursor_needs_physical) {
4004                         if (intel_crtc->cursor_bo != bo)
4005                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4006                 } else
4007                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4008                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4009         }
4010
4011         mutex_unlock(&dev->struct_mutex);
4012
4013         intel_crtc->cursor_addr = addr;
4014         intel_crtc->cursor_bo = bo;
4015
4016         return 0;
4017 fail_locked:
4018         mutex_unlock(&dev->struct_mutex);
4019 fail:
4020         drm_gem_object_unreference_unlocked(bo);
4021         return ret;
4022 }
4023
4024 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4025 {
4026         struct drm_device *dev = crtc->dev;
4027         struct drm_i915_private *dev_priv = dev->dev_private;
4028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4029         struct intel_framebuffer *intel_fb;
4030         int pipe = intel_crtc->pipe;
4031         uint32_t temp = 0;
4032         uint32_t adder;
4033
4034         if (crtc->fb) {
4035                 intel_fb = to_intel_framebuffer(crtc->fb);
4036                 intel_mark_busy(dev, intel_fb->obj);
4037         }
4038
4039         if (x < 0) {
4040                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4041                 x = -x;
4042         }
4043         if (y < 0) {
4044                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4045                 y = -y;
4046         }
4047
4048         temp |= x << CURSOR_X_SHIFT;
4049         temp |= y << CURSOR_Y_SHIFT;
4050
4051         adder = intel_crtc->cursor_addr;
4052         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4053         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4054
4055         return 0;
4056 }
4057
4058 /** Sets the color ramps on behalf of RandR */
4059 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4060                                  u16 blue, int regno)
4061 {
4062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4063
4064         intel_crtc->lut_r[regno] = red >> 8;
4065         intel_crtc->lut_g[regno] = green >> 8;
4066         intel_crtc->lut_b[regno] = blue >> 8;
4067 }
4068
4069 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4070                              u16 *blue, int regno)
4071 {
4072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4073
4074         *red = intel_crtc->lut_r[regno] << 8;
4075         *green = intel_crtc->lut_g[regno] << 8;
4076         *blue = intel_crtc->lut_b[regno] << 8;
4077 }
4078
4079 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4080                                  u16 *blue, uint32_t size)
4081 {
4082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4083         int i;
4084
4085         if (size != 256)
4086                 return;
4087
4088         for (i = 0; i < 256; i++) {
4089                 intel_crtc->lut_r[i] = red[i] >> 8;
4090                 intel_crtc->lut_g[i] = green[i] >> 8;
4091                 intel_crtc->lut_b[i] = blue[i] >> 8;
4092         }
4093
4094         intel_crtc_load_lut(crtc);
4095 }
4096
4097 /**
4098  * Get a pipe with a simple mode set on it for doing load-based monitor
4099  * detection.
4100  *
4101  * It will be up to the load-detect code to adjust the pipe as appropriate for
4102  * its requirements.  The pipe will be connected to no other encoders.
4103  *
4104  * Currently this code will only succeed if there is a pipe with no encoders
4105  * configured for it.  In the future, it could choose to temporarily disable
4106  * some outputs to free up a pipe for its use.
4107  *
4108  * \return crtc, or NULL if no pipes are available.
4109  */
4110
4111 /* VESA 640x480x72Hz mode to set on the pipe */
4112 static struct drm_display_mode load_detect_mode = {
4113         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4114                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4115 };
4116
4117 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4118                                             struct drm_connector *connector,
4119                                             struct drm_display_mode *mode,
4120                                             int *dpms_mode)
4121 {
4122         struct intel_crtc *intel_crtc;
4123         struct drm_crtc *possible_crtc;
4124         struct drm_crtc *supported_crtc =NULL;
4125         struct drm_encoder *encoder = &intel_encoder->enc;
4126         struct drm_crtc *crtc = NULL;
4127         struct drm_device *dev = encoder->dev;
4128         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4129         struct drm_crtc_helper_funcs *crtc_funcs;
4130         int i = -1;
4131
4132         /*
4133          * Algorithm gets a little messy:
4134          *   - if the connector already has an assigned crtc, use it (but make
4135          *     sure it's on first)
4136          *   - try to find the first unused crtc that can drive this connector,
4137          *     and use that if we find one
4138          *   - if there are no unused crtcs available, try to use the first
4139          *     one we found that supports the connector
4140          */
4141
4142         /* See if we already have a CRTC for this connector */
4143         if (encoder->crtc) {
4144                 crtc = encoder->crtc;
4145                 /* Make sure the crtc and connector are running */
4146                 intel_crtc = to_intel_crtc(crtc);
4147                 *dpms_mode = intel_crtc->dpms_mode;
4148                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4149                         crtc_funcs = crtc->helper_private;
4150                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4151                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4152                 }
4153                 return crtc;
4154         }
4155
4156         /* Find an unused one (if possible) */
4157         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4158                 i++;
4159                 if (!(encoder->possible_crtcs & (1 << i)))
4160                         continue;
4161                 if (!possible_crtc->enabled) {
4162                         crtc = possible_crtc;
4163                         break;
4164                 }
4165                 if (!supported_crtc)
4166                         supported_crtc = possible_crtc;
4167         }
4168
4169         /*
4170          * If we didn't find an unused CRTC, don't use any.
