abfc27b0c2eaea77bf8f64eee6ec8f2f3908cefb
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret)
1204                         goto unlock;
1205
1206                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209                 if (ret)
1210                         goto unlock;
1211         }
1212
1213         /* Need a new fence register? */
1214         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215                 ret = i915_gem_object_get_fence_reg(obj);
1216                 if (ret)
1217                         goto unlock;
1218         }
1219
1220         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221                 page_offset;
1222
1223         /* Finally, remap it using the new GTT offset */
1224         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226         mutex_unlock(&dev->struct_mutex);
1227
1228         switch (ret) {
1229         case 0:
1230         case -ERESTARTSYS:
1231                 return VM_FAULT_NOPAGE;
1232         case -ENOMEM:
1233         case -EAGAIN:
1234                 return VM_FAULT_OOM;
1235         default:
1236                 return VM_FAULT_SIGBUS;
1237         }
1238 }
1239
1240 /**
1241  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242  * @obj: obj in question
1243  *
1244  * GEM memory mapping works by handing back to userspace a fake mmap offset
1245  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246  * up the object based on the offset and sets up the various memory mapping
1247  * structures.
1248  *
1249  * This routine allocates and attaches a fake offset for @obj.
1250  */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254         struct drm_device *dev = obj->dev;
1255         struct drm_gem_mm *mm = dev->mm_private;
1256         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257         struct drm_map_list *list;
1258         struct drm_local_map *map;
1259         int ret = 0;
1260
1261         /* Set the object up for mmap'ing */
1262         list = &obj->map_list;
1263         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264         if (!list->map)
1265                 return -ENOMEM;
1266
1267         map = list->map;
1268         map->type = _DRM_GEM;
1269         map->size = obj->size;
1270         map->handle = obj;
1271
1272         /* Get a DRM GEM mmap offset allocated... */
1273         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274                                                     obj->size / PAGE_SIZE, 0, 0);
1275         if (!list->file_offset_node) {
1276                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277                 ret = -ENOMEM;
1278                 goto out_free_list;
1279         }
1280
1281         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282                                                   obj->size / PAGE_SIZE, 0);
1283         if (!list->file_offset_node) {
1284                 ret = -ENOMEM;
1285                 goto out_free_list;
1286         }
1287
1288         list->hash.key = list->file_offset_node->start;
1289         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290                 DRM_ERROR("failed to add to map hash\n");
1291                 goto out_free_mm;
1292         }
1293
1294         /* By now we should be all set, any drm_mmap request on the offset
1295          * below will get to our mmap & fault handler */
1296         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1297
1298         return 0;
1299
1300 out_free_mm:
1301         drm_mm_put_block(list->file_offset_node);
1302 out_free_list:
1303         kfree(list->map);
1304
1305         return ret;
1306 }
1307
1308 /**
1309  * i915_gem_release_mmap - remove physical page mappings
1310  * @obj: obj in question
1311  *
1312  * Preserve the reservation of the mmaping with the DRM core code, but
1313  * relinquish ownership of the pages back to the system.
1314  *
1315  * It is vital that we remove the page mapping if we have mapped a tiled
1316  * object through the GTT and then lose the fence register due to
1317  * resource pressure. Similarly if the object has been moved out of the
1318  * aperture, than pages mapped into userspace must be revoked. Removing the
1319  * mapping will then trigger a page fault on the next user access, allowing
1320  * fixup by i915_gem_fault().
1321  */
1322 void
1323 i915_gem_release_mmap(struct drm_gem_object *obj)
1324 {
1325         struct drm_device *dev = obj->dev;
1326         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1327
1328         if (dev->dev_mapping)
1329                 unmap_mapping_range(dev->dev_mapping,
1330                                     obj_priv->mmap_offset, obj->size, 1);
1331 }
1332
1333 static void
1334 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1335 {
1336         struct drm_device *dev = obj->dev;
1337         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338         struct drm_gem_mm *mm = dev->mm_private;
1339         struct drm_map_list *list;
1340
1341         list = &obj->map_list;
1342         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1343
1344         if (list->file_offset_node) {
1345                 drm_mm_put_block(list->file_offset_node);
1346                 list->file_offset_node = NULL;
1347         }
1348
1349         if (list->map) {
1350                 kfree(list->map);
1351                 list->map = NULL;
1352         }
1353
1354         obj_priv->mmap_offset = 0;
1355 }
1356
1357 /**
1358  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1359  * @obj: object to check
1360  *
1361  * Return the required GTT alignment for an object, taking into account
1362  * potential fence register mapping if needed.
1363  */
1364 static uint32_t
1365 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1366 {
1367         struct drm_device *dev = obj->dev;
1368         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1369         int start, i;
1370
1371         /*
1372          * Minimum alignment is 4k (GTT page size), but might be greater
1373          * if a fence register is needed for the object.
1374          */
1375         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1376                 return 4096;
1377
1378         /*
1379          * Previous chips need to be aligned to the size of the smallest
1380          * fence register that can contain the object.
1381          */
1382         if (IS_I9XX(dev))
1383                 start = 1024*1024;
1384         else
1385                 start = 512*1024;
1386
1387         for (i = start; i < obj->size; i <<= 1)
1388                 ;
1389
1390         return i;
1391 }
1392
1393 /**
1394  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1395  * @dev: DRM device
1396  * @data: GTT mapping ioctl data
1397  * @file_priv: GEM object info
1398  *
1399  * Simply returns the fake offset to userspace so it can mmap it.
1400  * The mmap call will end up in drm_gem_mmap(), which will set things
1401  * up so we can get faults in the handler above.
1402  *
1403  * The fault handler will take care of binding the object into the GTT
1404  * (since it may have been evicted to make room for something), allocating
1405  * a fence register, and mapping the appropriate aperture address into
1406  * userspace.
1407  */
1408 int
1409 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1410                         struct drm_file *file_priv)
1411 {
1412         struct drm_i915_gem_mmap_gtt *args = data;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         struct drm_gem_object *obj;
1415         struct drm_i915_gem_object *obj_priv;
1416         int ret;
1417
1418         if (!(dev->driver->driver_features & DRIVER_GEM))
1419                 return -ENODEV;
1420
1421         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1422         if (obj == NULL)
1423                 return -EBADF;
1424
1425         mutex_lock(&dev->struct_mutex);
1426
1427         obj_priv = obj->driver_private;
1428
1429         if (obj_priv->madv != I915_MADV_WILLNEED) {
1430                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1431                 drm_gem_object_unreference(obj);
1432                 mutex_unlock(&dev->struct_mutex);
1433                 return -EINVAL;
1434         }
1435
1436
1437         if (!obj_priv->mmap_offset) {
1438                 ret = i915_gem_create_mmap_offset(obj);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444         }
1445
1446         args->offset = obj_priv->mmap_offset;
1447
1448         /*
1449          * Pull it into the GTT so that we have a page list (makes the
1450          * initial fault faster and any subsequent flushing possible).
