drm/i915: Add support of SDVO on Ibexpeak PCH
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73 };
74
75 #define I8XX_DOT_MIN              25000
76 #define I8XX_DOT_MAX             350000
77 #define I8XX_VCO_MIN             930000
78 #define I8XX_VCO_MAX            1400000
79 #define I8XX_N_MIN                    3
80 #define I8XX_N_MAX                   16
81 #define I8XX_M_MIN                   96
82 #define I8XX_M_MAX                  140
83 #define I8XX_M1_MIN                  18
84 #define I8XX_M1_MAX                  26
85 #define I8XX_M2_MIN                   6
86 #define I8XX_M2_MAX                  16
87 #define I8XX_P_MIN                    4
88 #define I8XX_P_MAX                  128
89 #define I8XX_P1_MIN                   2
90 #define I8XX_P1_MAX                  33
91 #define I8XX_P1_LVDS_MIN              1
92 #define I8XX_P1_LVDS_MAX              6
93 #define I8XX_P2_SLOW                  4
94 #define I8XX_P2_FAST                  2
95 #define I8XX_P2_LVDS_SLOW             14
96 #define I8XX_P2_LVDS_FAST             7
97 #define I8XX_P2_SLOW_LIMIT       165000
98
99 #define I9XX_DOT_MIN              20000
100 #define I9XX_DOT_MAX             400000
101 #define I9XX_VCO_MIN            1400000
102 #define I9XX_VCO_MAX            2800000
103 #define PINEVIEW_VCO_MIN                1700000
104 #define PINEVIEW_VCO_MAX                3500000
105 #define I9XX_N_MIN                    1
106 #define I9XX_N_MAX                    6
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN                3
109 #define PINEVIEW_N_MAX                6
110 #define I9XX_M_MIN                   70
111 #define I9XX_M_MAX                  120
112 #define PINEVIEW_M_MIN                2
113 #define PINEVIEW_M_MAX              256
114 #define I9XX_M1_MIN                  10
115 #define I9XX_M1_MAX                  22
116 #define I9XX_M2_MIN                   5
117 #define I9XX_M2_MAX                   9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN               0
120 #define PINEVIEW_M1_MAX               0
121 #define PINEVIEW_M2_MIN               0
122 #define PINEVIEW_M2_MAX               254
123 #define I9XX_P_SDVO_DAC_MIN           5
124 #define I9XX_P_SDVO_DAC_MAX          80
125 #define I9XX_P_LVDS_MIN               7
126 #define I9XX_P_LVDS_MAX              98
127 #define PINEVIEW_P_LVDS_MIN                   7
128 #define PINEVIEW_P_LVDS_MAX                  112
129 #define I9XX_P1_MIN                   1
130 #define I9XX_P1_MAX                   8
131 #define I9XX_P2_SDVO_DAC_SLOW                10
132 #define I9XX_P2_SDVO_DAC_FAST                 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
134 #define I9XX_P2_LVDS_SLOW                    14
135 #define I9XX_P2_LVDS_FAST                     7
136 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
137
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN           25000
140 #define G4X_DOT_SDVO_MAX           270000
141 #define G4X_VCO_MIN                1750000
142 #define G4X_VCO_MAX                3500000
143 #define G4X_N_SDVO_MIN             1
144 #define G4X_N_SDVO_MAX             4
145 #define G4X_M_SDVO_MIN             104
146 #define G4X_M_SDVO_MAX             138
147 #define G4X_M1_SDVO_MIN            17
148 #define G4X_M1_SDVO_MAX            23
149 #define G4X_M2_SDVO_MIN            5
150 #define G4X_M2_SDVO_MAX            11
151 #define G4X_P_SDVO_MIN             10
152 #define G4X_P_SDVO_MAX             30
153 #define G4X_P1_SDVO_MIN            1
154 #define G4X_P1_SDVO_MAX            3
155 #define G4X_P2_SDVO_SLOW           10
156 #define G4X_P2_SDVO_FAST           10
157 #define G4X_P2_SDVO_LIMIT          270000
158
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN           22000
161 #define G4X_DOT_HDMI_DAC_MAX           400000
162 #define G4X_N_HDMI_DAC_MIN             1
163 #define G4X_N_HDMI_DAC_MAX             4
164 #define G4X_M_HDMI_DAC_MIN             104
165 #define G4X_M_HDMI_DAC_MAX             138
166 #define G4X_M1_HDMI_DAC_MIN            16
167 #define G4X_M1_HDMI_DAC_MAX            23
168 #define G4X_M2_HDMI_DAC_MIN            5
169 #define G4X_M2_HDMI_DAC_MAX            11
170 #define G4X_P_HDMI_DAC_MIN             5
171 #define G4X_P_HDMI_DAC_MAX             80
172 #define G4X_P1_HDMI_DAC_MIN            1
173 #define G4X_P1_HDMI_DAC_MAX            8
174 #define G4X_P2_HDMI_DAC_SLOW           10
175 #define G4X_P2_HDMI_DAC_FAST           5
176 #define G4X_P2_HDMI_DAC_LIMIT          165000
177
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
196
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
215
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN           161670
218 #define G4X_DOT_DISPLAY_PORT_MAX           227000
219 #define G4X_N_DISPLAY_PORT_MIN             1
220 #define G4X_N_DISPLAY_PORT_MAX             2
221 #define G4X_M_DISPLAY_PORT_MIN             97
222 #define G4X_M_DISPLAY_PORT_MAX             108
223 #define G4X_M1_DISPLAY_PORT_MIN            0x10
224 #define G4X_M1_DISPLAY_PORT_MAX            0x12
225 #define G4X_M2_DISPLAY_PORT_MIN            0x05
226 #define G4X_M2_DISPLAY_PORT_MAX            0x06
227 #define G4X_P_DISPLAY_PORT_MIN             10
228 #define G4X_P_DISPLAY_PORT_MAX             20
229 #define G4X_P1_DISPLAY_PORT_MIN            1
230 #define G4X_P1_DISPLAY_PORT_MAX            2
231 #define G4X_P2_DISPLAY_PORT_SLOW           10
232 #define G4X_P2_DISPLAY_PORT_FAST           10
233 #define G4X_P2_DISPLAY_PORT_LIMIT          0
234
235 /* Ironlake / Sandybridge */
236 /* as we calculate clock using (register_value + 2) for
237    N/M1/M2, so here the range value for them is (actual_value-2).
238  */
239 #define IRONLAKE_DOT_MIN         25000
240 #define IRONLAKE_DOT_MAX         350000
241 #define IRONLAKE_VCO_MIN         1760000
242 #define IRONLAKE_VCO_MAX         3510000
243 #define IRONLAKE_M1_MIN          12
244 #define IRONLAKE_M1_MAX          22
245 #define IRONLAKE_M2_MIN          5
246 #define IRONLAKE_M2_MAX          9
247 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
248
249 /* We have parameter ranges for different type of outputs. */
250
251 /* DAC & HDMI Refclk 120Mhz */
252 #define IRONLAKE_DAC_N_MIN      1
253 #define IRONLAKE_DAC_N_MAX      5
254 #define IRONLAKE_DAC_M_MIN      79
255 #define IRONLAKE_DAC_M_MAX      127
256 #define IRONLAKE_DAC_P_MIN      5
257 #define IRONLAKE_DAC_P_MAX      80
258 #define IRONLAKE_DAC_P1_MIN     1
259 #define IRONLAKE_DAC_P1_MAX     8
260 #define IRONLAKE_DAC_P2_SLOW    10
261 #define IRONLAKE_DAC_P2_FAST    5
262
263 /* LVDS single-channel 120Mhz refclk */
264 #define IRONLAKE_LVDS_S_N_MIN   1
265 #define IRONLAKE_LVDS_S_N_MAX   3
266 #define IRONLAKE_LVDS_S_M_MIN   79
267 #define IRONLAKE_LVDS_S_M_MAX   118
268 #define IRONLAKE_LVDS_S_P_MIN   28
269 #define IRONLAKE_LVDS_S_P_MAX   112
270 #define IRONLAKE_LVDS_S_P1_MIN  2
271 #define IRONLAKE_LVDS_S_P1_MAX  8
272 #define IRONLAKE_LVDS_S_P2_SLOW 14
273 #define IRONLAKE_LVDS_S_P2_FAST 14
274
275 /* LVDS dual-channel 120Mhz refclk */
276 #define IRONLAKE_LVDS_D_N_MIN   1
277 #define IRONLAKE_LVDS_D_N_MAX   3
278 #define IRONLAKE_LVDS_D_M_MIN   79
279 #define IRONLAKE_LVDS_D_M_MAX   127
280 #define IRONLAKE_LVDS_D_P_MIN   14
281 #define IRONLAKE_LVDS_D_P_MAX   56
282 #define IRONLAKE_LVDS_D_P1_MIN  2
283 #define IRONLAKE_LVDS_D_P1_MAX  8
284 #define IRONLAKE_LVDS_D_P2_SLOW 7
285 #define IRONLAKE_LVDS_D_P2_FAST 7
286
287 /* LVDS single-channel 100Mhz refclk */
288 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
289 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
290 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
291 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
292 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
293 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
294 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
295 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
296 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
297 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
298
299 /* LVDS dual-channel 100Mhz refclk */
300 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
301 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
302 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
303 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
304 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
305 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
306 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
307 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
308 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
309 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
310
311 /* DisplayPort */
312 #define IRONLAKE_DP_N_MIN               1
313 #define IRONLAKE_DP_N_MAX               2
314 #define IRONLAKE_DP_M_MIN               81
315 #define IRONLAKE_DP_M_MAX               90
316 #define IRONLAKE_DP_P_MIN               10
317 #define IRONLAKE_DP_P_MAX               20
318 #define IRONLAKE_DP_P2_FAST             10
319 #define IRONLAKE_DP_P2_SLOW             10
320 #define IRONLAKE_DP_P2_LIMIT            0
321 #define IRONLAKE_DP_P1_MIN              1
322 #define IRONLAKE_DP_P1_MAX              2
323
324 static bool
325 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
326                     int target, int refclk, intel_clock_t *best_clock);
327 static bool
328 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
329                         int target, int refclk, intel_clock_t *best_clock);
330
331 static bool
332 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
333                       int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
336                            int target, int refclk, intel_clock_t *best_clock);
337
338 static const intel_limit_t intel_limits_i8xx_dvo = {
339         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
340         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
341         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
342         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
343         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
344         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
345         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
346         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
347         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
348                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
349         .find_pll = intel_find_best_PLL,
350 };
351
352 static const intel_limit_t intel_limits_i8xx_lvds = {
353         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
354         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
355         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
356         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
357         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
358         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
359         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
360         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
361         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
363         .find_pll = intel_find_best_PLL,
364 };
365         
366 static const intel_limit_t intel_limits_i9xx_sdvo = {
367         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
368         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
369         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
370         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
371         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
372         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
373         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
374         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
375         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
376                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
377         .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_lvds = {
381         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
382         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
383         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
384         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
385         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
386         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
387         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
388         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
389         /* The single-channel range is 25-112Mhz, and dual-channel
390          * is 80-224Mhz.  Prefer single channel as much as possible.
391          */
392         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397     /* below parameter and function is for G4X Chipset Family*/
398 static const intel_limit_t intel_limits_g4x_sdvo = {
399         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
400         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
401         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
402         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
403         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
404         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
405         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
406         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
407         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
408                  .p2_slow = G4X_P2_SDVO_SLOW,
409                  .p2_fast = G4X_P2_SDVO_FAST
410         },
411         .find_pll = intel_g4x_find_best_PLL,
412 };
413
414 static const intel_limit_t intel_limits_g4x_hdmi = {
415         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
416         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
417         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
418         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
419         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
420         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
421         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
422         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
423         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
424                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
425                  .p2_fast = G4X_P2_HDMI_DAC_FAST
426         },
427         .find_pll = intel_g4x_find_best_PLL,
428 };
429
430 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
431         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
432                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
433         .vco = { .min = G4X_VCO_MIN,
434                  .max = G4X_VCO_MAX },
435         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
436                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
437         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
438                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
439         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
440                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
441         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
442                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
443         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
444                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
445         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
447         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
448                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
449                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
450         },
451         .find_pll = intel_g4x_find_best_PLL,
452 };
453
454 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
455         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
456                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
457         .vco = { .min = G4X_VCO_MIN,
458                  .max = G4X_VCO_MAX },
459         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
460                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
461         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
462                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
463         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
464                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
465         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
466                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
467         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
468                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
469         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
471         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
472                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
473                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
474         },
475         .find_pll = intel_g4x_find_best_PLL,
476 };
477
478 static const intel_limit_t intel_limits_g4x_display_port = {
479         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
480                  .max = G4X_DOT_DISPLAY_PORT_MAX },
481         .vco = { .min = G4X_VCO_MIN,
482                  .max = G4X_VCO_MAX},
483         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
484                  .max = G4X_N_DISPLAY_PORT_MAX },
485         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
486                  .max = G4X_M_DISPLAY_PORT_MAX },
487         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
488                  .max = G4X_M1_DISPLAY_PORT_MAX },
489         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
490                  .max = G4X_M2_DISPLAY_PORT_MAX },
491         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
492                  .max = G4X_P_DISPLAY_PORT_MAX },
493         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
494                  .max = G4X_P1_DISPLAY_PORT_MAX},
495         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
496                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
497                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
498         .find_pll = intel_find_pll_g4x_dp,
499 };
500
501 static const intel_limit_t intel_limits_pineview_sdvo = {
502         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
503         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
504         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
505         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
506         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
507         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
508         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
509         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
510         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
511                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
512         .find_pll = intel_find_best_PLL,
513 };
514
515 static const intel_limit_t intel_limits_pineview_lvds = {
516         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
517         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
518         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
519         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
520         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
521         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
522         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
523         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
524         /* Pineview only supports single-channel mode. */
525         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
526                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
527         .find_pll = intel_find_best_PLL,
528 };
529
530 static const intel_limit_t intel_limits_ironlake_dac = {
531         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
532         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
533         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
534         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
535         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
536         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
537         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
538         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
539         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
540                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
541                  .p2_fast = IRONLAKE_DAC_P2_FAST },
542         .find_pll = intel_g4x_find_best_PLL,
543 };
544
545 static const intel_limit_t intel_limits_ironlake_single_lvds = {
546         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
547         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
548         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
549         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
550         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
551         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
552         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
553         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
554         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
555                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
556                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
557         .find_pll = intel_g4x_find_best_PLL,
558 };
559
560 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
561         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
562         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
563         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
564         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
565         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
566         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
567         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
568         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
569         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
570                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
571                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
572         .find_pll = intel_g4x_find_best_PLL,
573 };
574
575 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
576         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
577         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
578         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
579         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
580         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
581         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
582         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
583         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
584         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
585                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
586                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
587         .find_pll = intel_g4x_find_best_PLL,
588 };
589
590 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
591         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
592         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
593         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
594         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
595         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
596         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
597         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
598         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
599         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
600                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
601                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
602         .find_pll = intel_g4x_find_best_PLL,
603 };
604
605 static const intel_limit_t intel_limits_ironlake_display_port = {
606         .dot = { .min = IRONLAKE_DOT_MIN,
607                  .max = IRONLAKE_DOT_MAX },
608         .vco = { .min = IRONLAKE_VCO_MIN,
609                  .max = IRONLAKE_VCO_MAX},
610         .n   = { .min = IRONLAKE_DP_N_MIN,
611                  .max = IRONLAKE_DP_N_MAX },
612         .m   = { .min = IRONLAKE_DP_M_MIN,
613                  .max = IRONLAKE_DP_M_MAX },
614         .m1  = { .min = IRONLAKE_M1_MIN,
615                  .max = IRONLAKE_M1_MAX },
616         .m2  = { .min = IRONLAKE_M2_MIN,
617                  .max = IRONLAKE_M2_MAX },
618         .p   = { .min = IRONLAKE_DP_P_MIN,
619                  .max = IRONLAKE_DP_P_MAX },
620         .p1  = { .min = IRONLAKE_DP_P1_MIN,
621                  .max = IRONLAKE_DP_P1_MAX},
622         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
623                  .p2_slow = IRONLAKE_DP_P2_SLOW,
624                  .p2_fast = IRONLAKE_DP_P2_FAST },
625         .find_pll = intel_find_pll_ironlake_dp,
626 };
627
628 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
629 {
630         struct drm_device *dev = crtc->dev;
631         struct drm_i915_private *dev_priv = dev->dev_private;
632         const intel_limit_t *limit;
633         int refclk = 120;
634
635         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
637                         refclk = 100;
638
639                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
640                     LVDS_CLKB_POWER_UP) {
641                         /* LVDS dual channel */
642                         if (refclk == 100)
643                                 limit = &intel_limits_ironlake_dual_lvds_100m;
644                         else
645                                 limit = &intel_limits_ironlake_dual_lvds;
646                 } else {
647                         if (refclk == 100)
648                                 limit = &intel_limits_ironlake_single_lvds_100m;
649                         else
650                                 limit = &intel_limits_ironlake_single_lvds;
651                 }
652         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
653                         HAS_eDP)
654                 limit = &intel_limits_ironlake_display_port;
655         else
656                 limit = &intel_limits_ironlake_dac;
657
658         return limit;
659 }
660
661 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
662 {
663         struct drm_device *dev = crtc->dev;
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         const intel_limit_t *limit;
666
667         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
668                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
669                     LVDS_CLKB_POWER_UP)
670                         /* LVDS with dual channel */
671                         limit = &intel_limits_g4x_dual_channel_lvds;
672                 else
673                         /* LVDS with dual channel */
674                         limit = &intel_limits_g4x_single_channel_lvds;
675         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
676                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
677                 limit = &intel_limits_g4x_hdmi;
678         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
679                 limit = &intel_limits_g4x_sdvo;
680         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
681                 limit = &intel_limits_g4x_display_port;
682         } else /* The option is for other outputs */
683                 limit = &intel_limits_i9xx_sdvo;
684
685         return limit;
686 }
687
688 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
689 {
690         struct drm_device *dev = crtc->dev;
691         const intel_limit_t *limit;
692
693         if (HAS_PCH_SPLIT(dev))
694                 limit = intel_ironlake_limit(crtc);
695         else if (IS_G4X(dev)) {
696                 limit = intel_g4x_limit(crtc);
697         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
698                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
699                         limit = &intel_limits_i9xx_lvds;
700                 else
701                         limit = &intel_limits_i9xx_sdvo;
702         } else if (IS_PINEVIEW(dev)) {
703                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
704                         limit = &intel_limits_pineview_lvds;
705                 else
706                         limit = &intel_limits_pineview_sdvo;
707         } else {
708                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
709                         limit = &intel_limits_i8xx_lvds;
710                 else
711                         limit = &intel_limits_i8xx_dvo;
712         }
713         return limit;
714 }
715
716 /* m1 is reserved as 0 in Pineview, n is a ring counter */
717 static void pineview_clock(int refclk, intel_clock_t *clock)
718 {
719         clock->m = clock->m2 + 2;
720         clock->p = clock->p1 * clock->p2;
721         clock->vco = refclk * clock->m / clock->n;
722         clock->dot = clock->vco / clock->p;
723 }
724
725 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
726 {
727         if (IS_PINEVIEW(dev)) {
728                 pineview_clock(refclk, clock);
729                 return;
730         }
731         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
732         clock->p = clock->p1 * clock->p2;
733         clock->vco = refclk * clock->m / (clock->n + 2);
734         clock->dot = clock->vco / clock->p;
735 }
736
737 /**
738  * Returns whether any output on the specified pipe is of the specified type
739  */
740 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
741 {
742     struct drm_device *dev = crtc->dev;
743     struct drm_mode_config *mode_config = &dev->mode_config;
744     struct drm_encoder *l_entry;
745
746     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
747             if (l_entry && l_entry->crtc == crtc) {
748                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
749                     if (intel_encoder->type == type)
750                             return true;
751             }
752     }
753     return false;
754 }
755
756 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
757 /**
758  * Returns whether the given set of divisors are valid for a given refclk with
759  * the given connectors.