4171          */
4172         if (!crtc) {
4173                 return NULL;
4174         }
4175
4176         encoder->crtc = crtc;
4177         connector->encoder = encoder;
4178         intel_encoder->load_detect_temp = true;
4179
4180         intel_crtc = to_intel_crtc(crtc);
4181         *dpms_mode = intel_crtc->dpms_mode;
4182
4183         if (!crtc->enabled) {
4184                 if (!mode)
4185                         mode = &load_detect_mode;
4186                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4187         } else {
4188                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4189                         crtc_funcs = crtc->helper_private;
4190                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4191                 }
4192
4193                 /* Add this connector to the crtc */
4194                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4195                 encoder_funcs->commit(encoder);
4196         }
4197         /* let the connector get through one full cycle before testing */
4198         intel_wait_for_vblank(dev);
4199
4200         return crtc;
4201 }
4202
4203 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4204                                     struct drm_connector *connector, int dpms_mode)
4205 {
4206         struct drm_encoder *encoder = &intel_encoder->enc;
4207         struct drm_device *dev = encoder->dev;
4208         struct drm_crtc *crtc = encoder->crtc;
4209         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4210         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4211
4212         if (intel_encoder->load_detect_temp) {
4213                 encoder->crtc = NULL;
4214                 connector->encoder = NULL;
4215                 intel_encoder->load_detect_temp = false;
4216                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4217                 drm_helper_disable_unused_functions(dev);
4218         }
4219
4220         /* Switch crtc and encoder back off if necessary */
4221         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4222                 if (encoder->crtc == crtc)
4223                         encoder_funcs->dpms(encoder, dpms_mode);
4224                 crtc_funcs->dpms(crtc, dpms_mode);
4225         }
4226 }
4227
4228 /* Returns the clock of the currently programmed mode of the given pipe. */
4229 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4230 {
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233         int pipe = intel_crtc->pipe;
4234         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4235         u32 fp;
4236         intel_clock_t clock;
4237
4238         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4239                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4240         else
4241                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4242
4243         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4244         if (IS_PINEVIEW(dev)) {
4245                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4246                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4247         } else {
4248                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4249                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4250         }
4251
4252         if (IS_I9XX(dev)) {
4253                 if (IS_PINEVIEW(dev))
4254                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4255                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4256                 else
4257                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4258                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4259
4260                 switch (dpll & DPLL_MODE_MASK) {
4261                 case DPLLB_MODE_DAC_SERIAL:
4262                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4263                                 5 : 10;
4264                         break;
4265                 case DPLLB_MODE_LVDS:
4266                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4267                                 7 : 14;
4268                         break;
4269                 default:
4270                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4271                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4272                         return 0;
4273                 }
4274
4275                 /* XXX: Handle the 100Mhz refclk */
4276                 intel_clock(dev, 96000, &clock);
4277         } else {
4278                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4279
4280                 if (is_lvds) {
4281                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4282                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4283                         clock.p2 = 14;
4284
4285                         if ((dpll & PLL_REF_INPUT_MASK) ==
4286                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4287                                 /* XXX: might not be 66MHz */
4288                                 intel_clock(dev, 66000, &clock);
4289                         } else
4290                                 intel_clock(dev, 48000, &clock);
4291                 } else {
4292                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4293                                 clock.p1 = 2;
4294                         else {
4295                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4296                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4297                         }
4298                         if (dpll & PLL_P2_DIVIDE_BY_4)
4299                                 clock.p2 = 4;
4300                         else
4301                                 clock.p2 = 2;
4302
4303                         intel_clock(dev, 48000, &clock);
4304                 }
4305         }
4306
4307         /* XXX: It would be nice to validate the clocks, but we can't reuse
4308          * i830PllIsValid() because it relies on the xf86_config connector
4309          * configuration being accurate, which it isn't necessarily.
4310          */
4311
4312         return clock.dot;
4313 }
4314
4315 /** Returns the currently programmed mode of the given pipe. */
4316 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4317                                              struct drm_crtc *crtc)
4318 {
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321         int pipe = intel_crtc->pipe;
4322         struct drm_display_mode *mode;
4323         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4324         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4325         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4326         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4327
4328         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4329         if (!mode)
4330                 return NULL;
4331
4332         mode->clock = intel_crtc_clock_get(dev, crtc);
4333         mode->hdisplay = (htot & 0xffff) + 1;
4334         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4335         mode->hsync_start = (hsync & 0xffff) + 1;
4336         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4337         mode->vdisplay = (vtot & 0xffff) + 1;
4338         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4339         mode->vsync_start = (vsync & 0xffff) + 1;
4340         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4341
4342         drm_mode_set_name(mode);
4343         drm_mode_set_crtcinfo(mode, 0);
4344
4345         return mode;
4346 }
4347
4348 #define GPU_IDLE_TIMEOUT 500 /* ms */
4349
4350 /* When this timer fires, we've been idle for awhile */
4351 static void intel_gpu_idle_timer(unsigned long arg)
4352 {
4353         struct drm_device *dev = (struct drm_device *)arg;
4354         drm_i915_private_t *dev_priv = dev->dev_private;
4355
4356         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4357
4358         dev_priv->busy = false;
4359
4360         queue_work(dev_priv->wq, &dev_priv->idle_work);
4361 }
4362
4363 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4364
4365 static void intel_crtc_idle_timer(unsigned long arg)
4366 {
4367         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4368         struct drm_crtc *crtc = &intel_crtc->base;
4369         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4370
4371         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4372
4373         intel_crtc->busy = false;
4374
4375         queue_work(dev_priv->wq, &dev_priv->idle_work);
4376 }
4377
4378 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4379 {
4380         struct drm_device *dev = crtc->dev;
4381         drm_i915_private_t *dev_priv = dev->dev_private;
4382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4383         int pipe = intel_crtc->pipe;
4384         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4385         int dpll = I915_READ(dpll_reg);
4386
4387         if (HAS_PCH_SPLIT(dev))
4388                 return;
4389
4390         if (!dev_priv->lvds_downclock_avail)
4391                 return;
4392
4393         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4394                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4395
4396                 /* Unlock panel regs */
4397                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4398
4399                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4400                 I915_WRITE(dpll_reg, dpll);
4401                 dpll = I915_READ(dpll_reg);
4402                 intel_wait_for_vblank(dev);
4403                 dpll = I915_READ(dpll_reg);
4404                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4405                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4406
4407                 /* ...and lock them again */
4408                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4409         }
4410
4411         /* Schedule downclock */
4412         if (schedule)
4413                 mod_timer(&intel_crtc->idle_timer, jiffies +
4414                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4415 }
4416
4417 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4418 {
4419         struct drm_device *dev = crtc->dev;
4420         drm_i915_private_t *dev_priv = dev->dev_private;
4421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4422         int pipe = intel_crtc->pipe;
4423         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4424         int dpll = I915_READ(dpll_reg);
4425
4426         if (HAS_PCH_SPLIT(dev))
4427                 return;
4428
4429         if (!dev_priv->lvds_downclock_avail)
4430                 return;
4431
4432         /*
4433          * Since this is called by a timer, we should never get here in
4434          * the manual case.
