Merge branch 'drm-fbdev-cleanup' into drm-core-next
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requriment prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirment prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         u32 fbc_ctl;
1033
1034         if (!I915_HAS_FBC(dev))
1035                 return;
1036
1037         /* Disable compression */
1038         fbc_ctl = I915_READ(FBC_CONTROL);
1039         fbc_ctl &= ~FBC_CTL_EN;
1040         I915_WRITE(FBC_CONTROL, fbc_ctl);
1041
1042         /* Wait for compressing bit to clear */
1043         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1044                 ; /* nothing */
1045
1046         intel_wait_for_vblank(dev);
1047
1048         DRM_DEBUG_KMS("disabled FBC\n");
1049 }
1050
1051 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1052 {
1053         struct drm_device *dev = crtc->dev;
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055
1056         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1057 }
1058
1059 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1060 {
1061         struct drm_device *dev = crtc->dev;
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063         struct drm_framebuffer *fb = crtc->fb;
1064         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1065         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1067         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1068                      DPFC_CTL_PLANEB);
1069         unsigned long stall_watermark = 200;
1070         u32 dpfc_ctl;
1071
1072         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1073         dev_priv->cfb_fence = obj_priv->fence_reg;
1074         dev_priv->cfb_plane = intel_crtc->plane;
1075
1076         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1077         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1078                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1079                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1080         } else {
1081                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1082         }
1083
1084         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1085         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1086                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1087                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1088         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1089
1090         /* enable it... */
1091         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1092
1093         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1094 }
1095
1096 void g4x_disable_fbc(struct drm_device *dev)
1097 {
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         u32 dpfc_ctl;
1100
1101         /* Disable compression */
1102         dpfc_ctl = I915_READ(DPFC_CONTROL);
1103         dpfc_ctl &= ~DPFC_CTL_EN;
1104         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1105         intel_wait_for_vblank(dev);
1106
1107         DRM_DEBUG_KMS("disabled FBC\n");
1108 }
1109
1110 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1111 {
1112         struct drm_device *dev = crtc->dev;
1113         struct drm_i915_private *dev_priv = dev->dev_private;
1114
1115         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1116 }
1117
1118 /**
1119  * intel_update_fbc - enable/disable FBC as needed
1120  * @crtc: CRTC to point the compressor at
1121  * @mode: mode in use
1122  *
1123  * Set up the framebuffer compression hardware at mode set time.  We
1124  * enable it if possible:
1125  *   - plane A only (on pre-965)
1126  *   - no pixel mulitply/line duplication
1127  *   - no alpha buffer discard
1128  *   - no dual wide
1129  *   - framebuffer <= 2048 in width, 1536 in height
1130  *
1131  * We can't assume that any compression will take place (worst case),
1132  * so the compressed buffer has to be the same size as the uncompressed
1133  * one.  It also must reside (along with the line length buffer) in
1134  * stolen memory.
1135  *
1136  * We need to enable/disable FBC on a global basis.
1137  */
1138 static void intel_update_fbc(struct drm_crtc *crtc,
1139                              struct drm_display_mode *mode)
1140 {
1141         struct drm_device *dev = crtc->dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct drm_framebuffer *fb = crtc->fb;
1144         struct intel_framebuffer *intel_fb;
1145         struct drm_i915_gem_object *obj_priv;
1146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1147         int plane = intel_crtc->plane;
1148
1149         if (!i915_powersave)
1150                 return;
1151
1152         if (!dev_priv->display.fbc_enabled ||
1153             !dev_priv->display.enable_fbc ||
1154             !dev_priv->display.disable_fbc)
1155                 return;
1156
1157         if (!crtc->fb)
1158                 return;
1159
1160         intel_fb = to_intel_framebuffer(fb);
1161         obj_priv = to_intel_bo(intel_fb->obj);
1162
1163         /*
1164          * If FBC is already on, we just have to verify that we can
1165          * keep it that way...
1166          * Need to disable if:
1167          *   - changing FBC params (stride, fence, mode)
1168          *   - new fb is too large to fit in compressed buffer
1169          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1170          */
1171         if (intel_fb->obj->size > dev_priv->cfb_size) {
1172                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1173                                 "compression\n");
1174                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1175                 goto out_disable;
1176         }
1177         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1178             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1179                 DRM_DEBUG_KMS("mode incompatible with compression, "
1180                                 "disabling\n");
1181                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1182                 goto out_disable;
1183         }
1184         if ((mode->hdisplay > 2048) ||
1185             (mode->vdisplay > 1536)) {
1186                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1187                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1188                 goto out_disable;
1189         }
1190         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1191                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1192                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1193                 goto out_disable;
1194         }
1195         if (obj_priv->tiling_mode != I915_TILING_X) {
1196                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1197                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1198                 goto out_disable;
1199         }
1200
1201         if (dev_priv->display.fbc_enabled(crtc)) {
1202                 /* We can re-enable it in this case, but need to update pitch */
1203                 if (fb->pitch > dev_priv->cfb_pitch)
1204                         dev_priv->display.disable_fbc(dev);
1205                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1206                         dev_priv->display.disable_fbc(dev);
1207                 if (plane != dev_priv->cfb_plane)
1208                         dev_priv->display.disable_fbc(dev);
1209         }
1210
1211         if (!dev_priv->display.fbc_enabled(crtc)) {
1212                 /* Now try to turn it back on if possible */
1213                 dev_priv->display.enable_fbc(crtc, 500);
1214         }
1215
1216         return;
1217
1218 out_disable:
1219         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1220         /* Multiple disables should be harmless */
1221         if (dev_priv->display.fbc_enabled(crtc))
1222                 dev_priv->display.disable_fbc(dev);
1223 }
1224
1225 static int
1226 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1227 {
1228         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1229         u32 alignment;
1230         int ret;
1231
1232         switch (obj_priv->tiling_mode) {
1233         case I915_TILING_NONE:
1234                 alignment = 64 * 1024;
1235                 break;
1236         case I915_TILING_X:
1237                 /* pin() will align the object as required by fence */
1238                 alignment = 0;
1239                 break;
1240         case I915_TILING_Y:
1241                 /* FIXME: Is this true? */
1242                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1243                 return -EINVAL;
1244         default:
1245                 BUG();
1246         }
1247
1248         ret = i915_gem_object_pin(obj, alignment);
1249         if (ret != 0)
1250                 return ret;
1251
1252         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1253          * fence, whereas 965+ only requires a fence if using
1254          * framebuffer compression.  For simplicity, we always install
1255          * a fence as the cost is not that onerous.
1256          */
1257         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1258             obj_priv->tiling_mode != I915_TILING_NONE) {
1259                 ret = i915_gem_object_get_fence_reg(obj);
1260                 if (ret != 0) {
1261                         i915_gem_object_unpin(obj);
1262                         return ret;
1263                 }
1264         }
1265
1266         return 0;
1267 }
1268
1269 static int
1270 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1271                     struct drm_framebuffer *old_fb)
1272 {
1273         struct drm_device *dev = crtc->dev;
1274         struct drm_i915_private *dev_priv = dev->dev_private;
1275         struct drm_i915_master_private *master_priv;
1276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1277         struct intel_framebuffer *intel_fb;
1278         struct drm_i915_gem_object *obj_priv;
1279         struct drm_gem_object *obj;
1280         int pipe = intel_crtc->pipe;
1281         int plane = intel_crtc->plane;
1282         unsigned long Start, Offset;
1283         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1284         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1285         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1286         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1287         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1288         u32 dspcntr;
1289         int ret;
1290
1291         /* no fb bound */
1292         if (!crtc->fb) {
1293                 DRM_DEBUG_KMS("No FB bound\n");
1294                 return 0;
1295         }
1296
1297         switch (plane) {
1298         case 0:
1299         case 1:
1300                 break;
1301         default:
1302                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1303                 return -EINVAL;
1304         }
1305
1306         intel_fb = to_intel_framebuffer(crtc->fb);
1307         obj = intel_fb->obj;
1308         obj_priv = to_intel_bo(obj);
1309
1310         mutex_lock(&dev->struct_mutex);
1311         ret = intel_pin_and_fence_fb_obj(dev, obj);
1312         if (ret != 0) {
1313                 mutex_unlock(&dev->struct_mutex);
1314                 return ret;
1315         }
1316
1317         ret = i915_gem_object_set_to_display_plane(obj);
1318         if (ret != 0) {
1319                 i915_gem_object_unpin(obj);
1320                 mutex_unlock(&dev->struct_mutex);
1321                 return ret;
1322         }
1323
1324         dspcntr = I915_READ(dspcntr_reg);
1325         /* Mask out pixel format bits in case we change it */
1326         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1327         switch (crtc->fb->bits_per_pixel) {
1328         case 8:
1329                 dspcntr |= DISPPLANE_8BPP;
1330                 break;
1331         case 16:
1332                 if (crtc->fb->depth == 15)
1333                         dspcntr |= DISPPLANE_15_16BPP;
1334                 else
1335                         dspcntr |= DISPPLANE_16BPP;
1336                 break;
1337         case 24:
1338         case 32:
1339                 if (crtc->fb->depth == 30)
1340                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1341                 else
1342                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1343                 break;
1344         default:
1345                 DRM_ERROR("Unknown color depth\n");
1346                 i915_gem_object_unpin(obj);
1347                 mutex_unlock(&dev->struct_mutex);
1348                 return -EINVAL;
1349         }
1350         if (IS_I965G(dev)) {
1351                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1352                         dspcntr |= DISPPLANE_TILED;
1353                 else
1354                         dspcntr &= ~DISPPLANE_TILED;
1355         }
1356
1357         if (HAS_PCH_SPLIT(dev))
1358                 /* must disable */
1359                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1360
1361         I915_WRITE(dspcntr_reg, dspcntr);
1362
1363         Start = obj_priv->gtt_offset;
1364         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1365
1366         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1367         I915_WRITE(dspstride, crtc->fb->pitch);
1368         if (IS_I965G(dev)) {
1369                 I915_WRITE(dspbase, Offset);
1370                 I915_READ(dspbase);
1371                 I915_WRITE(dspsurf, Start);
1372                 I915_READ(dspsurf);
1373                 I915_WRITE(dsptileoff, (y << 16) | x);
1374         } else {
1375                 I915_WRITE(dspbase, Start + Offset);
1376                 I915_READ(dspbase);
1377         }
1378
1379         if ((IS_I965G(dev) || plane == 0))
1380                 intel_update_fbc(crtc, &crtc->mode);
1381
1382         intel_wait_for_vblank(dev);
1383
1384         if (old_fb) {
1385                 intel_fb = to_intel_framebuffer(old_fb);
1386                 obj_priv = to_intel_bo(intel_fb->obj);
1387                 i915_gem_object_unpin(intel_fb->obj);
1388         }
1389         intel_increase_pllclock(crtc, true);
1390
1391         mutex_unlock(&dev->struct_mutex);
1392
1393         if (!dev->primary->master)
1394                 return 0;
1395
1396         master_priv = dev->primary->master->driver_priv;
1397         if (!master_priv->sarea_priv)
1398                 return 0;
1399
1400         if (pipe) {
1401                 master_priv->sarea_priv->pipeB_x = x;
1402                 master_priv->sarea_priv->pipeB_y = y;
1403         } else {
1404                 master_priv->sarea_priv->pipeA_x = x;
1405                 master_priv->sarea_priv->pipeA_y = y;
1406         }
1407
1408         return 0;
1409 }
1410
1411 /* Disable the VGA plane that we never use */
1412 static void i915_disable_vga (struct drm_device *dev)
1413 {
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         u8 sr1;
1416         u32 vga_reg;
1417
1418         if (HAS_PCH_SPLIT(dev))
1419                 vga_reg = CPU_VGACNTRL;
1420         else
1421                 vga_reg = VGACNTRL;
1422
1423         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1424                 return;
1425
1426         I915_WRITE8(VGA_SR_INDEX, 1);
1427         sr1 = I915_READ8(VGA_SR_DATA);
1428         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1429         udelay(100);
1430
1431         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1432 }
1433
1434 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1435 {
1436         struct drm_device *dev = crtc->dev;
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         u32 dpa_ctl;
1439
1440         DRM_DEBUG_KMS("\n");
1441         dpa_ctl = I915_READ(DP_A);
1442         dpa_ctl &= ~DP_PLL_ENABLE;
1443         I915_WRITE(DP_A, dpa_ctl);
1444 }
1445
1446 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1447 {
1448         struct drm_device *dev = crtc->dev;
1449         struct drm_i915_private *dev_priv = dev->dev_private;
1450         u32 dpa_ctl;
1451
1452         dpa_ctl = I915_READ(DP_A);
1453         dpa_ctl |= DP_PLL_ENABLE;
1454         I915_WRITE(DP_A, dpa_ctl);
1455         udelay(200);
1456 }
1457
1458
1459 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1460 {
1461         struct drm_device *dev = crtc->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         u32 dpa_ctl;
1464
1465         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1466         dpa_ctl = I915_READ(DP_A);
1467         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1468
1469         if (clock < 200000) {
1470                 u32 temp;
1471                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1472                 /* workaround for 160Mhz:
1473                    1) program 0x4600c bits 15:0 = 0x8124
1474                    2) program 0x46010 bit 0 = 1
1475                    3) program 0x46034 bit 24 = 1
1476                    4) program 0x64000 bit 14 = 1
1477                    */
1478                 temp = I915_READ(0x4600c);
1479                 temp &= 0xffff0000;
1480                 I915_WRITE(0x4600c, temp | 0x8124);
1481
1482                 temp = I915_READ(0x46010);
1483                 I915_WRITE(0x46010, temp | 1);
1484
1485                 temp = I915_READ(0x46034);
1486                 I915_WRITE(0x46034, temp | (1 << 24));
1487         } else {
1488                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1489         }
1490         I915_WRITE(DP_A, dpa_ctl);
1491
1492         udelay(500);
1493 }
1494
1495 /* The FDI link training functions for ILK/Ibexpeak. */
1496 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1497 {
1498         struct drm_device *dev = crtc->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1501         int pipe = intel_crtc->pipe;
1502         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1503         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1504         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1505         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1506         u32 temp, tries = 0;
1507
1508         /* enable CPU FDI TX and PCH FDI RX */
1509         temp = I915_READ(fdi_tx_reg);
1510         temp |= FDI_TX_ENABLE;
1511         temp &= ~(7 << 19);
1512         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1513         temp &= ~FDI_LINK_TRAIN_NONE;
1514         temp |= FDI_LINK_TRAIN_PATTERN_1;
1515         I915_WRITE(fdi_tx_reg, temp);
1516         I915_READ(fdi_tx_reg);
1517
1518         temp = I915_READ(fdi_rx_reg);
1519         temp &= ~FDI_LINK_TRAIN_NONE;
1520         temp |= FDI_LINK_TRAIN_PATTERN_1;
1521         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1522         I915_READ(fdi_rx_reg);
1523         udelay(150);
1524
1525         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1526            for train result */
1527         temp = I915_READ(fdi_rx_imr_reg);
1528         temp &= ~FDI_RX_SYMBOL_LOCK;
1529         temp &= ~FDI_RX_BIT_LOCK;
1530         I915_WRITE(fdi_rx_imr_reg, temp);
1531         I915_READ(fdi_rx_imr_reg);
1532         udelay(150);
1533
1534         for (;;) {
1535                 temp = I915_READ(fdi_rx_iir_reg);
1536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1537
1538                 if ((temp & FDI_RX_BIT_LOCK)) {
1539                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1540                         I915_WRITE(fdi_rx_iir_reg,
1541                                    temp | FDI_RX_BIT_LOCK);
1542                         break;
1543                 }
1544
1545                 tries++;
1546
1547                 if (tries > 5) {
1548                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1549                         break;
1550                 }
1551         }
1552
1553         /* Train 2 */
1554         temp = I915_READ(fdi_tx_reg);
1555         temp &= ~FDI_LINK_TRAIN_NONE;
1556         temp |= FDI_LINK_TRAIN_PATTERN_2;
1557         I915_WRITE(fdi_tx_reg, temp);
1558
1559         temp = I915_READ(fdi_rx_reg);
1560         temp &= ~FDI_LINK_TRAIN_NONE;
1561         temp |= FDI_LINK_TRAIN_PATTERN_2;
1562         I915_WRITE(fdi_rx_reg, temp);
1563         udelay(150);
1564
1565         tries = 0;
1566
1567         for (;;) {
1568                 temp = I915_READ(fdi_rx_iir_reg);
1569                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1570
1571                 if (temp & FDI_RX_SYMBOL_LOCK) {
1572                         I915_WRITE(fdi_rx_iir_reg,
1573                                    temp | FDI_RX_SYMBOL_LOCK);
1574                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1575                         break;
1576                 }
1577
1578                 tries++;
1579
1580                 if (tries > 5) {
1581                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1582                         break;
1583                 }
1584         }
1585
1586         DRM_DEBUG_KMS("FDI train done\n");
1587 }
1588
1589 static int snb_b_fdi_train_param [] = {
1590         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1591         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1592         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1593         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1594 };
1595
1596 /* The FDI link training functions for SNB/Cougarpoint. */
1597 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1602         int pipe = intel_crtc->pipe;
1603         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1604         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1605         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1606         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1607         u32 temp, i;
1608
1609         /* enable CPU FDI TX and PCH FDI RX */
1610         temp = I915_READ(fdi_tx_reg);
1611         temp |= FDI_TX_ENABLE;
1612         temp &= ~(7 << 19);
1613         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1614         temp &= ~FDI_LINK_TRAIN_NONE;
1615         temp |= FDI_LINK_TRAIN_PATTERN_1;
1616         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1617         /* SNB-B */
1618         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1619         I915_WRITE(fdi_tx_reg, temp);
1620         I915_READ(fdi_tx_reg);
1621
1622         temp = I915_READ(fdi_rx_reg);
1623         if (HAS_PCH_CPT(dev)) {
1624                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1625                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1626         } else {
1627                 temp &= ~FDI_LINK_TRAIN_NONE;
1628                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1629         }
1630         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1631         I915_READ(fdi_rx_reg);
1632         udelay(150);
1633
1634         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1635            for train result */
1636         temp = I915_READ(fdi_rx_imr_reg);
1637         temp &= ~FDI_RX_SYMBOL_LOCK;
1638         temp &= ~FDI_RX_BIT_LOCK;
1639         I915_WRITE(fdi_rx_imr_reg, temp);
1640         I915_READ(fdi_rx_imr_reg);
1641         udelay(150);
1642
1643         for (i = 0; i < 4; i++ ) {
1644                 temp = I915_READ(fdi_tx_reg);
1645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1646                 temp |= snb_b_fdi_train_param[i];
1647                 I915_WRITE(fdi_tx_reg, temp);
1648                 udelay(500);
1649
1650                 temp = I915_READ(fdi_rx_iir_reg);
1651                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1652
1653                 if (temp & FDI_RX_BIT_LOCK) {
1654                         I915_WRITE(fdi_rx_iir_reg,
1655                                    temp | FDI_RX_BIT_LOCK);
1656                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1657                         break;
1658                 }
1659         }
1660         if (i == 4)
1661                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1662
1663         /* Train 2 */
1664         temp = I915_READ(fdi_tx_reg);
1665         temp &= ~FDI_LINK_TRAIN_NONE;
1666         temp |= FDI_LINK_TRAIN_PATTERN_2;
1667         if (IS_GEN6(dev)) {
1668                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1669                 /* SNB-B */
1670                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1671         }
1672         I915_WRITE(fdi_tx_reg, temp);
1673
1674         temp = I915_READ(fdi_rx_reg);
1675         if (HAS_PCH_CPT(dev)) {
1676                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1677                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1678         } else {
1679                 temp &= ~FDI_LINK_TRAIN_NONE;
1680                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1681         }
1682         I915_WRITE(fdi_rx_reg, temp);
1683         udelay(150);
1684
1685         for (i = 0; i < 4; i++ ) {
1686                 temp = I915_READ(fdi_tx_reg);
1687                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1688                 temp |= snb_b_fdi_train_param[i];
1689                 I915_WRITE(fdi_tx_reg, temp);
1690                 udelay(500);
1691
1692                 temp = I915_READ(fdi_rx_iir_reg);
1693                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1694
1695                 if (temp & FDI_RX_SYMBOL_LOCK) {
1696                         I915_WRITE(fdi_rx_iir_reg,
1697                                    temp | FDI_RX_SYMBOL_LOCK);