760  */
761
762 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
763 {
764         const intel_limit_t *limit = intel_limit (crtc);
765         struct drm_device *dev = crtc->dev;
766
767         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
768                 INTELPllInvalid ("p1 out of range\n");
769         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
770                 INTELPllInvalid ("p out of range\n");
771         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
772                 INTELPllInvalid ("m2 out of range\n");
773         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
774                 INTELPllInvalid ("m1 out of range\n");
775         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
776                 INTELPllInvalid ("m1 <= m2\n");
777         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
778                 INTELPllInvalid ("m out of range\n");
779         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
780                 INTELPllInvalid ("n out of range\n");
781         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
782                 INTELPllInvalid ("vco out of range\n");
783         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
784          * connector, etc., rather than just a single range.
785          */
786         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
787                 INTELPllInvalid ("dot out of range\n");
788
789         return true;
790 }
791
792 static bool
793 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
794                     int target, int refclk, intel_clock_t *best_clock)
795
796 {
797         struct drm_device *dev = crtc->dev;
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         intel_clock_t clock;
800         int err = target;
801
802         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
803             (I915_READ(LVDS)) != 0) {
804                 /*
805                  * For LVDS, if the panel is on, just rely on its current
806                  * settings for dual-channel.  We haven't figured out how to
807                  * reliably set up different single/dual channel state, if we
808                  * even can.
809                  */
810                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
811                     LVDS_CLKB_POWER_UP)
812                         clock.p2 = limit->p2.p2_fast;
813                 else
814                         clock.p2 = limit->p2.p2_slow;
815         } else {
816                 if (target < limit->p2.dot_limit)
817                         clock.p2 = limit->p2.p2_slow;
818                 else
819                         clock.p2 = limit->p2.p2_fast;
820         }
821
822         memset (best_clock, 0, sizeof (*best_clock));
823
824         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
825              clock.m1++) {
826                 for (clock.m2 = limit->m2.min;
827                      clock.m2 <= limit->m2.max; clock.m2++) {
828                         /* m1 is always 0 in Pineview */
829                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
830                                 break;
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         intel_clock(dev, refclk, &clock);
838
839                                         if (!intel_PLL_is_valid(crtc, &clock))
840                                                 continue;
841
842                                         this_err = abs(clock.dot - target);
843                                         if (this_err < err) {
844                                                 *best_clock = clock;
845                                                 err = this_err;
846                                         }
847                                 }
848                         }
849                 }
850         }
851
852         return (err != target);
853 }
854
855 static bool
856 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
857                         int target, int refclk, intel_clock_t *best_clock)
858 {
859         struct drm_device *dev = crtc->dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         intel_clock_t clock;
862         int max_n;
863         bool found;
864         /* approximately equals target * 0.00488 */
865         int err_most = (target >> 8) + (target >> 10);
866         found = false;
867
868         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
869                 int lvds_reg;
870
871                 if (HAS_PCH_SPLIT(dev))
872                         lvds_reg = PCH_LVDS;
873                 else
874                         lvds_reg = LVDS;
875                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
876                     LVDS_CLKB_POWER_UP)
877                         clock.p2 = limit->p2.p2_fast;
878                 else
879                         clock.p2 = limit->p2.p2_slow;
880         } else {
881                 if (target < limit->p2.dot_limit)
882                         clock.p2 = limit->p2.p2_slow;
883                 else
884                         clock.p2 = limit->p2.p2_fast;
885         }
886
887         memset(best_clock, 0, sizeof(*best_clock));
888         max_n = limit->n.max;
889         /* based on hardware requriment prefer smaller n to precision */
890         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
891                 /* based on hardware requirment prefere larger m1,m2 */
892                 for (clock.m1 = limit->m1.max;
893                      clock.m1 >= limit->m1.min; clock.m1--) {
894                         for (clock.m2 = limit->m2.max;
895                              clock.m2 >= limit->m2.min; clock.m2--) {
896                                 for (clock.p1 = limit->p1.max;
897                                      clock.p1 >= limit->p1.min; clock.p1--) {
898                                         int this_err;
899
900                                         intel_clock(dev, refclk, &clock);
901                                         if (!intel_PLL_is_valid(crtc, &clock))
902                                                 continue;
903                                         this_err = abs(clock.dot - target) ;
904                                         if (this_err < err_most) {
905                                                 *best_clock = clock;
906                                                 err_most = this_err;
907                                                 max_n = clock.n;
908                                                 found = true;
909                                         }
910                                 }
911                         }
912                 }
913         }
914         return found;
915 }
916
917 static bool
918 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
919                            int target, int refclk, intel_clock_t *best_clock)
920 {
921         struct drm_device *dev = crtc->dev;
922         intel_clock_t clock;
923
924         /* return directly when it is eDP */
925         if (HAS_eDP)
926                 return true;
927
928         if (target < 200000) {
929                 clock.n = 1;
930                 clock.p1 = 2;
931                 clock.p2 = 10;
932                 clock.m1 = 12;
933                 clock.m2 = 9;
934         } else {
935                 clock.n = 2;
936                 clock.p1 = 1;
937                 clock.p2 = 10;
938                 clock.m1 = 14;
939                 clock.m2 = 8;
940         }
941         intel_clock(dev, refclk, &clock);
942         memcpy(best_clock, &clock, sizeof(intel_clock_t));
943         return true;
944 }
945
946 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
947 static bool
948 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
949                       int target, int refclk, intel_clock_t *best_clock)
950 {
951     intel_clock_t clock;
952     if (target < 200000) {
953         clock.p1 = 2;
954         clock.p2 = 10;
955         clock.n = 2;
956         clock.m1 = 23;
957         clock.m2 = 8;
958     } else {
959         clock.p1 = 1;
960         clock.p2 = 10;
961         clock.n = 1;
962         clock.m1 = 14;
963         clock.m2 = 2;
964     }
965     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
966     clock.p = (clock.p1 * clock.p2);
967     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
968     clock.vco = 0;
969     memcpy(best_clock, &clock, sizeof(intel_clock_t));
970     return true;
971 }
972
973 void
974 intel_wait_for_vblank(struct drm_device *dev)
975 {
976         /* Wait for 20ms, i.e. one cycle at 50hz. */
977         msleep(20);
978 }
979
980 /* Parameters have changed, update FBC info */
981 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
982 {
983         struct drm_device *dev = crtc->dev;
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         struct drm_framebuffer *fb = crtc->fb;
986         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
987         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989         int plane, i;
990         u32 fbc_ctl, fbc_ctl2;
991
992         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
993
994         if (fb->pitch < dev_priv->cfb_pitch)
995                 dev_priv->cfb_pitch = fb->pitch;
996
997         /* FBC_CTL wants 64B units */
998         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
999         dev_priv->cfb_fence = obj_priv->fence_reg;
1000         dev_priv->cfb_plane = intel_crtc->plane;
1001         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1002
1003         /* Clear old tags */
1004         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1005                 I915_WRITE(FBC_TAG + (i * 4), 0);
1006
1007         /* Set it up... */
1008         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1009         if (obj_priv->tiling_mode != I915_TILING_NONE)
1010                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1011         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1012         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1013
1014         /* enable it... */
1015         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1016         if (IS_I945GM(dev))
1017                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1018         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1019         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1020         if (obj_priv->tiling_mode != I915_TILING_NONE)
1021                 fbc_ctl |= dev_priv->cfb_fence;
1022         I915_WRITE(FBC_CONTROL, fbc_ctl);
1023
1024         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1025                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1026 }
1027
1028 void i8xx_disable_fbc(struct drm_device *dev)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         u32 fbc_ctl;
1032
1033         if (!I915_HAS_FBC(dev))
1034                 return;
1035
1036         /* Disable compression */
1037         fbc_ctl = I915_READ(FBC_CONTROL);
1038         fbc_ctl &= ~FBC_CTL_EN;
1039         I915_WRITE(FBC_CONTROL, fbc_ctl);
1040
1041         /* Wait for compressing bit to clear */
1042         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1043                 ; /* nothing */
1044
1045         intel_wait_for_vblank(dev);
1046
1047         DRM_DEBUG_KMS("disabled FBC\n");
1048 }
1049
1050 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1051 {
1052         struct drm_device *dev = crtc->dev;
1053         struct drm_i915_private *dev_priv = dev->dev_private;
1054
1055         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1056 }
1057
1058 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1059 {
1060         struct drm_device *dev = crtc->dev;
1061         struct drm_i915_private *dev_priv = dev->dev_private;
1062         struct drm_framebuffer *fb = crtc->fb;
1063         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1064         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1066         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1067                      DPFC_CTL_PLANEB);
1068         unsigned long stall_watermark = 200;
1069         u32 dpfc_ctl;
1070
1071         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1072         dev_priv->cfb_fence = obj_priv->fence_reg;
1073         dev_priv->cfb_plane = intel_crtc->plane;
1074
1075         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1076         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1077                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1078                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1079         } else {
1080                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1081         }
1082
1083         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1084         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1085                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1086                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1087         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1088
1089         /* enable it... */
1090         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1091
1092         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1093 }
1094
1095 void g4x_disable_fbc(struct drm_device *dev)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 dpfc_ctl;
1099
1100         /* Disable compression */
1101         dpfc_ctl = I915_READ(DPFC_CONTROL);
1102         dpfc_ctl &= ~DPFC_CTL_EN;
1103         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1104         intel_wait_for_vblank(dev);
1105
1106         DRM_DEBUG_KMS("disabled FBC\n");
1107 }
1108
1109 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1110 {
1111         struct drm_device *dev = crtc->dev;
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113
1114         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1115 }
1116
1117 /**
1118  * intel_update_fbc - enable/disable FBC as needed
1119  * @crtc: CRTC to point the compressor at
1120  * @mode: mode in use
1121  *
1122  * Set up the framebuffer compression hardware at mode set time.  We
1123  * enable it if possible:
1124  *   - plane A only (on pre-965)
1125  *   - no pixel mulitply/line duplication
1126  *   - no alpha buffer discard
1127  *   - no dual wide
1128  *   - framebuffer <= 2048 in width, 1536 in height
1129  *
1130  * We can't assume that any compression will take place (worst case),
1131  * so the compressed buffer has to be the same size as the uncompressed
1132  * one.  It also must reside (along with the line length buffer) in
1133  * stolen memory.
1134  *
1135  * We need to enable/disable FBC on a global basis.
1136  */
1137 static void intel_update_fbc(struct drm_crtc *crtc,
1138                              struct drm_display_mode *mode)
1139 {
1140         struct drm_device *dev = crtc->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         struct drm_framebuffer *fb = crtc->fb;
1143         struct intel_framebuffer *intel_fb;
1144         struct drm_i915_gem_object *obj_priv;
1145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1146         int plane = intel_crtc->plane;
1147
1148         if (!i915_powersave)
1149                 return;
1150
1151         if (!dev_priv->display.fbc_enabled ||
1152             !dev_priv->display.enable_fbc ||
1153             !dev_priv->display.disable_fbc)
1154                 return;
1155
1156         if (!crtc->fb)
1157                 return;
1158
1159         intel_fb = to_intel_framebuffer(fb);
1160         obj_priv = to_intel_bo(intel_fb->obj);
1161
1162         /*
1163          * If FBC is already on, we just have to verify that we can
1164          * keep it that way...
1165          * Need to disable if:
1166          *   - changing FBC params (stride, fence, mode)
1167          *   - new fb is too large to fit in compressed buffer
1168          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1169          */
1170         if (intel_fb->obj->size > dev_priv->cfb_size) {
1171                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1172                                 "compression\n");
1173                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1174                 goto out_disable;
1175         }
1176         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1177             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1178                 DRM_DEBUG_KMS("mode incompatible with compression, "
1179                                 "disabling\n");
1180                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1181                 goto out_disable;
1182         }
1183         if ((mode->hdisplay > 2048) ||
1184             (mode->vdisplay > 1536)) {
1185                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1186                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1187                 goto out_disable;
1188         }
1189         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1190                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1191                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1192                 goto out_disable;
1193         }
1194         if (obj_priv->tiling_mode != I915_TILING_X) {
1195                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1196                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1197                 goto out_disable;
1198         }
1199
1200         if (dev_priv->display.fbc_enabled(crtc)) {
1201                 /* We can re-enable it in this case, but need to update pitch */
1202                 if (fb->pitch > dev_priv->cfb_pitch)
1203                         dev_priv->display.disable_fbc(dev);
1204                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1205                         dev_priv->display.disable_fbc(dev);
1206                 if (plane != dev_priv->cfb_plane)
1207                         dev_priv->display.disable_fbc(dev);
1208         }
1209
1210         if (!dev_priv->display.fbc_enabled(crtc)) {
1211                 /* Now try to turn it back on if possible */
1212                 dev_priv->display.enable_fbc(crtc, 500);
1213         }
1214
1215         return;
1216
1217 out_disable:
1218         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1219         /* Multiple disables should be harmless */
1220         if (dev_priv->display.fbc_enabled(crtc))
1221                 dev_priv->display.disable_fbc(dev);
1222 }
1223
1224 static int
1225 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1226 {
1227         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1228         u32 alignment;
1229         int ret;
1230
1231         switch (obj_priv->tiling_mode) {
1232         case I915_TILING_NONE:
1233                 alignment = 64 * 1024;
1234                 break;
1235         case I915_TILING_X:
1236                 /* pin() will align the object as required by fence */
1237                 alignment = 0;
1238                 break;
1239         case I915_TILING_Y:
1240                 /* FIXME: Is this true? */
1241                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1242                 return -EINVAL;
1243         default:
1244                 BUG();
1245         }
1246
1247         ret = i915_gem_object_pin(obj, alignment);
1248         if (ret != 0)
1249                 return ret;
1250
1251         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1252          * fence, whereas 965+ only requires a fence if using
1253          * framebuffer compression.  For simplicity, we always install
1254          * a fence as the cost is not that onerous.