4435          */
4436         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4437                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4438
4439                 /* Unlock panel regs */
4440                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4441
4442                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4443                 I915_WRITE(dpll_reg, dpll);
4444                 dpll = I915_READ(dpll_reg);
4445                 intel_wait_for_vblank(dev);
4446                 dpll = I915_READ(dpll_reg);
4447                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4448                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4449
4450                 /* ...and lock them again */
4451                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4452         }
4453
4454 }
4455
4456 /**
4457  * intel_idle_update - adjust clocks for idleness
4458  * @work: work struct
4459  *
4460  * Either the GPU or display (or both) went idle.  Check the busy status
4461  * here and adjust the CRTC and GPU clocks as necessary.
4462  */
4463 static void intel_idle_update(struct work_struct *work)
4464 {
4465         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4466                                                     idle_work);
4467         struct drm_device *dev = dev_priv->dev;
4468         struct drm_crtc *crtc;
4469         struct intel_crtc *intel_crtc;
4470
4471         if (!i915_powersave)
4472                 return;
4473
4474         mutex_lock(&dev->struct_mutex);
4475
4476         i915_update_gfx_val(dev_priv);
4477
4478         if (IS_I945G(dev) || IS_I945GM(dev)) {
4479                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4480                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4481         }
4482
4483         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4484                 /* Skip inactive CRTCs */
4485                 if (!crtc->fb)
4486                         continue;
4487
4488                 intel_crtc = to_intel_crtc(crtc);
4489                 if (!intel_crtc->busy)
4490                         intel_decrease_pllclock(crtc);
4491         }
4492
4493         mutex_unlock(&dev->struct_mutex);
4494 }
4495
4496 /**
4497  * intel_mark_busy - mark the GPU and possibly the display busy
4498  * @dev: drm device
4499  * @obj: object we're operating on
4500  *
4501  * Callers can use this function to indicate that the GPU is busy processing
4502  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4503  * buffer), we'll also mark the display as busy, so we know to increase its
4504  * clock frequency.
4505  */
4506 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4507 {
4508         drm_i915_private_t *dev_priv = dev->dev_private;
4509         struct drm_crtc *crtc = NULL;
4510         struct intel_framebuffer *intel_fb;
4511         struct intel_crtc *intel_crtc;
4512
4513         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4514                 return;
4515
4516         if (!dev_priv->busy) {
4517                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4518                         u32 fw_blc_self;
4519
4520                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4521                         fw_blc_self = I915_READ(FW_BLC_SELF);
4522                         fw_blc_self &= ~FW_BLC_SELF_EN;
4523                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4524                 }
4525                 dev_priv->busy = true;
4526         } else
4527                 mod_timer(&dev_priv->idle_timer, jiffies +
4528                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4529
4530         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4531                 if (!crtc->fb)
4532                         continue;
4533
4534                 intel_crtc = to_intel_crtc(crtc);
4535                 intel_fb = to_intel_framebuffer(crtc->fb);
4536                 if (intel_fb->obj == obj) {
4537                         if (!intel_crtc->busy) {
4538                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4539                                         u32 fw_blc_self;
4540
4541                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4542                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4543                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4544                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4545                                 }
4546                                 /* Non-busy -> busy, upclock */
4547                                 intel_increase_pllclock(crtc, true);
4548                                 intel_crtc->busy = true;
4549                         } else {
4550                                 /* Busy -> busy, put off timer */
4551                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4552                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4553                         }
4554                 }
4555         }
4556 }
4557
4558 static void intel_crtc_destroy(struct drm_crtc *crtc)
4559 {
4560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4561
4562         drm_crtc_cleanup(crtc);
4563         kfree(intel_crtc);
4564 }
4565
4566 struct intel_unpin_work {
4567         struct work_struct work;
4568         struct drm_device *dev;
4569         struct drm_gem_object *old_fb_obj;
4570         struct drm_gem_object *pending_flip_obj;
4571         struct drm_pending_vblank_event *event;
4572         int pending;
4573 };
4574
4575 static void intel_unpin_work_fn(struct work_struct *__work)
4576 {
4577         struct intel_unpin_work *work =
4578                 container_of(__work, struct intel_unpin_work, work);
4579
4580         mutex_lock(&work->dev->struct_mutex);
4581         i915_gem_object_unpin(work->old_fb_obj);
4582         drm_gem_object_unreference(work->pending_flip_obj);
4583         drm_gem_object_unreference(work->old_fb_obj);
4584         mutex_unlock(&work->dev->struct_mutex);
4585         kfree(work);
4586 }
4587
4588 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4589 {
4590         drm_i915_private_t *dev_priv = dev->dev_private;
4591         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593         struct intel_unpin_work *work;
4594         struct drm_i915_gem_object *obj_priv;
4595         struct drm_pending_vblank_event *e;
4596         struct timeval now;
4597         unsigned long flags;
4598
4599         /* Ignore early vblank irqs */
4600         if (intel_crtc == NULL)
4601                 return;
4602
4603         spin_lock_irqsave(&dev->event_lock, flags);
4604         work = intel_crtc->unpin_work;
4605         if (work == NULL || !work->pending) {
4606                 spin_unlock_irqrestore(&dev->event_lock, flags);
4607                 return;
4608         }
4609
4610         intel_crtc->unpin_work = NULL;
4611         drm_vblank_put(dev, intel_crtc->pipe);
4612
4613         if (work->event) {
4614                 e = work->event;
4615                 do_gettimeofday(&now);
4616                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4617                 e->event.tv_sec = now.tv_sec;
4618                 e->event.tv_usec = now.tv_usec;
4619                 list_add_tail(&e->base.link,
4620                               &e->base.file_priv->event_list);
4621                 wake_up_interruptible(&e->base.file_priv->event_wait);
4622         }
4623
4624         spin_unlock_irqrestore(&dev->event_lock, flags);
4625
4626         obj_priv = to_intel_bo(work->pending_flip_obj);
4627
4628         /* Initial scanout buffer will have a 0 pending flip count */
4629         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4630             atomic_dec_and_test(&obj_priv->pending_flip))