1698                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1699                         break;
1700                 }
1701         }
1702         if (i == 4)
1703                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1704
1705         DRM_DEBUG_KMS("FDI train done.\n");
1706 }
1707
1708 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1709 {
1710         struct drm_device *dev = crtc->dev;
1711         struct drm_i915_private *dev_priv = dev->dev_private;
1712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1713         int pipe = intel_crtc->pipe;
1714         int plane = intel_crtc->plane;
1715         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1716         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1717         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1718         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1719         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1720         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1721         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1722         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1723         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1724         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1725         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1726         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1727         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1728         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1729         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1730         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1731         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1732         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1733         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1734         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1735         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1736         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1737         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1738         u32 temp;
1739         int n;
1740         u32 pipe_bpc;
1741
1742         temp = I915_READ(pipeconf_reg);
1743         pipe_bpc = temp & PIPE_BPC_MASK;
1744
1745         /* XXX: When our outputs are all unaware of DPMS modes other than off
1746          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1747          */
1748         switch (mode) {
1749         case DRM_MODE_DPMS_ON:
1750         case DRM_MODE_DPMS_STANDBY:
1751         case DRM_MODE_DPMS_SUSPEND:
1752                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1753
1754                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1755                         temp = I915_READ(PCH_LVDS);
1756                         if ((temp & LVDS_PORT_EN) == 0) {
1757                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1758                                 POSTING_READ(PCH_LVDS);
1759                         }
1760                 }
1761
1762                 if (HAS_eDP) {
1763                         /* enable eDP PLL */
1764                         ironlake_enable_pll_edp(crtc);
1765                 } else {
1766
1767                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1768                         temp = I915_READ(fdi_rx_reg);
1769                         /*
1770                          * make the BPC in FDI Rx be consistent with that in
1771                          * pipeconf reg.
1772                          */
1773                         temp &= ~(0x7 << 16);
1774                         temp |= (pipe_bpc << 11);
1775                         temp &= ~(7 << 19);
1776                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1777                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1778                         I915_READ(fdi_rx_reg);
1779                         udelay(200);
1780
1781                         /* Switch from Rawclk to PCDclk */
1782                         temp = I915_READ(fdi_rx_reg);
1783                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1784                         I915_READ(fdi_rx_reg);
1785                         udelay(200);
1786
1787                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1788                         temp = I915_READ(fdi_tx_reg);
1789                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1790                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1791                                 I915_READ(fdi_tx_reg);
1792                                 udelay(100);
1793                         }
1794                 }
1795
1796                 /* Enable panel fitting for LVDS */
1797                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1798                         temp = I915_READ(pf_ctl_reg);
1799                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1800
1801                         /* currently full aspect */
1802                         I915_WRITE(pf_win_pos, 0);
1803
1804                         I915_WRITE(pf_win_size,
1805                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1806                                    (dev_priv->panel_fixed_mode->vdisplay));
1807                 }
1808
1809                 /* Enable CPU pipe */
1810                 temp = I915_READ(pipeconf_reg);
1811                 if ((temp & PIPEACONF_ENABLE) == 0) {
1812                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1813                         I915_READ(pipeconf_reg);
1814                         udelay(100);
1815                 }
1816
1817                 /* configure and enable CPU plane */
1818                 temp = I915_READ(dspcntr_reg);
1819                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1820                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1821                         /* Flush the plane changes */
1822                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1823                 }
1824
1825                 if (!HAS_eDP) {
1826                         /* For PCH output, training FDI link */
1827                         if (IS_GEN6(dev))
1828                                 gen6_fdi_link_train(crtc);
1829                         else
1830                                 ironlake_fdi_link_train(crtc);
1831
1832                         /* enable PCH DPLL */
1833                         temp = I915_READ(pch_dpll_reg);
1834                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1835                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1836                                 I915_READ(pch_dpll_reg);
1837                         }
1838                         udelay(200);
1839
1840                         if (HAS_PCH_CPT(dev)) {
1841                                 /* Be sure PCH DPLL SEL is set */
1842                                 temp = I915_READ(PCH_DPLL_SEL);
1843                                 if (trans_dpll_sel == 0 &&
1844                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1845                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1846                                 else if (trans_dpll_sel == 1 &&
1847                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1848                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1849                                 I915_WRITE(PCH_DPLL_SEL, temp);
1850                                 I915_READ(PCH_DPLL_SEL);
1851                         }
1852
1853                         /* set transcoder timing */
1854                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1855                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1856                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1857
1858                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1859                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1860                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1861
1862                         /* enable normal train */
1863                         temp = I915_READ(fdi_tx_reg);
1864                         temp &= ~FDI_LINK_TRAIN_NONE;
1865                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1866                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1867                         I915_READ(fdi_tx_reg);
1868
1869                         temp = I915_READ(fdi_rx_reg);
1870                         if (HAS_PCH_CPT(dev)) {
1871                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1872                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1873                         } else {
1874                                 temp &= ~FDI_LINK_TRAIN_NONE;
1875                                 temp |= FDI_LINK_TRAIN_NONE;
1876                         }
1877                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1878                         I915_READ(fdi_rx_reg);
1879
1880                         /* wait one idle pattern time */
1881                         udelay(100);
1882
1883                         /* For PCH DP, enable TRANS_DP_CTL */
1884                         if (HAS_PCH_CPT(dev) &&
1885                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1886                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1887                                 int reg;
1888
1889                                 reg = I915_READ(trans_dp_ctl);
1890                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1891                                 reg = TRANS_DP_OUTPUT_ENABLE |
1892                                       TRANS_DP_ENH_FRAMING |
1893                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1894                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1895
1896                                 switch (intel_trans_dp_port_sel(crtc)) {
1897                                 case PCH_DP_B:
1898                                         reg |= TRANS_DP_PORT_SEL_B;
1899                                         break;
1900                                 case PCH_DP_C:
1901                                         reg |= TRANS_DP_PORT_SEL_C;
1902                                         break;
1903                                 case PCH_DP_D:
1904                                         reg |= TRANS_DP_PORT_SEL_D;
1905                                         break;
1906                                 default:
1907                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1908                                         reg |= TRANS_DP_PORT_SEL_B;
1909                                         break;
1910                                 }
1911
1912                                 I915_WRITE(trans_dp_ctl, reg);
1913                                 POSTING_READ(trans_dp_ctl);
1914                         }
1915
1916                         /* enable PCH transcoder */
1917                         temp = I915_READ(transconf_reg);
1918                         /*
1919                          * make the BPC in transcoder be consistent with
1920                          * that in pipeconf reg.
1921                          */
1922                         temp &= ~PIPE_BPC_MASK;
1923                         temp |= pipe_bpc;
1924                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1925                         I915_READ(transconf_reg);
1926
1927                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1928                                 ;
1929
1930                 }
1931
1932                 intel_crtc_load_lut(crtc);
1933
1934         break;
1935         case DRM_MODE_DPMS_OFF:
1936                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1937
1938                 drm_vblank_off(dev, pipe);
1939                 /* Disable display plane */
1940                 temp = I915_READ(dspcntr_reg);
1941                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1942                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1943                         /* Flush the plane changes */
1944                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1945                         I915_READ(dspbase_reg);
1946                 }
1947
1948                 i915_disable_vga(dev);
1949
1950                 /* disable cpu pipe, disable after all planes disabled */
1951                 temp = I915_READ(pipeconf_reg);
1952                 if ((temp & PIPEACONF_ENABLE) != 0) {
1953                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1954                         I915_READ(pipeconf_reg);
1955                         n = 0;
1956                         /* wait for cpu pipe off, pipe state */
1957                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1958                                 n++;
1959                                 if (n < 60) {
1960                                         udelay(500);
1961                                         continue;
1962                                 } else {
1963                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1964                                                                 pipe);
1965                                         break;
1966                                 }
1967                         }
1968                 } else
1969                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1970
1971                 udelay(100);
1972
1973                 /* Disable PF */
1974                 temp = I915_READ(pf_ctl_reg);
1975                 if ((temp & PF_ENABLE) != 0) {
1976                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1977                         I915_READ(pf_ctl_reg);
1978                 }
1979                 I915_WRITE(pf_win_size, 0);
1980                 POSTING_READ(pf_win_size);
1981
1982
1983                 /* disable CPU FDI tx and PCH FDI rx */
1984                 temp = I915_READ(fdi_tx_reg);
1985                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1986                 I915_READ(fdi_tx_reg);
1987
1988                 temp = I915_READ(fdi_rx_reg);
1989                 /* BPC in FDI rx is consistent with that in pipeconf */
1990                 temp &= ~(0x07 << 16);
1991                 temp |= (pipe_bpc << 11);
1992                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1993                 I915_READ(fdi_rx_reg);
1994
1995                 udelay(100);
1996
1997                 /* still set train pattern 1 */
1998                 temp = I915_READ(fdi_tx_reg);
1999                 temp &= ~FDI_LINK_TRAIN_NONE;
2000                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2001                 I915_WRITE(fdi_tx_reg, temp);
2002                 POSTING_READ(fdi_tx_reg);
2003
2004                 temp = I915_READ(fdi_rx_reg);
2005                 if (HAS_PCH_CPT(dev)) {
2006                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2007                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2008                 } else {
2009                         temp &= ~FDI_LINK_TRAIN_NONE;
2010                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2011                 }
2012                 I915_WRITE(fdi_rx_reg, temp);
2013                 POSTING_READ(fdi_rx_reg);
2014
2015                 udelay(100);
2016
2017                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2018                         temp = I915_READ(PCH_LVDS);
2019                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2020                         I915_READ(PCH_LVDS);
2021                         udelay(100);
2022                 }
2023
2024                 /* disable PCH transcoder */
2025                 temp = I915_READ(transconf_reg);
2026                 if ((temp & TRANS_ENABLE) != 0) {
2027                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2028                         I915_READ(transconf_reg);
2029                         n = 0;
2030                         /* wait for PCH transcoder off, transcoder state */
2031                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2032                                 n++;
2033                                 if (n < 60) {
2034                                         udelay(500);
2035                                         continue;
2036                                 } else {
2037                                         DRM_DEBUG_KMS("transcoder %d off "
2038                                                         "delay\n", pipe);
2039                                         break;
2040                                 }
2041                         }
2042                 }
2043
2044                 temp = I915_READ(transconf_reg);
2045                 /* BPC in transcoder is consistent with that in pipeconf */
2046                 temp &= ~PIPE_BPC_MASK;
2047                 temp |= pipe_bpc;
2048                 I915_WRITE(transconf_reg, temp);
2049                 I915_READ(transconf_reg);
2050                 udelay(100);
2051
2052                 if (HAS_PCH_CPT(dev)) {
2053                         /* disable TRANS_DP_CTL */
2054                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2055                         int reg;
2056
2057                         reg = I915_READ(trans_dp_ctl);
2058                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2059                         I915_WRITE(trans_dp_ctl, reg);
2060                         POSTING_READ(trans_dp_ctl);
2061
2062                         /* disable DPLL_SEL */
2063                         temp = I915_READ(PCH_DPLL_SEL);
2064                         if (trans_dpll_sel == 0)
2065                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2066                         else
2067                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2068                         I915_WRITE(PCH_DPLL_SEL, temp);
2069                         I915_READ(PCH_DPLL_SEL);
2070
2071                 }
2072
2073                 /* disable PCH DPLL */
2074                 temp = I915_READ(pch_dpll_reg);
2075                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2076                 I915_READ(pch_dpll_reg);
2077
2078                 if (HAS_eDP) {
2079                         ironlake_disable_pll_edp(crtc);
2080                 }
2081
2082                 /* Switch from PCDclk to Rawclk */
2083                 temp = I915_READ(fdi_rx_reg);
2084                 temp &= ~FDI_SEL_PCDCLK;
2085                 I915_WRITE(fdi_rx_reg, temp);
2086                 I915_READ(fdi_rx_reg);
2087
2088                 /* Disable CPU FDI TX PLL */
2089                 temp = I915_READ(fdi_tx_reg);
2090                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2091                 I915_READ(fdi_tx_reg);
2092                 udelay(100);
2093
2094                 temp = I915_READ(fdi_rx_reg);
2095                 temp &= ~FDI_RX_PLL_ENABLE;
2096                 I915_WRITE(fdi_rx_reg, temp);
2097                 I915_READ(fdi_rx_reg);
2098
2099                 /* Wait for the clocks to turn off. */
2100                 udelay(100);
2101                 break;
2102         }
2103 }
2104
2105 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2106 {
2107         struct intel_overlay *overlay;
2108         int ret;
2109
2110         if (!enable && intel_crtc->overlay) {
2111                 overlay = intel_crtc->overlay;
2112                 mutex_lock(&overlay->dev->struct_mutex);
2113                 for (;;) {
2114                         ret = intel_overlay_switch_off(overlay);
2115                         if (ret == 0)
2116                                 break;
2117
2118                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2119                         if (ret != 0) {
2120                                 /* overlay doesn't react anymore. Usually
2121                                  * results in a black screen and an unkillable
2122                                  * X server. */
2123                                 BUG();
2124                                 overlay->hw_wedged = HW_WEDGED;
2125                                 break;
2126                         }
2127                 }
2128                 mutex_unlock(&overlay->dev->struct_mutex);
2129         }
2130         /* Let userspace switch the overlay on again. In most cases userspace
2131          * has to recompute where to put it anyway. */
2132
2133         return;
2134 }
2135
2136 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2137 {
2138         struct drm_device *dev = crtc->dev;
2139         struct drm_i915_private *dev_priv = dev->dev_private;
2140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2141         int pipe = intel_crtc->pipe;
2142         int plane = intel_crtc->plane;
2143         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2144         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2145         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2146         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2147         u32 temp;
2148
2149         /* XXX: When our outputs are all unaware of DPMS modes other than off
2150          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2151          */
2152         switch (mode) {
2153         case DRM_MODE_DPMS_ON:
2154         case DRM_MODE_DPMS_STANDBY:
2155         case DRM_MODE_DPMS_SUSPEND:
2156                 intel_update_watermarks(dev);
2157
2158                 /* Enable the DPLL */
2159                 temp = I915_READ(dpll_reg);
2160                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2161                         I915_WRITE(dpll_reg, temp);
2162                         I915_READ(dpll_reg);
2163                         /* Wait for the clocks to stabilize. */
2164                         udelay(150);
2165                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2166                         I915_READ(dpll_reg);
2167                         /* Wait for the clocks to stabilize. */
2168                         udelay(150);
2169                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2170                         I915_READ(dpll_reg);
2171                         /* Wait for the clocks to stabilize. */
2172                         udelay(150);
2173                 }
2174
2175                 /* Enable the pipe */
2176                 temp = I915_READ(pipeconf_reg);
2177                 if ((temp & PIPEACONF_ENABLE) == 0)
2178                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2179
2180                 /* Enable the plane */
2181                 temp = I915_READ(dspcntr_reg);
2182                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2183                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2184                         /* Flush the plane changes */
2185                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2186                 }
2187
2188                 intel_crtc_load_lut(crtc);
2189
2190                 if ((IS_I965G(dev) || plane == 0))
2191                         intel_update_fbc(crtc, &crtc->mode);
2192
2193                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2194                 intel_crtc_dpms_overlay(intel_crtc, true);
2195         break;
2196         case DRM_MODE_DPMS_OFF:
2197                 intel_update_watermarks(dev);
2198
2199                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2200                 intel_crtc_dpms_overlay(intel_crtc, false);
2201                 drm_vblank_off(dev, pipe);
2202
2203                 if (dev_priv->cfb_plane == plane &&
2204                     dev_priv->display.disable_fbc)
2205                         dev_priv->display.disable_fbc(dev);
2206
2207                 /* Disable the VGA plane that we never use */
2208                 i915_disable_vga(dev);
2209
2210                 /* Disable display plane */
2211                 temp = I915_READ(dspcntr_reg);
2212                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2213                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2214                         /* Flush the plane changes */
2215                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2216                         I915_READ(dspbase_reg);
2217                 }
2218
2219                 if (!IS_I9XX(dev)) {
2220                         /* Wait for vblank for the disable to take effect */
2221                         intel_wait_for_vblank(dev);
2222                 }
2223
2224                 /* Next, disable display pipes */
2225                 temp = I915_READ(pipeconf_reg);
2226                 if ((temp & PIPEACONF_ENABLE) != 0) {
2227                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2228                         I915_READ(pipeconf_reg);
2229                 }
2230
2231                 /* Wait for vblank for the disable to take effect. */
2232                 intel_wait_for_vblank(dev);
2233
2234                 temp = I915_READ(dpll_reg);
2235                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2236                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2237                         I915_READ(dpll_reg);
2238                 }
2239
2240                 /* Wait for the clocks to turn off. */
2241                 udelay(150);
2242                 break;
2243         }
2244 }
2245
2246 /**
2247  * Sets the power management mode of the pipe and plane.