1451          */
1452         if (!obj_priv->agp_mem) {
1453                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1454                 if (ret) {
1455                         drm_gem_object_unreference(obj);
1456                         mutex_unlock(&dev->struct_mutex);
1457                         return ret;
1458                 }
1459                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460         }
1461
1462         drm_gem_object_unreference(obj);
1463         mutex_unlock(&dev->struct_mutex);
1464
1465         return 0;
1466 }
1467
1468 void
1469 i915_gem_object_put_pages(struct drm_gem_object *obj)
1470 {
1471         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472         int page_count = obj->size / PAGE_SIZE;
1473         int i;
1474
1475         BUG_ON(obj_priv->pages_refcount == 0);
1476         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477
1478         if (--obj_priv->pages_refcount != 0)
1479                 return;
1480
1481         if (obj_priv->tiling_mode != I915_TILING_NONE)
1482                 i915_gem_object_save_bit_17_swizzle(obj);
1483
1484         if (obj_priv->madv == I915_MADV_DONTNEED)
1485                 obj_priv->dirty = 0;
1486
1487         for (i = 0; i < page_count; i++) {
1488                 if (obj_priv->pages[i] == NULL)
1489                         break;
1490
1491                 if (obj_priv->dirty)
1492                         set_page_dirty(obj_priv->pages[i]);
1493
1494                 if (obj_priv->madv == I915_MADV_WILLNEED)
1495                         mark_page_accessed(obj_priv->pages[i]);
1496
1497                 page_cache_release(obj_priv->pages[i]);
1498         }
1499         obj_priv->dirty = 0;
1500
1501         drm_free_large(obj_priv->pages);
1502         obj_priv->pages = NULL;
1503 }
1504
1505 static void
1506 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507 {
1508         struct drm_device *dev = obj->dev;
1509         drm_i915_private_t *dev_priv = dev->dev_private;
1510         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1511
1512         /* Add a reference if we're newly entering the active list. */
1513         if (!obj_priv->active) {
1514                 drm_gem_object_reference(obj);
1515                 obj_priv->active = 1;
1516         }
1517         /* Move from whatever list we were on to the tail of execution. */
1518         spin_lock(&dev_priv->mm.active_list_lock);
1519         list_move_tail(&obj_priv->list,
1520                        &dev_priv->mm.active_list);
1521         spin_unlock(&dev_priv->mm.active_list_lock);
1522         obj_priv->last_rendering_seqno = seqno;
1523 }
1524
1525 static void
1526 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1527 {
1528         struct drm_device *dev = obj->dev;
1529         drm_i915_private_t *dev_priv = dev->dev_private;
1530         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1531
1532         BUG_ON(!obj_priv->active);
1533         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1534         obj_priv->last_rendering_seqno = 0;
1535 }
1536
1537 /* Immediately discard the backing storage */
1538 static void
1539 i915_gem_object_truncate(struct drm_gem_object *obj)
1540 {
1541         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1542         struct inode *inode;
1543
1544         inode = obj->filp->f_path.dentry->d_inode;
1545         if (inode->i_op->truncate)
1546                 inode->i_op->truncate (inode);
1547
1548         obj_priv->madv = __I915_MADV_PURGED;
1549 }
1550
1551 static inline int
1552 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1553 {
1554         return obj_priv->madv == I915_MADV_DONTNEED;
1555 }
1556
1557 static void
1558 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1559 {
1560         struct drm_device *dev = obj->dev;
1561         drm_i915_private_t *dev_priv = dev->dev_private;
1562         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563
1564         i915_verify_inactive(dev, __FILE__, __LINE__);
1565         if (obj_priv->pin_count != 0)
1566                 list_del_init(&obj_priv->list);
1567         else
1568                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1569
1570         obj_priv->last_rendering_seqno = 0;
1571         if (obj_priv->active) {
1572                 obj_priv->active = 0;
1573                 drm_gem_object_unreference(obj);
1574         }
1575         i915_verify_inactive(dev, __FILE__, __LINE__);
1576 }
1577
1578 /**
1579  * Creates a new sequence number, emitting a write of it to the status page
1580  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1581  *
1582  * Must be called with struct_lock held.
1583  *
1584  * Returned sequence numbers are nonzero on success.
1585  */
1586 static uint32_t
1587 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1588                  uint32_t flush_domains)
1589 {
1590         drm_i915_private_t *dev_priv = dev->dev_private;
1591         struct drm_i915_file_private *i915_file_priv = NULL;
1592         struct drm_i915_gem_request *request;
1593         uint32_t seqno;
1594         int was_empty;
1595         RING_LOCALS;
1596
1597         if (file_priv != NULL)
1598                 i915_file_priv = file_priv->driver_priv;
1599
1600         request = kzalloc(sizeof(*request), GFP_KERNEL);
1601         if (request == NULL)
1602                 return 0;
1603
1604         /* Grab the seqno we're going to make this request be, and bump the
1605          * next (skipping 0 so it can be the reserved no-seqno value).
1606          */
1607         seqno = dev_priv->mm.next_gem_seqno;
1608         dev_priv->mm.next_gem_seqno++;
1609         if (dev_priv->mm.next_gem_seqno == 0)
1610                 dev_priv->mm.next_gem_seqno++;
1611
1612         BEGIN_LP_RING(4);
1613         OUT_RING(MI_STORE_DWORD_INDEX);
1614         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615         OUT_RING(seqno);
1616
1617         OUT_RING(MI_USER_INTERRUPT);
1618         ADVANCE_LP_RING();
1619
1620         DRM_DEBUG("%d\n", seqno);
1621
1622         request->seqno = seqno;
1623         request->emitted_jiffies = jiffies;
1624         was_empty = list_empty(&dev_priv->mm.request_list);
1625         list_add_tail(&request->list, &dev_priv->mm.request_list);
1626         if (i915_file_priv) {
1627                 list_add_tail(&request->client_list,
1628                               &i915_file_priv->mm.request_list);
1629         } else {
1630                 INIT_LIST_HEAD(&request->client_list);
1631         }
1632
1633         /* Associate any objects on the flushing list matching the write
1634          * domain we're flushing with our flush.