4631                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4632         schedule_work(&work->work);
4633 }
4634
4635 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4636 {
4637         drm_i915_private_t *dev_priv = dev->dev_private;
4638         struct intel_crtc *intel_crtc =
4639                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4640         unsigned long flags;
4641
4642         spin_lock_irqsave(&dev->event_lock, flags);
4643         if (intel_crtc->unpin_work) {
4644                 intel_crtc->unpin_work->pending = 1;
4645         } else {
4646                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4647         }
4648         spin_unlock_irqrestore(&dev->event_lock, flags);
4649 }
4650
4651 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4652                                 struct drm_framebuffer *fb,
4653                                 struct drm_pending_vblank_event *event)
4654 {
4655         struct drm_device *dev = crtc->dev;
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         struct intel_framebuffer *intel_fb;
4658         struct drm_i915_gem_object *obj_priv;
4659         struct drm_gem_object *obj;
4660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4661         struct intel_unpin_work *work;
4662         unsigned long flags;
4663         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4664         int ret, pipesrc;
4665
4666         work = kzalloc(sizeof *work, GFP_KERNEL);
4667         if (work == NULL)
4668                 return -ENOMEM;
4669
4670         mutex_lock(&dev->struct_mutex);
4671
4672         work->event = event;
4673         work->dev = crtc->dev;
4674         intel_fb = to_intel_framebuffer(crtc->fb);
4675         work->old_fb_obj = intel_fb->obj;
4676         INIT_WORK(&work->work, intel_unpin_work_fn);
4677
4678         /* We borrow the event spin lock for protecting unpin_work */
4679         spin_lock_irqsave(&dev->event_lock, flags);
4680         if (intel_crtc->unpin_work) {
4681                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4682                 spin_unlock_irqrestore(&dev->event_lock, flags);
4683                 kfree(work);
4684                 mutex_unlock(&dev->struct_mutex);
4685                 return -EBUSY;
4686         }
4687         intel_crtc->unpin_work = work;
4688         spin_unlock_irqrestore(&dev->event_lock, flags);
4689
4690         intel_fb = to_intel_framebuffer(fb);
4691         obj = intel_fb->obj;
4692
4693         ret = intel_pin_and_fence_fb_obj(dev, obj);
4694         if (ret != 0) {
4695                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4696                           to_intel_bo(obj));
4697                 kfree(work);
4698                 intel_crtc->unpin_work = NULL;
4699                 mutex_unlock(&dev->struct_mutex);
4700                 return ret;
4701         }
4702
4703         /* Reference the objects for the scheduled work. */
4704         drm_gem_object_reference(work->old_fb_obj);
4705         drm_gem_object_reference(obj);
4706
4707         crtc->fb = fb;
4708         i915_gem_object_flush_write_domain(obj);
4709         drm_vblank_get(dev, intel_crtc->pipe);
4710         obj_priv = to_intel_bo(obj);
4711         atomic_inc(&obj_priv->pending_flip);
4712         work->pending_flip_obj = obj;
4713
4714         BEGIN_LP_RING(4);
4715         OUT_RING(MI_DISPLAY_FLIP |
4716                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4717         OUT_RING(fb->pitch);
4718         if (IS_I965G(dev)) {
4719                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4720                 pipesrc = I915_READ(pipesrc_reg); 
4721                 OUT_RING(pipesrc & 0x0fff0fff);
4722         } else {
4723                 OUT_RING(obj_priv->gtt_offset);
4724                 OUT_RING(MI_NOOP);
4725         }
4726         ADVANCE_LP_RING();
4727
4728         mutex_unlock(&dev->struct_mutex);
4729
4730         return 0;
4731 }
4732
4733 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4734         .dpms = intel_crtc_dpms,
4735         .mode_fixup = intel_crtc_mode_fixup,
4736         .mode_set = intel_crtc_mode_set,
4737         .mode_set_base = intel_pipe_set_base,
4738         .prepare = intel_crtc_prepare,
4739         .commit = intel_crtc_commit,
4740         .load_lut = intel_crtc_load_lut,
4741 };
4742
4743 static const struct drm_crtc_funcs intel_crtc_funcs = {
4744         .cursor_set = intel_crtc_cursor_set,
4745         .cursor_move = intel_crtc_cursor_move,
4746         .gamma_set = intel_crtc_gamma_set,
4747         .set_config = drm_crtc_helper_set_config,
4748         .destroy = intel_crtc_destroy,
4749         .page_flip = intel_crtc_page_flip,
4750 };
4751
4752
4753 static void intel_crtc_init(struct drm_device *dev, int pipe)
4754 {
4755         drm_i915_private_t *dev_priv = dev->dev_private;
4756         struct intel_crtc *intel_crtc;
4757         int i;
4758
4759         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4760         if (intel_crtc == NULL)
4761                 return;
4762
4763         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4764
4765         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4766         intel_crtc->pipe = pipe;
4767         intel_crtc->plane = pipe;
4768         for (i = 0; i < 256; i++) {
4769                 intel_crtc->lut_r[i] = i;
4770                 intel_crtc->lut_g[i] = i;
4771                 intel_crtc->lut_b[i] = i;
4772         }
4773
4774         /* Swap pipes & planes for FBC on pre-965 */
4775         intel_crtc->pipe = pipe;
4776         intel_crtc->plane = pipe;
4777         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4778                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4779                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4780         }
4781
4782         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4783                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4784         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4785         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4786
4787         intel_crtc->cursor_addr = 0;
4788         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4789         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4790
4791         intel_crtc->busy = false;
4792
4793         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4794                     (unsigned long)intel_crtc);
4795 }
4796
4797 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4798                                 struct drm_file *file_priv)
4799 {
4800         drm_i915_private_t *dev_priv = dev->dev_private;
4801         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4802         struct drm_mode_object *drmmode_obj;
4803         struct intel_crtc *crtc;
4804
4805         if (!dev_priv) {
4806                 DRM_ERROR("called with no initialization\n");
4807                 return -EINVAL;
4808         }
4809
4810         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4811                         DRM_MODE_OBJECT_CRTC);
4812
4813         if (!drmmode_obj) {
4814                 DRM_ERROR("no such CRTC id\n");
4815                 return -EINVAL;
4816         }
4817
4818         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4819         pipe_from_crtc_id->pipe = crtc->pipe;
4820
4821         return 0;
4822 }
4823
4824 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4825 {
4826         struct drm_crtc *crtc = NULL;
4827
4828         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4829                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830                 if (intel_crtc->pipe == pipe)
4831                         break;
4832         }
4833         return crtc;
4834 }
4835
4836 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4837 {
4838         int index_mask = 0;