2248  *
2249  * This code should probably grow support for turning the cursor off and back
2250  * on appropriately at the same time as we're turning the pipe off/on.
2251  */
2252 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2253 {
2254         struct drm_device *dev = crtc->dev;
2255         struct drm_i915_private *dev_priv = dev->dev_private;
2256         struct drm_i915_master_private *master_priv;
2257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2258         int pipe = intel_crtc->pipe;
2259         bool enabled;
2260
2261         dev_priv->display.dpms(crtc, mode);
2262
2263         intel_crtc->dpms_mode = mode;
2264
2265         if (!dev->primary->master)
2266                 return;
2267
2268         master_priv = dev->primary->master->driver_priv;
2269         if (!master_priv->sarea_priv)
2270                 return;
2271
2272         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2273
2274         switch (pipe) {
2275         case 0:
2276                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2277                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2278                 break;
2279         case 1:
2280                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2281                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2282                 break;
2283         default:
2284                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2285                 break;
2286         }
2287 }
2288
2289 static void intel_crtc_prepare (struct drm_crtc *crtc)
2290 {
2291         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2292         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2293 }
2294
2295 static void intel_crtc_commit (struct drm_crtc *crtc)
2296 {
2297         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2298         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2299 }
2300
2301 void intel_encoder_prepare (struct drm_encoder *encoder)
2302 {
2303         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2304         /* lvds has its own version of prepare see intel_lvds_prepare */
2305         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2306 }
2307
2308 void intel_encoder_commit (struct drm_encoder *encoder)
2309 {
2310         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2311         /* lvds has its own version of commit see intel_lvds_commit */
2312         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2313 }
2314
2315 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2316                                   struct drm_display_mode *mode,
2317                                   struct drm_display_mode *adjusted_mode)
2318 {
2319         struct drm_device *dev = crtc->dev;
2320         if (HAS_PCH_SPLIT(dev)) {
2321                 /* FDI link clock is fixed at 2.7G */
2322                 if (mode->clock * 3 > 27000 * 4)
2323                         return MODE_CLOCK_HIGH;
2324         }
2325         return true;
2326 }
2327
2328 static int i945_get_display_clock_speed(struct drm_device *dev)
2329 {
2330         return 400000;
2331 }
2332
2333 static int i915_get_display_clock_speed(struct drm_device *dev)
2334 {
2335         return 333000;
2336 }
2337
2338 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2339 {
2340         return 200000;
2341 }
2342
2343 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2344 {
2345         u16 gcfgc = 0;
2346
2347         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2348
2349         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2350                 return 133000;
2351         else {
2352                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2353                 case GC_DISPLAY_CLOCK_333_MHZ:
2354                         return 333000;
2355                 default:
2356                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2357                         return 190000;
2358                 }
2359         }
2360 }
2361
2362 static int i865_get_display_clock_speed(struct drm_device *dev)
2363 {
2364         return 266000;
2365 }
2366
2367 static int i855_get_display_clock_speed(struct drm_device *dev)
2368 {
2369         u16 hpllcc = 0;
2370         /* Assume that the hardware is in the high speed state.  This
2371          * should be the default.
2372          */
2373         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2374         case GC_CLOCK_133_200:
2375         case GC_CLOCK_100_200:
2376                 return 200000;
2377         case GC_CLOCK_166_250:
2378                 return 250000;
2379         case GC_CLOCK_100_133:
2380                 return 133000;
2381         }
2382
2383         /* Shouldn't happen */
2384         return 0;
2385 }
2386
2387 static int i830_get_display_clock_speed(struct drm_device *dev)
2388 {
2389         return 133000;
2390 }
2391
2392 /**
2393  * Return the pipe currently connected to the panel fitter,
2394  * or -1 if the panel fitter is not present or not in use
2395  */
2396 int intel_panel_fitter_pipe (struct drm_device *dev)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         u32  pfit_control;
2400
2401         /* i830 doesn't have a panel fitter */
2402         if (IS_I830(dev))
2403                 return -1;
2404
2405         pfit_control = I915_READ(PFIT_CONTROL);
2406
2407         /* See if the panel fitter is in use */
2408         if ((pfit_control & PFIT_ENABLE) == 0)
2409                 return -1;
2410
2411         /* 965 can place panel fitter on either pipe */
2412         if (IS_I965G(dev))
2413                 return (pfit_control >> 29) & 0x3;
2414
2415         /* older chips can only use pipe 1 */
2416         return 1;
2417 }
2418
2419 struct fdi_m_n {
2420         u32        tu;
2421         u32        gmch_m;
2422         u32        gmch_n;
2423         u32        link_m;
2424         u32        link_n;
2425 };
2426
2427 static void
2428 fdi_reduce_ratio(u32 *num, u32 *den)
2429 {
2430         while (*num > 0xffffff || *den > 0xffffff) {
2431                 *num >>= 1;
2432                 *den >>= 1;
2433         }
2434 }
2435
2436 #define DATA_N 0x800000
2437 #define LINK_N 0x80000
2438
2439 static void
2440 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2441                      int link_clock, struct fdi_m_n *m_n)
2442 {
2443         u64 temp;
2444
2445         m_n->tu = 64; /* default size */
2446
2447         temp = (u64) DATA_N * pixel_clock;
2448         temp = div_u64(temp, link_clock);
2449         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2450         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2451         m_n->gmch_n = DATA_N;
2452         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2453
2454         temp = (u64) LINK_N * pixel_clock;
2455         m_n->link_m = div_u64(temp, link_clock);
2456         m_n->link_n = LINK_N;
2457         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2458 }
2459
2460
2461 struct intel_watermark_params {
2462         unsigned long fifo_size;
2463         unsigned long max_wm;
2464         unsigned long default_wm;
2465         unsigned long guard_size;
2466         unsigned long cacheline_size;
2467 };
2468
2469 /* Pineview has different values for various configs */
2470 static struct intel_watermark_params pineview_display_wm = {
2471         PINEVIEW_DISPLAY_FIFO,
2472         PINEVIEW_MAX_WM,
2473         PINEVIEW_DFT_WM,
2474         PINEVIEW_GUARD_WM,
2475         PINEVIEW_FIFO_LINE_SIZE
2476 };
2477 static struct intel_watermark_params pineview_display_hplloff_wm = {
2478         PINEVIEW_DISPLAY_FIFO,
2479         PINEVIEW_MAX_WM,
2480         PINEVIEW_DFT_HPLLOFF_WM,
2481         PINEVIEW_GUARD_WM,
2482         PINEVIEW_FIFO_LINE_SIZE
2483 };
2484 static struct intel_watermark_params pineview_cursor_wm = {
2485         PINEVIEW_CURSOR_FIFO,
2486         PINEVIEW_CURSOR_MAX_WM,
2487         PINEVIEW_CURSOR_DFT_WM,
2488         PINEVIEW_CURSOR_GUARD_WM,
2489         PINEVIEW_FIFO_LINE_SIZE,
2490 };
2491 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2492         PINEVIEW_CURSOR_FIFO,
2493         PINEVIEW_CURSOR_MAX_WM,
2494         PINEVIEW_CURSOR_DFT_WM,
2495         PINEVIEW_CURSOR_GUARD_WM,
2496         PINEVIEW_FIFO_LINE_SIZE
2497 };
2498 static struct intel_watermark_params g4x_wm_info = {
2499         G4X_FIFO_SIZE,
2500         G4X_MAX_WM,
2501         G4X_MAX_WM,
2502         2,
2503         G4X_FIFO_LINE_SIZE,
2504 };
2505 static struct intel_watermark_params i945_wm_info = {
2506         I945_FIFO_SIZE,
2507         I915_MAX_WM,
2508         1,
2509         2,
2510         I915_FIFO_LINE_SIZE
2511 };
2512 static struct intel_watermark_params i915_wm_info = {
2513         I915_FIFO_SIZE,
2514         I915_MAX_WM,
2515         1,
2516         2,
2517         I915_FIFO_LINE_SIZE
2518 };
2519 static struct intel_watermark_params i855_wm_info = {
2520         I855GM_FIFO_SIZE,
2521         I915_MAX_WM,
2522         1,
2523         2,
2524         I830_FIFO_LINE_SIZE
2525 };
2526 static struct intel_watermark_params i830_wm_info = {
2527         I830_FIFO_SIZE,
2528         I915_MAX_WM,
2529         1,
2530         2,
2531         I830_FIFO_LINE_SIZE
2532 };
2533
2534 static struct intel_watermark_params ironlake_display_wm_info = {
2535         ILK_DISPLAY_FIFO,
2536         ILK_DISPLAY_MAXWM,
2537         ILK_DISPLAY_DFTWM,
2538         2,
2539         ILK_FIFO_LINE_SIZE
2540 };
2541
2542 static struct intel_watermark_params ironlake_display_srwm_info = {
2543         ILK_DISPLAY_SR_FIFO,
2544         ILK_DISPLAY_MAX_SRWM,
2545         ILK_DISPLAY_DFT_SRWM,
2546         2,
2547         ILK_FIFO_LINE_SIZE
2548 };
2549
2550 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2551         ILK_CURSOR_SR_FIFO,
2552         ILK_CURSOR_MAX_SRWM,
2553         ILK_CURSOR_DFT_SRWM,
2554         2,
2555         ILK_FIFO_LINE_SIZE
2556 };
2557
2558 /**
2559  * intel_calculate_wm - calculate watermark level
2560  * @clock_in_khz: pixel clock
2561  * @wm: chip FIFO params
2562  * @pixel_size: display pixel size
2563  * @latency_ns: memory latency for the platform
2564  *
2565  * Calculate the watermark level (the level at which the display plane will
2566  * start fetching from memory again).  Each chip has a different display
2567  * FIFO size and allocation, so the caller needs to figure that out and pass
2568  * in the correct intel_watermark_params structure.
2569  *
2570  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2571  * on the pixel size.  When it reaches the watermark level, it'll start
2572  * fetching FIFO line sized based chunks from memory until the FIFO fills
2573  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2574  * will occur, and a display engine hang could result.
2575  */
2576 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2577                                         struct intel_watermark_params *wm,
2578                                         int pixel_size,
2579                                         unsigned long latency_ns)
2580 {
2581         long entries_required, wm_size;
2582
2583         /*
2584          * Note: we need to make sure we don't overflow for various clock &
2585          * latency values.
2586          * clocks go from a few thousand to several hundred thousand.
2587          * latency is usually a few thousand
2588          */
2589         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2590                 1000;
2591         entries_required /= wm->cacheline_size;
2592
2593         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2594
2595         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2596
2597         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2598
2599         /* Don't promote wm_size to unsigned... */
2600         if (wm_size > (long)wm->max_wm)
2601                 wm_size = wm->max_wm;
2602         if (wm_size <= 0)
2603                 wm_size = wm->default_wm;
2604         return wm_size;
2605 }
2606
2607 struct cxsr_latency {
2608         int is_desktop;
2609         unsigned long fsb_freq;
2610         unsigned long mem_freq;
2611         unsigned long display_sr;
2612         unsigned long display_hpll_disable;
2613         unsigned long cursor_sr;
2614         unsigned long cursor_hpll_disable;
2615 };
2616
2617 static struct cxsr_latency cxsr_latency_table[] = {
2618         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2619         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2620         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2621
2622         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2623         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2624         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2625
2626         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2627         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2628         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2629
2630         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2631         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2632         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2633
2634         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2635         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2636         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2637
2638         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2639         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2640         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2641 };
2642
2643 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2644                                                    int mem)
2645 {
2646         int i;
2647         struct cxsr_latency *latency;
2648
2649         if (fsb == 0 || mem == 0)
2650                 return NULL;
2651
2652         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2653                 latency = &cxsr_latency_table[i];
2654                 if (is_desktop == latency->is_desktop &&
2655                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2656                         return latency;
2657         }
2658
2659         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2660
2661         return NULL;
2662 }
2663
2664 static void pineview_disable_cxsr(struct drm_device *dev)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         u32 reg;
2668
2669         /* deactivate cxsr */
2670         reg = I915_READ(DSPFW3);
2671         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2672         I915_WRITE(DSPFW3, reg);
2673         DRM_INFO("Big FIFO is disabled\n");
2674 }
2675
2676 /*
2677  * Latency for FIFO fetches is dependent on several factors:
2678  *   - memory configuration (speed, channels)
2679  *   - chipset
2680  *   - current MCH state
2681  * It can be fairly high in some situations, so here we assume a fairly
2682  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2683  * set this value too high, the FIFO will fetch frequently to stay full)
2684  * and power consumption (set it too low to save power and we might see
2685  * FIFO underruns and display "flicker").
2686  *
2687  * A value of 5us seems to be a good balance; safe for very low end
2688  * platforms but not overly aggressive on lower latency configs.