1635          */
1636         if (flush_domains != 0) {
1637                 struct drm_i915_gem_object *obj_priv, *next;
1638
1639                 list_for_each_entry_safe(obj_priv, next,
1640                                          &dev_priv->mm.flushing_list, list) {
1641                         struct drm_gem_object *obj = obj_priv->obj;
1642
1643                         if ((obj->write_domain & flush_domains) ==
1644                             obj->write_domain) {
1645                                 uint32_t old_write_domain = obj->write_domain;
1646
1647                                 obj->write_domain = 0;
1648                                 i915_gem_object_move_to_active(obj, seqno);
1649
1650                                 trace_i915_gem_object_change_domain(obj,
1651                                                                     obj->read_domains,
1652                                                                     old_write_domain);
1653                         }
1654                 }
1655
1656         }
1657
1658         if (!dev_priv->mm.suspended) {
1659                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1660                 if (was_empty)
1661                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1662         }
1663         return seqno;
1664 }
1665
1666 /**
1667  * Command execution barrier
1668  *
1669  * Ensures that all commands in the ring are finished
1670  * before signalling the CPU
1671  */
1672 static uint32_t
1673 i915_retire_commands(struct drm_device *dev)
1674 {
1675         drm_i915_private_t *dev_priv = dev->dev_private;
1676         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1677         uint32_t flush_domains = 0;
1678         RING_LOCALS;
1679
1680         /* The sampler always gets flushed on i965 (sigh) */
1681         if (IS_I965G(dev))
1682                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1683         BEGIN_LP_RING(2);
1684         OUT_RING(cmd);
1685         OUT_RING(0); /* noop */
1686         ADVANCE_LP_RING();
1687         return flush_domains;
1688 }
1689
1690 /**
1691  * Moves buffers associated only with the given active seqno from the active
1692  * to inactive list, potentially freeing them.
1693  */
1694 static void
1695 i915_gem_retire_request(struct drm_device *dev,
1696                         struct drm_i915_gem_request *request)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699
1700         trace_i915_gem_request_retire(dev, request->seqno);
1701
1702         /* Move any buffers on the active list that are no longer referenced
1703          * by the ringbuffer to the flushing/inactive lists as appropriate.
1704          */
1705         spin_lock(&dev_priv->mm.active_list_lock);
1706         while (!list_empty(&dev_priv->mm.active_list)) {
1707                 struct drm_gem_object *obj;
1708                 struct drm_i915_gem_object *obj_priv;
1709
1710                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1711                                             struct drm_i915_gem_object,
1712                                             list);
1713                 obj = obj_priv->obj;
1714
1715                 /* If the seqno being retired doesn't match the oldest in the
1716                  * list, then the oldest in the list must still be newer than
1717                  * this seqno.
1718                  */
1719                 if (obj_priv->last_rendering_seqno != request->seqno)
1720                         goto out;
1721
1722 #if WATCH_LRU
1723                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1724                          __func__, request->seqno, obj);
1725 #endif
1726
1727                 if (obj->write_domain != 0)
1728                         i915_gem_object_move_to_flushing(obj);
1729                 else {
1730                         /* Take a reference on the object so it won't be
1731                          * freed while the spinlock is held.  The list
1732                          * protection for this spinlock is safe when breaking
1733                          * the lock like this since the next thing we do
1734                          * is just get the head of the list again.
1735                          */
1736                         drm_gem_object_reference(obj);
1737                         i915_gem_object_move_to_inactive(obj);
1738                         spin_unlock(&dev_priv->mm.active_list_lock);
1739                         drm_gem_object_unreference(obj);
1740                         spin_lock(&dev_priv->mm.active_list_lock);
1741                 }
1742         }
1743 out:
1744         spin_unlock(&dev_priv->mm.active_list_lock);
1745 }
1746
1747 /**
1748  * Returns true if seq1 is later than seq2.
1749  */
1750 bool
1751 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1752 {
1753         return (int32_t)(seq1 - seq2) >= 0;
1754 }
1755
1756 uint32_t
1757 i915_get_gem_seqno(struct drm_device *dev)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760
1761         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1762 }
1763
1764 /**
1765  * This function clears the request list as sequence numbers are passed.
1766  */
1767 void
1768 i915_gem_retire_requests(struct drm_device *dev)
1769 {
1770         drm_i915_private_t *dev_priv = dev->dev_private;
1771         uint32_t seqno;
1772
1773         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1774                 return;
1775
1776         seqno = i915_get_gem_seqno(dev);
1777
1778         while (!list_empty(&dev_priv->mm.request_list)) {
1779                 struct drm_i915_gem_request *request;
1780                 uint32_t retiring_seqno;
1781
1782                 request = list_first_entry(&dev_priv->mm.request_list,
1783                                            struct drm_i915_gem_request,
1784                                            list);
1785                 retiring_seqno = request->seqno;
1786
1787                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1788                     atomic_read(&dev_priv->mm.wedged)) {
1789                         i915_gem_retire_request(dev, request);
1790
1791                         list_del(&request->list);
1792                         list_del(&request->client_list);
1793                         kfree(request);
1794                 } else
1795                         break;
1796         }
1797
1798         if (unlikely (dev_priv->trace_irq_seqno &&
1799                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1800                 i915_user_irq_put(dev);
1801                 dev_priv->trace_irq_seqno = 0;
1802         }
1803 }
1804
1805 void
1806 i915_gem_retire_work_handler(struct work_struct *work)
1807 {
1808         drm_i915_private_t *dev_priv;
1809         struct drm_device *dev;
1810
1811         dev_priv = container_of(work, drm_i915_private_t,
1812                                 mm.retire_work.work);
1813         dev = dev_priv->dev;
1814
1815         mutex_lock(&dev->struct_mutex);
1816         i915_gem_retire_requests(dev);
1817         if (!dev_priv->mm.suspended &&
1818             !list_empty(&dev_priv->mm.request_list))
1819                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820         mutex_unlock(&dev->struct_mutex);
1821 }
1822
1823 /**
1824  * Waits for a sequence number to be signaled, and cleans up the
1825  * request and object lists appropriately for that event.
1826  */
1827 static int
1828 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1829 {
1830         drm_i915_private_t *dev_priv = dev->dev_private;
1831         u32 ier;
1832         int ret = 0;
1833
1834         BUG_ON(seqno == 0);
1835
1836         if (atomic_read(&dev_priv->mm.wedged))
1837                 return -EIO;
1838
1839         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1840                 if (IS_IGDNG(dev))
1841                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1842                 else
1843                         ier = I915_READ(IER);
1844                 if (!ier) {
1845                         DRM_ERROR("something (likely vbetool) disabled "
1846                                   "interrupts, re-enabling\n");
1847                         i915_driver_irq_preinstall(dev);
1848                         i915_driver_irq_postinstall(dev);
1849                 }
1850
1851                 trace_i915_gem_request_wait_begin(dev, seqno);
1852
1853                 dev_priv->mm.waiting_gem_seqno = seqno;
1854                 i915_user_irq_get(dev);
1855                 ret = wait_event_interruptible(dev_priv->irq_queue,
1856                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1857                                                                  seqno) ||
1858                                                atomic_read(&dev_priv->mm.wedged));
1859                 i915_user_irq_put(dev);
1860                 dev_priv->mm.waiting_gem_seqno = 0;
1861
1862                 trace_i915_gem_request_wait_end(dev, seqno);
1863         }
1864         if (atomic_read(&dev_priv->mm.wedged))
1865                 ret = -EIO;
1866
1867         if (ret && ret != -ERESTARTSYS)
1868                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1869                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1870
1871         /* Directly dispatch request retiring.  While we have the work queue
1872          * to handle this, the waiter on a request often wants an associated
1873          * buffer to have made it to the inactive list, and we would need
1874          * a separate wait queue to handle that.