4839         struct drm_encoder *encoder;
4840         int entry = 0;
4841
4842         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4843                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4844                 if (type_mask & intel_encoder->clone_mask)
4845                         index_mask |= (1 << entry);
4846                 entry++;
4847         }
4848         return index_mask;
4849 }
4850
4851
4852 static void intel_setup_outputs(struct drm_device *dev)
4853 {
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855         struct drm_encoder *encoder;
4856
4857         intel_crt_init(dev);
4858
4859         /* Set up integrated LVDS */
4860         if (IS_MOBILE(dev) && !IS_I830(dev))
4861                 intel_lvds_init(dev);
4862
4863         if (HAS_PCH_SPLIT(dev)) {
4864                 int found;
4865
4866                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4867                         intel_dp_init(dev, DP_A);
4868
4869                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4870                         /* PCH SDVOB multiplex with HDMIB */
4871                         found = intel_sdvo_init(dev, PCH_SDVOB);
4872                         if (!found)
4873                                 intel_hdmi_init(dev, HDMIB);
4874                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4875                                 intel_dp_init(dev, PCH_DP_B);
4876                 }
4877
4878                 if (I915_READ(HDMIC) & PORT_DETECTED)
4879                         intel_hdmi_init(dev, HDMIC);
4880
4881                 if (I915_READ(HDMID) & PORT_DETECTED)
4882                         intel_hdmi_init(dev, HDMID);
4883
4884                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4885                         intel_dp_init(dev, PCH_DP_C);
4886
4887                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4888                         intel_dp_init(dev, PCH_DP_D);
4889
4890         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4891                 bool found = false;
4892
4893                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4894                         DRM_DEBUG_KMS("probing SDVOB\n");
4895                         found = intel_sdvo_init(dev, SDVOB);
4896                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4897                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4898                                 intel_hdmi_init(dev, SDVOB);
4899                         }
4900
4901                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4902                                 DRM_DEBUG_KMS("probing DP_B\n");
4903                                 intel_dp_init(dev, DP_B);
4904                         }
4905                 }
4906
4907                 /* Before G4X SDVOC doesn't have its own detect register */
4908
4909                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4910                         DRM_DEBUG_KMS("probing SDVOC\n");
4911                         found = intel_sdvo_init(dev, SDVOC);
4912                 }
4913
4914                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4915
4916                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4917                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4918                                 intel_hdmi_init(dev, SDVOC);
4919                         }
4920                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4921                                 DRM_DEBUG_KMS("probing DP_C\n");
4922                                 intel_dp_init(dev, DP_C);
4923                         }
4924                 }
4925
4926                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4927                     (I915_READ(DP_D) & DP_DETECTED)) {
4928                         DRM_DEBUG_KMS("probing DP_D\n");
4929                         intel_dp_init(dev, DP_D);
4930                 }
4931         } else if (IS_GEN2(dev))
4932                 intel_dvo_init(dev);
4933
4934         if (SUPPORTS_TV(dev))
4935                 intel_tv_init(dev);
4936
4937         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4938                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4939
4940                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4941                 encoder->possible_clones = intel_encoder_clones(dev,
4942                                                 intel_encoder->clone_mask);
4943         }
4944 }
4945
4946 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4947 {
4948         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4949
4950         drm_framebuffer_cleanup(fb);
4951         drm_gem_object_unreference_unlocked(intel_fb->obj);
4952
4953         kfree(intel_fb);
4954 }
4955
4956 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4957                                                 struct drm_file *file_priv,
4958                                                 unsigned int *handle)
4959 {
4960         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4961         struct drm_gem_object *object = intel_fb->obj;
4962
4963         return drm_gem_handle_create(file_priv, object, handle);
4964 }
4965
4966 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4967         .destroy = intel_user_framebuffer_destroy,
4968         .create_handle = intel_user_framebuffer_create_handle,
4969 };
4970
4971 int intel_framebuffer_init(struct drm_device *dev,
4972                            struct intel_framebuffer *intel_fb,
4973                            struct drm_mode_fb_cmd *mode_cmd,
4974                            struct drm_gem_object *obj)
4975 {
4976         int ret;
4977
4978         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4979         if (ret) {
4980                 DRM_ERROR("framebuffer init failed %d\n", ret);
4981                 return ret;
4982         }
4983
4984         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4985         intel_fb->obj = obj;
4986         return 0;
4987 }
4988
4989 static struct drm_framebuffer *
4990 intel_user_framebuffer_create(struct drm_device *dev,
4991                               struct drm_file *filp,
4992                               struct drm_mode_fb_cmd *mode_cmd)
4993 {
4994         struct drm_gem_object *obj;
4995         struct intel_framebuffer *intel_fb;
4996         int ret;
4997
4998         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4999         if (!obj)
5000                 return NULL;
5001
5002         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5003         if (!intel_fb)
5004                 return NULL;
5005
5006         ret = intel_framebuffer_init(dev, intel_fb,
5007                                      mode_cmd, obj);
5008         if (ret) {
5009                 drm_gem_object_unreference_unlocked(obj);
5010                 kfree(intel_fb);
5011                 return NULL;
5012         }
5013
5014         return &intel_fb->base;
5015 }
5016
5017 static const struct drm_mode_config_funcs intel_mode_funcs = {
5018         .fb_create = intel_user_framebuffer_create,
5019         .output_poll_changed = intel_fb_output_poll_changed,
5020 };
5021
5022 static struct drm_gem_object *
5023 intel_alloc_power_context(struct drm_device *dev)
5024 {
5025         struct drm_gem_object *pwrctx;
5026         int ret;
5027
5028         pwrctx = i915_gem_alloc_object(dev, 4096);
5029         if (!pwrctx) {
5030                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5031                 return NULL;
5032         }
5033
5034         mutex_lock(&dev->struct_mutex);
5035         ret = i915_gem_object_pin(pwrctx, 4096);
5036         if (ret) {
5037                 DRM_ERROR("failed to pin power context: %d\n", ret);
5038                 goto err_unref;