2689  */
2690 static const int latency_ns = 5000;
2691
2692 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2693 {
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         uint32_t dsparb = I915_READ(DSPARB);
2696         int size;
2697
2698         if (plane == 0)
2699                 size = dsparb & 0x7f;
2700         else
2701                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2702                         (dsparb & 0x7f);
2703
2704         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2705                         plane ? "B" : "A", size);
2706
2707         return size;
2708 }
2709
2710 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2711 {
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         uint32_t dsparb = I915_READ(DSPARB);
2714         int size;
2715
2716         if (plane == 0)
2717                 size = dsparb & 0x1ff;
2718         else
2719                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2720                         (dsparb & 0x1ff);
2721         size >>= 1; /* Convert to cachelines */
2722
2723         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2724                         plane ? "B" : "A", size);
2725
2726         return size;
2727 }
2728
2729 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2730 {
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         uint32_t dsparb = I915_READ(DSPARB);
2733         int size;
2734
2735         size = dsparb & 0x7f;
2736         size >>= 2; /* Convert to cachelines */
2737
2738         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2739                         plane ? "B" : "A",
2740                   size);
2741
2742         return size;
2743 }
2744
2745 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2746 {
2747         struct drm_i915_private *dev_priv = dev->dev_private;
2748         uint32_t dsparb = I915_READ(DSPARB);
2749         int size;
2750
2751         size = dsparb & 0x7f;
2752         size >>= 1; /* Convert to cachelines */
2753
2754         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2755                         plane ? "B" : "A", size);
2756
2757         return size;
2758 }
2759
2760 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2761                           int planeb_clock, int sr_hdisplay, int pixel_size)
2762 {
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         u32 reg;
2765         unsigned long wm;
2766         struct cxsr_latency *latency;
2767         int sr_clock;
2768
2769         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2770                                          dev_priv->mem_freq);
2771         if (!latency) {
2772                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2773                 pineview_disable_cxsr(dev);
2774                 return;
2775         }
2776
2777         if (!planea_clock || !planeb_clock) {
2778                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2779
2780                 /* Display SR */
2781                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2782                                         pixel_size, latency->display_sr);
2783                 reg = I915_READ(DSPFW1);
2784                 reg &= ~DSPFW_SR_MASK;
2785                 reg |= wm << DSPFW_SR_SHIFT;
2786                 I915_WRITE(DSPFW1, reg);
2787                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2788
2789                 /* cursor SR */
2790                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2791                                         pixel_size, latency->cursor_sr);
2792                 reg = I915_READ(DSPFW3);
2793                 reg &= ~DSPFW_CURSOR_SR_MASK;
2794                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2795                 I915_WRITE(DSPFW3, reg);
2796
2797                 /* Display HPLL off SR */
2798                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2799                                         pixel_size, latency->display_hpll_disable);
2800                 reg = I915_READ(DSPFW3);
2801                 reg &= ~DSPFW_HPLL_SR_MASK;
2802                 reg |= wm & DSPFW_HPLL_SR_MASK;
2803                 I915_WRITE(DSPFW3, reg);
2804
2805                 /* cursor HPLL off SR */
2806                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2807                                         pixel_size, latency->cursor_hpll_disable);
2808                 reg = I915_READ(DSPFW3);
2809                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2810                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2811                 I915_WRITE(DSPFW3, reg);
2812                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2813
2814                 /* activate cxsr */
2815                 reg = I915_READ(DSPFW3);
2816                 reg |= PINEVIEW_SELF_REFRESH_EN;
2817                 I915_WRITE(DSPFW3, reg);
2818                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2819         } else {
2820                 pineview_disable_cxsr(dev);
2821                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2822         }
2823 }
2824
2825 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2826                           int planeb_clock, int sr_hdisplay, int pixel_size)
2827 {
2828         struct drm_i915_private *dev_priv = dev->dev_private;
2829         int total_size, cacheline_size;
2830         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2831         struct intel_watermark_params planea_params, planeb_params;
2832         unsigned long line_time_us;
2833         int sr_clock, sr_entries = 0, entries_required;
2834
2835         /* Create copies of the base settings for each pipe */
2836         planea_params = planeb_params = g4x_wm_info;
2837
2838         /* Grab a couple of global values before we overwrite them */
2839         total_size = planea_params.fifo_size;
2840         cacheline_size = planea_params.cacheline_size;
2841
2842         /*
2843          * Note: we need to make sure we don't overflow for various clock &
2844          * latency values.
2845          * clocks go from a few thousand to several hundred thousand.
2846          * latency is usually a few thousand
2847          */
2848         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2849                 1000;
2850         entries_required /= G4X_FIFO_LINE_SIZE;
2851         planea_wm = entries_required + planea_params.guard_size;
2852
2853         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2854                 1000;
2855         entries_required /= G4X_FIFO_LINE_SIZE;
2856         planeb_wm = entries_required + planeb_params.guard_size;
2857
2858         cursora_wm = cursorb_wm = 16;
2859         cursor_sr = 32;
2860
2861         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2862
2863         /* Calc sr entries for one plane configs */
2864         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2865                 /* self-refresh has much higher latency */
2866                 static const int sr_latency_ns = 12000;
2867
2868                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2869                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2870
2871                 /* Use ns/us then divide to preserve precision */
2872                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2873                               pixel_size * sr_hdisplay) / 1000;
2874                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2875                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2876                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2877         } else {
2878                 /* Turn off self refresh if both pipes are enabled */
2879                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2880                                         & ~FW_BLC_SELF_EN);
2881         }
2882
2883         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2884                   planea_wm, planeb_wm, sr_entries);
2885
2886         planea_wm &= 0x3f;
2887         planeb_wm &= 0x3f;
2888
2889         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2890                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2891                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2892         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2893                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2894         /* HPLL off in SR has some issues on G4x... disable it */
2895         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2896                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2897 }
2898
2899 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2900                            int planeb_clock, int sr_hdisplay, int pixel_size)
2901 {
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         unsigned long line_time_us;
2904         int sr_clock, sr_entries, srwm = 1;
2905
2906         /* Calc sr entries for one plane configs */
2907         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2908                 /* self-refresh has much higher latency */
2909                 static const int sr_latency_ns = 12000;
2910
2911                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2912                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2913
2914                 /* Use ns/us then divide to preserve precision */
2915                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2916                               pixel_size * sr_hdisplay) / 1000;
2917                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2918                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2919                 srwm = I945_FIFO_SIZE - sr_entries;
2920                 if (srwm < 0)
2921                         srwm = 1;
2922                 srwm &= 0x3f;
2923                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2924         } else {
2925                 /* Turn off self refresh if both pipes are enabled */
2926                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2927                                         & ~FW_BLC_SELF_EN);
2928         }
2929
2930         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2931                       srwm);
2932
2933         /* 965 has limitations... */
2934         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2935                    (8 << 0));
2936         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2937 }
2938
2939 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2940                            int planeb_clock, int sr_hdisplay, int pixel_size)
2941 {
2942         struct drm_i915_private *dev_priv = dev->dev_private;
2943         uint32_t fwater_lo;
2944         uint32_t fwater_hi;
2945         int total_size, cacheline_size, cwm, srwm = 1;
2946         int planea_wm, planeb_wm;
2947         struct intel_watermark_params planea_params, planeb_params;
2948         unsigned long line_time_us;
2949         int sr_clock, sr_entries = 0;
2950
2951         /* Create copies of the base settings for each pipe */
2952         if (IS_I965GM(dev) || IS_I945GM(dev))
2953                 planea_params = planeb_params = i945_wm_info;
2954         else if (IS_I9XX(dev))
2955                 planea_params = planeb_params = i915_wm_info;
2956         else
2957                 planea_params = planeb_params = i855_wm_info;
2958
2959         /* Grab a couple of global values before we overwrite them */
2960         total_size = planea_params.fifo_size;
2961         cacheline_size = planea_params.cacheline_size;
2962
2963         /* Update per-plane FIFO sizes */
2964         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2965         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2966
2967         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2968                                        pixel_size, latency_ns);
2969         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2970                                        pixel_size, latency_ns);
2971         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2972
2973         /*
2974          * Overlay gets an aggressive default since video jitter is bad.
2975          */
2976         cwm = 2;
2977
2978         /* Calc sr entries for one plane configs */
2979         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2980             (!planea_clock || !planeb_clock)) {
2981                 /* self-refresh has much higher latency */
2982                 static const int sr_latency_ns = 6000;
2983
2984                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2985                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2986
2987                 /* Use ns/us then divide to preserve precision */
2988                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2989                               pixel_size * sr_hdisplay) / 1000;
2990                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2991                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2992                 srwm = total_size - sr_entries;
2993                 if (srwm < 0)
2994                         srwm = 1;
2995
2996                 if (IS_I945G(dev) || IS_I945GM(dev))
2997                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2998                 else if (IS_I915GM(dev)) {
2999                         /* 915M has a smaller SRWM field */
3000                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3001                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3002                 }
3003         } else {
3004                 /* Turn off self refresh if both pipes are enabled */
3005                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3006                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3007                                    & ~FW_BLC_SELF_EN);
3008                 } else if (IS_I915GM(dev)) {
3009                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3010                 }
3011         }
3012
3013         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3014                   planea_wm, planeb_wm, cwm, srwm);
3015
3016         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3017         fwater_hi = (cwm & 0x1f);
3018
3019         /* Set request length to 8 cachelines per fetch */
3020         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3021         fwater_hi = fwater_hi | (1 << 8);
3022
3023         I915_WRITE(FW_BLC, fwater_lo);
3024         I915_WRITE(FW_BLC2, fwater_hi);
3025 }
3026
3027 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3028                            int unused2, int pixel_size)
3029 {
3030         struct drm_i915_private *dev_priv = dev->dev_private;
3031         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3032         int planea_wm;
3033
3034         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3035
3036         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3037                                        pixel_size, latency_ns);
3038         fwater_lo |= (3<<8) | planea_wm;
3039
3040         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3041
3042         I915_WRITE(FW_BLC, fwater_lo);
3043 }
3044
3045 #define ILK_LP0_PLANE_LATENCY           700
3046
3047 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3048                        int planeb_clock, int sr_hdisplay, int pixel_size)
3049 {
3050         struct drm_i915_private *dev_priv = dev->dev_private;
3051         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3052         int sr_wm, cursor_wm;
3053         unsigned long line_time_us;
3054         int sr_clock, entries_required;
3055         u32 reg_value;
3056
3057         /* Calculate and update the watermark for plane A */
3058         if (planea_clock) {
3059                 entries_required = ((planea_clock / 1000) * pixel_size *
3060                                      ILK_LP0_PLANE_LATENCY) / 1000;
3061                 entries_required = DIV_ROUND_UP(entries_required,
3062                                    ironlake_display_wm_info.cacheline_size);
3063                 planea_wm = entries_required +
3064                             ironlake_display_wm_info.guard_size;
3065
3066                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3067                         planea_wm = ironlake_display_wm_info.max_wm;
3068
3069                 cursora_wm = 16;
3070                 reg_value = I915_READ(WM0_PIPEA_ILK);
3071                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3072                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3073                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3074                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3075                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3076                                 "cursor: %d\n", planea_wm, cursora_wm);
3077         }
3078         /* Calculate and update the watermark for plane B */
3079         if (planeb_clock) {
3080                 entries_required = ((planeb_clock / 1000) * pixel_size *
3081                                      ILK_LP0_PLANE_LATENCY) / 1000;
3082                 entries_required = DIV_ROUND_UP(entries_required,
3083                                    ironlake_display_wm_info.cacheline_size);
3084                 planeb_wm = entries_required +
3085                             ironlake_display_wm_info.guard_size;
3086
3087                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3088                         planeb_wm = ironlake_display_wm_info.max_wm;
3089
3090                 cursorb_wm = 16;
3091                 reg_value = I915_READ(WM0_PIPEB_ILK);
3092                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3093                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3094                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3095                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3096                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3097                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3098         }
3099
3100         /*
3101          * Calculate and update the self-refresh watermark only when one
3102          * display plane is used.
3103          */
3104         if (!planea_clock || !planeb_clock) {
3105                 int line_count;
3106                 /* Read the self-refresh latency. The unit is 0.5us */
3107                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3108
3109                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3110                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3111
3112                 /* Use ns/us then divide to preserve precision */
3113                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3114                                / 1000;
3115
3116                 /* calculate the self-refresh watermark for display plane */
3117                 entries_required = line_count * sr_hdisplay * pixel_size;
3118                 entries_required = DIV_ROUND_UP(entries_required,
3119                                    ironlake_display_srwm_info.cacheline_size);
3120                 sr_wm = entries_required +
3121                         ironlake_display_srwm_info.guard_size;
3122
3123                 /* calculate the self-refresh watermark for display cursor */
3124                 entries_required = line_count * pixel_size * 64;
3125                 entries_required = DIV_ROUND_UP(entries_required,
3126                                    ironlake_cursor_srwm_info.cacheline_size);
3127                 cursor_wm = entries_required +
3128                             ironlake_cursor_srwm_info.guard_size;
3129
3130                 /* configure watermark and enable self-refresh */
3131                 reg_value = I915_READ(WM1_LP_ILK);
3132                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3133                                WM1_LP_CURSOR_MASK);
3134                 reg_value |= WM1_LP_SR_EN |
3135                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3136                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3137
3138                 I915_WRITE(WM1_LP_ILK, reg_value);
3139                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3140                                 "cursor %d\n", sr_wm, cursor_wm);
3141
3142         } else {
3143                 /* Turn off self refresh if both pipes are enabled */
3144                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3145         }
3146 }
3147 /**
3148  * intel_update_watermarks - update FIFO watermark values based on current modes
3149  *
3150  * Calculate watermark values for the various WM regs based on current mode
3151  * and plane configuration.
3152  *
3153  * There are several cases to deal with here:
3154  *   - normal (i.e. non-self-refresh)
3155  *   - self-refresh (SR) mode
3156  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3157  *   - lines are small relative to FIFO size (buffer can hold more than 2
3158  *     lines), so need to account for TLB latency
3159  *
3160  *   The normal calculation is:
3161  *     watermark = dotclock * bytes per pixel * latency
3162  *   where latency is platform & configuration dependent (we assume pessimal
3163  *   values here).
3164  *
3165  *   The SR calculation is:
3166  *     watermark = (trunc(latency/line time)+1) * surface width *
3167  *       bytes per pixel
3168  *   where
3169  *     line time = htotal / dotclock
3170  *   and latency is assumed to be high, as above.
3171  *
3172  * The final value programmed to the register should always be rounded up,
3173  * and include an extra 2 entries to account for clock crossings.
3174  *
3175  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3176  * to set the non-SR watermarks to 8.