1255          */
1256         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1257             obj_priv->tiling_mode != I915_TILING_NONE) {
1258                 ret = i915_gem_object_get_fence_reg(obj);
1259                 if (ret != 0) {
1260                         i915_gem_object_unpin(obj);
1261                         return ret;
1262                 }
1263         }
1264
1265         return 0;
1266 }
1267
1268 static int
1269 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1270                     struct drm_framebuffer *old_fb)
1271 {
1272         struct drm_device *dev = crtc->dev;
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         struct drm_i915_master_private *master_priv;
1275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1276         struct intel_framebuffer *intel_fb;
1277         struct drm_i915_gem_object *obj_priv;
1278         struct drm_gem_object *obj;
1279         int pipe = intel_crtc->pipe;
1280         int plane = intel_crtc->plane;
1281         unsigned long Start, Offset;
1282         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1283         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1284         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1285         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1286         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1287         u32 dspcntr;
1288         int ret;
1289
1290         /* no fb bound */
1291         if (!crtc->fb) {
1292                 DRM_DEBUG_KMS("No FB bound\n");
1293                 return 0;
1294         }
1295
1296         switch (plane) {
1297         case 0:
1298         case 1:
1299                 break;
1300         default:
1301                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1302                 return -EINVAL;
1303         }
1304
1305         intel_fb = to_intel_framebuffer(crtc->fb);
1306         obj = intel_fb->obj;
1307         obj_priv = to_intel_bo(obj);
1308
1309         mutex_lock(&dev->struct_mutex);
1310         ret = intel_pin_and_fence_fb_obj(dev, obj);
1311         if (ret != 0) {
1312                 mutex_unlock(&dev->struct_mutex);
1313                 return ret;
1314         }
1315
1316         ret = i915_gem_object_set_to_display_plane(obj);
1317         if (ret != 0) {
1318                 i915_gem_object_unpin(obj);
1319                 mutex_unlock(&dev->struct_mutex);
1320                 return ret;
1321         }
1322
1323         dspcntr = I915_READ(dspcntr_reg);
1324         /* Mask out pixel format bits in case we change it */
1325         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1326         switch (crtc->fb->bits_per_pixel) {
1327         case 8:
1328                 dspcntr |= DISPPLANE_8BPP;
1329                 break;
1330         case 16:
1331                 if (crtc->fb->depth == 15)
1332                         dspcntr |= DISPPLANE_15_16BPP;
1333                 else
1334                         dspcntr |= DISPPLANE_16BPP;
1335                 break;
1336         case 24:
1337         case 32:
1338                 if (crtc->fb->depth == 30)
1339                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1340                 else
1341                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1342                 break;
1343         default:
1344                 DRM_ERROR("Unknown color depth\n");
1345                 i915_gem_object_unpin(obj);
1346                 mutex_unlock(&dev->struct_mutex);
1347                 return -EINVAL;
1348         }
1349         if (IS_I965G(dev)) {
1350                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1351                         dspcntr |= DISPPLANE_TILED;
1352                 else
1353                         dspcntr &= ~DISPPLANE_TILED;
1354         }
1355
1356         if (HAS_PCH_SPLIT(dev))
1357                 /* must disable */
1358                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1359
1360         I915_WRITE(dspcntr_reg, dspcntr);
1361
1362         Start = obj_priv->gtt_offset;
1363         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1364
1365         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1366         I915_WRITE(dspstride, crtc->fb->pitch);
1367         if (IS_I965G(dev)) {
1368                 I915_WRITE(dspbase, Offset);
1369                 I915_READ(dspbase);
1370                 I915_WRITE(dspsurf, Start);
1371                 I915_READ(dspsurf);
1372                 I915_WRITE(dsptileoff, (y << 16) | x);
1373         } else {
1374                 I915_WRITE(dspbase, Start + Offset);
1375                 I915_READ(dspbase);
1376         }
1377
1378         if ((IS_I965G(dev) || plane == 0))
1379                 intel_update_fbc(crtc, &crtc->mode);
1380
1381         intel_wait_for_vblank(dev);
1382
1383         if (old_fb) {
1384                 intel_fb = to_intel_framebuffer(old_fb);
1385                 obj_priv = to_intel_bo(intel_fb->obj);
1386                 i915_gem_object_unpin(intel_fb->obj);
1387         }
1388         intel_increase_pllclock(crtc, true);
1389
1390         mutex_unlock(&dev->struct_mutex);
1391
1392         if (!dev->primary->master)
1393                 return 0;
1394
1395         master_priv = dev->primary->master->driver_priv;
1396         if (!master_priv->sarea_priv)
1397                 return 0;
1398
1399         if (pipe) {
1400                 master_priv->sarea_priv->pipeB_x = x;
1401                 master_priv->sarea_priv->pipeB_y = y;
1402         } else {
1403                 master_priv->sarea_priv->pipeA_x = x;
1404                 master_priv->sarea_priv->pipeA_y = y;
1405         }
1406
1407         return 0;
1408 }
1409
1410 /* Disable the VGA plane that we never use */
1411 static void i915_disable_vga (struct drm_device *dev)
1412 {
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         u8 sr1;
1415         u32 vga_reg;
1416
1417         if (HAS_PCH_SPLIT(dev))
1418                 vga_reg = CPU_VGACNTRL;
1419         else
1420                 vga_reg = VGACNTRL;
1421
1422         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1423                 return;
1424
1425         I915_WRITE8(VGA_SR_INDEX, 1);
1426         sr1 = I915_READ8(VGA_SR_DATA);
1427         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1428         udelay(100);
1429
1430         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1431 }
1432
1433 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1434 {
1435         struct drm_device *dev = crtc->dev;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         u32 dpa_ctl;
1438
1439         DRM_DEBUG_KMS("\n");
1440         dpa_ctl = I915_READ(DP_A);
1441         dpa_ctl &= ~DP_PLL_ENABLE;
1442         I915_WRITE(DP_A, dpa_ctl);
1443 }
1444
1445 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1446 {
1447         struct drm_device *dev = crtc->dev;
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         u32 dpa_ctl;
1450
1451         dpa_ctl = I915_READ(DP_A);
1452         dpa_ctl |= DP_PLL_ENABLE;
1453         I915_WRITE(DP_A, dpa_ctl);
1454         udelay(200);
1455 }
1456
1457
1458 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1459 {
1460         struct drm_device *dev = crtc->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 dpa_ctl;
1463
1464         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1465         dpa_ctl = I915_READ(DP_A);
1466         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1467
1468         if (clock < 200000) {
1469                 u32 temp;
1470                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1471                 /* workaround for 160Mhz:
1472                    1) program 0x4600c bits 15:0 = 0x8124
1473                    2) program 0x46010 bit 0 = 1
1474                    3) program 0x46034 bit 24 = 1
1475                    4) program 0x64000 bit 14 = 1
1476                    */
1477                 temp = I915_READ(0x4600c);
1478                 temp &= 0xffff0000;
1479                 I915_WRITE(0x4600c, temp | 0x8124);
1480
1481                 temp = I915_READ(0x46010);
1482                 I915_WRITE(0x46010, temp | 1);
1483
1484                 temp = I915_READ(0x46034);
1485                 I915_WRITE(0x46034, temp | (1 << 24));
1486         } else {
1487                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1488         }
1489         I915_WRITE(DP_A, dpa_ctl);
1490
1491         udelay(500);
1492 }
1493
1494 /* The FDI link training functions for ILK/Ibexpeak. */
1495 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1496 {
1497         struct drm_device *dev = crtc->dev;
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1500         int pipe = intel_crtc->pipe;
1501         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1502         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1503         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1504         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1505         u32 temp, tries = 0;
1506
1507         /* enable CPU FDI TX and PCH FDI RX */
1508         temp = I915_READ(fdi_tx_reg);
1509         temp |= FDI_TX_ENABLE;
1510         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1511         temp &= ~FDI_LINK_TRAIN_NONE;
1512         temp |= FDI_LINK_TRAIN_PATTERN_1;
1513         I915_WRITE(fdi_tx_reg, temp);
1514         I915_READ(fdi_tx_reg);
1515
1516         temp = I915_READ(fdi_rx_reg);
1517         temp &= ~FDI_LINK_TRAIN_NONE;
1518         temp |= FDI_LINK_TRAIN_PATTERN_1;
1519         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1520         I915_READ(fdi_rx_reg);
1521         udelay(150);
1522
1523         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1524            for train result */
1525         temp = I915_READ(fdi_rx_imr_reg);
1526         temp &= ~FDI_RX_SYMBOL_LOCK;
1527         temp &= ~FDI_RX_BIT_LOCK;
1528         I915_WRITE(fdi_rx_imr_reg, temp);
1529         I915_READ(fdi_rx_imr_reg);
1530         udelay(150);
1531
1532         for (;;) {
1533                 temp = I915_READ(fdi_rx_iir_reg);
1534                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1535
1536                 if ((temp & FDI_RX_BIT_LOCK)) {
1537                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1538                         I915_WRITE(fdi_rx_iir_reg,
1539                                    temp | FDI_RX_BIT_LOCK);
1540                         break;
1541                 }
1542
1543                 tries++;
1544
1545                 if (tries > 5) {
1546                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1547                         break;
1548                 }
1549         }
1550
1551         /* Train 2 */
1552         temp = I915_READ(fdi_tx_reg);
1553         temp &= ~FDI_LINK_TRAIN_NONE;
1554         temp |= FDI_LINK_TRAIN_PATTERN_2;
1555         I915_WRITE(fdi_tx_reg, temp);
1556
1557         temp = I915_READ(fdi_rx_reg);
1558         temp &= ~FDI_LINK_TRAIN_NONE;
1559         temp |= FDI_LINK_TRAIN_PATTERN_2;
1560         I915_WRITE(fdi_rx_reg, temp);
1561         udelay(150);
1562
1563         tries = 0;
1564
1565         for (;;) {
1566                 temp = I915_READ(fdi_rx_iir_reg);
1567                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1568
1569                 if (temp & FDI_RX_SYMBOL_LOCK) {
1570                         I915_WRITE(fdi_rx_iir_reg,
1571                                    temp | FDI_RX_SYMBOL_LOCK);
1572                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1573                         break;
1574                 }
1575
1576                 tries++;
1577
1578                 if (tries > 5) {
1579                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1580                         break;
1581                 }
1582         }
1583
1584         DRM_DEBUG_KMS("FDI train done\n");
1585 }
1586
1587 static int snb_b_fdi_train_param [] = {
1588         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1589         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1590         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1591         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1592 };
1593
1594 /* The FDI link training functions for SNB/Cougarpoint. */
1595 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1596 {
1597         struct drm_device *dev = crtc->dev;
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1600         int pipe = intel_crtc->pipe;
1601         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1602         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1603         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1604         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1605         u32 temp, i;
1606
1607         /* enable CPU FDI TX and PCH FDI RX */
1608         temp = I915_READ(fdi_tx_reg);
1609         temp |= FDI_TX_ENABLE;
1610         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1611         temp &= ~FDI_LINK_TRAIN_NONE;
1612         temp |= FDI_LINK_TRAIN_PATTERN_1;
1613         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1614         /* SNB-B */
1615         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1616         I915_WRITE(fdi_tx_reg, temp);
1617         I915_READ(fdi_tx_reg);
1618
1619         temp = I915_READ(fdi_rx_reg);
1620         if (HAS_PCH_CPT(dev)) {
1621                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1622                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1623         } else {
1624                 temp &= ~FDI_LINK_TRAIN_NONE;
1625                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1626         }
1627         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1628         I915_READ(fdi_rx_reg);
1629         udelay(150);
1630
1631         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1632            for train result */
1633         temp = I915_READ(fdi_rx_imr_reg);
1634         temp &= ~FDI_RX_SYMBOL_LOCK;
1635         temp &= ~FDI_RX_BIT_LOCK;
1636         I915_WRITE(fdi_rx_imr_reg, temp);
1637         I915_READ(fdi_rx_imr_reg);
1638         udelay(150);
1639
1640         for (i = 0; i < 4; i++ ) {
1641                 temp = I915_READ(fdi_tx_reg);
1642                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1643                 temp |= snb_b_fdi_train_param[i];
1644                 I915_WRITE(fdi_tx_reg, temp);
1645                 udelay(500);
1646
1647                 temp = I915_READ(fdi_rx_iir_reg);
1648                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1649
1650                 if (temp & FDI_RX_BIT_LOCK) {
1651                         I915_WRITE(fdi_rx_iir_reg,
1652                                    temp | FDI_RX_BIT_LOCK);
1653                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1654                         break;
1655                 }
1656         }
1657         if (i == 4)
1658                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1659
1660         /* Train 2 */
1661         temp = I915_READ(fdi_tx_reg);
1662         temp &= ~FDI_LINK_TRAIN_NONE;
1663         temp |= FDI_LINK_TRAIN_PATTERN_2;
1664         if (IS_GEN6(dev)) {
1665                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1666                 /* SNB-B */
1667                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1668         }
1669         I915_WRITE(fdi_tx_reg, temp);
1670
1671         temp = I915_READ(fdi_rx_reg);
1672         if (HAS_PCH_CPT(dev)) {
1673                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1674                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1675         } else {
1676                 temp &= ~FDI_LINK_TRAIN_NONE;
1677                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1678         }
1679         I915_WRITE(fdi_rx_reg, temp);
1680         udelay(150);
1681
1682         for (i = 0; i < 4; i++ ) {
1683                 temp = I915_READ(fdi_tx_reg);
1684                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1685                 temp |= snb_b_fdi_train_param[i];
1686                 I915_WRITE(fdi_tx_reg, temp);
1687                 udelay(500);
1688
1689                 temp = I915_READ(fdi_rx_iir_reg);
1690                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1691
1692                 if (temp & FDI_RX_SYMBOL_LOCK) {
1693                         I915_WRITE(fdi_rx_iir_reg,
1694                                    temp | FDI_RX_SYMBOL_LOCK);
1695                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1696                         break;
1697                 }
1698         }
1699         if (i == 4)
1700                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1701
1702         DRM_DEBUG_KMS("FDI train done.\n");
1703 }
1704
1705 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1706 {
1707         struct drm_device *dev = crtc->dev;
1708         struct drm_i915_private *dev_priv = dev->dev_private;
1709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1710         int pipe = intel_crtc->pipe;
1711         int plane = intel_crtc->plane;
1712         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1713         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1714         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1715         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1716         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1717         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1718         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1719         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1720         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1721         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1722         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1723         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1724         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1725         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1726         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1727         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1728         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1729         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1730         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1731         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1732         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1733         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1734         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1735         u32 temp;
1736         int n;
1737         u32 pipe_bpc;
1738
1739         temp = I915_READ(pipeconf_reg);
1740         pipe_bpc = temp & PIPE_BPC_MASK;
1741
1742         /* XXX: When our outputs are all unaware of DPMS modes other than off
1743          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1744          */
1745         switch (mode) {
1746         case DRM_MODE_DPMS_ON:
1747         case DRM_MODE_DPMS_STANDBY:
1748         case DRM_MODE_DPMS_SUSPEND:
1749                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1750
1751                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1752                         temp = I915_READ(PCH_LVDS);
1753                         if ((temp & LVDS_PORT_EN) == 0) {
1754                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1755                                 POSTING_READ(PCH_LVDS);
1756                         }
1757                 }
1758
1759                 if (HAS_eDP) {
1760                         /* enable eDP PLL */
1761                         ironlake_enable_pll_edp(crtc);
1762                 } else {
1763
1764                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1765                         temp = I915_READ(fdi_rx_reg);
1766                         /*
1767                          * make the BPC in FDI Rx be consistent with that in
1768                          * pipeconf reg.
1769                          */
1770                         temp &= ~(0x7 << 16);
1771                         temp |= (pipe_bpc << 11);
1772                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1773                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1774                         I915_READ(fdi_rx_reg);
1775                         udelay(200);
1776
1777                         /* Switch from Rawclk to PCDclk */
1778                         temp = I915_READ(fdi_rx_reg);
1779                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1780                         I915_READ(fdi_rx_reg);
1781                         udelay(200);
1782
1783                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1784                         temp = I915_READ(fdi_tx_reg);
1785                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1786                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1787                                 I915_READ(fdi_tx_reg);
1788                                 udelay(100);
1789                         }
1790                 }
1791
1792                 /* Enable panel fitting for LVDS */
1793                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1794                         temp = I915_READ(pf_ctl_reg);
1795                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1796
1797                         /* currently full aspect */
1798                         I915_WRITE(pf_win_pos, 0);
1799
1800                         I915_WRITE(pf_win_size,
1801                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1802                                    (dev_priv->panel_fixed_mode->vdisplay));
1803                 }
1804
1805                 /* Enable CPU pipe */
1806                 temp = I915_READ(pipeconf_reg);
1807                 if ((temp & PIPEACONF_ENABLE) == 0) {
1808                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1809                         I915_READ(pipeconf_reg);
1810                         udelay(100);
1811                 }
1812
1813                 /* configure and enable CPU plane */
1814                 temp = I915_READ(dspcntr_reg);
1815                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1816                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1817                         /* Flush the plane changes */
1818                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1819                 }
1820
1821                 if (!HAS_eDP) {
1822                         /* For PCH output, training FDI link */
1823                         if (IS_GEN6(dev))
1824                                 gen6_fdi_link_train(crtc);
1825                         else
1826                                 ironlake_fdi_link_train(crtc);
1827
1828                         /* enable PCH DPLL */
1829                         temp = I915_READ(pch_dpll_reg);
1830                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1831                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1832                                 I915_READ(pch_dpll_reg);
1833                         }
1834                         udelay(200);
1835
1836                         if (HAS_PCH_CPT(dev)) {
1837                                 /* Be sure PCH DPLL SEL is set */
1838                                 temp = I915_READ(PCH_DPLL_SEL);
1839                                 if (trans_dpll_sel == 0 &&
1840                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1841                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1842                                 else if (trans_dpll_sel == 1 &&
1843                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1844                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1845                                 I915_WRITE(PCH_DPLL_SEL, temp);
1846                                 I915_READ(PCH_DPLL_SEL);
1847                         }
1848
1849                         /* set transcoder timing */
1850                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1851                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1852                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1853
1854                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1855                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1856                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1857
1858                         /* enable normal train */
1859                         temp = I915_READ(fdi_tx_reg);
1860                         temp &= ~FDI_LINK_TRAIN_NONE;
1861                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1862                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1863                         I915_READ(fdi_tx_reg);
1864
1865                         temp = I915_READ(fdi_rx_reg);
1866                         if (HAS_PCH_CPT(dev)) {
1867                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1868                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1869                         } else {
1870                                 temp &= ~FDI_LINK_TRAIN_NONE;
1871                                 temp |= FDI_LINK_TRAIN_NONE;
1872                         }
1873                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1874                         I915_READ(fdi_rx_reg);
1875
1876                         /* wait one idle pattern time */
1877                         udelay(100);
1878
1879                         /* For PCH DP, enable TRANS_DP_CTL */
1880                         if (HAS_PCH_CPT(dev) &&
1881                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1882                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1883                                 int reg;
1884
1885                                 reg = I915_READ(trans_dp_ctl);
1886                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1887                                 reg = TRANS_DP_OUTPUT_ENABLE |
1888                                       TRANS_DP_ENH_FRAMING |
1889                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1890                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1891
1892                                 switch (intel_trans_dp_port_sel(crtc)) {
1893                                 case PCH_DP_B:
1894                                         reg |= TRANS_DP_PORT_SEL_B;
1895                                         break;
1896                                 case PCH_DP_C:
1897                                         reg |= TRANS_DP_PORT_SEL_C;
1898                                         break;
1899                                 case PCH_DP_D:
1900                                         reg |= TRANS_DP_PORT_SEL_D;
1901                                         break;
1902                                 default:
1903                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1904                                         reg |= TRANS_DP_PORT_SEL_B;
1905                                         break;
1906                                 }
1907
1908                                 I915_WRITE(trans_dp_ctl, reg);
1909                                 POSTING_READ(trans_dp_ctl);
1910                         }
1911
1912                         /* enable PCH transcoder */
1913                         temp = I915_READ(transconf_reg);
1914                         /*
1915                          * make the BPC in transcoder be consistent with
1916                          * that in pipeconf reg.