5039         }
5040
5041         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5042         if (ret) {
5043                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5044                 goto err_unpin;
5045         }
5046         mutex_unlock(&dev->struct_mutex);
5047
5048         return pwrctx;
5049
5050 err_unpin:
5051         i915_gem_object_unpin(pwrctx);
5052 err_unref:
5053         drm_gem_object_unreference(pwrctx);
5054         mutex_unlock(&dev->struct_mutex);
5055         return NULL;
5056 }
5057
5058 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5059 {
5060         struct drm_i915_private *dev_priv = dev->dev_private;
5061         u16 rgvswctl;
5062
5063         rgvswctl = I915_READ16(MEMSWCTL);
5064         if (rgvswctl & MEMCTL_CMD_STS) {
5065                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5066                 return false; /* still busy with another command */
5067         }
5068
5069         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5070                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5071         I915_WRITE16(MEMSWCTL, rgvswctl);
5072         POSTING_READ16(MEMSWCTL);
5073
5074         rgvswctl |= MEMCTL_CMD_STS;
5075         I915_WRITE16(MEMSWCTL, rgvswctl);
5076
5077         return true;
5078 }
5079
5080 void ironlake_enable_drps(struct drm_device *dev)
5081 {
5082         struct drm_i915_private *dev_priv = dev->dev_private;
5083         u32 rgvmodectl = I915_READ(MEMMODECTL);
5084         u8 fmax, fmin, fstart, vstart;
5085         int i = 0;
5086
5087         /* 100ms RC evaluation intervals */
5088         I915_WRITE(RCUPEI, 100000);
5089         I915_WRITE(RCDNEI, 100000);
5090
5091         /* Set max/min thresholds to 90ms and 80ms respectively */
5092         I915_WRITE(RCBMAXAVG, 90000);
5093         I915_WRITE(RCBMINAVG, 80000);
5094
5095         I915_WRITE(MEMIHYST, 1);
5096
5097         /* Set up min, max, and cur for interrupt handling */
5098         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5099         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5100         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5101                 MEMMODE_FSTART_SHIFT;
5102         fstart = fmax;
5103
5104         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5105                 PXVFREQ_PX_SHIFT;
5106
5107         dev_priv->fmax = fstart; /* IPS callback will increase this */
5108         dev_priv->fstart = fstart;
5109
5110         dev_priv->max_delay = fmax;
5111         dev_priv->min_delay = fmin;
5112         dev_priv->cur_delay = fstart;
5113
5114         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5115                          fstart);
5116
5117         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5118
5119         /*
5120          * Interrupts will be enabled in ironlake_irq_postinstall
5121          */
5122
5123         I915_WRITE(VIDSTART, vstart);
5124         POSTING_READ(VIDSTART);
5125
5126         rgvmodectl |= MEMMODE_SWMODE_EN;
5127         I915_WRITE(MEMMODECTL, rgvmodectl);
5128
5129         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5130                 if (i++ > 100) {
5131                         DRM_ERROR("stuck trying to change perf mode\n");
5132                         break;
5133                 }
5134                 msleep(1);
5135         }
5136         msleep(1);
5137
5138         ironlake_set_drps(dev, fstart);
5139
5140         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5141                 I915_READ(0x112e0);
5142         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5143         dev_priv->last_count2 = I915_READ(0x112f4);
5144         getrawmonotonic(&dev_priv->last_time2);
5145 }
5146
5147 void ironlake_disable_drps(struct drm_device *dev)
5148 {
5149         struct drm_i915_private *dev_priv = dev->dev_private;
5150         u16 rgvswctl = I915_READ16(MEMSWCTL);
5151
5152         /* Ack interrupts, disable EFC interrupt */
5153         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5154         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5155         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5156         I915_WRITE(DEIIR, DE_PCU_EVENT);
5157         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5158
5159         /* Go back to the starting frequency */
5160         ironlake_set_drps(dev, dev_priv->fstart);
5161         msleep(1);
5162         rgvswctl |= MEMCTL_CMD_STS;
5163         I915_WRITE(MEMSWCTL, rgvswctl);
5164         msleep(1);
5165
5166 }
5167
5168 static unsigned long intel_pxfreq(u32 vidfreq)
5169 {
5170         unsigned long freq;
5171         int div = (vidfreq & 0x3f0000) >> 16;
5172         int post = (vidfreq & 0x3000) >> 12;
5173         int pre = (vidfreq & 0x7);
5174
5175         if (!pre)
5176                 return 0;
5177
5178         freq = ((div * 133333) / ((1<<post) * pre));
5179
5180         return freq;
5181 }
5182
5183 void intel_init_emon(struct drm_device *dev)
5184 {
5185         struct drm_i915_private *dev_priv = dev->dev_private;
5186         u32 lcfuse;
5187         u8 pxw[16];
5188         int i;
5189
5190         /* Disable to program */
5191         I915_WRITE(ECR, 0);
5192         POSTING_READ(ECR);
5193
5194         /* Program energy weights for various events */
5195         I915_WRITE(SDEW, 0x15040d00);
5196         I915_WRITE(CSIEW0, 0x007f0000);
5197         I915_WRITE(CSIEW1, 0x1e220004);
5198         I915_WRITE(CSIEW2, 0x04000004);
5199
5200         for (i = 0; i < 5; i++)
5201                 I915_WRITE(PEW + (i * 4), 0);
5202         for (i = 0; i < 3; i++)
5203                 I915_WRITE(DEW + (i * 4), 0);
5204
5205         /* Program P-state weights to account for frequency power adjustment */
5206         for (i = 0; i < 16; i++) {
5207                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5208                 unsigned long freq = intel_pxfreq(pxvidfreq);
5209                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5210                         PXVFREQ_PX_SHIFT;
5211                 unsigned long val;
5212
5213                 val = vid * vid;
5214                 val *= (freq / 1000);
5215                 val *= 255;
5216                 val /= (127*127*900);
5217                 if (val > 0xff)
5218                         DRM_ERROR("bad pxval: %ld\n", val);
5219                 pxw[i] = val;
5220         }
5221         /* Render standby states get 0 weight */
5222         pxw[14] = 0;
5223         pxw[15] = 0;
5224
5225         for (i = 0; i < 4; i++) {
5226                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5227                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5228                 I915_WRITE(PXW + (i * 4), val);
5229         }
5230
5231         /* Adjust magic regs to magic values (more experimental results) */
5232         I915_WRITE(OGW0, 0);
5233         I915_WRITE(OGW1, 0);
5234         I915_WRITE(EG0, 0x00007f00);
5235         I915_WRITE(EG1, 0x0000000e);
5236         I915_WRITE(EG2, 0x000e0000);
5237         I915_WRITE(EG3, 0x68000300);
5238         I915_WRITE(EG4, 0x42000000);
5239         I915_WRITE(EG5, 0x00140031);
5240         I915_WRITE(EG6, 0);
5241         I915_WRITE(EG7, 0);
5242
5243         for (i = 0; i < 8; i++)
5244                 I915_WRITE(PXWL + (i * 4), 0);
5245
5246         /* Enable PMON + select events */
5247         I915_WRITE(ECR, 0x80000019);
5248
5249         lcfuse = I915_READ(LCFUSE02);
5250
5251         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5252 }
5253
5254 void intel_init_clock_gating(struct drm_device *dev)
5255 {
5256         struct drm_i915_private *dev_priv = dev->dev_private;
5257
5258         /*
5259          * Disable clock gating reported to work incorrectly according to the
5260          * specs, but enable as much else as we can.