3177   */
3178 static void intel_update_watermarks(struct drm_device *dev)
3179 {
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         struct drm_crtc *crtc;
3182         struct intel_crtc *intel_crtc;
3183         int sr_hdisplay = 0;
3184         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3185         int enabled = 0, pixel_size = 0;
3186
3187         if (!dev_priv->display.update_wm)
3188                 return;
3189
3190         /* Get the clock config from both planes */
3191         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3192                 intel_crtc = to_intel_crtc(crtc);
3193                 if (crtc->enabled) {
3194                         enabled++;
3195                         if (intel_crtc->plane == 0) {
3196                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3197                                           intel_crtc->pipe, crtc->mode.clock);
3198                                 planea_clock = crtc->mode.clock;
3199                         } else {
3200                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3201                                           intel_crtc->pipe, crtc->mode.clock);
3202                                 planeb_clock = crtc->mode.clock;
3203                         }
3204                         sr_hdisplay = crtc->mode.hdisplay;
3205                         sr_clock = crtc->mode.clock;
3206                         if (crtc->fb)
3207                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3208                         else
3209                                 pixel_size = 4; /* by default */
3210                 }
3211         }
3212
3213         if (enabled <= 0)
3214                 return;
3215
3216         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3217                                     sr_hdisplay, pixel_size);
3218 }
3219
3220 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3221                                struct drm_display_mode *mode,
3222                                struct drm_display_mode *adjusted_mode,
3223                                int x, int y,
3224                                struct drm_framebuffer *old_fb)
3225 {
3226         struct drm_device *dev = crtc->dev;
3227         struct drm_i915_private *dev_priv = dev->dev_private;
3228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3229         int pipe = intel_crtc->pipe;
3230         int plane = intel_crtc->plane;
3231         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3232         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3233         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3234         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3235         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3236         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3237         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3238         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3239         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3240         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3241         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3242         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3243         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3244         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3245         int refclk, num_connectors = 0;
3246         intel_clock_t clock, reduced_clock;
3247         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3248         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3249         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3250         bool is_edp = false;
3251         struct drm_mode_config *mode_config = &dev->mode_config;
3252         struct drm_encoder *encoder;
3253         struct intel_encoder *intel_encoder = NULL;
3254         const intel_limit_t *limit;
3255         int ret;
3256         struct fdi_m_n m_n = {0};
3257         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3258         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3259         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3260         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3261         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3262         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3263         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3264         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3265         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3266         int lvds_reg = LVDS;
3267         u32 temp;
3268         int sdvo_pixel_multiply;
3269         int target_clock;
3270
3271         drm_vblank_pre_modeset(dev, pipe);
3272
3273         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3274
3275                 if (!encoder || encoder->crtc != crtc)
3276                         continue;
3277
3278                 intel_encoder = enc_to_intel_encoder(encoder);
3279
3280                 switch (intel_encoder->type) {
3281                 case INTEL_OUTPUT_LVDS:
3282                         is_lvds = true;
3283                         break;
3284                 case INTEL_OUTPUT_SDVO:
3285                 case INTEL_OUTPUT_HDMI:
3286                         is_sdvo = true;
3287                         if (intel_encoder->needs_tv_clock)
3288                                 is_tv = true;
3289                         break;
3290                 case INTEL_OUTPUT_DVO:
3291                         is_dvo = true;
3292                         break;
3293                 case INTEL_OUTPUT_TVOUT:
3294                         is_tv = true;
3295                         break;
3296                 case INTEL_OUTPUT_ANALOG:
3297                         is_crt = true;
3298                         break;
3299                 case INTEL_OUTPUT_DISPLAYPORT:
3300                         is_dp = true;
3301                         break;
3302                 case INTEL_OUTPUT_EDP:
3303                         is_edp = true;
3304                         break;
3305                 }
3306
3307                 num_connectors++;
3308         }
3309
3310         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3311                 refclk = dev_priv->lvds_ssc_freq * 1000;
3312                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3313                                         refclk / 1000);
3314         } else if (IS_I9XX(dev)) {
3315                 refclk = 96000;
3316                 if (HAS_PCH_SPLIT(dev))
3317                         refclk = 120000; /* 120Mhz refclk */
3318         } else {
3319                 refclk = 48000;
3320         }
3321         
3322
3323         /*
3324          * Returns a set of divisors for the desired target clock with the given
3325          * refclk, or FALSE.  The returned values represent the clock equation:
3326          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3327          */
3328         limit = intel_limit(crtc);
3329         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3330         if (!ok) {
3331                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3332                 drm_vblank_post_modeset(dev, pipe);
3333                 return -EINVAL;
3334         }
3335
3336         if (is_lvds && dev_priv->lvds_downclock_avail) {
3337                 has_reduced_clock = limit->find_pll(limit, crtc,
3338                                                             dev_priv->lvds_downclock,
3339                                                             refclk,
3340                                                             &reduced_clock);
3341                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3342                         /*
3343                          * If the different P is found, it means that we can't
3344                          * switch the display clock by using the FP0/FP1.
3345                          * In such case we will disable the LVDS downclock
3346                          * feature.
3347                          */
3348                         DRM_DEBUG_KMS("Different P is found for "
3349                                                 "LVDS clock/downclock\n");
3350                         has_reduced_clock = 0;
3351                 }
3352         }
3353         /* SDVO TV has fixed PLL values depend on its clock range,
3354            this mirrors vbios setting. */
3355         if (is_sdvo && is_tv) {
3356                 if (adjusted_mode->clock >= 100000
3357                                 && adjusted_mode->clock < 140500) {
3358                         clock.p1 = 2;
3359                         clock.p2 = 10;
3360                         clock.n = 3;
3361                         clock.m1 = 16;
3362                         clock.m2 = 8;
3363                 } else if (adjusted_mode->clock >= 140500
3364                                 && adjusted_mode->clock <= 200000) {
3365                         clock.p1 = 1;
3366                         clock.p2 = 10;
3367                         clock.n = 6;
3368                         clock.m1 = 12;
3369                         clock.m2 = 8;
3370                 }
3371         }
3372
3373         /* FDI link */
3374         if (HAS_PCH_SPLIT(dev)) {
3375                 int lane = 0, link_bw, bpp;
3376                 /* eDP doesn't require FDI link, so just set DP M/N
3377                    according to current link config */
3378                 if (is_edp) {
3379                         target_clock = mode->clock;
3380                         intel_edp_link_config(intel_encoder,
3381                                         &lane, &link_bw);
3382                 } else {
3383                         /* DP over FDI requires target mode clock
3384                            instead of link clock */
3385                         if (is_dp)
3386                                 target_clock = mode->clock;
3387                         else
3388                                 target_clock = adjusted_mode->clock;
3389                         link_bw = 270000;
3390                 }
3391
3392                 /* determine panel color depth */
3393                 temp = I915_READ(pipeconf_reg);
3394                 temp &= ~PIPE_BPC_MASK;
3395                 if (is_lvds) {
3396                         int lvds_reg = I915_READ(PCH_LVDS);
3397                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3398                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3399                                 temp |= PIPE_8BPC;
3400                         else
3401                                 temp |= PIPE_6BPC;
3402                 } else if (is_edp) {
3403                         switch (dev_priv->edp_bpp/3) {
3404                         case 8:
3405                                 temp |= PIPE_8BPC;
3406                                 break;
3407                         case 10:
3408                                 temp |= PIPE_10BPC;
3409                                 break;
3410                         case 6:
3411                                 temp |= PIPE_6BPC;
3412                                 break;
3413                         case 12:
3414                                 temp |= PIPE_12BPC;
3415                                 break;
3416                         }
3417                 } else
3418                         temp |= PIPE_8BPC;
3419                 I915_WRITE(pipeconf_reg, temp);
3420                 I915_READ(pipeconf_reg);
3421
3422                 switch (temp & PIPE_BPC_MASK) {
3423                 case PIPE_8BPC:
3424                         bpp = 24;
3425                         break;
3426                 case PIPE_10BPC:
3427                         bpp = 30;
3428                         break;
3429                 case PIPE_6BPC:
3430                         bpp = 18;
3431                         break;
3432                 case PIPE_12BPC:
3433                         bpp = 36;
3434                         break;
3435                 default:
3436                         DRM_ERROR("unknown pipe bpc value\n");
3437                         bpp = 24;
3438                 }
3439
3440                 if (!lane) {
3441                         /* 
3442                          * Account for spread spectrum to avoid
3443                          * oversubscribing the link. Max center spread
3444                          * is 2.5%; use 5% for safety's sake.
3445                          */
3446                         u32 bps = target_clock * bpp * 21 / 20;
3447                         lane = bps / (link_bw * 8) + 1;
3448                 }
3449
3450                 intel_crtc->fdi_lanes = lane;
3451
3452                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3453         }
3454
3455         /* Ironlake: try to setup display ref clock before DPLL
3456          * enabling. This is only under driver's control after
3457          * PCH B stepping, previous chipset stepping should be
3458          * ignoring this setting.
3459          */
3460         if (HAS_PCH_SPLIT(dev)) {
3461                 temp = I915_READ(PCH_DREF_CONTROL);
3462                 /* Always enable nonspread source */
3463                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3464                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3465                 I915_WRITE(PCH_DREF_CONTROL, temp);
3466                 POSTING_READ(PCH_DREF_CONTROL);
3467
3468                 temp &= ~DREF_SSC_SOURCE_MASK;
3469                 temp |= DREF_SSC_SOURCE_ENABLE;
3470                 I915_WRITE(PCH_DREF_CONTROL, temp);
3471                 POSTING_READ(PCH_DREF_CONTROL);
3472
3473                 udelay(200);
3474
3475                 if (is_edp) {
3476                         if (dev_priv->lvds_use_ssc) {
3477                                 temp |= DREF_SSC1_ENABLE;
3478                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3479                                 POSTING_READ(PCH_DREF_CONTROL);
3480
3481                                 udelay(200);
3482
3483                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3484                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3485                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3486                                 POSTING_READ(PCH_DREF_CONTROL);
3487                         } else {
3488                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3489                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3490                                 POSTING_READ(PCH_DREF_CONTROL);
3491                         }
3492                 }
3493         }
3494
3495         if (IS_PINEVIEW(dev)) {
3496                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3497                 if (has_reduced_clock)
3498                         fp2 = (1 << reduced_clock.n) << 16 |
3499                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3500         } else {
3501                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3502                 if (has_reduced_clock)
3503                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3504                                 reduced_clock.m2;
3505         }
3506
3507         if (!HAS_PCH_SPLIT(dev))
3508                 dpll = DPLL_VGA_MODE_DIS;
3509
3510         if (IS_I9XX(dev)) {
3511                 if (is_lvds)
3512                         dpll |= DPLLB_MODE_LVDS;
3513                 else
3514                         dpll |= DPLLB_MODE_DAC_SERIAL;
3515                 if (is_sdvo) {
3516                         dpll |= DPLL_DVO_HIGH_SPEED;
3517                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3518                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3519                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3520                         else if (HAS_PCH_SPLIT(dev))
3521                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3522                 }
3523                 if (is_dp)
3524                         dpll |= DPLL_DVO_HIGH_SPEED;
3525
3526                 /* compute bitmask from p1 value */
3527                 if (IS_PINEVIEW(dev))
3528                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3529                 else {
3530                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3531                         /* also FPA1 */
3532                         if (HAS_PCH_SPLIT(dev))
3533                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3534                         if (IS_G4X(dev) && has_reduced_clock)
3535                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3536                 }
3537                 switch (clock.p2) {
3538                 case 5:
3539                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3540                         break;
3541                 case 7:
3542                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3543                         break;
3544                 case 10:
3545                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3546                         break;
3547                 case 14:
3548                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3549                         break;
3550                 }
3551                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3552                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3553         } else {
3554                 if (is_lvds) {
3555                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3556                 } else {
3557                         if (clock.p1 == 2)
3558                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3559                         else
3560                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3561                         if (clock.p2 == 4)
3562                                 dpll |= PLL_P2_DIVIDE_BY_4;
3563                 }
3564         }
3565
3566         if (is_sdvo && is_tv)
3567                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3568         else if (is_tv)
3569                 /* XXX: just matching BIOS for now */
3570                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3571                 dpll |= 3;
3572         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3573                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3574         else
3575                 dpll |= PLL_REF_INPUT_DREFCLK;
3576
3577         /* setup pipeconf */
3578         pipeconf = I915_READ(pipeconf_reg);
3579
3580         /* Set up the display plane register */
3581         dspcntr = DISPPLANE_GAMMA_ENABLE;
3582
3583         /* Ironlake's plane is forced to pipe, bit 24 is to
3584            enable color space conversion */
3585         if (!HAS_PCH_SPLIT(dev)) {
3586                 if (pipe == 0)
3587                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3588                 else
3589                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3590         }
3591
3592         if (pipe == 0 && !IS_I965G(dev)) {
3593                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3594                  * core speed.
3595                  *
3596                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3597                  * pipe == 0 check?
3598                  */
3599                 if (mode->clock >
3600                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3601                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3602                 else
3603                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3604         }
3605
3606         /* Disable the panel fitter if it was on our pipe */
3607         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3608                 I915_WRITE(PFIT_CONTROL, 0);
3609
3610         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3611         drm_mode_debug_printmodeline(mode);
3612
3613         /* assign to Ironlake registers */
3614         if (HAS_PCH_SPLIT(dev)) {
3615                 fp_reg = pch_fp_reg;
3616                 dpll_reg = pch_dpll_reg;
3617         }
3618
3619         if (is_edp) {
3620                 ironlake_disable_pll_edp(crtc);
3621         } else if ((dpll & DPLL_VCO_ENABLE)) {
3622                 I915_WRITE(fp_reg, fp);
3623                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3624                 I915_READ(dpll_reg);
3625                 udelay(150);
3626         }
3627
3628         /* enable transcoder DPLL */
3629         if (HAS_PCH_CPT(dev)) {
3630                 temp = I915_READ(PCH_DPLL_SEL);
3631                 if (trans_dpll_sel == 0)
3632                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3633                 else
3634                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3635                 I915_WRITE(PCH_DPLL_SEL, temp);
3636                 I915_READ(PCH_DPLL_SEL);
3637                 udelay(150);
3638         }
3639
3640         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3641          * This is an exception to the general rule that mode_set doesn't turn
3642          * things on.
3643          */
3644         if (is_lvds) {
3645                 u32 lvds;
3646
3647                 if (HAS_PCH_SPLIT(dev))
3648                         lvds_reg = PCH_LVDS;
3649
3650                 lvds = I915_READ(lvds_reg);
3651                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3652                 if (pipe == 1) {
3653                         if (HAS_PCH_CPT(dev))
3654                                 lvds |= PORT_TRANS_B_SEL_CPT;
3655                         else
3656                                 lvds |= LVDS_PIPEB_SELECT;
3657                 } else {
3658                         if (HAS_PCH_CPT(dev))
3659                                 lvds &= ~PORT_TRANS_SEL_MASK;
3660                         else
3661                                 lvds &= ~LVDS_PIPEB_SELECT;
3662                 }
3663                 /* set the corresponsding LVDS_BORDER bit */
3664                 lvds |= dev_priv->lvds_border_bits;
3665                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3666                  * set the DPLLs for dual-channel mode or not.
3667                  */
3668                 if (clock.p2 == 7)
3669                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3670                 else
3671                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3672
3673                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3674                  * appropriately here, but we need to look more thoroughly into how
3675                  * panels behave in the two modes.
3676                  */
3677                 /* set the dithering flag */
3678                 if (IS_I965G(dev)) {
3679                         if (dev_priv->lvds_dither) {
3680                                 if (HAS_PCH_SPLIT(dev))
3681                                         pipeconf |= PIPE_ENABLE_DITHER;
3682                                 else
3683                                         lvds |= LVDS_ENABLE_DITHER;
3684                         } else {
3685                                 if (HAS_PCH_SPLIT(dev))
3686                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3687                                 else
3688                                         lvds &= ~LVDS_ENABLE_DITHER;
3689                         }
3690                 }
3691                 I915_WRITE(lvds_reg, lvds);
3692                 I915_READ(lvds_reg);
3693         }
3694         if (is_dp)
3695                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3696         else if (HAS_PCH_SPLIT(dev)) {
3697                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3698                 if (pipe == 0) {
3699                         I915_WRITE(TRANSA_DATA_M1, 0);
3700                         I915_WRITE(TRANSA_DATA_N1, 0);
3701                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3702                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3703                 } else {
3704                         I915_WRITE(TRANSB_DATA_M1, 0);
3705                         I915_WRITE(TRANSB_DATA_N1, 0);
3706                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3707                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3708                 }
3709         }
3710
3711         if (!is_edp) {
3712                 I915_WRITE(fp_reg, fp);
3713                 I915_WRITE(dpll_reg, dpll);
3714                 I915_READ(dpll_reg);
3715                 /* Wait for the clocks to stabilize. */
3716                 udelay(150);
3717
3718                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3719                         if (is_sdvo) {
3720                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3721                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3722                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3723                         } else
3724                                 I915_WRITE(dpll_md_reg, 0);
3725                 } else {
3726                         /* write it again -- the BIOS does, after all */
3727                         I915_WRITE(dpll_reg, dpll);
3728                 }
3729                 I915_READ(dpll_reg);
3730                 /* Wait for the clocks to stabilize. */
3731                 udelay(150);
3732         }
3733
3734         if (is_lvds && has_reduced_clock && i915_powersave) {
3735                 I915_WRITE(fp_reg + 4, fp2);
3736                 intel_crtc->lowfreq_avail = true;
3737                 if (HAS_PIPE_CXSR(dev)) {
3738                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3739                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3740                 }
3741         } else {
3742                 I915_WRITE(fp_reg + 4, fp);
3743                 intel_crtc->lowfreq_avail = false;
3744                 if (HAS_PIPE_CXSR(dev)) {
3745                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3746                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3747                 }
3748         }
3749
3750         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3751                    ((adjusted_mode->crtc_htotal - 1) << 16));
3752         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3753                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3754         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3755                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3756         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3757                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3758         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3759                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3760         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3761                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3762         /* pipesrc and dspsize control the size that is scaled from, which should
3763          * always be the user's requested size.