1917                          */
1918                         temp &= ~PIPE_BPC_MASK;
1919                         temp |= pipe_bpc;
1920                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1921                         I915_READ(transconf_reg);
1922
1923                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1924                                 ;
1925
1926                 }
1927
1928                 intel_crtc_load_lut(crtc);
1929
1930         break;
1931         case DRM_MODE_DPMS_OFF:
1932                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1933
1934                 drm_vblank_off(dev, pipe);
1935                 /* Disable display plane */
1936                 temp = I915_READ(dspcntr_reg);
1937                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1938                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1939                         /* Flush the plane changes */
1940                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1941                         I915_READ(dspbase_reg);
1942                 }
1943
1944                 i915_disable_vga(dev);
1945
1946                 /* disable cpu pipe, disable after all planes disabled */
1947                 temp = I915_READ(pipeconf_reg);
1948                 if ((temp & PIPEACONF_ENABLE) != 0) {
1949                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1950                         I915_READ(pipeconf_reg);
1951                         n = 0;
1952                         /* wait for cpu pipe off, pipe state */
1953                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1954                                 n++;
1955                                 if (n < 60) {
1956                                         udelay(500);
1957                                         continue;
1958                                 } else {
1959                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1960                                                                 pipe);
1961                                         break;
1962                                 }
1963                         }
1964                 } else
1965                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1966
1967                 udelay(100);
1968
1969                 /* Disable PF */
1970                 temp = I915_READ(pf_ctl_reg);
1971                 if ((temp & PF_ENABLE) != 0) {
1972                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1973                         I915_READ(pf_ctl_reg);
1974                 }
1975                 I915_WRITE(pf_win_size, 0);
1976                 POSTING_READ(pf_win_size);
1977
1978
1979                 /* disable CPU FDI tx and PCH FDI rx */
1980                 temp = I915_READ(fdi_tx_reg);
1981                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1982                 I915_READ(fdi_tx_reg);
1983
1984                 temp = I915_READ(fdi_rx_reg);
1985                 /* BPC in FDI rx is consistent with that in pipeconf */
1986                 temp &= ~(0x07 << 16);
1987                 temp |= (pipe_bpc << 11);
1988                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1989                 I915_READ(fdi_rx_reg);
1990
1991                 udelay(100);
1992
1993                 /* still set train pattern 1 */
1994                 temp = I915_READ(fdi_tx_reg);
1995                 temp &= ~FDI_LINK_TRAIN_NONE;
1996                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1997                 I915_WRITE(fdi_tx_reg, temp);
1998                 POSTING_READ(fdi_tx_reg);
1999
2000                 temp = I915_READ(fdi_rx_reg);
2001                 if (HAS_PCH_CPT(dev)) {
2002                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2003                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2004                 } else {
2005                         temp &= ~FDI_LINK_TRAIN_NONE;
2006                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2007                 }
2008                 I915_WRITE(fdi_rx_reg, temp);
2009                 POSTING_READ(fdi_rx_reg);
2010
2011                 udelay(100);
2012
2013                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2014                         temp = I915_READ(PCH_LVDS);
2015                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2016                         I915_READ(PCH_LVDS);
2017                         udelay(100);
2018                 }
2019
2020                 /* disable PCH transcoder */
2021                 temp = I915_READ(transconf_reg);
2022                 if ((temp & TRANS_ENABLE) != 0) {
2023                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2024                         I915_READ(transconf_reg);
2025                         n = 0;
2026                         /* wait for PCH transcoder off, transcoder state */
2027                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2028                                 n++;
2029                                 if (n < 60) {
2030                                         udelay(500);
2031                                         continue;
2032                                 } else {
2033                                         DRM_DEBUG_KMS("transcoder %d off "
2034                                                         "delay\n", pipe);
2035                                         break;
2036                                 }
2037                         }
2038                 }
2039
2040                 temp = I915_READ(transconf_reg);
2041                 /* BPC in transcoder is consistent with that in pipeconf */
2042                 temp &= ~PIPE_BPC_MASK;
2043                 temp |= pipe_bpc;
2044                 I915_WRITE(transconf_reg, temp);
2045                 I915_READ(transconf_reg);
2046                 udelay(100);
2047
2048                 if (HAS_PCH_CPT(dev)) {
2049                         /* disable TRANS_DP_CTL */
2050                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2051                         int reg;
2052
2053                         reg = I915_READ(trans_dp_ctl);
2054                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2055                         I915_WRITE(trans_dp_ctl, reg);
2056                         POSTING_READ(trans_dp_ctl);
2057
2058                         /* disable DPLL_SEL */
2059                         temp = I915_READ(PCH_DPLL_SEL);
2060                         if (trans_dpll_sel == 0)
2061                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2062                         else
2063                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2064                         I915_WRITE(PCH_DPLL_SEL, temp);
2065                         I915_READ(PCH_DPLL_SEL);
2066
2067                 }
2068
2069                 /* disable PCH DPLL */
2070                 temp = I915_READ(pch_dpll_reg);
2071                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2072                 I915_READ(pch_dpll_reg);
2073
2074                 if (HAS_eDP) {
2075                         ironlake_disable_pll_edp(crtc);
2076                 }
2077
2078                 /* Switch from PCDclk to Rawclk */
2079                 temp = I915_READ(fdi_rx_reg);
2080                 temp &= ~FDI_SEL_PCDCLK;
2081                 I915_WRITE(fdi_rx_reg, temp);
2082                 I915_READ(fdi_rx_reg);
2083
2084                 /* Disable CPU FDI TX PLL */
2085                 temp = I915_READ(fdi_tx_reg);
2086                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2087                 I915_READ(fdi_tx_reg);
2088                 udelay(100);
2089
2090                 temp = I915_READ(fdi_rx_reg);
2091                 temp &= ~FDI_RX_PLL_ENABLE;
2092                 I915_WRITE(fdi_rx_reg, temp);
2093                 I915_READ(fdi_rx_reg);
2094
2095                 /* Wait for the clocks to turn off. */
2096                 udelay(100);
2097                 break;
2098         }
2099 }
2100
2101 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2102 {
2103         struct intel_overlay *overlay;
2104         int ret;
2105
2106         if (!enable && intel_crtc->overlay) {
2107                 overlay = intel_crtc->overlay;
2108                 mutex_lock(&overlay->dev->struct_mutex);
2109                 for (;;) {
2110                         ret = intel_overlay_switch_off(overlay);
2111                         if (ret == 0)
2112                                 break;
2113
2114                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2115                         if (ret != 0) {
2116                                 /* overlay doesn't react anymore. Usually
2117                                  * results in a black screen and an unkillable
2118                                  * X server. */
2119                                 BUG();
2120                                 overlay->hw_wedged = HW_WEDGED;
2121                                 break;
2122                         }
2123                 }
2124                 mutex_unlock(&overlay->dev->struct_mutex);
2125         }
2126         /* Let userspace switch the overlay on again. In most cases userspace
2127          * has to recompute where to put it anyway. */
2128
2129         return;
2130 }
2131
2132 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2133 {
2134         struct drm_device *dev = crtc->dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137         int pipe = intel_crtc->pipe;
2138         int plane = intel_crtc->plane;
2139         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2140         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2141         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2142         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2143         u32 temp;
2144
2145         /* XXX: When our outputs are all unaware of DPMS modes other than off
2146          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2147          */
2148         switch (mode) {
2149         case DRM_MODE_DPMS_ON:
2150         case DRM_MODE_DPMS_STANDBY:
2151         case DRM_MODE_DPMS_SUSPEND:
2152                 intel_update_watermarks(dev);
2153
2154                 /* Enable the DPLL */
2155                 temp = I915_READ(dpll_reg);
2156                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2157                         I915_WRITE(dpll_reg, temp);
2158                         I915_READ(dpll_reg);
2159                         /* Wait for the clocks to stabilize. */
2160                         udelay(150);
2161                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2162                         I915_READ(dpll_reg);
2163                         /* Wait for the clocks to stabilize. */
2164                         udelay(150);
2165                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2166                         I915_READ(dpll_reg);
2167                         /* Wait for the clocks to stabilize. */
2168                         udelay(150);
2169                 }
2170
2171                 /* Enable the pipe */
2172                 temp = I915_READ(pipeconf_reg);
2173                 if ((temp & PIPEACONF_ENABLE) == 0)
2174                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2175
2176                 /* Enable the plane */
2177                 temp = I915_READ(dspcntr_reg);
2178                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2179                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2180                         /* Flush the plane changes */
2181                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2182                 }
2183
2184                 intel_crtc_load_lut(crtc);
2185
2186                 if ((IS_I965G(dev) || plane == 0))
2187                         intel_update_fbc(crtc, &crtc->mode);
2188
2189                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2190                 intel_crtc_dpms_overlay(intel_crtc, true);
2191         break;
2192         case DRM_MODE_DPMS_OFF:
2193                 intel_update_watermarks(dev);
2194
2195                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2196                 intel_crtc_dpms_overlay(intel_crtc, false);
2197                 drm_vblank_off(dev, pipe);
2198
2199                 if (dev_priv->cfb_plane == plane &&
2200                     dev_priv->display.disable_fbc)
2201                         dev_priv->display.disable_fbc(dev);
2202
2203                 /* Disable the VGA plane that we never use */
2204                 i915_disable_vga(dev);
2205
2206                 /* Disable display plane */
2207                 temp = I915_READ(dspcntr_reg);
2208                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2209                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2210                         /* Flush the plane changes */
2211                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2212                         I915_READ(dspbase_reg);
2213                 }
2214
2215                 if (!IS_I9XX(dev)) {
2216                         /* Wait for vblank for the disable to take effect */
2217                         intel_wait_for_vblank(dev);
2218                 }
2219
2220                 /* Next, disable display pipes */
2221                 temp = I915_READ(pipeconf_reg);
2222                 if ((temp & PIPEACONF_ENABLE) != 0) {
2223                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2224                         I915_READ(pipeconf_reg);
2225                 }
2226
2227                 /* Wait for vblank for the disable to take effect. */
2228                 intel_wait_for_vblank(dev);
2229
2230                 temp = I915_READ(dpll_reg);
2231                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2232                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2233                         I915_READ(dpll_reg);
2234                 }
2235
2236                 /* Wait for the clocks to turn off. */
2237                 udelay(150);
2238                 break;
2239         }
2240 }
2241
2242 /**
2243  * Sets the power management mode of the pipe and plane.
2244  *
2245  * This code should probably grow support for turning the cursor off and back
2246  * on appropriately at the same time as we're turning the pipe off/on.
2247  */
2248 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2249 {
2250         struct drm_device *dev = crtc->dev;
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         struct drm_i915_master_private *master_priv;
2253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2254         int pipe = intel_crtc->pipe;
2255         bool enabled;
2256
2257         dev_priv->display.dpms(crtc, mode);
2258
2259         intel_crtc->dpms_mode = mode;
2260
2261         if (!dev->primary->master)
2262                 return;
2263
2264         master_priv = dev->primary->master->driver_priv;
2265         if (!master_priv->sarea_priv)
2266                 return;
2267
2268         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2269
2270         switch (pipe) {
2271         case 0:
2272                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2273                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2274                 break;
2275         case 1:
2276                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2277                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2278                 break;
2279         default:
2280                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2281                 break;
2282         }
2283 }
2284
2285 static void intel_crtc_prepare (struct drm_crtc *crtc)
2286 {
2287         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2288         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2289 }
2290
2291 static void intel_crtc_commit (struct drm_crtc *crtc)
2292 {
2293         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2294         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2295 }
2296
2297 void intel_encoder_prepare (struct drm_encoder *encoder)
2298 {
2299         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2300         /* lvds has its own version of prepare see intel_lvds_prepare */
2301         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2302 }
2303
2304 void intel_encoder_commit (struct drm_encoder *encoder)
2305 {
2306         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2307         /* lvds has its own version of commit see intel_lvds_commit */
2308         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2309 }
2310
2311 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2312                                   struct drm_display_mode *mode,
2313                                   struct drm_display_mode *adjusted_mode)
2314 {
2315         struct drm_device *dev = crtc->dev;
2316         if (HAS_PCH_SPLIT(dev)) {
2317                 /* FDI link clock is fixed at 2.7G */
2318                 if (mode->clock * 3 > 27000 * 4)
2319                         return MODE_CLOCK_HIGH;
2320         }
2321         return true;
2322 }
2323
2324 static int i945_get_display_clock_speed(struct drm_device *dev)
2325 {
2326         return 400000;
2327 }
2328
2329 static int i915_get_display_clock_speed(struct drm_device *dev)
2330 {
2331         return 333000;
2332 }
2333
2334 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2335 {
2336         return 200000;
2337 }
2338
2339 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2340 {
2341         u16 gcfgc = 0;
2342
2343         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2344
2345         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2346                 return 133000;
2347         else {
2348                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2349                 case GC_DISPLAY_CLOCK_333_MHZ:
2350                         return 333000;
2351                 default:
2352                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2353                         return 190000;
2354                 }
2355         }
2356 }
2357
2358 static int i865_get_display_clock_speed(struct drm_device *dev)
2359 {
2360         return 266000;
2361 }
2362
2363 static int i855_get_display_clock_speed(struct drm_device *dev)
2364 {
2365         u16 hpllcc = 0;
2366         /* Assume that the hardware is in the high speed state.  This
2367          * should be the default.
2368          */
2369         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2370         case GC_CLOCK_133_200:
2371         case GC_CLOCK_100_200:
2372                 return 200000;
2373         case GC_CLOCK_166_250:
2374                 return 250000;
2375         case GC_CLOCK_100_133:
2376                 return 133000;
2377         }
2378
2379         /* Shouldn't happen */
2380         return 0;
2381 }
2382
2383 static int i830_get_display_clock_speed(struct drm_device *dev)
2384 {
2385         return 133000;
2386 }
2387
2388 /**
2389  * Return the pipe currently connected to the panel fitter,
2390  * or -1 if the panel fitter is not present or not in use
2391  */
2392 int intel_panel_fitter_pipe (struct drm_device *dev)
2393 {
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         u32  pfit_control;
2396
2397         /* i830 doesn't have a panel fitter */
2398         if (IS_I830(dev))
2399                 return -1;
2400
2401         pfit_control = I915_READ(PFIT_CONTROL);
2402
2403         /* See if the panel fitter is in use */
2404         if ((pfit_control & PFIT_ENABLE) == 0)
2405                 return -1;
2406
2407         /* 965 can place panel fitter on either pipe */
2408         if (IS_I965G(dev))
2409                 return (pfit_control >> 29) & 0x3;
2410
2411         /* older chips can only use pipe 1 */
2412         return 1;
2413 }
2414
2415 struct fdi_m_n {
2416         u32        tu;
2417         u32        gmch_m;
2418         u32        gmch_n;
2419         u32        link_m;
2420         u32        link_n;
2421 };
2422
2423 static void
2424 fdi_reduce_ratio(u32 *num, u32 *den)
2425 {
2426         while (*num > 0xffffff || *den > 0xffffff) {
2427                 *num >>= 1;
2428                 *den >>= 1;
2429         }
2430 }
2431
2432 #define DATA_N 0x800000
2433 #define LINK_N 0x80000
2434
2435 static void
2436 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2437                      int link_clock, struct fdi_m_n *m_n)
2438 {
2439         u64 temp;
2440
2441         m_n->tu = 64; /* default size */
2442
2443         temp = (u64) DATA_N * pixel_clock;
2444         temp = div_u64(temp, link_clock);
2445         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2446         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2447         m_n->gmch_n = DATA_N;
2448         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2449
2450         temp = (u64) LINK_N * pixel_clock;
2451         m_n->link_m = div_u64(temp, link_clock);
2452         m_n->link_n = LINK_N;
2453         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2454 }
2455
2456
2457 struct intel_watermark_params {
2458         unsigned long fifo_size;
2459         unsigned long max_wm;
2460         unsigned long default_wm;
2461         unsigned long guard_size;
2462         unsigned long cacheline_size;
2463 };
2464
2465 /* Pineview has different values for various configs */
2466 static struct intel_watermark_params pineview_display_wm = {
2467         PINEVIEW_DISPLAY_FIFO,
2468         PINEVIEW_MAX_WM,
2469         PINEVIEW_DFT_WM,
2470         PINEVIEW_GUARD_WM,
2471         PINEVIEW_FIFO_LINE_SIZE
2472 };
2473 static struct intel_watermark_params pineview_display_hplloff_wm = {
2474         PINEVIEW_DISPLAY_FIFO,
2475         PINEVIEW_MAX_WM,
2476         PINEVIEW_DFT_HPLLOFF_WM,
2477         PINEVIEW_GUARD_WM,
2478         PINEVIEW_FIFO_LINE_SIZE
2479 };
2480 static struct intel_watermark_params pineview_cursor_wm = {
2481         PINEVIEW_CURSOR_FIFO,
2482         PINEVIEW_CURSOR_MAX_WM,
2483         PINEVIEW_CURSOR_DFT_WM,
2484         PINEVIEW_CURSOR_GUARD_WM,
2485         PINEVIEW_FIFO_LINE_SIZE,
2486 };
2487 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2488         PINEVIEW_CURSOR_FIFO,
2489         PINEVIEW_CURSOR_MAX_WM,
2490         PINEVIEW_CURSOR_DFT_WM,
2491         PINEVIEW_CURSOR_GUARD_WM,
2492         PINEVIEW_FIFO_LINE_SIZE
2493 };
2494 static struct intel_watermark_params g4x_wm_info = {
2495         G4X_FIFO_SIZE,
2496         G4X_MAX_WM,
2497         G4X_MAX_WM,
2498         2,
2499         G4X_FIFO_LINE_SIZE,
2500 };
2501 static struct intel_watermark_params i945_wm_info = {
2502         I945_FIFO_SIZE,
2503         I915_MAX_WM,
2504         1,
2505         2,
2506         I915_FIFO_LINE_SIZE
2507 };
2508 static struct intel_watermark_params i915_wm_info = {
2509         I915_FIFO_SIZE,
2510         I915_MAX_WM,
2511         1,
2512         2,
2513         I915_FIFO_LINE_SIZE
2514 };
2515 static struct intel_watermark_params i855_wm_info = {
2516         I855GM_FIFO_SIZE,
2517         I915_MAX_WM,
2518         1,
2519         2,
2520         I830_FIFO_LINE_SIZE
2521 };
2522 static struct intel_watermark_params i830_wm_info = {
2523         I830_FIFO_SIZE,
2524         I915_MAX_WM,
2525         1,
2526         2,
2527         I830_FIFO_LINE_SIZE
2528 };
2529
2530 /**
2531  * intel_calculate_wm - calculate watermark level
2532  * @clock_in_khz: pixel clock
2533  * @wm: chip FIFO params
2534  * @pixel_size: display pixel size
2535  * @latency_ns: memory latency for the platform
2536  *
2537  * Calculate the watermark level (the level at which the display plane will
2538  * start fetching from memory again).  Each chip has a different display
2539  * FIFO size and allocation, so the caller needs to figure that out and pass
2540  * in the correct intel_watermark_params structure.
2541  *
2542  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2543  * on the pixel size.  When it reaches the watermark level, it'll start
2544  * fetching FIFO line sized based chunks from memory until the FIFO fills
2545  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2546  * will occur, and a display engine hang could result.
2547  */
2548 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2549                                         struct intel_watermark_params *wm,
2550                                         int pixel_size,
2551                                         unsigned long latency_ns)
2552 {
2553         long entries_required, wm_size;
2554
2555         /*
2556          * Note: we need to make sure we don't overflow for various clock &
2557          * latency values.
2558          * clocks go from a few thousand to several hundred thousand.
2559          * latency is usually a few thousand
2560          */
2561         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2562                 1000;
2563         entries_required /= wm->cacheline_size;
2564
2565         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2566
2567         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2568
2569         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2570
2571         /* Don't promote wm_size to unsigned... */
2572         if (wm_size > (long)wm->max_wm)
2573                 wm_size = wm->max_wm;
2574         if (wm_size <= 0)
2575                 wm_size = wm->default_wm;
2576         return wm_size;
2577 }
2578
2579 struct cxsr_latency {
2580         int is_desktop;
2581         unsigned long fsb_freq;
2582         unsigned long mem_freq;
2583         unsigned long display_sr;
2584         unsigned long display_hpll_disable;
2585         unsigned long cursor_sr;
2586         unsigned long cursor_hpll_disable;
2587 };
2588
2589 static struct cxsr_latency cxsr_latency_table[] = {
2590         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2591         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2592         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2593
2594         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2595         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2596         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2597
2598         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2599         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2600         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2601
2602         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2603         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2604         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2605
2606         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2607         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2608         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2609
2610         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2611         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2612         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2613 };
2614
2615 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2616                                                    int mem)
2617 {
2618         int i;
2619         struct cxsr_latency *latency;
2620
2621         if (fsb == 0 || mem == 0)
2622                 return NULL;
2623
2624         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2625                 latency = &cxsr_latency_table[i];
2626                 if (is_desktop == latency->is_desktop &&
2627                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2628                         return latency;
2629         }
2630
2631         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2632
2633         return NULL;
2634 }
2635
2636 static void pineview_disable_cxsr(struct drm_device *dev)
2637 {
2638         struct drm_i915_private *dev_priv = dev->dev_private;
2639         u32 reg;
2640
2641         /* deactivate cxsr */
2642         reg = I915_READ(DSPFW3);
2643         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2644         I915_WRITE(DSPFW3, reg);
2645         DRM_INFO("Big FIFO is disabled\n");
2646 }
2647
2648 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2649                                  int pixel_size)
2650 {
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         u32 reg;
2653         unsigned long wm;
2654         struct cxsr_latency *latency;
2655
2656         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2657                 dev_priv->mem_freq);
2658         if (!latency) {
2659                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2660                 pineview_disable_cxsr(dev);
2661                 return;
2662         }
2663
2664         /* Display SR */
2665         wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2666                                 latency->display_sr);
2667         reg = I915_READ(DSPFW1);
2668         reg &= 0x7fffff;
2669         reg |= wm << 23;
2670         I915_WRITE(DSPFW1, reg);
2671         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2672
2673         /* cursor SR */
2674         wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2675                                 latency->cursor_sr);
2676         reg = I915_READ(DSPFW3);
2677         reg &= ~(0x3f << 24);
2678         reg |= (wm & 0x3f) << 24;
2679         I915_WRITE(DSPFW3, reg);
2680
2681         /* Display HPLL off SR */
2682         wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2683                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2684         reg = I915_READ(DSPFW3);
2685         reg &= 0xfffffe00;
2686         reg |= wm & 0x1ff;
2687         I915_WRITE(DSPFW3, reg);
2688
2689         /* cursor HPLL off SR */
2690         wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2691                                 latency->cursor_hpll_disable);
2692         reg = I915_READ(DSPFW3);
2693         reg &= ~(0x3f << 16);
2694         reg |= (wm & 0x3f) << 16;
2695         I915_WRITE(DSPFW3, reg);
2696         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2697
2698         /* activate cxsr */
2699         reg = I915_READ(DSPFW3);
2700         reg |= PINEVIEW_SELF_REFRESH_EN;
2701         I915_WRITE(DSPFW3, reg);
2702
2703         DRM_INFO("Big FIFO is enabled\n");
2704
2705         return;
2706 }
2707
2708 /*
2709  * Latency for FIFO fetches is dependent on several factors:
2710  *   - memory configuration (speed, channels)
2711  *   - chipset
2712  *   - current MCH state
2713  * It can be fairly high in some situations, so here we assume a fairly
2714  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2715  * set this value too high, the FIFO will fetch frequently to stay full)
2716  * and power consumption (set it too low to save power and we might see
2717  * FIFO underruns and display "flicker").