1875          */
1876         if (ret == 0)
1877                 i915_gem_retire_requests(dev);
1878
1879         return ret;
1880 }
1881
1882 static void
1883 i915_gem_flush(struct drm_device *dev,
1884                uint32_t invalidate_domains,
1885                uint32_t flush_domains)
1886 {
1887         drm_i915_private_t *dev_priv = dev->dev_private;
1888         uint32_t cmd;
1889         RING_LOCALS;
1890
1891 #if WATCH_EXEC
1892         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1893                   invalidate_domains, flush_domains);
1894 #endif
1895         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1896                                      invalidate_domains, flush_domains);
1897
1898         if (flush_domains & I915_GEM_DOMAIN_CPU)
1899                 drm_agp_chipset_flush(dev);
1900
1901         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1902                 /*
1903                  * read/write caches:
1904                  *
1905                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1906                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1907                  * also flushed at 2d versus 3d pipeline switches.
1908                  *
1909                  * read-only caches:
1910                  *
1911                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1912                  * MI_READ_FLUSH is set, and is always flushed on 965.
1913                  *
1914                  * I915_GEM_DOMAIN_COMMAND may not exist?
1915                  *
1916                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1917                  * invalidated when MI_EXE_FLUSH is set.
1918                  *
1919                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1920                  * invalidated with every MI_FLUSH.
1921                  *
1922                  * TLBs:
1923                  *
1924                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1925                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1926                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1927                  * are flushed at any MI_FLUSH.
1928                  */
1929
1930                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1931                 if ((invalidate_domains|flush_domains) &
1932                     I915_GEM_DOMAIN_RENDER)
1933                         cmd &= ~MI_NO_WRITE_FLUSH;
1934                 if (!IS_I965G(dev)) {
1935                         /*
1936                          * On the 965, the sampler cache always gets flushed
1937                          * and this bit is reserved.
1938                          */
1939                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1940                                 cmd |= MI_READ_FLUSH;
1941                 }
1942                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1943                         cmd |= MI_EXE_FLUSH;
1944
1945 #if WATCH_EXEC
1946                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1947 #endif
1948                 BEGIN_LP_RING(2);
1949                 OUT_RING(cmd);
1950                 OUT_RING(0); /* noop */
1951                 ADVANCE_LP_RING();
1952         }
1953 }
1954
1955 /**
1956  * Ensures that all rendering to the object has completed and the object is
1957  * safe to unbind from the GTT or access from the CPU.
1958  */
1959 static int
1960 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1961 {
1962         struct drm_device *dev = obj->dev;
1963         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1964         int ret;
1965
1966         /* This function only exists to support waiting for existing rendering,
1967          * not for emitting required flushes.
1968          */
1969         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1970
1971         /* If there is rendering queued on the buffer being evicted, wait for
1972          * it.
1973          */
1974         if (obj_priv->active) {
1975 #if WATCH_BUF
1976                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1977                           __func__, obj, obj_priv->last_rendering_seqno);
1978 #endif
1979                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1980                 if (ret != 0)
1981                         return ret;
1982         }
1983
1984         return 0;
1985 }
1986
1987 /**
1988  * Unbinds an object from the GTT aperture.
1989  */
1990 int
1991 i915_gem_object_unbind(struct drm_gem_object *obj)
1992 {
1993         struct drm_device *dev = obj->dev;
1994         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1995         int ret = 0;
1996
1997 #if WATCH_BUF
1998         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1999         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2000 #endif
2001         if (obj_priv->gtt_space == NULL)
2002                 return 0;
2003
2004         if (obj_priv->pin_count != 0) {
2005                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2006                 return -EINVAL;
2007         }
2008
2009         /* blow away mappings if mapped through GTT */
2010         i915_gem_release_mmap(obj);
2011
2012         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2013                 i915_gem_clear_fence_reg(obj);
2014
2015         /* Move the object to the CPU domain to ensure that
2016          * any possible CPU writes while it's not in the GTT
2017          * are flushed when we go to remap it. This will
2018          * also ensure that all pending GPU writes are finished
2019          * before we unbind.
2020          */
2021         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2022         if (ret) {
2023                 if (ret != -ERESTARTSYS)
2024                         DRM_ERROR("set_domain failed: %d\n", ret);
2025                 return ret;
2026         }
2027
2028         BUG_ON(obj_priv->active);
2029
2030         if (obj_priv->agp_mem != NULL) {
2031                 drm_unbind_agp(obj_priv->agp_mem);
2032                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2033                 obj_priv->agp_mem = NULL;
2034         }
2035
2036         i915_gem_object_put_pages(obj);
2037         BUG_ON(obj_priv->pages_refcount);
2038
2039         if (obj_priv->gtt_space) {
2040                 atomic_dec(&dev->gtt_count);
2041                 atomic_sub(obj->size, &dev->gtt_memory);
2042
2043                 drm_mm_put_block(obj_priv->gtt_space);
2044                 obj_priv->gtt_space = NULL;
2045         }
2046
2047         /* Remove ourselves from the LRU list if present. */
2048         if (!list_empty(&obj_priv->list))
2049                 list_del_init(&obj_priv->list);
2050
2051         if (i915_gem_object_is_purgeable(obj_priv))
2052                 i915_gem_object_truncate(obj);
2053
2054         trace_i915_gem_object_unbind(obj);
2055
2056         return 0;
2057 }
2058
2059 static struct drm_gem_object *
2060 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2061 {
2062         drm_i915_private_t *dev_priv = dev->dev_private;
2063         struct drm_i915_gem_object *obj_priv;
2064         struct drm_gem_object *best = NULL;
2065         struct drm_gem_object *first = NULL;
2066
2067         /* Try to find the smallest clean object */
2068         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2069                 struct drm_gem_object *obj = obj_priv->obj;
2070                 if (obj->size >= min_size) {
2071                         if ((!obj_priv->dirty ||
2072                              i915_gem_object_is_purgeable(obj_priv)) &&
2073                             (!best || obj->size < best->size)) {
2074                                 best = obj;
2075                                 if (best->size == min_size)
2076                                         return best;
2077                         }
2078                         if (!first)
2079                             first = obj;
2080                 }
2081         }
2082
2083         return best ? best : first;
2084 }
2085
2086 static int
2087 i915_gem_evict_everything(struct drm_device *dev)
2088 {
2089         drm_i915_private_t *dev_priv = dev->dev_private;
2090         uint32_t seqno;
2091         int ret;
2092         bool lists_empty;
2093
2094         spin_lock(&dev_priv->mm.active_list_lock);
2095         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2096                        list_empty(&dev_priv->mm.flushing_list) &&
2097                        list_empty(&dev_priv->mm.active_list));
2098         spin_unlock(&dev_priv->mm.active_list_lock);
2099
2100         if (lists_empty)
2101                 return -ENOSPC;
2102
2103         /* Flush everything (on to the inactive lists) and evict */
2104         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2105         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2106         if (seqno == 0)
2107                 return -ENOMEM;
2108
2109         ret = i915_wait_request(dev, seqno);
2110         if (ret)
2111                 return ret;
2112
2113         ret = i915_gem_evict_from_inactive_list(dev);
2114         if (ret)
2115                 return ret;
2116
2117         spin_lock(&dev_priv->mm.active_list_lock);
2118         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2119                        list_empty(&dev_priv->mm.flushing_list) &&
2120                        list_empty(&dev_priv->mm.active_list));
2121         spin_unlock(&dev_priv->mm.active_list_lock);
2122         BUG_ON(!lists_empty);
2123
2124         return 0;
2125 }
2126
2127 static int
2128 i915_gem_evict_something(struct drm_device *dev, int min_size)
2129 {
2130         drm_i915_private_t *dev_priv = dev->dev_private;
2131         struct drm_gem_object *obj;
2132         int ret;
2133
2134         for (;;) {
2135                 i915_gem_retire_requests(dev);
2136
2137                 /* If there's an inactive buffer available now, grab it
2138                  * and be done.