3764          */
3765         if (!HAS_PCH_SPLIT(dev)) {
3766                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3767                                 (mode->hdisplay - 1));
3768                 I915_WRITE(dsppos_reg, 0);
3769         }
3770         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3771
3772         if (HAS_PCH_SPLIT(dev)) {
3773                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3774                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3775                 I915_WRITE(link_m1_reg, m_n.link_m);
3776                 I915_WRITE(link_n1_reg, m_n.link_n);
3777
3778                 if (is_edp) {
3779                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3780                 } else {
3781                         /* enable FDI RX PLL too */
3782                         temp = I915_READ(fdi_rx_reg);
3783                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3784                         I915_READ(fdi_rx_reg);
3785                         udelay(200);
3786
3787                         /* enable FDI TX PLL too */
3788                         temp = I915_READ(fdi_tx_reg);
3789                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3790                         I915_READ(fdi_tx_reg);
3791
3792                         /* enable FDI RX PCDCLK */
3793                         temp = I915_READ(fdi_rx_reg);
3794                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3795                         I915_READ(fdi_rx_reg);
3796                         udelay(200);
3797                 }
3798         }
3799
3800         I915_WRITE(pipeconf_reg, pipeconf);
3801         I915_READ(pipeconf_reg);
3802
3803         intel_wait_for_vblank(dev);
3804
3805         if (IS_IRONLAKE(dev)) {
3806                 /* enable address swizzle for tiling buffer */
3807                 temp = I915_READ(DISP_ARB_CTL);
3808                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3809         }
3810
3811         I915_WRITE(dspcntr_reg, dspcntr);
3812
3813         /* Flush the plane changes */
3814         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3815
3816         if ((IS_I965G(dev) || plane == 0))
3817                 intel_update_fbc(crtc, &crtc->mode);
3818
3819         intel_update_watermarks(dev);
3820
3821         drm_vblank_post_modeset(dev, pipe);
3822
3823         return ret;
3824 }
3825
3826 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3827 void intel_crtc_load_lut(struct drm_crtc *crtc)
3828 {
3829         struct drm_device *dev = crtc->dev;
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3832         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3833         int i;
3834
3835         /* The clocks have to be on to load the palette. */
3836         if (!crtc->enabled)
3837                 return;
3838
3839         /* use legacy palette for Ironlake */
3840         if (HAS_PCH_SPLIT(dev))
3841                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3842                                                    LGC_PALETTE_B;
3843
3844         for (i = 0; i < 256; i++) {
3845                 I915_WRITE(palreg + 4 * i,
3846                            (intel_crtc->lut_r[i] << 16) |
3847                            (intel_crtc->lut_g[i] << 8) |
3848                            intel_crtc->lut_b[i]);
3849         }
3850 }
3851
3852 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3853                                  struct drm_file *file_priv,
3854                                  uint32_t handle,
3855                                  uint32_t width, uint32_t height)
3856 {
3857         struct drm_device *dev = crtc->dev;
3858         struct drm_i915_private *dev_priv = dev->dev_private;
3859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860         struct drm_gem_object *bo;
3861         struct drm_i915_gem_object *obj_priv;
3862         int pipe = intel_crtc->pipe;
3863         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3864         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3865         uint32_t temp = I915_READ(control);
3866         size_t addr;
3867         int ret;
3868
3869         DRM_DEBUG_KMS("\n");
3870
3871         /* if we want to turn off the cursor ignore width and height */
3872         if (!handle) {
3873                 DRM_DEBUG_KMS("cursor off\n");
3874                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3875                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3876                         temp |= CURSOR_MODE_DISABLE;
3877                 } else {
3878                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3879                 }
3880                 addr = 0;
3881                 bo = NULL;
3882                 mutex_lock(&dev->struct_mutex);
3883                 goto finish;
3884         }
3885
3886         /* Currently we only support 64x64 cursors */
3887         if (width != 64 || height != 64) {
3888                 DRM_ERROR("we currently only support 64x64 cursors\n");
3889                 return -EINVAL;
3890         }
3891
3892         bo = drm_gem_object_lookup(dev, file_priv, handle);
3893         if (!bo)
3894                 return -ENOENT;
3895
3896         obj_priv = to_intel_bo(bo);
3897
3898         if (bo->size < width * height * 4) {
3899                 DRM_ERROR("buffer is to small\n");
3900                 ret = -ENOMEM;
3901                 goto fail;
3902         }
3903
3904         /* we only need to pin inside GTT if cursor is non-phy */
3905         mutex_lock(&dev->struct_mutex);
3906         if (!dev_priv->info->cursor_needs_physical) {
3907                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3908                 if (ret) {
3909                         DRM_ERROR("failed to pin cursor bo\n");
3910                         goto fail_locked;
3911                 }
3912                 addr = obj_priv->gtt_offset;
3913         } else {
3914                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3915                 if (ret) {
3916                         DRM_ERROR("failed to attach phys object\n");
3917                         goto fail_locked;
3918                 }
3919                 addr = obj_priv->phys_obj->handle->busaddr;
3920         }
3921
3922         if (!IS_I9XX(dev))
3923                 I915_WRITE(CURSIZE, (height << 12) | width);
3924
3925         /* Hooray for CUR*CNTR differences */
3926         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3927                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3928                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3929                 temp |= (pipe << 28); /* Connect to correct pipe */
3930         } else {
3931                 temp &= ~(CURSOR_FORMAT_MASK);
3932                 temp |= CURSOR_ENABLE;
3933                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3934         }
3935
3936  finish:
3937         I915_WRITE(control, temp);
3938         I915_WRITE(base, addr);
3939
3940         if (intel_crtc->cursor_bo) {
3941                 if (dev_priv->info->cursor_needs_physical) {
3942                         if (intel_crtc->cursor_bo != bo)
3943                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3944                 } else
3945                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3946                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3947         }
3948
3949         mutex_unlock(&dev->struct_mutex);
3950
3951         intel_crtc->cursor_addr = addr;
3952         intel_crtc->cursor_bo = bo;
3953
3954         return 0;
3955 fail_locked:
3956         mutex_unlock(&dev->struct_mutex);
3957 fail:
3958         drm_gem_object_unreference_unlocked(bo);
3959         return ret;
3960 }
3961
3962 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3963 {
3964         struct drm_device *dev = crtc->dev;
3965         struct drm_i915_private *dev_priv = dev->dev_private;
3966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3967         struct intel_framebuffer *intel_fb;
3968         int pipe = intel_crtc->pipe;
3969         uint32_t temp = 0;
3970         uint32_t adder;
3971
3972         if (crtc->fb) {
3973                 intel_fb = to_intel_framebuffer(crtc->fb);
3974                 intel_mark_busy(dev, intel_fb->obj);
3975         }
3976
3977         if (x < 0) {
3978                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3979                 x = -x;
3980         }
3981         if (y < 0) {
3982                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3983                 y = -y;
3984         }
3985
3986         temp |= x << CURSOR_X_SHIFT;
3987         temp |= y << CURSOR_Y_SHIFT;
3988
3989         adder = intel_crtc->cursor_addr;
3990         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3991         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3992
3993         return 0;
3994 }
3995
3996 /** Sets the color ramps on behalf of RandR */
3997 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3998                                  u16 blue, int regno)
3999 {
4000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4001
4002         intel_crtc->lut_r[regno] = red >> 8;
4003         intel_crtc->lut_g[regno] = green >> 8;
4004         intel_crtc->lut_b[regno] = blue >> 8;
4005 }
4006
4007 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4008                              u16 *blue, int regno)
4009 {
4010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4011
4012         *red = intel_crtc->lut_r[regno] << 8;
4013         *green = intel_crtc->lut_g[regno] << 8;
4014         *blue = intel_crtc->lut_b[regno] << 8;
4015 }
4016
4017 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4018                                  u16 *blue, uint32_t size)
4019 {
4020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4021         int i;
4022
4023         if (size != 256)
4024                 return;
4025
4026         for (i = 0; i < 256; i++) {
4027                 intel_crtc->lut_r[i] = red[i] >> 8;
4028                 intel_crtc->lut_g[i] = green[i] >> 8;
4029                 intel_crtc->lut_b[i] = blue[i] >> 8;
4030         }
4031
4032         intel_crtc_load_lut(crtc);
4033 }
4034
4035 /**
4036  * Get a pipe with a simple mode set on it for doing load-based monitor
4037  * detection.
4038  *
4039  * It will be up to the load-detect code to adjust the pipe as appropriate for
4040  * its requirements.  The pipe will be connected to no other encoders.
4041  *
4042  * Currently this code will only succeed if there is a pipe with no encoders
4043  * configured for it.  In the future, it could choose to temporarily disable
4044  * some outputs to free up a pipe for its use.
4045  *
4046  * \return crtc, or NULL if no pipes are available.
4047  */
4048
4049 /* VESA 640x480x72Hz mode to set on the pipe */
4050 static struct drm_display_mode load_detect_mode = {
4051         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4052                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4053 };
4054
4055 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4056                                             struct drm_connector *connector,
4057                                             struct drm_display_mode *mode,
4058                                             int *dpms_mode)
4059 {
4060         struct intel_crtc *intel_crtc;
4061         struct drm_crtc *possible_crtc;
4062         struct drm_crtc *supported_crtc =NULL;
4063         struct drm_encoder *encoder = &intel_encoder->enc;
4064         struct drm_crtc *crtc = NULL;
4065         struct drm_device *dev = encoder->dev;
4066         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4067         struct drm_crtc_helper_funcs *crtc_funcs;
4068         int i = -1;
4069
4070         /*
4071          * Algorithm gets a little messy:
4072          *   - if the connector already has an assigned crtc, use it (but make
4073          *     sure it's on first)
4074          *   - try to find the first unused crtc that can drive this connector,
4075          *     and use that if we find one
4076          *   - if there are no unused crtcs available, try to use the first
4077          *     one we found that supports the connector
4078          */
4079
4080         /* See if we already have a CRTC for this connector */
4081         if (encoder->crtc) {
4082                 crtc = encoder->crtc;
4083                 /* Make sure the crtc and connector are running */
4084                 intel_crtc = to_intel_crtc(crtc);
4085                 *dpms_mode = intel_crtc->dpms_mode;
4086                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4087                         crtc_funcs = crtc->helper_private;
4088                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4089                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4090                 }
4091                 return crtc;
4092         }
4093
4094         /* Find an unused one (if possible) */
4095         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4096                 i++;
4097                 if (!(encoder->possible_crtcs & (1 << i)))
4098                         continue;
4099                 if (!possible_crtc->enabled) {
4100                         crtc = possible_crtc;
4101                         break;
4102                 }
4103                 if (!supported_crtc)
4104                         supported_crtc = possible_crtc;
4105         }
4106
4107         /*
4108          * If we didn't find an unused CRTC, don't use any.
4109          */
4110         if (!crtc) {
4111                 return NULL;
4112         }
4113
4114         encoder->crtc = crtc;
4115         connector->encoder = encoder;
4116         intel_encoder->load_detect_temp = true;
4117
4118         intel_crtc = to_intel_crtc(crtc);
4119         *dpms_mode = intel_crtc->dpms_mode;
4120
4121         if (!crtc->enabled) {
4122                 if (!mode)
4123                         mode = &load_detect_mode;
4124                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4125         } else {
4126                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4127                         crtc_funcs = crtc->helper_private;
4128                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4129                 }
4130
4131                 /* Add this connector to the crtc */
4132                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4133                 encoder_funcs->commit(encoder);
4134         }
4135         /* let the connector get through one full cycle before testing */
4136         intel_wait_for_vblank(dev);
4137
4138         return crtc;
4139 }
4140
4141 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4142                                     struct drm_connector *connector, int dpms_mode)
4143 {
4144         struct drm_encoder *encoder = &intel_encoder->enc;
4145         struct drm_device *dev = encoder->dev;
4146         struct drm_crtc *crtc = encoder->crtc;
4147         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4148         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4149
4150         if (intel_encoder->load_detect_temp) {
4151                 encoder->crtc = NULL;
4152                 connector->encoder = NULL;
4153                 intel_encoder->load_detect_temp = false;
4154                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4155                 drm_helper_disable_unused_functions(dev);
4156         }
4157
4158         /* Switch crtc and encoder back off if necessary */
4159         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4160                 if (encoder->crtc == crtc)
4161                         encoder_funcs->dpms(encoder, dpms_mode);
4162                 crtc_funcs->dpms(crtc, dpms_mode);
4163         }
4164 }
4165
4166 /* Returns the clock of the currently programmed mode of the given pipe. */
4167 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4168 {
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4171         int pipe = intel_crtc->pipe;
4172         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4173         u32 fp;
4174         intel_clock_t clock;
4175
4176         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4177                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4178         else
4179                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4180
4181         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4182         if (IS_PINEVIEW(dev)) {
4183                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4184                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4185         } else {
4186                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4187                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4188         }
4189
4190         if (IS_I9XX(dev)) {
4191                 if (IS_PINEVIEW(dev))
4192                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4193                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4194                 else
4195                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4196                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4197
4198                 switch (dpll & DPLL_MODE_MASK) {
4199                 case DPLLB_MODE_DAC_SERIAL:
4200                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4201                                 5 : 10;
4202                         break;
4203                 case DPLLB_MODE_LVDS:
4204                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4205                                 7 : 14;
4206                         break;
4207                 default:
4208                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4209                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4210                         return 0;
4211                 }
4212
4213                 /* XXX: Handle the 100Mhz refclk */
4214                 intel_clock(dev, 96000, &clock);
4215         } else {
4216                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4217
4218                 if (is_lvds) {
4219                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4220                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4221                         clock.p2 = 14;
4222
4223                         if ((dpll & PLL_REF_INPUT_MASK) ==
4224                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4225                                 /* XXX: might not be 66MHz */
4226                                 intel_clock(dev, 66000, &clock);
4227                         } else
4228                                 intel_clock(dev, 48000, &clock);
4229                 } else {
4230                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4231                                 clock.p1 = 2;
4232                         else {
4233                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4234                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4235                         }
4236                         if (dpll & PLL_P2_DIVIDE_BY_4)
4237                                 clock.p2 = 4;
4238                         else
4239                                 clock.p2 = 2;
4240
4241                         intel_clock(dev, 48000, &clock);
4242                 }
4243         }
4244
4245         /* XXX: It would be nice to validate the clocks, but we can't reuse
4246          * i830PllIsValid() because it relies on the xf86_config connector
4247          * configuration being accurate, which it isn't necessarily.
4248          */
4249
4250         return clock.dot;
4251 }
4252
4253 /** Returns the currently programmed mode of the given pipe. */
4254 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4255                                              struct drm_crtc *crtc)
4256 {
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259         int pipe = intel_crtc->pipe;
4260         struct drm_display_mode *mode;
4261         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4262         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4263         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4264         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4265
4266         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4267         if (!mode)
4268                 return NULL;
4269
4270         mode->clock = intel_crtc_clock_get(dev, crtc);
4271         mode->hdisplay = (htot & 0xffff) + 1;
4272         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4273         mode->hsync_start = (hsync & 0xffff) + 1;
4274         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4275         mode->vdisplay = (vtot & 0xffff) + 1;
4276         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4277         mode->vsync_start = (vsync & 0xffff) + 1;
4278         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4279
4280         drm_mode_set_name(mode);
4281         drm_mode_set_crtcinfo(mode, 0);
4282
4283         return mode;
4284 }
4285
4286 #define GPU_IDLE_TIMEOUT 500 /* ms */
4287
4288 /* When this timer fires, we've been idle for awhile */
4289 static void intel_gpu_idle_timer(unsigned long arg)
4290 {
4291         struct drm_device *dev = (struct drm_device *)arg;
4292         drm_i915_private_t *dev_priv = dev->dev_private;
4293
4294         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4295
4296         dev_priv->busy = false;
4297
4298         queue_work(dev_priv->wq, &dev_priv->idle_work);
4299 }
4300
4301 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4302
4303 static void intel_crtc_idle_timer(unsigned long arg)
4304 {
4305         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4306         struct drm_crtc *crtc = &intel_crtc->base;
4307         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4308
4309         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4310
4311         intel_crtc->busy = false;
4312
4313         queue_work(dev_priv->wq, &dev_priv->idle_work);
4314 }
4315
4316 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4317 {
4318         struct drm_device *dev = crtc->dev;
4319         drm_i915_private_t *dev_priv = dev->dev_private;
4320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321         int pipe = intel_crtc->pipe;
4322         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4323         int dpll = I915_READ(dpll_reg);
4324
4325         if (HAS_PCH_SPLIT(dev))
4326                 return;
4327
4328         if (!dev_priv->lvds_downclock_avail)
4329                 return;
4330
4331         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4332                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4333
4334                 /* Unlock panel regs */
4335                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4336
4337                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4338                 I915_WRITE(dpll_reg, dpll);
4339                 dpll = I915_READ(dpll_reg);
4340                 intel_wait_for_vblank(dev);
4341                 dpll = I915_READ(dpll_reg);
4342                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4343                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4344
4345                 /* ...and lock them again */
4346                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4347         }
4348
4349         /* Schedule downclock */
4350         if (schedule)
4351                 mod_timer(&intel_crtc->idle_timer, jiffies +
4352                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4353 }
4354
4355 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4356 {
4357         struct drm_device *dev = crtc->dev;
4358         drm_i915_private_t *dev_priv = dev->dev_private;
4359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4360         int pipe = intel_crtc->pipe;
4361         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4362         int dpll = I915_READ(dpll_reg);
4363
4364         if (HAS_PCH_SPLIT(dev))
4365                 return;
4366
4367         if (!dev_priv->lvds_downclock_avail)
4368                 return;
4369
4370         /*
4371          * Since this is called by a timer, we should never get here in
4372          * the manual case.