2718  *
2719  * A value of 5us seems to be a good balance; safe for very low end
2720  * platforms but not overly aggressive on lower latency configs.
2721  */
2722 static const int latency_ns = 5000;
2723
2724 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2725 {
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         uint32_t dsparb = I915_READ(DSPARB);
2728         int size;
2729
2730         if (plane == 0)
2731                 size = dsparb & 0x7f;
2732         else
2733                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2734                         (dsparb & 0x7f);
2735
2736         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2737                         plane ? "B" : "A", size);
2738
2739         return size;
2740 }
2741
2742 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         uint32_t dsparb = I915_READ(DSPARB);
2746         int size;
2747
2748         if (plane == 0)
2749                 size = dsparb & 0x1ff;
2750         else
2751                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2752                         (dsparb & 0x1ff);
2753         size >>= 1; /* Convert to cachelines */
2754
2755         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2756                         plane ? "B" : "A", size);
2757
2758         return size;
2759 }
2760
2761 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2762 {
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         uint32_t dsparb = I915_READ(DSPARB);
2765         int size;
2766
2767         size = dsparb & 0x7f;
2768         size >>= 2; /* Convert to cachelines */
2769
2770         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2771                         plane ? "B" : "A",
2772                   size);
2773
2774         return size;
2775 }
2776
2777 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2778 {
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         uint32_t dsparb = I915_READ(DSPARB);
2781         int size;
2782
2783         size = dsparb & 0x7f;
2784         size >>= 1; /* Convert to cachelines */
2785
2786         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2787                         plane ? "B" : "A", size);
2788
2789         return size;
2790 }
2791
2792 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2793                           int planeb_clock, int sr_hdisplay, int pixel_size)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         int total_size, cacheline_size;
2797         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2798         struct intel_watermark_params planea_params, planeb_params;
2799         unsigned long line_time_us;
2800         int sr_clock, sr_entries = 0, entries_required;
2801
2802         /* Create copies of the base settings for each pipe */
2803         planea_params = planeb_params = g4x_wm_info;
2804
2805         /* Grab a couple of global values before we overwrite them */
2806         total_size = planea_params.fifo_size;
2807         cacheline_size = planea_params.cacheline_size;
2808
2809         /*
2810          * Note: we need to make sure we don't overflow for various clock &
2811          * latency values.
2812          * clocks go from a few thousand to several hundred thousand.
2813          * latency is usually a few thousand
2814          */
2815         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2816                 1000;
2817         entries_required /= G4X_FIFO_LINE_SIZE;
2818         planea_wm = entries_required + planea_params.guard_size;
2819
2820         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2821                 1000;
2822         entries_required /= G4X_FIFO_LINE_SIZE;
2823         planeb_wm = entries_required + planeb_params.guard_size;
2824
2825         cursora_wm = cursorb_wm = 16;
2826         cursor_sr = 32;
2827
2828         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2829
2830         /* Calc sr entries for one plane configs */
2831         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2832                 /* self-refresh has much higher latency */
2833                 static const int sr_latency_ns = 12000;
2834
2835                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2836                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2837
2838                 /* Use ns/us then divide to preserve precision */
2839                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2840                               pixel_size * sr_hdisplay) / 1000;
2841                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2842                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2843                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2844         } else {
2845                 /* Turn off self refresh if both pipes are enabled */
2846                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2847                                         & ~FW_BLC_SELF_EN);
2848         }
2849
2850         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2851                   planea_wm, planeb_wm, sr_entries);
2852
2853         planea_wm &= 0x3f;
2854         planeb_wm &= 0x3f;
2855
2856         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2857                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2858                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2859         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2860                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2861         /* HPLL off in SR has some issues on G4x... disable it */
2862         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2863                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2864 }
2865
2866 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2867                            int planeb_clock, int sr_hdisplay, int pixel_size)
2868 {
2869         struct drm_i915_private *dev_priv = dev->dev_private;
2870         unsigned long line_time_us;
2871         int sr_clock, sr_entries, srwm = 1;
2872
2873         /* Calc sr entries for one plane configs */
2874         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2875                 /* self-refresh has much higher latency */
2876                 static const int sr_latency_ns = 12000;
2877
2878                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2879                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2880
2881                 /* Use ns/us then divide to preserve precision */
2882                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2883                               pixel_size * sr_hdisplay) / 1000;
2884                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2885                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2886                 srwm = I945_FIFO_SIZE - sr_entries;
2887                 if (srwm < 0)
2888                         srwm = 1;
2889                 srwm &= 0x3f;
2890                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2891         } else {
2892                 /* Turn off self refresh if both pipes are enabled */
2893                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2894                                         & ~FW_BLC_SELF_EN);
2895         }
2896
2897         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2898                       srwm);
2899
2900         /* 965 has limitations... */
2901         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2902                    (8 << 0));
2903         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2904 }
2905
2906 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2907                            int planeb_clock, int sr_hdisplay, int pixel_size)
2908 {
2909         struct drm_i915_private *dev_priv = dev->dev_private;
2910         uint32_t fwater_lo;
2911         uint32_t fwater_hi;
2912         int total_size, cacheline_size, cwm, srwm = 1;
2913         int planea_wm, planeb_wm;
2914         struct intel_watermark_params planea_params, planeb_params;
2915         unsigned long line_time_us;
2916         int sr_clock, sr_entries = 0;
2917
2918         /* Create copies of the base settings for each pipe */
2919         if (IS_I965GM(dev) || IS_I945GM(dev))
2920                 planea_params = planeb_params = i945_wm_info;
2921         else if (IS_I9XX(dev))
2922                 planea_params = planeb_params = i915_wm_info;
2923         else
2924                 planea_params = planeb_params = i855_wm_info;
2925
2926         /* Grab a couple of global values before we overwrite them */
2927         total_size = planea_params.fifo_size;
2928         cacheline_size = planea_params.cacheline_size;
2929
2930         /* Update per-plane FIFO sizes */
2931         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2932         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2933
2934         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2935                                        pixel_size, latency_ns);
2936         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2937                                        pixel_size, latency_ns);
2938         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2939
2940         /*
2941          * Overlay gets an aggressive default since video jitter is bad.
2942          */
2943         cwm = 2;
2944
2945         /* Calc sr entries for one plane configs */
2946         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2947             (!planea_clock || !planeb_clock)) {
2948                 /* self-refresh has much higher latency */
2949                 static const int sr_latency_ns = 6000;
2950
2951                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2952                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2953
2954                 /* Use ns/us then divide to preserve precision */
2955                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2956                               pixel_size * sr_hdisplay) / 1000;
2957                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2958                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2959                 srwm = total_size - sr_entries;
2960                 if (srwm < 0)
2961                         srwm = 1;
2962
2963                 if (IS_I945G(dev) || IS_I945GM(dev))
2964                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2965                 else if (IS_I915GM(dev)) {
2966                         /* 915M has a smaller SRWM field */
2967                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2968                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2969                 }
2970         } else {
2971                 /* Turn off self refresh if both pipes are enabled */
2972                 if (IS_I945G(dev) || IS_I945GM(dev)) {
2973                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2974                                    & ~FW_BLC_SELF_EN);
2975                 } else if (IS_I915GM(dev)) {
2976                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
2977                 }
2978         }
2979
2980         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2981                   planea_wm, planeb_wm, cwm, srwm);
2982
2983         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2984         fwater_hi = (cwm & 0x1f);
2985
2986         /* Set request length to 8 cachelines per fetch */
2987         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2988         fwater_hi = fwater_hi | (1 << 8);
2989
2990         I915_WRITE(FW_BLC, fwater_lo);
2991         I915_WRITE(FW_BLC2, fwater_hi);
2992 }
2993
2994 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2995                            int unused2, int pixel_size)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2999         int planea_wm;
3000
3001         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3002
3003         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3004                                        pixel_size, latency_ns);
3005         fwater_lo |= (3<<8) | planea_wm;
3006
3007         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3008
3009         I915_WRITE(FW_BLC, fwater_lo);
3010 }
3011
3012 /**
3013  * intel_update_watermarks - update FIFO watermark values based on current modes
3014  *
3015  * Calculate watermark values for the various WM regs based on current mode
3016  * and plane configuration.
3017  *
3018  * There are several cases to deal with here:
3019  *   - normal (i.e. non-self-refresh)
3020  *   - self-refresh (SR) mode
3021  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3022  *   - lines are small relative to FIFO size (buffer can hold more than 2
3023  *     lines), so need to account for TLB latency
3024  *
3025  *   The normal calculation is:
3026  *     watermark = dotclock * bytes per pixel * latency
3027  *   where latency is platform & configuration dependent (we assume pessimal
3028  *   values here).
3029  *
3030  *   The SR calculation is:
3031  *     watermark = (trunc(latency/line time)+1) * surface width *
3032  *       bytes per pixel
3033  *   where
3034  *     line time = htotal / dotclock
3035  *   and latency is assumed to be high, as above.
3036  *
3037  * The final value programmed to the register should always be rounded up,
3038  * and include an extra 2 entries to account for clock crossings.
3039  *
3040  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3041  * to set the non-SR watermarks to 8.
3042   */
3043 static void intel_update_watermarks(struct drm_device *dev)
3044 {
3045         struct drm_i915_private *dev_priv = dev->dev_private;
3046         struct drm_crtc *crtc;
3047         struct intel_crtc *intel_crtc;
3048         int sr_hdisplay = 0;
3049         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3050         int enabled = 0, pixel_size = 0;
3051
3052         if (!dev_priv->display.update_wm)
3053                 return;
3054
3055         /* Get the clock config from both planes */
3056         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3057                 intel_crtc = to_intel_crtc(crtc);
3058                 if (crtc->enabled) {
3059                         enabled++;
3060                         if (intel_crtc->plane == 0) {
3061                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3062                                           intel_crtc->pipe, crtc->mode.clock);
3063                                 planea_clock = crtc->mode.clock;
3064                         } else {
3065                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3066                                           intel_crtc->pipe, crtc->mode.clock);
3067                                 planeb_clock = crtc->mode.clock;
3068                         }
3069                         sr_hdisplay = crtc->mode.hdisplay;
3070                         sr_clock = crtc->mode.clock;
3071                         if (crtc->fb)
3072                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3073                         else
3074                                 pixel_size = 4; /* by default */
3075                 }
3076         }
3077
3078         if (enabled <= 0)
3079                 return;
3080
3081         /* Single plane configs can enable self refresh */
3082         if (enabled == 1 && IS_PINEVIEW(dev))
3083                 pineview_enable_cxsr(dev, sr_clock, pixel_size);
3084         else if (IS_PINEVIEW(dev))
3085                 pineview_disable_cxsr(dev);
3086
3087         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3088                                     sr_hdisplay, pixel_size);
3089 }
3090
3091 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3092                                struct drm_display_mode *mode,
3093                                struct drm_display_mode *adjusted_mode,
3094                                int x, int y,
3095                                struct drm_framebuffer *old_fb)
3096 {
3097         struct drm_device *dev = crtc->dev;
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3100         int pipe = intel_crtc->pipe;
3101         int plane = intel_crtc->plane;
3102         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3103         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3104         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3105         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3106         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3107         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3108         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3109         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3110         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3111         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3112         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3113         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3114         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3115         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3116         int refclk, num_connectors = 0;
3117         intel_clock_t clock, reduced_clock;
3118         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3119         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3120         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3121         bool is_edp = false;
3122         struct drm_mode_config *mode_config = &dev->mode_config;
3123         struct drm_encoder *encoder;
3124         struct intel_encoder *intel_encoder = NULL;
3125         const intel_limit_t *limit;
3126         int ret;
3127         struct fdi_m_n m_n = {0};
3128         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3129         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3130         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3131         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3132         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3133         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3134         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3135         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3136         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3137         int lvds_reg = LVDS;
3138         u32 temp;
3139         int sdvo_pixel_multiply;
3140         int target_clock;
3141
3142         drm_vblank_pre_modeset(dev, pipe);
3143
3144         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3145
3146                 if (!encoder || encoder->crtc != crtc)
3147                         continue;
3148
3149                 intel_encoder = enc_to_intel_encoder(encoder);
3150
3151                 switch (intel_encoder->type) {
3152                 case INTEL_OUTPUT_LVDS:
3153                         is_lvds = true;
3154                         break;
3155                 case INTEL_OUTPUT_SDVO:
3156                 case INTEL_OUTPUT_HDMI:
3157                         is_sdvo = true;
3158                         if (intel_encoder->needs_tv_clock)
3159                                 is_tv = true;
3160                         break;
3161                 case INTEL_OUTPUT_DVO:
3162                         is_dvo = true;
3163                         break;
3164                 case INTEL_OUTPUT_TVOUT:
3165                         is_tv = true;
3166                         break;
3167                 case INTEL_OUTPUT_ANALOG:
3168                         is_crt = true;
3169                         break;
3170                 case INTEL_OUTPUT_DISPLAYPORT:
3171                         is_dp = true;
3172                         break;
3173                 case INTEL_OUTPUT_EDP:
3174                         is_edp = true;
3175                         break;
3176                 }
3177
3178                 num_connectors++;
3179         }
3180
3181         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3182                 refclk = dev_priv->lvds_ssc_freq * 1000;
3183                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3184                                         refclk / 1000);
3185         } else if (IS_I9XX(dev)) {
3186                 refclk = 96000;
3187                 if (HAS_PCH_SPLIT(dev))
3188                         refclk = 120000; /* 120Mhz refclk */
3189         } else {
3190                 refclk = 48000;
3191         }
3192         
3193
3194         /*
3195          * Returns a set of divisors for the desired target clock with the given
3196          * refclk, or FALSE.  The returned values represent the clock equation:
3197          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3198          */
3199         limit = intel_limit(crtc);
3200         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3201         if (!ok) {
3202                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3203                 drm_vblank_post_modeset(dev, pipe);
3204                 return -EINVAL;
3205         }
3206
3207         if (is_lvds && dev_priv->lvds_downclock_avail) {
3208                 has_reduced_clock = limit->find_pll(limit, crtc,
3209                                                             dev_priv->lvds_downclock,
3210                                                             refclk,
3211                                                             &reduced_clock);
3212                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3213                         /*
3214                          * If the different P is found, it means that we can't
3215                          * switch the display clock by using the FP0/FP1.
3216                          * In such case we will disable the LVDS downclock
3217                          * feature.
3218                          */
3219                         DRM_DEBUG_KMS("Different P is found for "
3220                                                 "LVDS clock/downclock\n");
3221                         has_reduced_clock = 0;
3222                 }
3223         }
3224         /* SDVO TV has fixed PLL values depend on its clock range,
3225            this mirrors vbios setting. */
3226         if (is_sdvo && is_tv) {
3227                 if (adjusted_mode->clock >= 100000
3228                                 && adjusted_mode->clock < 140500) {
3229                         clock.p1 = 2;
3230                         clock.p2 = 10;
3231                         clock.n = 3;
3232                         clock.m1 = 16;
3233                         clock.m2 = 8;
3234                 } else if (adjusted_mode->clock >= 140500
3235                                 && adjusted_mode->clock <= 200000) {
3236                         clock.p1 = 1;
3237                         clock.p2 = 10;
3238                         clock.n = 6;
3239                         clock.m1 = 12;
3240                         clock.m2 = 8;
3241                 }
3242         }
3243
3244         /* FDI link */
3245         if (HAS_PCH_SPLIT(dev)) {
3246                 int lane, link_bw, bpp;
3247                 /* eDP doesn't require FDI link, so just set DP M/N
3248                    according to current link config */
3249                 if (is_edp) {
3250                         target_clock = mode->clock;
3251                         intel_edp_link_config(intel_encoder,
3252                                         &lane, &link_bw);
3253                 } else {
3254                         /* DP over FDI requires target mode clock
3255                            instead of link clock */
3256                         if (is_dp)
3257                                 target_clock = mode->clock;
3258                         else
3259                                 target_clock = adjusted_mode->clock;
3260                         lane = 4;
3261                         link_bw = 270000;
3262                 }
3263
3264                 /* determine panel color depth */
3265                 temp = I915_READ(pipeconf_reg);
3266                 temp &= ~PIPE_BPC_MASK;
3267                 if (is_lvds) {
3268                         int lvds_reg = I915_READ(PCH_LVDS);
3269                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3270                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3271                                 temp |= PIPE_8BPC;
3272                         else
3273                                 temp |= PIPE_6BPC;
3274                 } else if (is_edp) {
3275                         switch (dev_priv->edp_bpp/3) {
3276                         case 8:
3277                                 temp |= PIPE_8BPC;
3278                                 break;
3279                         case 10:
3280                                 temp |= PIPE_10BPC;
3281                                 break;
3282                         case 6:
3283                                 temp |= PIPE_6BPC;
3284                                 break;
3285                         case 12:
3286                                 temp |= PIPE_12BPC;
3287                                 break;
3288                         }
3289                 } else
3290                         temp |= PIPE_8BPC;
3291                 I915_WRITE(pipeconf_reg, temp);
3292                 I915_READ(pipeconf_reg);
3293
3294                 switch (temp & PIPE_BPC_MASK) {
3295                 case PIPE_8BPC:
3296                         bpp = 24;
3297                         break;
3298                 case PIPE_10BPC:
3299                         bpp = 30;
3300                         break;
3301                 case PIPE_6BPC:
3302                         bpp = 18;
3303                         break;
3304                 case PIPE_12BPC:
3305                         bpp = 36;
3306                         break;
3307                 default:
3308                         DRM_ERROR("unknown pipe bpc value\n");
3309                         bpp = 24;
3310                 }
3311
3312                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3313         }
3314
3315         /* Ironlake: try to setup display ref clock before DPLL
3316          * enabling. This is only under driver's control after
3317          * PCH B stepping, previous chipset stepping should be
3318          * ignoring this setting.