2139                  */
2140                 obj = i915_gem_find_inactive_object(dev, min_size);
2141                 if (obj) {
2142                         struct drm_i915_gem_object *obj_priv;
2143
2144 #if WATCH_LRU
2145                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2146 #endif
2147                         obj_priv = obj->driver_private;
2148                         BUG_ON(obj_priv->pin_count != 0);
2149                         BUG_ON(obj_priv->active);
2150
2151                         /* Wait on the rendering and unbind the buffer. */
2152                         return i915_gem_object_unbind(obj);
2153                 }
2154
2155                 /* If we didn't get anything, but the ring is still processing
2156                  * things, wait for the next to finish and hopefully leave us
2157                  * a buffer to evict.
2158                  */
2159                 if (!list_empty(&dev_priv->mm.request_list)) {
2160                         struct drm_i915_gem_request *request;
2161
2162                         request = list_first_entry(&dev_priv->mm.request_list,
2163                                                    struct drm_i915_gem_request,
2164                                                    list);
2165
2166                         ret = i915_wait_request(dev, request->seqno);
2167                         if (ret)
2168                                 return ret;
2169
2170                         continue;
2171                 }
2172
2173                 /* If we didn't have anything on the request list but there
2174                  * are buffers awaiting a flush, emit one and try again.
2175                  * When we wait on it, those buffers waiting for that flush
2176                  * will get moved to inactive.
2177                  */
2178                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2179                         struct drm_i915_gem_object *obj_priv;
2180
2181                         /* Find an object that we can immediately reuse */
2182                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2183                                 obj = obj_priv->obj;
2184                                 if (obj->size >= min_size)
2185                                         break;
2186
2187                                 obj = NULL;
2188                         }
2189
2190                         if (obj != NULL) {
2191                                 uint32_t seqno;
2192
2193                                 i915_gem_flush(dev,
2194                                                obj->write_domain,
2195                                                obj->write_domain);
2196                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2197                                 if (seqno == 0)
2198                                         return -ENOMEM;
2199
2200                                 ret = i915_wait_request(dev, seqno);
2201                                 if (ret)
2202                                         return ret;
2203
2204                                 continue;
2205                         }
2206                 }
2207
2208                 /* If we didn't do any of the above, there's no single buffer
2209                  * large enough to swap out for the new one, so just evict
2210                  * everything and start again. (This should be rare.)
2211                  */
2212                 if (!list_empty (&dev_priv->mm.inactive_list))
2213                         return i915_gem_evict_from_inactive_list(dev);
2214                 else
2215                         return i915_gem_evict_everything(dev);
2216         }
2217 }
2218
2219 int
2220 i915_gem_object_get_pages(struct drm_gem_object *obj)
2221 {
2222         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2223         int page_count, i;
2224         struct address_space *mapping;
2225         struct inode *inode;
2226         struct page *page;
2227         int ret;
2228
2229         if (obj_priv->pages_refcount++ != 0)
2230                 return 0;
2231
2232         /* Get the list of pages out of our struct file.  They'll be pinned
2233          * at this point until we release them.
2234          */
2235         page_count = obj->size / PAGE_SIZE;
2236         BUG_ON(obj_priv->pages != NULL);
2237         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2238         if (obj_priv->pages == NULL) {
2239                 obj_priv->pages_refcount--;
2240                 return -ENOMEM;
2241         }
2242
2243         inode = obj->filp->f_path.dentry->d_inode;
2244         mapping = inode->i_mapping;
2245         for (i = 0; i < page_count; i++) {
2246                 page = read_mapping_page(mapping, i, NULL);
2247                 if (IS_ERR(page)) {
2248                         ret = PTR_ERR(page);
2249                         i915_gem_object_put_pages(obj);
2250                         return ret;
2251                 }
2252                 obj_priv->pages[i] = page;
2253         }
2254
2255         if (obj_priv->tiling_mode != I915_TILING_NONE)
2256                 i915_gem_object_do_bit_17_swizzle(obj);
2257
2258         return 0;
2259 }
2260
2261 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2262 {
2263         struct drm_gem_object *obj = reg->obj;
2264         struct drm_device *dev = obj->dev;
2265         drm_i915_private_t *dev_priv = dev->dev_private;
2266         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2267         int regnum = obj_priv->fence_reg;
2268         uint64_t val;
2269
2270         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2271                     0xfffff000) << 32;
2272         val |= obj_priv->gtt_offset & 0xfffff000;
2273         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2274         if (obj_priv->tiling_mode == I915_TILING_Y)
2275                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2276         val |= I965_FENCE_REG_VALID;
2277
2278         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2279 }
2280
2281 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2282 {
2283         struct drm_gem_object *obj = reg->obj;
2284         struct drm_device *dev = obj->dev;
2285         drm_i915_private_t *dev_priv = dev->dev_private;
2286         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2287         int regnum = obj_priv->fence_reg;
2288         int tile_width;
2289         uint32_t fence_reg, val;
2290         uint32_t pitch_val;
2291
2292         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2293             (obj_priv->gtt_offset & (obj->size - 1))) {
2294                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2295                      __func__, obj_priv->gtt_offset, obj->size);
2296                 return;
2297         }
2298
2299         if (obj_priv->tiling_mode == I915_TILING_Y &&
2300             HAS_128_BYTE_Y_TILING(dev))
2301                 tile_width = 128;
2302         else
2303                 tile_width = 512;
2304
2305         /* Note: pitch better be a power of two tile widths */
2306         pitch_val = obj_priv->stride / tile_width;
2307         pitch_val = ffs(pitch_val) - 1;
2308
2309         val = obj_priv->gtt_offset;
2310         if (obj_priv->tiling_mode == I915_TILING_Y)
2311                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2312         val |= I915_FENCE_SIZE_BITS(obj->size);
2313         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2314         val |= I830_FENCE_REG_VALID;
2315
2316         if (regnum < 8)
2317                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2318         else
2319                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2320         I915_WRITE(fence_reg, val);
2321 }
2322
2323 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2324 {
2325         struct drm_gem_object *obj = reg->obj;
2326         struct drm_device *dev = obj->dev;
2327         drm_i915_private_t *dev_priv = dev->dev_private;
2328         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2329         int regnum = obj_priv->fence_reg;
2330         uint32_t val;
2331         uint32_t pitch_val;
2332         uint32_t fence_size_bits;
2333
2334         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2335             (obj_priv->gtt_offset & (obj->size - 1))) {
2336                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2337                      __func__, obj_priv->gtt_offset);
2338                 return;
2339         }
2340
2341         pitch_val = obj_priv->stride / 128;
2342         pitch_val = ffs(pitch_val) - 1;
2343         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2344
2345         val = obj_priv->gtt_offset;
2346         if (obj_priv->tiling_mode == I915_TILING_Y)
2347                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2349         WARN_ON(fence_size_bits & ~0x00000f00);
2350         val |= fence_size_bits;
2351         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2352         val |= I830_FENCE_REG_VALID;
2353
2354         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2355 }
2356
2357 /**
2358  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2359  * @obj: object to map through a fence reg
2360  *
2361  * When mapping objects through the GTT, userspace wants to be able to write
2362  * to them without having to worry about swizzling if the object is tiled.