4373          */
4374         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4375                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4376
4377                 /* Unlock panel regs */
4378                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4379
4380                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4381                 I915_WRITE(dpll_reg, dpll);
4382                 dpll = I915_READ(dpll_reg);
4383                 intel_wait_for_vblank(dev);
4384                 dpll = I915_READ(dpll_reg);
4385                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4386                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4387
4388                 /* ...and lock them again */
4389                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4390         }
4391
4392 }
4393
4394 /**
4395  * intel_idle_update - adjust clocks for idleness
4396  * @work: work struct
4397  *
4398  * Either the GPU or display (or both) went idle.  Check the busy status
4399  * here and adjust the CRTC and GPU clocks as necessary.
4400  */
4401 static void intel_idle_update(struct work_struct *work)
4402 {
4403         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4404                                                     idle_work);
4405         struct drm_device *dev = dev_priv->dev;
4406         struct drm_crtc *crtc;
4407         struct intel_crtc *intel_crtc;
4408
4409         if (!i915_powersave)
4410                 return;
4411
4412         mutex_lock(&dev->struct_mutex);
4413
4414         if (IS_I945G(dev) || IS_I945GM(dev)) {
4415                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4416                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4417         }
4418
4419         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4420                 /* Skip inactive CRTCs */
4421                 if (!crtc->fb)
4422                         continue;
4423
4424                 intel_crtc = to_intel_crtc(crtc);
4425                 if (!intel_crtc->busy)
4426                         intel_decrease_pllclock(crtc);
4427         }
4428
4429         mutex_unlock(&dev->struct_mutex);
4430 }
4431
4432 /**
4433  * intel_mark_busy - mark the GPU and possibly the display busy
4434  * @dev: drm device
4435  * @obj: object we're operating on
4436  *
4437  * Callers can use this function to indicate that the GPU is busy processing
4438  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4439  * buffer), we'll also mark the display as busy, so we know to increase its
4440  * clock frequency.
4441  */
4442 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4443 {
4444         drm_i915_private_t *dev_priv = dev->dev_private;
4445         struct drm_crtc *crtc = NULL;
4446         struct intel_framebuffer *intel_fb;
4447         struct intel_crtc *intel_crtc;
4448
4449         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4450                 return;
4451
4452         if (!dev_priv->busy) {
4453                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4454                         u32 fw_blc_self;
4455
4456                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4457                         fw_blc_self = I915_READ(FW_BLC_SELF);
4458                         fw_blc_self &= ~FW_BLC_SELF_EN;
4459                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4460                 }
4461                 dev_priv->busy = true;
4462         } else
4463                 mod_timer(&dev_priv->idle_timer, jiffies +
4464                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4465
4466         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4467                 if (!crtc->fb)
4468                         continue;
4469
4470                 intel_crtc = to_intel_crtc(crtc);
4471                 intel_fb = to_intel_framebuffer(crtc->fb);
4472                 if (intel_fb->obj == obj) {
4473                         if (!intel_crtc->busy) {
4474                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4475                                         u32 fw_blc_self;
4476
4477                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4478                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4479                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4480                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4481                                 }
4482                                 /* Non-busy -> busy, upclock */
4483                                 intel_increase_pllclock(crtc, true);
4484                                 intel_crtc->busy = true;
4485                         } else {
4486                                 /* Busy -> busy, put off timer */
4487                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4488                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4489                         }
4490                 }
4491         }
4492 }
4493
4494 static void intel_crtc_destroy(struct drm_crtc *crtc)
4495 {
4496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4497
4498         drm_crtc_cleanup(crtc);
4499         kfree(intel_crtc);
4500 }
4501
4502 struct intel_unpin_work {
4503         struct work_struct work;
4504         struct drm_device *dev;
4505         struct drm_gem_object *old_fb_obj;
4506         struct drm_gem_object *pending_flip_obj;
4507         struct drm_pending_vblank_event *event;
4508         int pending;
4509 };
4510
4511 static void intel_unpin_work_fn(struct work_struct *__work)
4512 {
4513         struct intel_unpin_work *work =
4514                 container_of(__work, struct intel_unpin_work, work);
4515
4516         mutex_lock(&work->dev->struct_mutex);
4517         i915_gem_object_unpin(work->old_fb_obj);
4518         drm_gem_object_unreference(work->pending_flip_obj);
4519         drm_gem_object_unreference(work->old_fb_obj);
4520         mutex_unlock(&work->dev->struct_mutex);
4521         kfree(work);
4522 }
4523
4524 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4525 {
4526         drm_i915_private_t *dev_priv = dev->dev_private;
4527         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4529         struct intel_unpin_work *work;
4530         struct drm_i915_gem_object *obj_priv;
4531         struct drm_pending_vblank_event *e;
4532         struct timeval now;
4533         unsigned long flags;
4534
4535         /* Ignore early vblank irqs */
4536         if (intel_crtc == NULL)
4537                 return;
4538
4539         spin_lock_irqsave(&dev->event_lock, flags);
4540         work = intel_crtc->unpin_work;
4541         if (work == NULL || !work->pending) {
4542                 if (work && !work->pending) {
4543                         obj_priv = to_intel_bo(work->pending_flip_obj);
4544                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4545                                          obj_priv,
4546                                          atomic_read(&obj_priv->pending_flip));
4547                 }
4548                 spin_unlock_irqrestore(&dev->event_lock, flags);
4549                 return;
4550         }
4551
4552         intel_crtc->unpin_work = NULL;
4553         drm_vblank_put(dev, intel_crtc->pipe);
4554
4555         if (work->event) {
4556                 e = work->event;
4557                 do_gettimeofday(&now);
4558                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4559                 e->event.tv_sec = now.tv_sec;
4560                 e->event.tv_usec = now.tv_usec;
4561                 list_add_tail(&e->base.link,
4562                               &e->base.file_priv->event_list);
4563                 wake_up_interruptible(&e->base.file_priv->event_wait);
4564         }
4565
4566         spin_unlock_irqrestore(&dev->event_lock, flags);
4567
4568         obj_priv = to_intel_bo(work->pending_flip_obj);
4569
4570         /* Initial scanout buffer will have a 0 pending flip count */
4571         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4572             atomic_dec_and_test(&obj_priv->pending_flip))
4573                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4574         schedule_work(&work->work);
4575 }
4576
4577 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4578 {
4579         drm_i915_private_t *dev_priv = dev->dev_private;
4580         struct intel_crtc *intel_crtc =
4581                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4582         unsigned long flags;
4583
4584         spin_lock_irqsave(&dev->event_lock, flags);
4585         if (intel_crtc->unpin_work) {
4586                 intel_crtc->unpin_work->pending = 1;
4587         } else {
4588                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4589         }
4590         spin_unlock_irqrestore(&dev->event_lock, flags);
4591 }
4592
4593 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4594                                 struct drm_framebuffer *fb,
4595                                 struct drm_pending_vblank_event *event)
4596 {
4597         struct drm_device *dev = crtc->dev;
4598         struct drm_i915_private *dev_priv = dev->dev_private;
4599         struct intel_framebuffer *intel_fb;
4600         struct drm_i915_gem_object *obj_priv;
4601         struct drm_gem_object *obj;
4602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603         struct intel_unpin_work *work;
4604         unsigned long flags;
4605         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4606         int ret, pipesrc;
4607         RING_LOCALS;
4608
4609         work = kzalloc(sizeof *work, GFP_KERNEL);
4610         if (work == NULL)
4611                 return -ENOMEM;
4612
4613         mutex_lock(&dev->struct_mutex);
4614
4615         work->event = event;
4616         work->dev = crtc->dev;
4617         intel_fb = to_intel_framebuffer(crtc->fb);
4618         work->old_fb_obj = intel_fb->obj;
4619         INIT_WORK(&work->work, intel_unpin_work_fn);
4620
4621         /* We borrow the event spin lock for protecting unpin_work */
4622         spin_lock_irqsave(&dev->event_lock, flags);
4623         if (intel_crtc->unpin_work) {
4624                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4625                 spin_unlock_irqrestore(&dev->event_lock, flags);
4626                 kfree(work);
4627                 mutex_unlock(&dev->struct_mutex);
4628                 return -EBUSY;
4629         }
4630         intel_crtc->unpin_work = work;
4631         spin_unlock_irqrestore(&dev->event_lock, flags);
4632
4633         intel_fb = to_intel_framebuffer(fb);
4634         obj = intel_fb->obj;
4635
4636         ret = intel_pin_and_fence_fb_obj(dev, obj);
4637         if (ret != 0) {
4638                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4639                           to_intel_bo(obj));
4640                 kfree(work);
4641                 intel_crtc->unpin_work = NULL;
4642                 mutex_unlock(&dev->struct_mutex);
4643                 return ret;
4644         }
4645
4646         /* Reference the objects for the scheduled work. */
4647         drm_gem_object_reference(work->old_fb_obj);
4648         drm_gem_object_reference(obj);
4649
4650         crtc->fb = fb;
4651         i915_gem_object_flush_write_domain(obj);
4652         drm_vblank_get(dev, intel_crtc->pipe);
4653         obj_priv = to_intel_bo(obj);
4654         atomic_inc(&obj_priv->pending_flip);
4655         work->pending_flip_obj = obj;
4656
4657         BEGIN_LP_RING(4);
4658         OUT_RING(MI_DISPLAY_FLIP |
4659                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4660         OUT_RING(fb->pitch);
4661         if (IS_I965G(dev)) {
4662                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4663                 pipesrc = I915_READ(pipesrc_reg); 
4664                 OUT_RING(pipesrc & 0x0fff0fff);
4665         } else {
4666                 OUT_RING(obj_priv->gtt_offset);
4667                 OUT_RING(MI_NOOP);
4668         }
4669         ADVANCE_LP_RING();
4670
4671         mutex_unlock(&dev->struct_mutex);
4672
4673         return 0;
4674 }
4675
4676 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4677         .dpms = intel_crtc_dpms,
4678         .mode_fixup = intel_crtc_mode_fixup,
4679         .mode_set = intel_crtc_mode_set,
4680         .mode_set_base = intel_pipe_set_base,
4681         .prepare = intel_crtc_prepare,
4682         .commit = intel_crtc_commit,
4683         .load_lut = intel_crtc_load_lut,
4684 };
4685
4686 static const struct drm_crtc_funcs intel_crtc_funcs = {
4687         .cursor_set = intel_crtc_cursor_set,
4688         .cursor_move = intel_crtc_cursor_move,
4689         .gamma_set = intel_crtc_gamma_set,
4690         .set_config = drm_crtc_helper_set_config,
4691         .destroy = intel_crtc_destroy,
4692         .page_flip = intel_crtc_page_flip,
4693 };
4694
4695
4696 static void intel_crtc_init(struct drm_device *dev, int pipe)
4697 {
4698         drm_i915_private_t *dev_priv = dev->dev_private;
4699         struct intel_crtc *intel_crtc;
4700         int i;
4701
4702         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4703         if (intel_crtc == NULL)
4704                 return;
4705
4706         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4707
4708         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4709         intel_crtc->pipe = pipe;
4710         intel_crtc->plane = pipe;
4711         for (i = 0; i < 256; i++) {
4712                 intel_crtc->lut_r[i] = i;
4713                 intel_crtc->lut_g[i] = i;
4714                 intel_crtc->lut_b[i] = i;
4715         }
4716
4717         /* Swap pipes & planes for FBC on pre-965 */
4718         intel_crtc->pipe = pipe;
4719         intel_crtc->plane = pipe;
4720         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4721                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4722                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4723         }
4724
4725         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4726                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4727         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4728         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4729
4730         intel_crtc->cursor_addr = 0;
4731         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4732         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4733
4734         intel_crtc->busy = false;
4735
4736         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4737                     (unsigned long)intel_crtc);
4738 }
4739
4740 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4741                                 struct drm_file *file_priv)
4742 {
4743         drm_i915_private_t *dev_priv = dev->dev_private;
4744         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4745         struct drm_mode_object *drmmode_obj;
4746         struct intel_crtc *crtc;
4747
4748         if (!dev_priv) {
4749                 DRM_ERROR("called with no initialization\n");
4750                 return -EINVAL;
4751         }
4752
4753         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4754                         DRM_MODE_OBJECT_CRTC);
4755
4756         if (!drmmode_obj) {
4757                 DRM_ERROR("no such CRTC id\n");
4758                 return -EINVAL;
4759         }
4760
4761         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4762         pipe_from_crtc_id->pipe = crtc->pipe;
4763
4764         return 0;
4765 }
4766
4767 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4768 {
4769         struct drm_crtc *crtc = NULL;
4770
4771         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4772                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4773                 if (intel_crtc->pipe == pipe)
4774                         break;
4775         }
4776         return crtc;
4777 }
4778
4779 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4780 {
4781         int index_mask = 0;
4782         struct drm_encoder *encoder;
4783         int entry = 0;
4784
4785         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4786                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4787                 if (type_mask & intel_encoder->clone_mask)
4788                         index_mask |= (1 << entry);
4789                 entry++;
4790         }
4791         return index_mask;
4792 }
4793
4794
4795 static void intel_setup_outputs(struct drm_device *dev)
4796 {
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798         struct drm_encoder *encoder;
4799
4800         intel_crt_init(dev);
4801
4802         /* Set up integrated LVDS */
4803         if (IS_MOBILE(dev) && !IS_I830(dev))
4804                 intel_lvds_init(dev);
4805
4806         if (HAS_PCH_SPLIT(dev)) {
4807                 int found;
4808
4809                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4810                         intel_dp_init(dev, DP_A);
4811
4812                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4813                         /* PCH SDVOB multiplex with HDMIB */
4814                         found = intel_sdvo_init(dev, PCH_SDVOB);
4815                         if (!found)
4816                                 intel_hdmi_init(dev, HDMIB);
4817                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4818                                 intel_dp_init(dev, PCH_DP_B);
4819                 }
4820
4821                 if (I915_READ(HDMIC) & PORT_DETECTED)
4822                         intel_hdmi_init(dev, HDMIC);
4823
4824                 if (I915_READ(HDMID) & PORT_DETECTED)
4825                         intel_hdmi_init(dev, HDMID);
4826
4827                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4828                         intel_dp_init(dev, PCH_DP_C);
4829
4830                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4831                         intel_dp_init(dev, PCH_DP_D);
4832
4833         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4834                 bool found = false;
4835
4836                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4837                         DRM_DEBUG_KMS("probing SDVOB\n");
4838                         found = intel_sdvo_init(dev, SDVOB);
4839                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4840                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4841                                 intel_hdmi_init(dev, SDVOB);
4842                         }
4843
4844                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4845                                 DRM_DEBUG_KMS("probing DP_B\n");
4846                                 intel_dp_init(dev, DP_B);
4847                         }
4848                 }
4849
4850                 /* Before G4X SDVOC doesn't have its own detect register */
4851
4852                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4853                         DRM_DEBUG_KMS("probing SDVOC\n");
4854                         found = intel_sdvo_init(dev, SDVOC);
4855                 }
4856
4857                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4858
4859                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4860                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4861                                 intel_hdmi_init(dev, SDVOC);
4862                         }
4863                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4864                                 DRM_DEBUG_KMS("probing DP_C\n");
4865                                 intel_dp_init(dev, DP_C);
4866                         }
4867                 }
4868
4869                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4870                     (I915_READ(DP_D) & DP_DETECTED)) {
4871                         DRM_DEBUG_KMS("probing DP_D\n");
4872                         intel_dp_init(dev, DP_D);
4873                 }
4874         } else if (IS_GEN2(dev))
4875                 intel_dvo_init(dev);
4876
4877         if (SUPPORTS_TV(dev))
4878                 intel_tv_init(dev);
4879
4880         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4881                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4882
4883                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4884                 encoder->possible_clones = intel_encoder_clones(dev,
4885                                                 intel_encoder->clone_mask);
4886         }
4887 }
4888
4889 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4890 {
4891         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4892
4893         drm_framebuffer_cleanup(fb);
4894         drm_gem_object_unreference_unlocked(intel_fb->obj);
4895
4896         kfree(intel_fb);
4897 }
4898
4899 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4900                                                 struct drm_file *file_priv,
4901                                                 unsigned int *handle)
4902 {
4903         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4904         struct drm_gem_object *object = intel_fb->obj;