3319          */
3320         if (HAS_PCH_SPLIT(dev)) {
3321                 temp = I915_READ(PCH_DREF_CONTROL);
3322                 /* Always enable nonspread source */
3323                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3324                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3325                 I915_WRITE(PCH_DREF_CONTROL, temp);
3326                 POSTING_READ(PCH_DREF_CONTROL);
3327
3328                 temp &= ~DREF_SSC_SOURCE_MASK;
3329                 temp |= DREF_SSC_SOURCE_ENABLE;
3330                 I915_WRITE(PCH_DREF_CONTROL, temp);
3331                 POSTING_READ(PCH_DREF_CONTROL);
3332
3333                 udelay(200);
3334
3335                 if (is_edp) {
3336                         if (dev_priv->lvds_use_ssc) {
3337                                 temp |= DREF_SSC1_ENABLE;
3338                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3339                                 POSTING_READ(PCH_DREF_CONTROL);
3340
3341                                 udelay(200);
3342
3343                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3344                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3345                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3346                                 POSTING_READ(PCH_DREF_CONTROL);
3347                         } else {
3348                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3349                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3350                                 POSTING_READ(PCH_DREF_CONTROL);
3351                         }
3352                 }
3353         }
3354
3355         if (IS_PINEVIEW(dev)) {
3356                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3357                 if (has_reduced_clock)
3358                         fp2 = (1 << reduced_clock.n) << 16 |
3359                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3360         } else {
3361                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3362                 if (has_reduced_clock)
3363                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3364                                 reduced_clock.m2;
3365         }
3366
3367         if (!HAS_PCH_SPLIT(dev))
3368                 dpll = DPLL_VGA_MODE_DIS;
3369
3370         if (IS_I9XX(dev)) {
3371                 if (is_lvds)
3372                         dpll |= DPLLB_MODE_LVDS;
3373                 else
3374                         dpll |= DPLLB_MODE_DAC_SERIAL;
3375                 if (is_sdvo) {
3376                         dpll |= DPLL_DVO_HIGH_SPEED;
3377                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3378                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3379                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3380                         else if (HAS_PCH_SPLIT(dev))
3381                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3382                 }
3383                 if (is_dp)
3384                         dpll |= DPLL_DVO_HIGH_SPEED;
3385
3386                 /* compute bitmask from p1 value */
3387                 if (IS_PINEVIEW(dev))
3388                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3389                 else {
3390                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3391                         /* also FPA1 */
3392                         if (HAS_PCH_SPLIT(dev))
3393                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3394                         if (IS_G4X(dev) && has_reduced_clock)
3395                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3396                 }
3397                 switch (clock.p2) {
3398                 case 5:
3399                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3400                         break;
3401                 case 7:
3402                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3403                         break;
3404                 case 10:
3405                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3406                         break;
3407                 case 14:
3408                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3409                         break;
3410                 }
3411                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3412                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3413         } else {
3414                 if (is_lvds) {
3415                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3416                 } else {
3417                         if (clock.p1 == 2)
3418                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3419                         else
3420                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3421                         if (clock.p2 == 4)
3422                                 dpll |= PLL_P2_DIVIDE_BY_4;
3423                 }
3424         }
3425
3426         if (is_sdvo && is_tv)
3427                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3428         else if (is_tv)
3429                 /* XXX: just matching BIOS for now */
3430                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3431                 dpll |= 3;
3432         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3433                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3434         else
3435                 dpll |= PLL_REF_INPUT_DREFCLK;
3436
3437         /* setup pipeconf */
3438         pipeconf = I915_READ(pipeconf_reg);
3439
3440         /* Set up the display plane register */
3441         dspcntr = DISPPLANE_GAMMA_ENABLE;
3442
3443         /* Ironlake's plane is forced to pipe, bit 24 is to
3444            enable color space conversion */
3445         if (!HAS_PCH_SPLIT(dev)) {
3446                 if (pipe == 0)
3447                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3448                 else
3449                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3450         }
3451
3452         if (pipe == 0 && !IS_I965G(dev)) {
3453                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3454                  * core speed.
3455                  *
3456                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3457                  * pipe == 0 check?
3458                  */
3459                 if (mode->clock >
3460                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3461                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3462                 else
3463                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3464         }
3465
3466         /* Disable the panel fitter if it was on our pipe */
3467         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3468                 I915_WRITE(PFIT_CONTROL, 0);
3469
3470         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3471         drm_mode_debug_printmodeline(mode);
3472
3473         /* assign to Ironlake registers */
3474         if (HAS_PCH_SPLIT(dev)) {
3475                 fp_reg = pch_fp_reg;
3476                 dpll_reg = pch_dpll_reg;
3477         }
3478
3479         if (is_edp) {
3480                 ironlake_disable_pll_edp(crtc);
3481         } else if ((dpll & DPLL_VCO_ENABLE)) {
3482                 I915_WRITE(fp_reg, fp);
3483                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3484                 I915_READ(dpll_reg);
3485                 udelay(150);
3486         }
3487
3488         /* enable transcoder DPLL */
3489         if (HAS_PCH_CPT(dev)) {
3490                 temp = I915_READ(PCH_DPLL_SEL);
3491                 if (trans_dpll_sel == 0)
3492                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3493                 else
3494                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3495                 I915_WRITE(PCH_DPLL_SEL, temp);
3496                 I915_READ(PCH_DPLL_SEL);
3497                 udelay(150);
3498         }
3499
3500         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3501          * This is an exception to the general rule that mode_set doesn't turn
3502          * things on.
3503          */
3504         if (is_lvds) {
3505                 u32 lvds;
3506
3507                 if (HAS_PCH_SPLIT(dev))
3508                         lvds_reg = PCH_LVDS;
3509
3510                 lvds = I915_READ(lvds_reg);
3511                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3512                 if (pipe == 1) {
3513                         if (HAS_PCH_CPT(dev))
3514                                 lvds |= PORT_TRANS_B_SEL_CPT;
3515                         else
3516                                 lvds |= LVDS_PIPEB_SELECT;
3517                 } else {
3518                         if (HAS_PCH_CPT(dev))
3519                                 lvds &= ~PORT_TRANS_SEL_MASK;
3520                         else
3521                                 lvds &= ~LVDS_PIPEB_SELECT;
3522                 }
3523                 /* set the corresponsding LVDS_BORDER bit */
3524                 lvds |= dev_priv->lvds_border_bits;
3525                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3526                  * set the DPLLs for dual-channel mode or not.
3527                  */
3528                 if (clock.p2 == 7)
3529                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3530                 else
3531                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3532
3533                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3534                  * appropriately here, but we need to look more thoroughly into how
3535                  * panels behave in the two modes.
3536                  */
3537                 /* set the dithering flag */
3538                 if (IS_I965G(dev)) {
3539                         if (dev_priv->lvds_dither) {
3540                                 if (HAS_PCH_SPLIT(dev))
3541                                         pipeconf |= PIPE_ENABLE_DITHER;
3542                                 else
3543                                         lvds |= LVDS_ENABLE_DITHER;
3544                         } else {
3545                                 if (HAS_PCH_SPLIT(dev))
3546                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3547                                 else
3548                                         lvds &= ~LVDS_ENABLE_DITHER;
3549                         }
3550                 }
3551                 I915_WRITE(lvds_reg, lvds);
3552                 I915_READ(lvds_reg);
3553         }
3554         if (is_dp)
3555                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3556         else if (HAS_PCH_SPLIT(dev)) {
3557                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3558                 if (pipe == 0) {
3559                         I915_WRITE(TRANSA_DATA_M1, 0);
3560                         I915_WRITE(TRANSA_DATA_N1, 0);
3561                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3562                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3563                 } else {
3564                         I915_WRITE(TRANSB_DATA_M1, 0);
3565                         I915_WRITE(TRANSB_DATA_N1, 0);
3566                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3567                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3568                 }
3569         }
3570
3571         if (!is_edp) {
3572                 I915_WRITE(fp_reg, fp);
3573                 I915_WRITE(dpll_reg, dpll);
3574                 I915_READ(dpll_reg);
3575                 /* Wait for the clocks to stabilize. */
3576                 udelay(150);
3577
3578                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3579                         if (is_sdvo) {
3580                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3581                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3582                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3583                         } else
3584                                 I915_WRITE(dpll_md_reg, 0);
3585                 } else {
3586                         /* write it again -- the BIOS does, after all */
3587                         I915_WRITE(dpll_reg, dpll);
3588                 }
3589                 I915_READ(dpll_reg);
3590                 /* Wait for the clocks to stabilize. */
3591                 udelay(150);
3592         }
3593
3594         if (is_lvds && has_reduced_clock && i915_powersave) {
3595                 I915_WRITE(fp_reg + 4, fp2);
3596                 intel_crtc->lowfreq_avail = true;
3597                 if (HAS_PIPE_CXSR(dev)) {
3598                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3599                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3600                 }
3601         } else {
3602                 I915_WRITE(fp_reg + 4, fp);
3603                 intel_crtc->lowfreq_avail = false;
3604                 if (HAS_PIPE_CXSR(dev)) {
3605                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3606                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3607                 }
3608         }
3609
3610         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3611                    ((adjusted_mode->crtc_htotal - 1) << 16));
3612         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3613                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3614         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3615                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3616         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3617                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3618         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3619                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3620         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3621                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3622         /* pipesrc and dspsize control the size that is scaled from, which should
3623          * always be the user's requested size.
3624          */
3625         if (!HAS_PCH_SPLIT(dev)) {
3626                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3627                                 (mode->hdisplay - 1));
3628                 I915_WRITE(dsppos_reg, 0);
3629         }
3630         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3631
3632         if (HAS_PCH_SPLIT(dev)) {
3633                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3634                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3635                 I915_WRITE(link_m1_reg, m_n.link_m);
3636                 I915_WRITE(link_n1_reg, m_n.link_n);
3637
3638                 if (is_edp) {
3639                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3640                 } else {
3641                         /* enable FDI RX PLL too */
3642                         temp = I915_READ(fdi_rx_reg);
3643                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3644                         I915_READ(fdi_rx_reg);
3645                         udelay(200);
3646
3647                         /* enable FDI TX PLL too */
3648                         temp = I915_READ(fdi_tx_reg);
3649                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3650                         I915_READ(fdi_tx_reg);
3651
3652                         /* enable FDI RX PCDCLK */
3653                         temp = I915_READ(fdi_rx_reg);
3654                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3655                         I915_READ(fdi_rx_reg);
3656                         udelay(200);
3657                 }
3658         }
3659
3660         I915_WRITE(pipeconf_reg, pipeconf);
3661         I915_READ(pipeconf_reg);
3662
3663         intel_wait_for_vblank(dev);
3664
3665         if (IS_IRONLAKE(dev)) {
3666                 /* enable address swizzle for tiling buffer */
3667                 temp = I915_READ(DISP_ARB_CTL);
3668                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3669         }
3670
3671         I915_WRITE(dspcntr_reg, dspcntr);
3672
3673         /* Flush the plane changes */
3674         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3675
3676         if ((IS_I965G(dev) || plane == 0))
3677                 intel_update_fbc(crtc, &crtc->mode);
3678
3679         intel_update_watermarks(dev);
3680
3681         drm_vblank_post_modeset(dev, pipe);
3682
3683         return ret;
3684 }
3685
3686 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3687 void intel_crtc_load_lut(struct drm_crtc *crtc)
3688 {
3689         struct drm_device *dev = crtc->dev;
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3693         int i;
3694
3695         /* The clocks have to be on to load the palette. */
3696         if (!crtc->enabled)
3697                 return;
3698
3699         /* use legacy palette for Ironlake */
3700         if (HAS_PCH_SPLIT(dev))
3701                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3702                                                    LGC_PALETTE_B;
3703
3704         for (i = 0; i < 256; i++) {
3705                 I915_WRITE(palreg + 4 * i,
3706                            (intel_crtc->lut_r[i] << 16) |
3707                            (intel_crtc->lut_g[i] << 8) |
3708                            intel_crtc->lut_b[i]);
3709         }
3710 }
3711
3712 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3713                                  struct drm_file *file_priv,
3714                                  uint32_t handle,
3715                                  uint32_t width, uint32_t height)
3716 {
3717         struct drm_device *dev = crtc->dev;
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3720         struct drm_gem_object *bo;
3721         struct drm_i915_gem_object *obj_priv;
3722         int pipe = intel_crtc->pipe;
3723         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3724         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3725         uint32_t temp = I915_READ(control);
3726         size_t addr;
3727         int ret;
3728
3729         DRM_DEBUG_KMS("\n");
3730
3731         /* if we want to turn off the cursor ignore width and height */
3732         if (!handle) {
3733                 DRM_DEBUG_KMS("cursor off\n");
3734                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3735                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3736                         temp |= CURSOR_MODE_DISABLE;
3737                 } else {
3738                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3739                 }
3740                 addr = 0;
3741                 bo = NULL;
3742                 mutex_lock(&dev->struct_mutex);
3743                 goto finish;
3744         }
3745
3746         /* Currently we only support 64x64 cursors */
3747         if (width != 64 || height != 64) {
3748                 DRM_ERROR("we currently only support 64x64 cursors\n");
3749                 return -EINVAL;
3750         }
3751
3752         bo = drm_gem_object_lookup(dev, file_priv, handle);
3753         if (!bo)
3754                 return -ENOENT;
3755
3756         obj_priv = to_intel_bo(bo);
3757
3758         if (bo->size < width * height * 4) {
3759                 DRM_ERROR("buffer is to small\n");
3760                 ret = -ENOMEM;
3761                 goto fail;
3762         }
3763
3764         /* we only need to pin inside GTT if cursor is non-phy */
3765         mutex_lock(&dev->struct_mutex);
3766         if (!dev_priv->info->cursor_needs_physical) {
3767                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3768                 if (ret) {
3769                         DRM_ERROR("failed to pin cursor bo\n");
3770                         goto fail_locked;
3771                 }
3772                 addr = obj_priv->gtt_offset;
3773         } else {
3774                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3775                 if (ret) {
3776                         DRM_ERROR("failed to attach phys object\n");
3777                         goto fail_locked;
3778                 }
3779                 addr = obj_priv->phys_obj->handle->busaddr;
3780         }
3781
3782         if (!IS_I9XX(dev))
3783                 I915_WRITE(CURSIZE, (height << 12) | width);
3784
3785         /* Hooray for CUR*CNTR differences */
3786         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3787                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3788                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3789                 temp |= (pipe << 28); /* Connect to correct pipe */
3790         } else {
3791                 temp &= ~(CURSOR_FORMAT_MASK);
3792                 temp |= CURSOR_ENABLE;
3793                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3794         }
3795
3796  finish:
3797         I915_WRITE(control, temp);
3798         I915_WRITE(base, addr);
3799
3800         if (intel_crtc->cursor_bo) {
3801                 if (dev_priv->info->cursor_needs_physical) {
3802                         if (intel_crtc->cursor_bo != bo)
3803                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3804                 } else
3805                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3806                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3807         }
3808
3809         mutex_unlock(&dev->struct_mutex);
3810
3811         intel_crtc->cursor_addr = addr;
3812         intel_crtc->cursor_bo = bo;
3813
3814         return 0;
3815 fail_locked:
3816         mutex_unlock(&dev->struct_mutex);
3817 fail:
3818         drm_gem_object_unreference_unlocked(bo);
3819         return ret;
3820 }
3821
3822 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3823 {
3824         struct drm_device *dev = crtc->dev;
3825         struct drm_i915_private *dev_priv = dev->dev_private;
3826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3827         struct intel_framebuffer *intel_fb;
3828         int pipe = intel_crtc->pipe;
3829         uint32_t temp = 0;
3830         uint32_t adder;
3831
3832         if (crtc->fb) {
3833                 intel_fb = to_intel_framebuffer(crtc->fb);
3834                 intel_mark_busy(dev, intel_fb->obj);
3835         }
3836
3837         if (x < 0) {
3838                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3839                 x = -x;
3840         }
3841         if (y < 0) {
3842                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3843                 y = -y;
3844         }
3845
3846         temp |= x << CURSOR_X_SHIFT;
3847         temp |= y << CURSOR_Y_SHIFT;
3848
3849         adder = intel_crtc->cursor_addr;
3850         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3851         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3852
3853         return 0;
3854 }
3855
3856 /** Sets the color ramps on behalf of RandR */
3857 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3858                                  u16 blue, int regno)
3859 {
3860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861
3862         intel_crtc->lut_r[regno] = red >> 8;
3863         intel_crtc->lut_g[regno] = green >> 8;
3864         intel_crtc->lut_b[regno] = blue >> 8;
3865 }
3866
3867 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3868                              u16 *blue, int regno)
3869 {
3870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3871
3872         *red = intel_crtc->lut_r[regno] << 8;
3873         *green = intel_crtc->lut_g[regno] << 8;
3874         *blue = intel_crtc->lut_b[regno] << 8;
3875 }
3876
3877 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3878                                  u16 *blue, uint32_t size)
3879 {
3880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3881         int i;
3882
3883         if (size != 256)
3884                 return;
3885
3886         for (i = 0; i < 256; i++) {
3887                 intel_crtc->lut_r[i] = red[i] >> 8;
3888                 intel_crtc->lut_g[i] = green[i] >> 8;
3889                 intel_crtc->lut_b[i] = blue[i] >> 8;
3890         }
3891
3892         intel_crtc_load_lut(crtc);
3893 }
3894
3895 /**
3896  * Get a pipe with a simple mode set on it for doing load-based monitor
3897  * detection.
3898  *
3899  * It will be up to the load-detect code to adjust the pipe as appropriate for
3900  * its requirements.  The pipe will be connected to no other encoders.
3901  *
3902  * Currently this code will only succeed if there is a pipe with no encoders
3903  * configured for it.  In the future, it could choose to temporarily disable
3904  * some outputs to free up a pipe for its use.
3905  *
3906  * \return crtc, or NULL if no pipes are available.
3907  */
3908
3909 /* VESA 640x480x72Hz mode to set on the pipe */
3910 static struct drm_display_mode load_detect_mode = {
3911         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3912                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3913 };
3914
3915 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
3916                                             struct drm_connector *connector,
3917                                             struct drm_display_mode *mode,
3918                                             int *dpms_mode)
3919 {
3920         struct intel_crtc *intel_crtc;
3921         struct drm_crtc *possible_crtc;
3922         struct drm_crtc *supported_crtc =NULL;
3923         struct drm_encoder *encoder = &intel_encoder->enc;
3924         struct drm_crtc *crtc = NULL;
3925         struct drm_device *dev = encoder->dev;
3926         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3927         struct drm_crtc_helper_funcs *crtc_funcs;
3928         int i = -1;
3929
3930         /*
3931          * Algorithm gets a little messy:
3932          *   - if the connector already has an assigned crtc, use it (but make
3933          *     sure it's on first)
3934          *   - try to find the first unused crtc that can drive this connector,
3935          *     and use that if we find one
3936          *   - if there are no unused crtcs available, try to use the first
3937          *     one we found that supports the connector
3938          */
3939
3940         /* See if we already have a CRTC for this connector */
3941         if (encoder->crtc) {
3942                 crtc = encoder->crtc;
3943                 /* Make sure the crtc and connector are running */
3944                 intel_crtc = to_intel_crtc(crtc);
3945                 *dpms_mode = intel_crtc->dpms_mode;
3946                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3947                         crtc_funcs = crtc->helper_private;
3948                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3949                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3950                 }
3951                 return crtc;
3952         }
3953
3954         /* Find an unused one (if possible) */
3955         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3956                 i++;
3957                 if (!(encoder->possible_crtcs & (1 << i)))
3958                         continue;
3959                 if (!possible_crtc->enabled) {
3960                         crtc = possible_crtc;
3961                         break;
3962                 }
3963                 if (!supported_crtc)
3964                         supported_crtc = possible_crtc;
3965         }
3966
3967         /*
3968          * If we didn't find an unused CRTC, don't use any.