2363  *
2364  * This function walks the fence regs looking for a free one for @obj,
2365  * stealing one if it can't find any.
2366  *
2367  * It then sets up the reg based on the object's properties: address, pitch
2368  * and tiling format.
2369  */
2370 int
2371 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2372 {
2373         struct drm_device *dev = obj->dev;
2374         struct drm_i915_private *dev_priv = dev->dev_private;
2375         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2376         struct drm_i915_fence_reg *reg = NULL;
2377         struct drm_i915_gem_object *old_obj_priv = NULL;
2378         int i, ret, avail;
2379
2380         /* Just update our place in the LRU if our fence is getting used. */
2381         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2382                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2383                 return 0;
2384         }
2385
2386         switch (obj_priv->tiling_mode) {
2387         case I915_TILING_NONE:
2388                 WARN(1, "allocating a fence for non-tiled object?\n");
2389                 break;
2390         case I915_TILING_X:
2391                 if (!obj_priv->stride)
2392                         return -EINVAL;
2393                 WARN((obj_priv->stride & (512 - 1)),
2394                      "object 0x%08x is X tiled but has non-512B pitch\n",
2395                      obj_priv->gtt_offset);
2396                 break;
2397         case I915_TILING_Y:
2398                 if (!obj_priv->stride)
2399                         return -EINVAL;
2400                 WARN((obj_priv->stride & (128 - 1)),
2401                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2402                      obj_priv->gtt_offset);
2403                 break;
2404         }
2405
2406         /* First try to find a free reg */
2407         avail = 0;
2408         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2409                 reg = &dev_priv->fence_regs[i];
2410                 if (!reg->obj)
2411                         break;
2412
2413                 old_obj_priv = reg->obj->driver_private;
2414                 if (!old_obj_priv->pin_count)
2415                     avail++;
2416         }
2417
2418         /* None available, try to steal one or wait for a user to finish */
2419         if (i == dev_priv->num_fence_regs) {
2420                 struct drm_gem_object *old_obj = NULL;
2421
2422                 if (avail == 0)
2423                         return -ENOSPC;
2424
2425                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2426                                     fence_list) {
2427                         old_obj = old_obj_priv->obj;
2428
2429                         if (old_obj_priv->pin_count)
2430                                 continue;
2431
2432                         /* Take a reference, as otherwise the wait_rendering
2433                          * below may cause the object to get freed out from
2434                          * under us.
2435                          */
2436                         drm_gem_object_reference(old_obj);
2437
2438                         /* i915 uses fences for GPU access to tiled buffers */
2439                         if (IS_I965G(dev) || !old_obj_priv->active)
2440                                 break;
2441
2442                         /* This brings the object to the head of the LRU if it
2443                          * had been written to.  The only way this should
2444                          * result in us waiting longer than the expected
2445                          * optimal amount of time is if there was a
2446                          * fence-using buffer later that was read-only.
2447                          */
2448                         i915_gem_object_flush_gpu_write_domain(old_obj);
2449                         ret = i915_gem_object_wait_rendering(old_obj);
2450                         if (ret != 0) {
2451                                 drm_gem_object_unreference(old_obj);
2452                                 return ret;
2453                         }
2454
2455                         break;
2456                 }
2457
2458                 /*
2459                  * Zap this virtual mapping so we can set up a fence again
2460                  * for this object next time we need it.
2461                  */
2462                 i915_gem_release_mmap(old_obj);
2463
2464                 i = old_obj_priv->fence_reg;
2465                 reg = &dev_priv->fence_regs[i];
2466
2467                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2468                 list_del_init(&old_obj_priv->fence_list);
2469
2470                 drm_gem_object_unreference(old_obj);
2471         }
2472
2473         obj_priv->fence_reg = i;
2474         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2475
2476         reg->obj = obj;
2477
2478         if (IS_I965G(dev))
2479                 i965_write_fence_reg(reg);
2480         else if (IS_I9XX(dev))
2481                 i915_write_fence_reg(reg);
2482         else
2483                 i830_write_fence_reg(reg);
2484
2485         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2486
2487         return 0;
2488 }
2489
2490 /**
2491  * i915_gem_clear_fence_reg - clear out fence register info
2492  * @obj: object to clear
2493  *
2494  * Zeroes out the fence register itself and clears out the associated
2495  * data structures in dev_priv and obj_priv.
2496  */
2497 static void
2498 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2499 {
2500         struct drm_device *dev = obj->dev;
2501         drm_i915_private_t *dev_priv = dev->dev_private;
2502         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2503
2504         if (IS_I965G(dev))
2505                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2506         else {
2507                 uint32_t fence_reg;
2508
2509                 if (obj_priv->fence_reg < 8)
2510                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2511                 else
2512                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2513                                                        8) * 4;
2514
2515                 I915_WRITE(fence_reg, 0);
2516         }
2517
2518         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2519         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2520         list_del_init(&obj_priv->fence_list);
2521 }
2522
2523 /**
2524  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2525  * to the buffer to finish, and then resets the fence register.
2526  * @obj: tiled object holding a fence register.