4905
4906         return drm_gem_handle_create(file_priv, object, handle);
4907 }
4908
4909 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4910         .destroy = intel_user_framebuffer_destroy,
4911         .create_handle = intel_user_framebuffer_create_handle,
4912 };
4913
4914 int intel_framebuffer_init(struct drm_device *dev,
4915                            struct intel_framebuffer *intel_fb,
4916                            struct drm_mode_fb_cmd *mode_cmd,
4917                            struct drm_gem_object *obj)
4918 {
4919         int ret;
4920
4921         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4922         if (ret) {
4923                 DRM_ERROR("framebuffer init failed %d\n", ret);
4924                 return ret;
4925         }
4926
4927         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4928         intel_fb->obj = obj;
4929         return 0;
4930 }
4931
4932 static struct drm_framebuffer *
4933 intel_user_framebuffer_create(struct drm_device *dev,
4934                               struct drm_file *filp,
4935                               struct drm_mode_fb_cmd *mode_cmd)
4936 {
4937         struct drm_gem_object *obj;
4938         struct intel_framebuffer *intel_fb;
4939         int ret;
4940
4941         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4942         if (!obj)
4943                 return NULL;
4944
4945         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4946         if (!intel_fb)
4947                 return NULL;
4948
4949         ret = intel_framebuffer_init(dev, intel_fb,
4950                                      mode_cmd, obj);
4951         if (ret) {
4952                 drm_gem_object_unreference_unlocked(obj);
4953                 kfree(intel_fb);
4954                 return NULL;
4955         }
4956
4957         return &intel_fb->base;
4958 }
4959
4960 static const struct drm_mode_config_funcs intel_mode_funcs = {
4961         .fb_create = intel_user_framebuffer_create,
4962 };
4963
4964 static struct drm_gem_object *
4965 intel_alloc_power_context(struct drm_device *dev)
4966 {
4967         struct drm_gem_object *pwrctx;
4968         int ret;
4969
4970         pwrctx = drm_gem_object_alloc(dev, 4096);
4971         if (!pwrctx) {
4972                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4973                 return NULL;
4974         }
4975
4976         mutex_lock(&dev->struct_mutex);
4977         ret = i915_gem_object_pin(pwrctx, 4096);
4978         if (ret) {
4979                 DRM_ERROR("failed to pin power context: %d\n", ret);
4980                 goto err_unref;
4981         }
4982
4983         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4984         if (ret) {
4985                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4986                 goto err_unpin;
4987         }
4988         mutex_unlock(&dev->struct_mutex);
4989
4990         return pwrctx;
4991
4992 err_unpin:
4993         i915_gem_object_unpin(pwrctx);
4994 err_unref:
4995         drm_gem_object_unreference(pwrctx);
4996         mutex_unlock(&dev->struct_mutex);
4997         return NULL;
4998 }
4999
5000 void ironlake_enable_drps(struct drm_device *dev)
5001 {
5002         struct drm_i915_private *dev_priv = dev->dev_private;
5003         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
5004         u8 fmax, fmin, fstart, vstart;
5005         int i = 0;
5006
5007         /* 100ms RC evaluation intervals */
5008         I915_WRITE(RCUPEI, 100000);
5009         I915_WRITE(RCDNEI, 100000);
5010
5011         /* Set max/min thresholds to 90ms and 80ms respectively */
5012         I915_WRITE(RCBMAXAVG, 90000);
5013         I915_WRITE(RCBMINAVG, 80000);
5014
5015         I915_WRITE(MEMIHYST, 1);
5016
5017         /* Set up min, max, and cur for interrupt handling */
5018         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5019         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5020         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5021                 MEMMODE_FSTART_SHIFT;
5022         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5023                 PXVFREQ_PX_SHIFT;
5024
5025         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
5026         dev_priv->min_delay = fmin;
5027         dev_priv->cur_delay = fstart;
5028
5029         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5030
5031         /*
5032          * Interrupts will be enabled in ironlake_irq_postinstall
5033          */
5034
5035         I915_WRITE(VIDSTART, vstart);
5036         POSTING_READ(VIDSTART);
5037
5038         rgvmodectl |= MEMMODE_SWMODE_EN;
5039         I915_WRITE(MEMMODECTL, rgvmodectl);
5040
5041         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5042                 if (i++ > 100) {
5043                         DRM_ERROR("stuck trying to change perf mode\n");
5044                         break;
5045                 }
5046                 msleep(1);
5047         }
5048         msleep(1);
5049
5050         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5051                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5052         I915_WRITE(MEMSWCTL, rgvswctl);
5053         POSTING_READ(MEMSWCTL);
5054
5055         rgvswctl |= MEMCTL_CMD_STS;
5056         I915_WRITE(MEMSWCTL, rgvswctl);
5057 }
5058
5059 void ironlake_disable_drps(struct drm_device *dev)
5060 {
5061         struct drm_i915_private *dev_priv = dev->dev_private;
5062         u32 rgvswctl;
5063         u8 fstart;
5064
5065         /* Ack interrupts, disable EFC interrupt */
5066         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5067         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5068         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5069         I915_WRITE(DEIIR, DE_PCU_EVENT);
5070         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5071
5072         /* Go back to the starting frequency */
5073         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
5074                 MEMMODE_FSTART_SHIFT;
5075         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5076                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5077         I915_WRITE(MEMSWCTL, rgvswctl);
5078         msleep(1);
5079         rgvswctl |= MEMCTL_CMD_STS;
5080         I915_WRITE(MEMSWCTL, rgvswctl);
5081         msleep(1);
5082
5083 }
5084
5085 void intel_init_clock_gating(struct drm_device *dev)
5086 {
5087         struct drm_i915_private *dev_priv = dev->dev_private;
5088
5089         /*
5090          * Disable clock gating reported to work incorrectly according to the
5091          * specs, but enable as much else as we can.
5092          */
5093         if (HAS_PCH_SPLIT(dev)) {
5094                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5095
5096                 if (IS_IRONLAKE(dev)) {
5097                         /* Required for FBC */
5098                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5099                         /* Required for CxSR */
5100                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5101
5102                         I915_WRITE(PCH_3DCGDIS0,
5103                                    MARIUNIT_CLOCK_GATE_DISABLE |
5104                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5105                 }
5106
5107                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5108
5109                 /*
5110                  * According to the spec the following bits should be set in
5111                  * order to enable memory self-refresh
5112                  * The bit 22/21 of 0x42004
5113                  * The bit 5 of 0x42020
5114                  * The bit 15 of 0x45000
5115                  */
5116                 if (IS_IRONLAKE(dev)) {
5117                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5118                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5119                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5120                         I915_WRITE(ILK_DSPCLK_GATE,
5121                                         (I915_READ(ILK_DSPCLK_GATE) |
5122                                                 ILK_DPARB_CLK_GATE));
5123                         I915_WRITE(DISP_ARB_CTL,
5124                                         (I915_READ(DISP_ARB_CTL) |
5125                                                 DISP_FBC_WM_DIS));
5126                 }
5127                 return;
5128         } else if (IS_G4X(dev)) {
5129                 uint32_t dspclk_gate;
5130                 I915_WRITE(RENCLK_GATE_D1, 0);
5131                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5132                        GS_UNIT_CLOCK_GATE_DISABLE |
5133                        CL_UNIT_CLOCK_GATE_DISABLE);
5134                 I915_WRITE(RAMCLK_GATE_D, 0);
5135                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5136                         OVRUNIT_CLOCK_GATE_DISABLE |
5137                         OVCUNIT_CLOCK_GATE_DISABLE;
5138                 if (IS_GM45(dev))
5139                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5140                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5141         } else if (IS_I965GM(dev)) {
5142                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5143                 I915_WRITE(RENCLK_GATE_D2, 0);
5144                 I915_WRITE(DSPCLK_GATE_D, 0);
5145                 I915_WRITE(RAMCLK_GATE_D, 0);
5146                 I915_WRITE16(DEUC, 0);
5147         } else if (IS_I965G(dev)) {
5148                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5149                        I965_RCC_CLOCK_GATE_DISABLE |
5150                        I965_RCPB_CLOCK_GATE_DISABLE |
5151                        I965_ISC_CLOCK_GATE_DISABLE |
5152                        I965_FBC_CLOCK_GATE_DISABLE);
5153                 I915_WRITE(RENCLK_GATE_D2, 0);
5154         } else if (IS_I9XX(dev)) {
5155                 u32 dstate = I915_READ(D_STATE);
5156
5157                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5158                         DSTATE_DOT_CLOCK_GATING;
5159                 I915_WRITE(D_STATE, dstate);
5160         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5161                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5162         } else if (IS_I830(dev)) {
5163                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5164         }
5165
5166         /*
5167          * GPU can automatically power down the render unit if given a page
5168          * to save state.
5169          */
5170         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5171                 struct drm_i915_gem_object *obj_priv = NULL;
5172
5173                 if (dev_priv->pwrctx) {
5174                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5175                 } else {
5176                         struct drm_gem_object *pwrctx;
5177
5178                         pwrctx = intel_alloc_power_context(dev);
5179                         if (pwrctx) {
5180                                 dev_priv->pwrctx = pwrctx;
5181                                 obj_priv = to_intel_bo(pwrctx);
5182                         }
5183                 }
5184
5185                 if (obj_priv) {
5186                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5187                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5188                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5189                 }
5190         }
5191 }
5192
5193 /* Set up chip specific display functions */
5194 static void intel_init_display(struct drm_device *dev)
5195 {
5196         struct drm_i915_private *dev_priv = dev->dev_private;
5197
5198         /* We always want a DPMS function */
5199         if (HAS_PCH_SPLIT(dev))
5200                 dev_priv->display.dpms = ironlake_crtc_dpms;
5201         else
5202                 dev_priv->display.dpms = i9xx_crtc_dpms;
5203
5204         /* Only mobile has FBC, leave pointers NULL for other chips */
5205         if (IS_MOBILE(dev)) {
5206                 if (IS_GM45(dev)) {
5207                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5208                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5209                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5210                 } else if (IS_I965GM(dev)) {
5211                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5212                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5213                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5214                 }
5215                 /* 855GM needs testing */
5216         }
5217
5218         /* Returns the core display clock speed */
5219         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5220                 dev_priv->display.get_display_clock_speed =
5221                         i945_get_display_clock_speed;
5222         else if (IS_I915G(dev))
5223                 dev_priv->display.get_display_clock_speed =
5224                         i915_get_display_clock_speed;
5225         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5226                 dev_priv->display.get_display_clock_speed =
5227                         i9xx_misc_get_display_clock_speed;
5228         else if (IS_I915GM(dev))
5229                 dev_priv->display.get_display_clock_speed =
5230                         i915gm_get_display_clock_speed;
5231         else if (IS_I865G(dev))
5232                 dev_priv->display.get_display_clock_speed =
5233                         i865_get_display_clock_speed;
5234         else if (IS_I85X(dev))
5235                 dev_priv->display.get_display_clock_speed =
5236                         i855_get_display_clock_speed;
5237         else /* 852, 830 */
5238                 dev_priv->display.get_display_clock_speed =
5239                         i830_get_display_clock_speed;
5240
5241         /* For FIFO watermark updates */
5242         if (HAS_PCH_SPLIT(dev)) {
5243                 if (IS_IRONLAKE(dev)) {
5244                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5245                                 dev_priv->display.update_wm = ironlake_update_wm;
5246                         else {
5247                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5248                                               "Disable CxSR\n");
5249                                 dev_priv->display.update_wm = NULL;
5250                         }
5251                 } else
5252                         dev_priv->display.update_wm = NULL;
5253         } else if (IS_PINEVIEW(dev)) {
5254                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5255                                             dev_priv->fsb_freq,
5256                                             dev_priv->mem_freq)) {
5257                         DRM_INFO("failed to find known CxSR latency "
5258                                  "(found fsb freq %d, mem freq %d), "
5259                                  "disabling CxSR\n",
5260                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5261                         /* Disable CxSR and never update its watermark again */
5262                         pineview_disable_cxsr(dev);
5263                         dev_priv->display.update_wm = NULL;
5264                 } else
5265                         dev_priv->display.update_wm = pineview_update_wm;
5266         } else if (IS_G4X(dev))
5267                 dev_priv->display.update_wm = g4x_update_wm;
5268         else if (IS_I965G(dev))
5269                 dev_priv->display.update_wm = i965_update_wm;
5270         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
5271                 dev_priv->display.update_wm = i9xx_update_wm;
5272                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5273         } else {
5274                 if (IS_I85X(dev))
5275                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5276                 else if (IS_845G(dev))
5277                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5278                 else
5279                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5280                 dev_priv->display.update_wm = i830_update_wm;
5281         }
5282 }
5283
5284 void intel_modeset_init(struct drm_device *dev)
5285 {
5286         struct drm_i915_private *dev_priv = dev->dev_private;
5287         int num_pipe;
5288         int i;
5289
5290         drm_mode_config_init(dev);
5291
5292         dev->mode_config.min_width = 0;
5293         dev->mode_config.min_height = 0;
5294
5295         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5296
5297         intel_init_display(dev);
5298
5299         if (IS_I965G(dev)) {
5300                 dev->mode_config.max_width = 8192;
5301                 dev->mode_config.max_height = 8192;
5302         } else if (IS_I9XX(dev)) {
5303                 dev->mode_config.max_width = 4096;
5304                 dev->mode_config.max_height = 4096;
5305         } else {
5306                 dev->mode_config.max_width = 2048;
5307                 dev->mode_config.max_height = 2048;
5308         }
5309
5310         /* set memory base */
5311         if (IS_I9XX(dev))
5312                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5313         else
5314                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5315
5316         if (IS_MOBILE(dev) || IS_I9XX(dev))
5317                 num_pipe = 2;
5318         else
5319                 num_pipe = 1;
5320         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5321                   num_pipe, num_pipe > 1 ? "s" : "");
5322
5323         for (i = 0; i < num_pipe; i++) {
5324                 intel_crtc_init(dev, i);
5325         }
5326
5327         intel_setup_outputs(dev);
5328
5329         intel_init_clock_gating(dev);
5330
5331         if (IS_IRONLAKE_M(dev))
5332                 ironlake_enable_drps(dev);
5333
5334         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5335         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5336                     (unsigned long)dev);
5337
5338         intel_setup_overlay(dev);
5339 }
5340
5341 void intel_modeset_cleanup(struct drm_device *dev)
5342 {
5343         struct drm_i915_private *dev_priv = dev->dev_private;
5344         struct drm_crtc *crtc;
5345         struct intel_crtc *intel_crtc;
5346
5347         mutex_lock(&dev->struct_mutex);
5348
5349         intel_fbdev_fini(dev);
5350
5351         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5352                 /* Skip inactive CRTCs */
5353                 if (!crtc->fb)
5354                         continue;
5355
5356                 intel_crtc = to_intel_crtc(crtc);
5357                 intel_increase_pllclock(crtc, false);
5358                 del_timer_sync(&intel_crtc->idle_timer);
5359         }
5360
5361         del_timer_sync(&dev_priv->idle_timer);
5362
5363         if (dev_priv->display.disable_fbc)
5364                 dev_priv->display.disable_fbc(dev);
5365
5366         if (dev_priv->pwrctx) {
5367                 struct drm_i915_gem_object *obj_priv;
5368
5369                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5370                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5371                 I915_READ(PWRCTXA);
5372                 i915_gem_object_unpin(dev_priv->pwrctx);
5373                 drm_gem_object_unreference(dev_priv->pwrctx);
5374         }
5375
5376         if (IS_IRONLAKE_M(dev))
5377                 ironlake_disable_drps(dev);
5378
5379         mutex_unlock(&dev->struct_mutex);
5380
5381         drm_mode_config_cleanup(dev);
5382 }
5383
5384
5385 /*
5386  * Return which encoder is currently attached for connector.
5387  */
5388 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5389 {
5390         struct drm_mode_object *obj;
5391         struct drm_encoder *encoder;
5392         int i;
5393
5394         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5395                 if (connector->encoder_ids[i] == 0)
5396                         break;
5397
5398                 obj = drm_mode_object_find(connector->dev,
5399                                            connector->encoder_ids[i],
5400                                            DRM_MODE_OBJECT_ENCODER);
5401                 if (!obj)
5402                         continue;
5403
5404                 encoder = obj_to_encoder(obj);
5405                 return encoder;
5406         }
5407         return NULL;
5408 }
5409
5410 /*
5411  * set vga decode state - true == enable VGA decode
5412  */
5413 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5414 {
5415         struct drm_i915_private *dev_priv = dev->dev_private;
5416         u16 gmch_ctrl;
5417
5418         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5419         if (state)
5420                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5421         else
5422                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5423         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5424         return 0;
5425 }