3969          */
3970         if (!crtc) {
3971                 return NULL;
3972         }
3973
3974         encoder->crtc = crtc;
3975         connector->encoder = encoder;
3976         intel_encoder->load_detect_temp = true;
3977
3978         intel_crtc = to_intel_crtc(crtc);
3979         *dpms_mode = intel_crtc->dpms_mode;
3980
3981         if (!crtc->enabled) {
3982                 if (!mode)
3983                         mode = &load_detect_mode;
3984                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3985         } else {
3986                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3987                         crtc_funcs = crtc->helper_private;
3988                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3989                 }
3990
3991                 /* Add this connector to the crtc */
3992                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3993                 encoder_funcs->commit(encoder);
3994         }
3995         /* let the connector get through one full cycle before testing */
3996         intel_wait_for_vblank(dev);
3997
3998         return crtc;
3999 }
4000
4001 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4002                                     struct drm_connector *connector, int dpms_mode)
4003 {
4004         struct drm_encoder *encoder = &intel_encoder->enc;
4005         struct drm_device *dev = encoder->dev;
4006         struct drm_crtc *crtc = encoder->crtc;
4007         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4008         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4009
4010         if (intel_encoder->load_detect_temp) {
4011                 encoder->crtc = NULL;
4012                 connector->encoder = NULL;
4013                 intel_encoder->load_detect_temp = false;
4014                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4015                 drm_helper_disable_unused_functions(dev);
4016         }
4017
4018         /* Switch crtc and encoder back off if necessary */
4019         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4020                 if (encoder->crtc == crtc)
4021                         encoder_funcs->dpms(encoder, dpms_mode);
4022                 crtc_funcs->dpms(crtc, dpms_mode);
4023         }
4024 }
4025
4026 /* Returns the clock of the currently programmed mode of the given pipe. */
4027 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4028 {
4029         struct drm_i915_private *dev_priv = dev->dev_private;
4030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4031         int pipe = intel_crtc->pipe;
4032         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4033         u32 fp;
4034         intel_clock_t clock;
4035
4036         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4037                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4038         else
4039                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4040
4041         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4042         if (IS_PINEVIEW(dev)) {
4043                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4044                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4045         } else {
4046                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4047                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4048         }
4049
4050         if (IS_I9XX(dev)) {
4051                 if (IS_PINEVIEW(dev))
4052                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4053                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4054                 else
4055                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4056                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4057
4058                 switch (dpll & DPLL_MODE_MASK) {
4059                 case DPLLB_MODE_DAC_SERIAL:
4060                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4061                                 5 : 10;
4062                         break;
4063                 case DPLLB_MODE_LVDS:
4064                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4065                                 7 : 14;
4066                         break;
4067                 default:
4068                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4069                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4070                         return 0;
4071                 }
4072
4073                 /* XXX: Handle the 100Mhz refclk */
4074                 intel_clock(dev, 96000, &clock);
4075         } else {
4076                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4077
4078                 if (is_lvds) {
4079                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4080                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4081                         clock.p2 = 14;
4082
4083                         if ((dpll & PLL_REF_INPUT_MASK) ==
4084                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4085                                 /* XXX: might not be 66MHz */
4086                                 intel_clock(dev, 66000, &clock);
4087                         } else
4088                                 intel_clock(dev, 48000, &clock);
4089                 } else {
4090                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4091                                 clock.p1 = 2;
4092                         else {
4093                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4094                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4095                         }
4096                         if (dpll & PLL_P2_DIVIDE_BY_4)
4097                                 clock.p2 = 4;
4098                         else
4099                                 clock.p2 = 2;
4100
4101                         intel_clock(dev, 48000, &clock);
4102                 }
4103         }
4104
4105         /* XXX: It would be nice to validate the clocks, but we can't reuse
4106          * i830PllIsValid() because it relies on the xf86_config connector
4107          * configuration being accurate, which it isn't necessarily.
4108          */
4109
4110         return clock.dot;
4111 }
4112
4113 /** Returns the currently programmed mode of the given pipe. */
4114 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4115                                              struct drm_crtc *crtc)
4116 {
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         int pipe = intel_crtc->pipe;
4120         struct drm_display_mode *mode;
4121         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4122         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4123         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4124         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4125
4126         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4127         if (!mode)
4128                 return NULL;
4129
4130         mode->clock = intel_crtc_clock_get(dev, crtc);
4131         mode->hdisplay = (htot & 0xffff) + 1;
4132         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4133         mode->hsync_start = (hsync & 0xffff) + 1;
4134         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4135         mode->vdisplay = (vtot & 0xffff) + 1;
4136         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4137         mode->vsync_start = (vsync & 0xffff) + 1;
4138         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4139
4140         drm_mode_set_name(mode);
4141         drm_mode_set_crtcinfo(mode, 0);
4142
4143         return mode;
4144 }
4145
4146 #define GPU_IDLE_TIMEOUT 500 /* ms */
4147
4148 /* When this timer fires, we've been idle for awhile */
4149 static void intel_gpu_idle_timer(unsigned long arg)
4150 {
4151         struct drm_device *dev = (struct drm_device *)arg;
4152         drm_i915_private_t *dev_priv = dev->dev_private;
4153
4154         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4155
4156         dev_priv->busy = false;
4157
4158         queue_work(dev_priv->wq, &dev_priv->idle_work);
4159 }
4160
4161 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4162
4163 static void intel_crtc_idle_timer(unsigned long arg)
4164 {
4165         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4166         struct drm_crtc *crtc = &intel_crtc->base;
4167         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4168
4169         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4170
4171         intel_crtc->busy = false;
4172
4173         queue_work(dev_priv->wq, &dev_priv->idle_work);
4174 }
4175
4176 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4177 {
4178         struct drm_device *dev = crtc->dev;
4179         drm_i915_private_t *dev_priv = dev->dev_private;
4180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4181         int pipe = intel_crtc->pipe;
4182         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4183         int dpll = I915_READ(dpll_reg);
4184
4185         if (HAS_PCH_SPLIT(dev))
4186                 return;
4187
4188         if (!dev_priv->lvds_downclock_avail)
4189                 return;
4190
4191         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4192                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4193
4194                 /* Unlock panel regs */
4195                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4196
4197                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4198                 I915_WRITE(dpll_reg, dpll);
4199                 dpll = I915_READ(dpll_reg);
4200                 intel_wait_for_vblank(dev);
4201                 dpll = I915_READ(dpll_reg);
4202                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4203                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4204
4205                 /* ...and lock them again */
4206                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4207         }
4208
4209         /* Schedule downclock */
4210         if (schedule)
4211                 mod_timer(&intel_crtc->idle_timer, jiffies +
4212                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4213 }
4214
4215 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         drm_i915_private_t *dev_priv = dev->dev_private;
4219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220         int pipe = intel_crtc->pipe;
4221         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4222         int dpll = I915_READ(dpll_reg);
4223
4224         if (HAS_PCH_SPLIT(dev))
4225                 return;
4226
4227         if (!dev_priv->lvds_downclock_avail)
4228                 return;
4229
4230         /*
4231          * Since this is called by a timer, we should never get here in
4232          * the manual case.
4233          */
4234         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4235                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4236
4237                 /* Unlock panel regs */
4238                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4239
4240                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4241                 I915_WRITE(dpll_reg, dpll);
4242                 dpll = I915_READ(dpll_reg);
4243                 intel_wait_for_vblank(dev);
4244                 dpll = I915_READ(dpll_reg);
4245                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4246                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4247
4248                 /* ...and lock them again */
4249                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4250         }
4251
4252 }
4253
4254 /**
4255  * intel_idle_update - adjust clocks for idleness
4256  * @work: work struct
4257  *
4258  * Either the GPU or display (or both) went idle.  Check the busy status
4259  * here and adjust the CRTC and GPU clocks as necessary.
4260  */
4261 static void intel_idle_update(struct work_struct *work)
4262 {
4263         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4264                                                     idle_work);
4265         struct drm_device *dev = dev_priv->dev;
4266         struct drm_crtc *crtc;
4267         struct intel_crtc *intel_crtc;
4268
4269         if (!i915_powersave)
4270                 return;
4271
4272         mutex_lock(&dev->struct_mutex);
4273
4274         if (IS_I945G(dev) || IS_I945GM(dev)) {
4275                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4276                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4277         }
4278
4279         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4280                 /* Skip inactive CRTCs */
4281                 if (!crtc->fb)
4282                         continue;
4283
4284                 intel_crtc = to_intel_crtc(crtc);
4285                 if (!intel_crtc->busy)
4286                         intel_decrease_pllclock(crtc);
4287         }
4288
4289         mutex_unlock(&dev->struct_mutex);
4290 }
4291
4292 /**
4293  * intel_mark_busy - mark the GPU and possibly the display busy
4294  * @dev: drm device
4295  * @obj: object we're operating on
4296  *
4297  * Callers can use this function to indicate that the GPU is busy processing
4298  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4299  * buffer), we'll also mark the display as busy, so we know to increase its
4300  * clock frequency.
4301  */
4302 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4303 {
4304         drm_i915_private_t *dev_priv = dev->dev_private;
4305         struct drm_crtc *crtc = NULL;
4306         struct intel_framebuffer *intel_fb;
4307         struct intel_crtc *intel_crtc;
4308
4309         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4310                 return;
4311
4312         if (!dev_priv->busy) {
4313                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4314                         u32 fw_blc_self;
4315
4316                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4317                         fw_blc_self = I915_READ(FW_BLC_SELF);
4318                         fw_blc_self &= ~FW_BLC_SELF_EN;
4319                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4320                 }
4321                 dev_priv->busy = true;
4322         } else
4323                 mod_timer(&dev_priv->idle_timer, jiffies +
4324                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4325
4326         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4327                 if (!crtc->fb)
4328                         continue;
4329
4330                 intel_crtc = to_intel_crtc(crtc);
4331                 intel_fb = to_intel_framebuffer(crtc->fb);
4332                 if (intel_fb->obj == obj) {
4333                         if (!intel_crtc->busy) {
4334                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4335                                         u32 fw_blc_self;
4336
4337                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4338                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4339                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4340                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4341                                 }
4342                                 /* Non-busy -> busy, upclock */
4343                                 intel_increase_pllclock(crtc, true);
4344                                 intel_crtc->busy = true;
4345                         } else {
4346                                 /* Busy -> busy, put off timer */
4347                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4348                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4349                         }
4350                 }
4351         }
4352 }
4353
4354 static void intel_crtc_destroy(struct drm_crtc *crtc)
4355 {
4356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4357
4358         drm_crtc_cleanup(crtc);
4359         kfree(intel_crtc);
4360 }
4361
4362 struct intel_unpin_work {
4363         struct work_struct work;
4364         struct drm_device *dev;
4365         struct drm_gem_object *old_fb_obj;
4366         struct drm_gem_object *pending_flip_obj;
4367         struct drm_pending_vblank_event *event;
4368         int pending;
4369 };
4370
4371 static void intel_unpin_work_fn(struct work_struct *__work)
4372 {
4373         struct intel_unpin_work *work =
4374                 container_of(__work, struct intel_unpin_work, work);
4375
4376         mutex_lock(&work->dev->struct_mutex);
4377         i915_gem_object_unpin(work->old_fb_obj);
4378         drm_gem_object_unreference(work->pending_flip_obj);
4379         drm_gem_object_unreference(work->old_fb_obj);
4380         mutex_unlock(&work->dev->struct_mutex);
4381         kfree(work);
4382 }
4383
4384 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4385 {
4386         drm_i915_private_t *dev_priv = dev->dev_private;
4387         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4389         struct intel_unpin_work *work;
4390         struct drm_i915_gem_object *obj_priv;
4391         struct drm_pending_vblank_event *e;
4392         struct timeval now;
4393         unsigned long flags;
4394
4395         /* Ignore early vblank irqs */
4396         if (intel_crtc == NULL)
4397                 return;
4398
4399         spin_lock_irqsave(&dev->event_lock, flags);
4400         work = intel_crtc->unpin_work;
4401         if (work == NULL || !work->pending) {
4402                 if (work && !work->pending) {
4403                         obj_priv = to_intel_bo(work->pending_flip_obj);
4404                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4405                                          obj_priv,
4406                                          atomic_read(&obj_priv->pending_flip));
4407                 }
4408                 spin_unlock_irqrestore(&dev->event_lock, flags);
4409                 return;
4410         }
4411
4412         intel_crtc->unpin_work = NULL;
4413         drm_vblank_put(dev, intel_crtc->pipe);
4414
4415         if (work->event) {
4416                 e = work->event;
4417                 do_gettimeofday(&now);
4418                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4419                 e->event.tv_sec = now.tv_sec;
4420                 e->event.tv_usec = now.tv_usec;
4421                 list_add_tail(&e->base.link,
4422                               &e->base.file_priv->event_list);
4423                 wake_up_interruptible(&e->base.file_priv->event_wait);
4424         }
4425
4426         spin_unlock_irqrestore(&dev->event_lock, flags);
4427
4428         obj_priv = to_intel_bo(work->pending_flip_obj);
4429
4430         /* Initial scanout buffer will have a 0 pending flip count */
4431         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4432             atomic_dec_and_test(&obj_priv->pending_flip))
4433                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4434         schedule_work(&work->work);
4435 }
4436
4437 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4438 {
4439         drm_i915_private_t *dev_priv = dev->dev_private;
4440         struct intel_crtc *intel_crtc =
4441                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4442         unsigned long flags;
4443
4444         spin_lock_irqsave(&dev->event_lock, flags);
4445         if (intel_crtc->unpin_work) {
4446                 intel_crtc->unpin_work->pending = 1;
4447         } else {
4448                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4449         }
4450         spin_unlock_irqrestore(&dev->event_lock, flags);
4451 }
4452
4453 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4454                                 struct drm_framebuffer *fb,
4455                                 struct drm_pending_vblank_event *event)
4456 {
4457         struct drm_device *dev = crtc->dev;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459         struct intel_framebuffer *intel_fb;
4460         struct drm_i915_gem_object *obj_priv;
4461         struct drm_gem_object *obj;
4462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4463         struct intel_unpin_work *work;
4464         unsigned long flags;
4465         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4466         int ret, pipesrc;
4467         RING_LOCALS;
4468
4469         work = kzalloc(sizeof *work, GFP_KERNEL);
4470         if (work == NULL)
4471                 return -ENOMEM;
4472
4473         mutex_lock(&dev->struct_mutex);
4474
4475         work->event = event;
4476         work->dev = crtc->dev;
4477         intel_fb = to_intel_framebuffer(crtc->fb);
4478         work->old_fb_obj = intel_fb->obj;
4479         INIT_WORK(&work->work, intel_unpin_work_fn);
4480
4481         /* We borrow the event spin lock for protecting unpin_work */
4482         spin_lock_irqsave(&dev->event_lock, flags);
4483         if (intel_crtc->unpin_work) {
4484                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4485                 spin_unlock_irqrestore(&dev->event_lock, flags);
4486                 kfree(work);
4487                 mutex_unlock(&dev->struct_mutex);
4488                 return -EBUSY;
4489         }
4490         intel_crtc->unpin_work = work;
4491         spin_unlock_irqrestore(&dev->event_lock, flags);
4492
4493         intel_fb = to_intel_framebuffer(fb);
4494         obj = intel_fb->obj;
4495
4496         ret = intel_pin_and_fence_fb_obj(dev, obj);
4497         if (ret != 0) {
4498                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4499                           to_intel_bo(obj));
4500                 kfree(work);
4501                 intel_crtc->unpin_work = NULL;
4502                 mutex_unlock(&dev->struct_mutex);
4503                 return ret;
4504         }
4505
4506         /* Reference the objects for the scheduled work. */
4507         drm_gem_object_reference(work->old_fb_obj);
4508         drm_gem_object_reference(obj);
4509
4510         crtc->fb = fb;
4511         i915_gem_object_flush_write_domain(obj);
4512         drm_vblank_get(dev, intel_crtc->pipe);
4513         obj_priv = to_intel_bo(obj);
4514         atomic_inc(&obj_priv->pending_flip);
4515         work->pending_flip_obj = obj;
4516
4517         BEGIN_LP_RING(4);
4518         OUT_RING(MI_DISPLAY_FLIP |
4519                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4520         OUT_RING(fb->pitch);
4521         if (IS_I965G(dev)) {
4522                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4523                 pipesrc = I915_READ(pipesrc_reg); 
4524                 OUT_RING(pipesrc & 0x0fff0fff);
4525         } else {
4526                 OUT_RING(obj_priv->gtt_offset);
4527                 OUT_RING(MI_NOOP);
4528         }
4529         ADVANCE_LP_RING();
4530
4531         mutex_unlock(&dev->struct_mutex);
4532
4533         return 0;
4534 }
4535
4536 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4537         .dpms = intel_crtc_dpms,
4538         .mode_fixup = intel_crtc_mode_fixup,
4539         .mode_set = intel_crtc_mode_set,
4540         .mode_set_base = intel_pipe_set_base,
4541         .prepare = intel_crtc_prepare,
4542         .commit = intel_crtc_commit,
4543         .load_lut = intel_crtc_load_lut,
4544 };
4545
4546 static const struct drm_crtc_funcs intel_crtc_funcs = {
4547         .cursor_set = intel_crtc_cursor_set,
4548         .cursor_move = intel_crtc_cursor_move,
4549         .gamma_set = intel_crtc_gamma_set,
4550         .set_config = drm_crtc_helper_set_config,
4551         .destroy = intel_crtc_destroy,
4552         .page_flip = intel_crtc_page_flip,
4553 };
4554
4555
4556 static void intel_crtc_init(struct drm_device *dev, int pipe)
4557 {
4558         drm_i915_private_t *dev_priv = dev->dev_private;
4559         struct intel_crtc *intel_crtc;
4560         int i;
4561
4562         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4563         if (intel_crtc == NULL)
4564                 return;
4565
4566         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4567
4568         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4569         intel_crtc->pipe = pipe;
4570         intel_crtc->plane = pipe;
4571         for (i = 0; i < 256; i++) {
4572                 intel_crtc->lut_r[i] = i;
4573                 intel_crtc->lut_g[i] = i;
4574                 intel_crtc->lut_b[i] = i;
4575         }
4576
4577         /* Swap pipes & planes for FBC on pre-965 */
4578         intel_crtc->pipe = pipe;
4579         intel_crtc->plane = pipe;
4580         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4581                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4582                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4583         }
4584
4585         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4586                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4587         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4588         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4589
4590         intel_crtc->cursor_addr = 0;
4591         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4592         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4593
4594         intel_crtc->busy = false;
4595
4596         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4597                     (unsigned long)intel_crtc);
4598 }
4599
4600 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4601                                 struct drm_file *file_priv)
4602 {
4603         drm_i915_private_t *dev_priv = dev->dev_private;