5261          */
5262         if (HAS_PCH_SPLIT(dev)) {
5263                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5264
5265                 if (IS_IRONLAKE(dev)) {
5266                         /* Required for FBC */
5267                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5268                         /* Required for CxSR */
5269                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5270
5271                         I915_WRITE(PCH_3DCGDIS0,
5272                                    MARIUNIT_CLOCK_GATE_DISABLE |
5273                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5274                 }
5275
5276                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5277
5278                 /*
5279                  * According to the spec the following bits should be set in
5280                  * order to enable memory self-refresh
5281                  * The bit 22/21 of 0x42004
5282                  * The bit 5 of 0x42020
5283                  * The bit 15 of 0x45000
5284                  */
5285                 if (IS_IRONLAKE(dev)) {
5286                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5287                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5288                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5289                         I915_WRITE(ILK_DSPCLK_GATE,
5290                                         (I915_READ(ILK_DSPCLK_GATE) |
5291                                                 ILK_DPARB_CLK_GATE));
5292                         I915_WRITE(DISP_ARB_CTL,
5293                                         (I915_READ(DISP_ARB_CTL) |
5294                                                 DISP_FBC_WM_DIS));
5295                 }
5296                 return;
5297         } else if (IS_G4X(dev)) {
5298                 uint32_t dspclk_gate;
5299                 I915_WRITE(RENCLK_GATE_D1, 0);
5300                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5301                        GS_UNIT_CLOCK_GATE_DISABLE |
5302                        CL_UNIT_CLOCK_GATE_DISABLE);
5303                 I915_WRITE(RAMCLK_GATE_D, 0);
5304                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5305                         OVRUNIT_CLOCK_GATE_DISABLE |
5306                         OVCUNIT_CLOCK_GATE_DISABLE;
5307                 if (IS_GM45(dev))
5308                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5309                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5310         } else if (IS_I965GM(dev)) {
5311                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5312                 I915_WRITE(RENCLK_GATE_D2, 0);
5313                 I915_WRITE(DSPCLK_GATE_D, 0);
5314                 I915_WRITE(RAMCLK_GATE_D, 0);
5315                 I915_WRITE16(DEUC, 0);
5316         } else if (IS_I965G(dev)) {
5317                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5318                        I965_RCC_CLOCK_GATE_DISABLE |
5319                        I965_RCPB_CLOCK_GATE_DISABLE |
5320                        I965_ISC_CLOCK_GATE_DISABLE |
5321                        I965_FBC_CLOCK_GATE_DISABLE);
5322                 I915_WRITE(RENCLK_GATE_D2, 0);
5323         } else if (IS_I9XX(dev)) {
5324                 u32 dstate = I915_READ(D_STATE);
5325
5326                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5327                         DSTATE_DOT_CLOCK_GATING;
5328                 I915_WRITE(D_STATE, dstate);
5329         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5330                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5331         } else if (IS_I830(dev)) {
5332                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5333         }
5334
5335         /*
5336          * GPU can automatically power down the render unit if given a page
5337          * to save state.
5338          */
5339         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5340                 struct drm_i915_gem_object *obj_priv = NULL;
5341
5342                 if (dev_priv->pwrctx) {
5343                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5344                 } else {
5345                         struct drm_gem_object *pwrctx;
5346
5347                         pwrctx = intel_alloc_power_context(dev);
5348                         if (pwrctx) {
5349                                 dev_priv->pwrctx = pwrctx;
5350                                 obj_priv = to_intel_bo(pwrctx);
5351                         }
5352                 }
5353
5354                 if (obj_priv) {
5355                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5356                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5357                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5358                 }
5359         }
5360 }
5361
5362 /* Set up chip specific display functions */
5363 static void intel_init_display(struct drm_device *dev)
5364 {
5365         struct drm_i915_private *dev_priv = dev->dev_private;
5366
5367         /* We always want a DPMS function */
5368         if (HAS_PCH_SPLIT(dev))
5369                 dev_priv->display.dpms = ironlake_crtc_dpms;
5370         else
5371                 dev_priv->display.dpms = i9xx_crtc_dpms;
5372
5373         if (I915_HAS_FBC(dev)) {
5374                 if (IS_GM45(dev)) {
5375                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5376                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5377                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5378                 } else if (IS_I965GM(dev)) {
5379                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5380                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5381                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5382                 }
5383                 /* 855GM needs testing */
5384         }
5385
5386         /* Returns the core display clock speed */
5387         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5388                 dev_priv->display.get_display_clock_speed =
5389                         i945_get_display_clock_speed;
5390         else if (IS_I915G(dev))
5391                 dev_priv->display.get_display_clock_speed =
5392                         i915_get_display_clock_speed;
5393         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5394                 dev_priv->display.get_display_clock_speed =
5395                         i9xx_misc_get_display_clock_speed;
5396         else if (IS_I915GM(dev))
5397                 dev_priv->display.get_display_clock_speed =
5398                         i915gm_get_display_clock_speed;
5399         else if (IS_I865G(dev))
5400                 dev_priv->display.get_display_clock_speed =
5401                         i865_get_display_clock_speed;
5402         else if (IS_I85X(dev))
5403                 dev_priv->display.get_display_clock_speed =
5404                         i855_get_display_clock_speed;
5405         else /* 852, 830 */
5406                 dev_priv->display.get_display_clock_speed =
5407                         i830_get_display_clock_speed;
5408
5409         /* For FIFO watermark updates */
5410         if (HAS_PCH_SPLIT(dev)) {
5411                 if (IS_IRONLAKE(dev)) {