2527  *
2528  * Zeroes out the fence register itself and clears out the associated
2529  * data structures in dev_priv and obj_priv.
2530  */
2531 int
2532 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2533 {
2534         struct drm_device *dev = obj->dev;
2535         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2536
2537         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2538                 return 0;
2539
2540         /* On the i915, GPU access to tiled buffers is via a fence,
2541          * therefore we must wait for any outstanding access to complete
2542          * before clearing the fence.
2543          */
2544         if (!IS_I965G(dev)) {
2545                 int ret;
2546
2547                 i915_gem_object_flush_gpu_write_domain(obj);
2548                 i915_gem_object_flush_gtt_write_domain(obj);
2549                 ret = i915_gem_object_wait_rendering(obj);
2550                 if (ret != 0)
2551                         return ret;
2552         }
2553
2554         i915_gem_clear_fence_reg (obj);
2555
2556         return 0;
2557 }
2558
2559 /**
2560  * Finds free space in the GTT aperture and binds the object there.
2561  */
2562 static int
2563 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2564 {
2565         struct drm_device *dev = obj->dev;
2566         drm_i915_private_t *dev_priv = dev->dev_private;
2567         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2568         struct drm_mm_node *free_space;
2569         bool retry_alloc = false;
2570         int ret;
2571
2572         if (dev_priv->mm.suspended)
2573                 return -EBUSY;
2574
2575         if (obj_priv->madv != I915_MADV_WILLNEED) {
2576                 DRM_ERROR("Attempting to bind a purgeable object\n");
2577                 return -EINVAL;
2578         }
2579
2580         if (alignment == 0)
2581                 alignment = i915_gem_get_gtt_alignment(obj);
2582         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2583                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2584                 return -EINVAL;
2585         }
2586
2587  search_free:
2588         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2589                                         obj->size, alignment, 0);
2590         if (free_space != NULL) {
2591                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2592                                                        alignment);
2593                 if (obj_priv->gtt_space != NULL) {
2594                         obj_priv->gtt_space->private = obj;
2595                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2596                 }
2597         }
2598         if (obj_priv->gtt_space == NULL) {
2599                 /* If the gtt is empty and we're still having trouble
2600                  * fitting our object in, we're out of memory.
2601                  */
2602 #if WATCH_LRU
2603                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2604 #endif
2605                 ret = i915_gem_evict_something(dev, obj->size);
2606                 if (ret)
2607                         return ret;
2608
2609                 goto search_free;
2610         }
2611
2612 #if WATCH_BUF
2613         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2614                  obj->size, obj_priv->gtt_offset);
2615 #endif
2616         if (retry_alloc) {
2617                 i915_gem_object_set_page_gfp_mask (obj,
2618                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2619         }
2620         ret = i915_gem_object_get_pages(obj);
2621         if (retry_alloc) {
2622                 i915_gem_object_set_page_gfp_mask (obj,
2623                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2624         }
2625         if (ret) {
2626                 drm_mm_put_block(obj_priv->gtt_space);
2627                 obj_priv->gtt_space = NULL;
2628
2629                 if (ret == -ENOMEM) {
2630                         /* first try to clear up some space from the GTT */
2631                         ret = i915_gem_evict_something(dev, obj->size);
2632                         if (ret) {
2633                                 /* now try to shrink everyone else */
2634                                 if (! retry_alloc) {
2635                                     retry_alloc = true;
2636                                     goto search_free;
2637                                 }
2638
2639                                 return ret;
2640                         }
2641
2642                         goto search_free;
2643                 }
2644
2645                 return ret;
2646         }
2647
2648         /* Create an AGP memory structure pointing at our pages, and bind it
2649          * into the GTT.
2650          */
2651         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2652                                                obj_priv->pages,
2653                                                obj->size >> PAGE_SHIFT,
2654                                                obj_priv->gtt_offset,
2655                                                obj_priv->agp_type);
2656         if (obj_priv->agp_mem == NULL) {
2657                 i915_gem_object_put_pages(obj);
2658                 drm_mm_put_block(obj_priv->gtt_space);
2659                 obj_priv->gtt_space = NULL;
2660
2661                 ret = i915_gem_evict_something(dev, obj->size);
2662                 if (ret)
2663                         return ret;
2664
2665                 goto search_free;
2666         }
2667         atomic_inc(&dev->gtt_count);
2668         atomic_add(obj->size, &dev->gtt_memory);
2669
2670         /* Assert that the object is not currently in any GPU domain. As it
2671          * wasn't in the GTT, there shouldn't be any way it could have been in
2672          * a GPU cache
2673          */
2674         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2675         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2676
2677         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2678
2679         return 0;
2680 }
2681
2682 void
2683 i915_gem_clflush_object(struct drm_gem_object *obj)
2684 {
2685         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2686
2687         /* If we don't have a page list set up, then we're not pinned
2688          * to GPU, and we can ignore the cache flush because it'll happen
2689          * again at bind time.
2690          */
2691         if (obj_priv->pages == NULL)
2692                 return;
2693
2694         trace_i915_gem_object_clflush(obj);
2695
2696         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2697 }
2698
2699 /** Flushes any GPU write domain for the object if it's dirty. */
2700 static void
2701 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2702 {
2703         struct drm_device *dev = obj->dev;
2704         uint32_t seqno;
2705         uint32_t old_write_domain;
2706
2707         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2708                 return;
2709
2710         /* Queue the GPU write cache flushing we need. */
2711         old_write_domain = obj->write_domain;
2712         i915_gem_flush(dev, 0, obj->write_domain);
2713         seqno = i915_add_request(dev, NULL, obj->write_domain);
2714         obj->write_domain = 0;
2715         i915_gem_object_move_to_active(obj, seqno);
2716
2717         trace_i915_gem_object_change_domain(obj,
2718                                             obj->read_domains,
2719                                             old_write_domain);
2720 }
2721
2722 /** Flushes the GTT write domain for the object if it's dirty. */
2723 static void
2724 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2725 {
2726         uint32_t old_write_domain;
2727
2728         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2729                 return;
2730
2731         /* No actual flushing is required for the GTT write domain.   Writes
2732          * to it immediately go to main memory as far as we know, so there's
2733          * no chipset flush.  It also doesn't land in render cache.
2734          */
2735         old_write_domain = obj->write_domain;
2736         obj->write_domain = 0;
2737
2738         trace_i915_gem_object_change_domain(obj,
2739                                             obj->read_domains,
2740                                             old_write_domain);
2741 }
2742
2743 /** Flushes the CPU write domain for the object if it's dirty. */
2744 static void
2745 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2746 {
2747         struct drm_device *dev = obj->dev;
2748         uint32_t old_write_domain;
2749
2750         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2751                 return;
2752
2753         i915_gem_clflush_object(obj);
2754         drm_agp_chipset_flush(dev);
2755         old_write_domain = obj->write_domain;
2756         obj->write_domain = 0;
2757
2758         trace_i915_gem_object_change_domain(obj,
2759                                             obj->read_domains,
2760                                             old_write_domain);
2761 }
2762
2763 /**
2764  * Moves a single object to the GTT read, and possibly write domain.