4604         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4605         struct drm_mode_object *drmmode_obj;
4606         struct intel_crtc *crtc;
4607
4608         if (!dev_priv) {
4609                 DRM_ERROR("called with no initialization\n");
4610                 return -EINVAL;
4611         }
4612
4613         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4614                         DRM_MODE_OBJECT_CRTC);
4615
4616         if (!drmmode_obj) {
4617                 DRM_ERROR("no such CRTC id\n");
4618                 return -EINVAL;
4619         }
4620
4621         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4622         pipe_from_crtc_id->pipe = crtc->pipe;
4623
4624         return 0;
4625 }
4626
4627 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4628 {
4629         struct drm_crtc *crtc = NULL;
4630
4631         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4632                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4633                 if (intel_crtc->pipe == pipe)
4634                         break;
4635         }
4636         return crtc;
4637 }
4638
4639 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4640 {
4641         int index_mask = 0;
4642         struct drm_encoder *encoder;
4643         int entry = 0;
4644
4645         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4646                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4647                 if (type_mask & intel_encoder->clone_mask)
4648                         index_mask |= (1 << entry);
4649                 entry++;
4650         }
4651         return index_mask;
4652 }
4653
4654
4655 static void intel_setup_outputs(struct drm_device *dev)
4656 {
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct drm_encoder *encoder;
4659
4660         intel_crt_init(dev);
4661
4662         /* Set up integrated LVDS */
4663         if (IS_MOBILE(dev) && !IS_I830(dev))
4664                 intel_lvds_init(dev);
4665
4666         if (HAS_PCH_SPLIT(dev)) {
4667                 int found;
4668
4669                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4670                         intel_dp_init(dev, DP_A);
4671
4672                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4673                         /* PCH SDVOB multiplex with HDMIB */
4674                         found = intel_sdvo_init(dev, PCH_SDVOB);
4675                         if (!found)
4676                                 intel_hdmi_init(dev, HDMIB);
4677                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4678                                 intel_dp_init(dev, PCH_DP_B);
4679                 }
4680
4681                 if (I915_READ(HDMIC) & PORT_DETECTED)
4682                         intel_hdmi_init(dev, HDMIC);
4683
4684                 if (I915_READ(HDMID) & PORT_DETECTED)
4685                         intel_hdmi_init(dev, HDMID);
4686
4687                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4688                         intel_dp_init(dev, PCH_DP_C);
4689
4690                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4691                         intel_dp_init(dev, PCH_DP_D);
4692
4693         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4694                 bool found = false;
4695
4696                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4697                         DRM_DEBUG_KMS("probing SDVOB\n");
4698                         found = intel_sdvo_init(dev, SDVOB);
4699                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4700                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4701                                 intel_hdmi_init(dev, SDVOB);
4702                         }
4703
4704                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4705                                 DRM_DEBUG_KMS("probing DP_B\n");
4706                                 intel_dp_init(dev, DP_B);
4707                         }
4708                 }
4709
4710                 /* Before G4X SDVOC doesn't have its own detect register */
4711
4712                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4713                         DRM_DEBUG_KMS("probing SDVOC\n");
4714                         found = intel_sdvo_init(dev, SDVOC);
4715                 }
4716
4717                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4718
4719                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4720                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4721                                 intel_hdmi_init(dev, SDVOC);
4722                         }
4723                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4724                                 DRM_DEBUG_KMS("probing DP_C\n");
4725                                 intel_dp_init(dev, DP_C);
4726                         }
4727                 }
4728
4729                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4730                     (I915_READ(DP_D) & DP_DETECTED)) {
4731                         DRM_DEBUG_KMS("probing DP_D\n");
4732                         intel_dp_init(dev, DP_D);
4733                 }
4734         } else if (IS_GEN2(dev))
4735                 intel_dvo_init(dev);
4736
4737         if (SUPPORTS_TV(dev))
4738                 intel_tv_init(dev);
4739
4740         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4741                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4742
4743                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4744                 encoder->possible_clones = intel_encoder_clones(dev,
4745                                                 intel_encoder->clone_mask);
4746         }
4747 }
4748
4749 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4750 {
4751         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4752         struct drm_device *dev = fb->dev;
4753
4754         if (fb->fbdev)
4755                 intelfb_remove(dev, fb);
4756
4757         drm_framebuffer_cleanup(fb);
4758         drm_gem_object_unreference_unlocked(intel_fb->obj);
4759
4760         kfree(intel_fb);
4761 }
4762
4763 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4764                                                 struct drm_file *file_priv,
4765                                                 unsigned int *handle)
4766 {
4767         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4768         struct drm_gem_object *object = intel_fb->obj;
4769
4770         return drm_gem_handle_create(file_priv, object, handle);
4771 }
4772
4773 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4774         .destroy = intel_user_framebuffer_destroy,
4775         .create_handle = intel_user_framebuffer_create_handle,
4776 };
4777
4778 int intel_framebuffer_create(struct drm_device *dev,
4779                              struct drm_mode_fb_cmd *mode_cmd,
4780                              struct drm_framebuffer **fb,
4781                              struct drm_gem_object *obj)
4782 {
4783         struct intel_framebuffer *intel_fb;
4784         int ret;
4785
4786         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4787         if (!intel_fb)
4788                 return -ENOMEM;
4789
4790         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4791         if (ret) {
4792                 DRM_ERROR("framebuffer init failed %d\n", ret);
4793                 return ret;
4794         }
4795
4796         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4797
4798         intel_fb->obj = obj;
4799
4800         *fb = &intel_fb->base;
4801
4802         return 0;
4803 }
4804
4805
4806 static struct drm_framebuffer *
4807 intel_user_framebuffer_create(struct drm_device *dev,
4808                               struct drm_file *filp,
4809                               struct drm_mode_fb_cmd *mode_cmd)
4810 {
4811         struct drm_gem_object *obj;
4812         struct drm_framebuffer *fb;
4813         int ret;
4814
4815         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4816         if (!obj)
4817                 return NULL;
4818
4819         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4820         if (ret) {
4821                 drm_gem_object_unreference_unlocked(obj);
4822                 return NULL;
4823         }
4824
4825         return fb;
4826 }
4827
4828 static const struct drm_mode_config_funcs intel_mode_funcs = {
4829         .fb_create = intel_user_framebuffer_create,
4830         .fb_changed = intelfb_probe,
4831 };
4832
4833 static struct drm_gem_object *
4834 intel_alloc_power_context(struct drm_device *dev)
4835 {
4836         struct drm_gem_object *pwrctx;
4837         int ret;
4838
4839         pwrctx = drm_gem_object_alloc(dev, 4096);
4840         if (!pwrctx) {
4841                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4842                 return NULL;
4843         }
4844
4845         mutex_lock(&dev->struct_mutex);
4846         ret = i915_gem_object_pin(pwrctx, 4096);
4847         if (ret) {
4848                 DRM_ERROR("failed to pin power context: %d\n", ret);
4849                 goto err_unref;
4850         }
4851
4852         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4853         if (ret) {
4854                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4855                 goto err_unpin;
4856         }
4857         mutex_unlock(&dev->struct_mutex);
4858
4859         return pwrctx;
4860
4861 err_unpin:
4862         i915_gem_object_unpin(pwrctx);
4863 err_unref:
4864         drm_gem_object_unreference(pwrctx);
4865         mutex_unlock(&dev->struct_mutex);
4866         return NULL;
4867 }
4868
4869 void ironlake_enable_drps(struct drm_device *dev)
4870 {
4871         struct drm_i915_private *dev_priv = dev->dev_private;
4872         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4873         u8 fmax, fmin, fstart, vstart;
4874         int i = 0;
4875
4876         /* 100ms RC evaluation intervals */
4877         I915_WRITE(RCUPEI, 100000);
4878         I915_WRITE(RCDNEI, 100000);
4879
4880         /* Set max/min thresholds to 90ms and 80ms respectively */
4881         I915_WRITE(RCBMAXAVG, 90000);
4882         I915_WRITE(RCBMINAVG, 80000);
4883
4884         I915_WRITE(MEMIHYST, 1);
4885
4886         /* Set up min, max, and cur for interrupt handling */
4887         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4888         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4889         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4890                 MEMMODE_FSTART_SHIFT;
4891         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4892                 PXVFREQ_PX_SHIFT;
4893
4894         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
4895         dev_priv->min_delay = fmin;
4896         dev_priv->cur_delay = fstart;
4897
4898         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4899
4900         /*
4901          * Interrupts will be enabled in ironlake_irq_postinstall
4902          */
4903
4904         I915_WRITE(VIDSTART, vstart);
4905         POSTING_READ(VIDSTART);
4906
4907         rgvmodectl |= MEMMODE_SWMODE_EN;
4908         I915_WRITE(MEMMODECTL, rgvmodectl);
4909
4910         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
4911                 if (i++ > 100) {
4912                         DRM_ERROR("stuck trying to change perf mode\n");
4913                         break;
4914                 }
4915                 msleep(1);
4916         }
4917         msleep(1);
4918
4919         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4920                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4921         I915_WRITE(MEMSWCTL, rgvswctl);
4922         POSTING_READ(MEMSWCTL);
4923
4924         rgvswctl |= MEMCTL_CMD_STS;
4925         I915_WRITE(MEMSWCTL, rgvswctl);
4926 }
4927
4928 void ironlake_disable_drps(struct drm_device *dev)
4929 {
4930         struct drm_i915_private *dev_priv = dev->dev_private;
4931         u32 rgvswctl;
4932         u8 fstart;
4933
4934         /* Ack interrupts, disable EFC interrupt */
4935         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4936         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4937         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4938         I915_WRITE(DEIIR, DE_PCU_EVENT);
4939         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4940
4941         /* Go back to the starting frequency */
4942         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
4943                 MEMMODE_FSTART_SHIFT;
4944         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4945                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4946         I915_WRITE(MEMSWCTL, rgvswctl);
4947         msleep(1);
4948         rgvswctl |= MEMCTL_CMD_STS;
4949         I915_WRITE(MEMSWCTL, rgvswctl);
4950         msleep(1);
4951
4952 }
4953
4954 void intel_init_clock_gating(struct drm_device *dev)
4955 {
4956         struct drm_i915_private *dev_priv = dev->dev_private;
4957
4958         /*
4959          * Disable clock gating reported to work incorrectly according to the
4960          * specs, but enable as much else as we can.
4961          */
4962         if (HAS_PCH_SPLIT(dev)) {
4963                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
4964
4965                 if (IS_IRONLAKE(dev)) {
4966                         /* Required for FBC */
4967                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
4968                         /* Required for CxSR */
4969                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
4970
4971                         I915_WRITE(PCH_3DCGDIS0,
4972                                    MARIUNIT_CLOCK_GATE_DISABLE |
4973                                    SVSMUNIT_CLOCK_GATE_DISABLE);
4974                 }
4975
4976                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
4977                 return;
4978         } else if (IS_G4X(dev)) {
4979                 uint32_t dspclk_gate;
4980                 I915_WRITE(RENCLK_GATE_D1, 0);
4981                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4982                        GS_UNIT_CLOCK_GATE_DISABLE |
4983                        CL_UNIT_CLOCK_GATE_DISABLE);
4984                 I915_WRITE(RAMCLK_GATE_D, 0);
4985                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4986                         OVRUNIT_CLOCK_GATE_DISABLE |
4987                         OVCUNIT_CLOCK_GATE_DISABLE;
4988                 if (IS_GM45(dev))
4989                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4990                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4991         } else if (IS_I965GM(dev)) {
4992                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4993                 I915_WRITE(RENCLK_GATE_D2, 0);
4994                 I915_WRITE(DSPCLK_GATE_D, 0);
4995                 I915_WRITE(RAMCLK_GATE_D, 0);
4996                 I915_WRITE16(DEUC, 0);
4997         } else if (IS_I965G(dev)) {
4998                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4999                        I965_RCC_CLOCK_GATE_DISABLE |
5000                        I965_RCPB_CLOCK_GATE_DISABLE |
5001                        I965_ISC_CLOCK_GATE_DISABLE |
5002                        I965_FBC_CLOCK_GATE_DISABLE);
5003                 I915_WRITE(RENCLK_GATE_D2, 0);
5004         } else if (IS_I9XX(dev)) {
5005                 u32 dstate = I915_READ(D_STATE);
5006
5007                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5008                         DSTATE_DOT_CLOCK_GATING;
5009                 I915_WRITE(D_STATE, dstate);
5010         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5011                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5012         } else if (IS_I830(dev)) {
5013                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5014         }
5015
5016         /*
5017          * GPU can automatically power down the render unit if given a page
5018          * to save state.
5019          */
5020         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5021                 struct drm_i915_gem_object *obj_priv = NULL;
5022
5023                 if (dev_priv->pwrctx) {
5024                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5025                 } else {
5026                         struct drm_gem_object *pwrctx;
5027
5028                         pwrctx = intel_alloc_power_context(dev);
5029                         if (pwrctx) {
5030                                 dev_priv->pwrctx = pwrctx;
5031                                 obj_priv = to_intel_bo(pwrctx);
5032                         }
5033                 }
5034
5035                 if (obj_priv) {
5036                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5037                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5038                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5039                 }
5040         }
5041 }
5042
5043 /* Set up chip specific display functions */
5044 static void intel_init_display(struct drm_device *dev)
5045 {
5046         struct drm_i915_private *dev_priv = dev->dev_private;
5047
5048         /* We always want a DPMS function */
5049         if (HAS_PCH_SPLIT(dev))
5050                 dev_priv->display.dpms = ironlake_crtc_dpms;
5051         else
5052                 dev_priv->display.dpms = i9xx_crtc_dpms;
5053
5054         /* Only mobile has FBC, leave pointers NULL for other chips */
5055         if (IS_MOBILE(dev)) {
5056                 if (IS_GM45(dev)) {
5057                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5058                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5059                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5060                 } else if (IS_I965GM(dev)) {
5061                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5062                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5063                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5064                 }
5065                 /* 855GM needs testing */
5066         }
5067
5068         /* Returns the core display clock speed */
5069         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5070                 dev_priv->display.get_display_clock_speed =
5071                         i945_get_display_clock_speed;
5072         else if (IS_I915G(dev))
5073                 dev_priv->display.get_display_clock_speed =
5074                         i915_get_display_clock_speed;
5075         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5076                 dev_priv->display.get_display_clock_speed =
5077                         i9xx_misc_get_display_clock_speed;
5078         else if (IS_I915GM(dev))
5079                 dev_priv->display.get_display_clock_speed =
5080                         i915gm_get_display_clock_speed;
5081         else if (IS_I865G(dev))
5082                 dev_priv->display.get_display_clock_speed =
5083                         i865_get_display_clock_speed;
5084         else if (IS_I85X(dev))
5085                 dev_priv->display.get_display_clock_speed =
5086                         i855_get_display_clock_speed;
5087         else /* 852, 830 */
5088                 dev_priv->display.get_display_clock_speed =
5089                         i830_get_display_clock_speed;
5090
5091         /* For FIFO watermark updates */
5092         if (HAS_PCH_SPLIT(dev))
5093                 dev_priv->display.update_wm = NULL;
5094         else if (IS_G4X(dev))
5095                 dev_priv->display.update_wm = g4x_update_wm;
5096         else if (IS_I965G(dev))
5097                 dev_priv->display.update_wm = i965_update_wm;
5098         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
5099                 dev_priv->display.update_wm = i9xx_update_wm;
5100                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5101         } else {
5102                 if (IS_I85X(dev))
5103                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5104                 else if (IS_845G(dev))
5105                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5106                 else
5107                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5108                 dev_priv->display.update_wm = i830_update_wm;
5109         }
5110 }
5111
5112 void intel_modeset_init(struct drm_device *dev)
5113 {
5114         struct drm_i915_private *dev_priv = dev->dev_private;
5115         int num_pipe;
5116         int i;
5117
5118         drm_mode_config_init(dev);
5119
5120         dev->mode_config.min_width = 0;
5121         dev->mode_config.min_height = 0;
5122
5123         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5124
5125         intel_init_display(dev);
5126
5127         if (IS_I965G(dev)) {
5128                 dev->mode_config.max_width = 8192;
5129                 dev->mode_config.max_height = 8192;
5130         } else if (IS_I9XX(dev)) {
5131                 dev->mode_config.max_width = 4096;
5132                 dev->mode_config.max_height = 4096;
5133         } else {
5134                 dev->mode_config.max_width = 2048;
5135                 dev->mode_config.max_height = 2048;
5136         }
5137
5138         /* set memory base */
5139         if (IS_I9XX(dev))
5140                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5141         else
5142                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5143
5144         if (IS_MOBILE(dev) || IS_I9XX(dev))
5145                 num_pipe = 2;
5146         else
5147                 num_pipe = 1;
5148         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5149                   num_pipe, num_pipe > 1 ? "s" : "");
5150
5151         for (i = 0; i < num_pipe; i++) {
5152                 intel_crtc_init(dev, i);
5153         }
5154
5155         intel_setup_outputs(dev);
5156
5157         intel_init_clock_gating(dev);
5158
5159         if (IS_IRONLAKE_M(dev))
5160                 ironlake_enable_drps(dev);
5161
5162         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5163         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5164                     (unsigned long)dev);
5165
5166         intel_setup_overlay(dev);
5167
5168         if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5169                                                         dev_priv->fsb_freq,
5170                                                         dev_priv->mem_freq))
5171                 DRM_INFO("failed to find known CxSR latency "
5172                          "(found fsb freq %d, mem freq %d), disabling CxSR\n",
5173                          dev_priv->fsb_freq, dev_priv->mem_freq);
5174 }
5175
5176 void intel_modeset_cleanup(struct drm_device *dev)
5177 {
5178         struct drm_i915_private *dev_priv = dev->dev_private;
5179         struct drm_crtc *crtc;
5180         struct intel_crtc *intel_crtc;
5181
5182         mutex_lock(&dev->struct_mutex);
5183
5184         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5185                 /* Skip inactive CRTCs */
5186                 if (!crtc->fb)
5187                         continue;
5188
5189                 intel_crtc = to_intel_crtc(crtc);
5190                 intel_increase_pllclock(crtc, false);
5191                 del_timer_sync(&intel_crtc->idle_timer);
5192         }
5193
5194         del_timer_sync(&dev_priv->idle_timer);
5195
5196         if (dev_priv->display.disable_fbc)
5197                 dev_priv->display.disable_fbc(dev);
5198
5199         if (dev_priv->pwrctx) {
5200                 struct drm_i915_gem_object *obj_priv;
5201
5202                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5203                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5204                 I915_READ(PWRCTXA);
5205                 i915_gem_object_unpin(dev_priv->pwrctx);
5206                 drm_gem_object_unreference(dev_priv->pwrctx);
5207         }
5208
5209         if (IS_IRONLAKE_M(dev))
5210                 ironlake_disable_drps(dev);
5211
5212         mutex_unlock(&dev->struct_mutex);
5213
5214         drm_mode_config_cleanup(dev);
5215 }
5216
5217
5218 /*
5219  * Return which encoder is currently attached for connector.
5220  */
5221 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5222 {
5223         struct drm_mode_object *obj;
5224         struct drm_encoder *encoder;
5225         int i;
5226
5227         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5228                 if (connector->encoder_ids[i] == 0)
5229                         break;
5230
5231                 obj = drm_mode_object_find(connector->dev,
5232                                            connector->encoder_ids[i],
5233                                            DRM_MODE_OBJECT_ENCODER);
5234                 if (!obj)
5235                         continue;
5236
5237                 encoder = obj_to_encoder(obj);
5238                 return encoder;
5239         }
5240         return NULL;
5241 }
5242
5243 /*
5244  * set vga decode state - true == enable VGA decode
5245  */
5246 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5247 {
5248         struct drm_i915_private *dev_priv = dev->dev_private;
5249         u16 gmch_ctrl;
5250
5251         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5252         if (state)
5253                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5254         else
5255                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5256         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5257         return 0;
5258 }