5412                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5413                                 dev_priv->display.update_wm = ironlake_update_wm;
5414                         else {
5415                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5416                                               "Disable CxSR\n");
5417                                 dev_priv->display.update_wm = NULL;
5418                         }
5419                 } else
5420                         dev_priv->display.update_wm = NULL;
5421         } else if (IS_PINEVIEW(dev)) {
5422                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5423                                             dev_priv->is_ddr3,
5424                                             dev_priv->fsb_freq,
5425                                             dev_priv->mem_freq)) {
5426                         DRM_INFO("failed to find known CxSR latency "
5427                                  "(found ddr%s fsb freq %d, mem freq %d), "
5428                                  "disabling CxSR\n",
5429                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5430                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5431                         /* Disable CxSR and never update its watermark again */
5432                         pineview_disable_cxsr(dev);
5433                         dev_priv->display.update_wm = NULL;
5434                 } else
5435                         dev_priv->display.update_wm = pineview_update_wm;
5436         } else if (IS_G4X(dev))
5437                 dev_priv->display.update_wm = g4x_update_wm;
5438         else if (IS_I965G(dev))
5439                 dev_priv->display.update_wm = i965_update_wm;
5440         else if (IS_I9XX(dev)) {
5441                 dev_priv->display.update_wm = i9xx_update_wm;
5442                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5443         } else if (IS_I85X(dev)) {
5444                 dev_priv->display.update_wm = i9xx_update_wm;
5445                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5446         } else {
5447                 dev_priv->display.update_wm = i830_update_wm;
5448                 if (IS_845G(dev))
5449                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5450                 else
5451                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5452         }
5453 }
5454
5455 void intel_modeset_init(struct drm_device *dev)
5456 {
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         int num_pipe;
5459         int i;
5460
5461         drm_mode_config_init(dev);
5462
5463         dev->mode_config.min_width = 0;
5464         dev->mode_config.min_height = 0;
5465
5466         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5467
5468         intel_init_display(dev);
5469
5470         if (IS_I965G(dev)) {
5471                 dev->mode_config.max_width = 8192;
5472                 dev->mode_config.max_height = 8192;
5473         } else if (IS_I9XX(dev)) {
5474                 dev->mode_config.max_width = 4096;
5475                 dev->mode_config.max_height = 4096;
5476         } else {
5477                 dev->mode_config.max_width = 2048;
5478                 dev->mode_config.max_height = 2048;
5479         }
5480
5481         /* set memory base */
5482         if (IS_I9XX(dev))
5483                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5484         else
5485                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5486
5487         if (IS_MOBILE(dev) || IS_I9XX(dev))
5488                 num_pipe = 2;
5489         else
5490                 num_pipe = 1;
5491         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5492                   num_pipe, num_pipe > 1 ? "s" : "");
5493
5494         for (i = 0; i < num_pipe; i++) {
5495                 intel_crtc_init(dev, i);
5496         }
5497
5498         intel_setup_outputs(dev);
5499
5500         intel_init_clock_gating(dev);
5501
5502         if (IS_IRONLAKE_M(dev)) {
5503                 ironlake_enable_drps(dev);
5504                 intel_init_emon(dev);
5505         }
5506
5507         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5508         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5509                     (unsigned long)dev);
5510
5511         intel_setup_overlay(dev);
5512 }
5513
5514 void intel_modeset_cleanup(struct drm_device *dev)
5515 {
5516         struct drm_i915_private *dev_priv = dev->dev_private;
5517         struct drm_crtc *crtc;
5518         struct intel_crtc *intel_crtc;
5519
5520         mutex_lock(&dev->struct_mutex);
5521
5522         drm_kms_helper_poll_fini(dev);
5523         intel_fbdev_fini(dev);
5524
5525         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5526                 /* Skip inactive CRTCs */
5527                 if (!crtc->fb)
5528                         continue;
5529
5530                 intel_crtc = to_intel_crtc(crtc);
5531                 intel_increase_pllclock(crtc, false);
5532                 del_timer_sync(&intel_crtc->idle_timer);
5533         }
5534
5535         del_timer_sync(&dev_priv->idle_timer);
5536
5537         if (dev_priv->display.disable_fbc)
5538                 dev_priv->display.disable_fbc(dev);
5539
5540         if (dev_priv->pwrctx) {
5541                 struct drm_i915_gem_object *obj_priv;
5542
5543                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5544                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5545                 I915_READ(PWRCTXA);
5546                 i915_gem_object_unpin(dev_priv->pwrctx);
5547                 drm_gem_object_unreference(dev_priv->pwrctx);
5548         }
5549
5550         if (IS_IRONLAKE_M(dev))
5551                 ironlake_disable_drps(dev);
5552
5553         mutex_unlock(&dev->struct_mutex);
5554
5555         drm_mode_config_cleanup(dev);
5556 }
5557
5558
5559 /*
5560  * Return which encoder is currently attached for connector.
5561  */
5562 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5563 {
5564         struct drm_mode_object *obj;
5565         struct drm_encoder *encoder;
5566         int i;
5567
5568         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5569                 if (connector->encoder_ids[i] == 0)
5570                         break;
5571
5572                 obj = drm_mode_object_find(connector->dev,
5573                                            connector->encoder_ids[i],
5574                                            DRM_MODE_OBJECT_ENCODER);
5575                 if (!obj)
5576                         continue;
5577
5578                 encoder = obj_to_encoder(obj);
5579                 return encoder;
5580         }
5581         return NULL;
5582 }
5583
5584 /*
5585  * set vga decode state - true == enable VGA decode
5586  */
5587 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5588 {
5589         struct drm_i915_private *dev_priv = dev->dev_private;
5590         u16 gmch_ctrl;
5591
5592         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5593         if (state)
5594                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5595         else
5596                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5597         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5598         return 0;
5599 }