2765  *
2766  * This function returns when the move is complete, including waiting on
2767  * flushes to occur.
2768  */
2769 int
2770 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2771 {
2772         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773         uint32_t old_write_domain, old_read_domains;
2774         int ret;
2775
2776         /* Not valid to be called on unbound objects. */
2777         if (obj_priv->gtt_space == NULL)
2778                 return -EINVAL;
2779
2780         i915_gem_object_flush_gpu_write_domain(obj);
2781         /* Wait on any GPU rendering and flushing to occur. */
2782         ret = i915_gem_object_wait_rendering(obj);
2783         if (ret != 0)
2784                 return ret;
2785
2786         old_write_domain = obj->write_domain;
2787         old_read_domains = obj->read_domains;
2788
2789         /* If we're writing through the GTT domain, then CPU and GPU caches
2790          * will need to be invalidated at next use.
2791          */
2792         if (write)
2793                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2794
2795         i915_gem_object_flush_cpu_write_domain(obj);
2796
2797         /* It should now be out of any other write domains, and we can update
2798          * the domain values for our changes.
2799          */
2800         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2801         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2802         if (write) {
2803                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2804                 obj_priv->dirty = 1;
2805         }
2806
2807         trace_i915_gem_object_change_domain(obj,
2808                                             old_read_domains,
2809                                             old_write_domain);
2810
2811         return 0;
2812 }
2813
2814 /**
2815  * Moves a single object to the CPU read, and possibly write domain.
2816  *
2817  * This function returns when the move is complete, including waiting on
2818  * flushes to occur.
2819  */
2820 static int
2821 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2822 {
2823         uint32_t old_write_domain, old_read_domains;
2824         int ret;
2825
2826         i915_gem_object_flush_gpu_write_domain(obj);
2827         /* Wait on any GPU rendering and flushing to occur. */
2828         ret = i915_gem_object_wait_rendering(obj);
2829         if (ret != 0)
2830                 return ret;
2831
2832         i915_gem_object_flush_gtt_write_domain(obj);
2833
2834         /* If we have a partially-valid cache of the object in the CPU,
2835          * finish invalidating it and free the per-page flags.
2836          */
2837         i915_gem_object_set_to_full_cpu_read_domain(obj);
2838
2839         old_write_domain = obj->write_domain;
2840         old_read_domains = obj->read_domains;
2841
2842         /* Flush the CPU cache if it's still invalid. */
2843         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2844                 i915_gem_clflush_object(obj);
2845
2846                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2847         }
2848
2849         /* It should now be out of any other write domains, and we can update
2850          * the domain values for our changes.
2851          */
2852         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2853
2854         /* If we're writing through the CPU, then the GPU read domains will
2855          * need to be invalidated at next use.
2856          */
2857         if (write) {
2858                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2859                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2860         }
2861
2862         trace_i915_gem_object_change_domain(obj,
2863                                             old_read_domains,
2864                                             old_write_domain);
2865
2866         return 0;
2867 }
2868
2869 /*
2870  * Set the next domain for the specified object. This
2871  * may not actually perform the necessary flushing/invaliding though,
2872  * as that may want to be batched with other set_domain operations
2873  *
2874  * This is (we hope) the only really tricky part of gem. The goal
2875  * is fairly simple -- track which caches hold bits of the object
2876  * and make sure they remain coherent. A few concrete examples may
2877  * help to explain how it works. For shorthand, we use the notation
2878  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2879  * a pair of read and write domain masks.
2880  *
2881  * Case 1: the batch buffer
2882  *
2883  *      1. Allocated
2884  *      2. Written by CPU
2885  *      3. Mapped to GTT
2886  *      4. Read by GPU
2887  *      5. Unmapped from GTT
2888  *      6. Freed
2889  *
2890  *      Let's take these a step at a time
2891  *
2892  *      1. Allocated
2893  *              Pages allocated from the kernel may still have
2894  *              cache contents, so we set them to (CPU, CPU) always.
2895  *      2. Written by CPU (using pwrite)
2896  *              The pwrite function calls set_domain (CPU, CPU) and
2897  *              this function does nothing (as nothing changes)
2898  *      3. Mapped by GTT
2899  *              This function asserts that the object is not
2900  *              currently in any GPU-based read or write domains
2901  *      4. Read by GPU
2902  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2903  *              As write_domain is zero, this function adds in the
2904  *              current read domains (CPU+COMMAND, 0).
2905  *              flush_domains is set to CPU.
2906  *              invalidate_domains is set to COMMAND
2907  *              clflush is run to get data out of the CPU caches
2908  *              then i915_dev_set_domain calls i915_gem_flush to
2909  *              emit an MI_FLUSH and drm_agp_chipset_flush
2910  *      5. Unmapped from GTT
2911  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2912  *              flush_domains and invalidate_domains end up both zero
2913  *              so no flushing/invalidating happens
2914  *      6. Freed
2915  *              yay, done
2916  *
2917  * Case 2: The shared render buffer
2918  *
2919  *      1. Allocated
2920  *      2. Mapped to GTT
2921  *      3. Read/written by GPU
2922  *      4. set_domain to (CPU,CPU)
2923  *      5. Read/written by CPU
2924  *      6. Read/written by GPU
2925  *
2926  *      1. Allocated
2927  *              Same as last example, (CPU, CPU)
2928  *      2. Mapped to GTT
2929  *              Nothing changes (assertions find that it is not in the GPU)
2930  *      3. Read/written by GPU
2931  *              execbuffer calls set_domain (RENDER, RENDER)
2932  *              flush_domains gets CPU
2933  *              invalidate_domains gets GPU
2934  *              clflush (obj)
2935  *              MI_FLUSH and drm_agp_chipset_flush
2936  *      4. set_domain (CPU, CPU)
2937  *              flush_domains gets GPU
2938  *              invalidate_domains gets CPU
2939  *              wait_rendering (obj) to make sure all drawing is complete.
2940  *              This will include an MI_FLUSH to get the data from GPU
2941  *              to memory
2942  *              clflush (obj) to invalidate the CPU cache
2943  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2944  *      5. Read/written by CPU
2945  *              cache lines are loaded and dirtied
2946  *      6. Read written by GPU
2947  *              Same as last GPU access
2948  *
2949  * Case 3: The constant buffer
2950  *
2951  *      1. Allocated
2952  *      2. Written by CPU
2953  *      3. Read by GPU
2954  *      4. Updated (written) by CPU again
2955  *      5. Read by GPU
2956  *
2957  *      1. Allocated
2958  *              (CPU, CPU)
2959  *      2. Written by CPU
2960  *              (CPU, CPU)
2961  *      3. Read by GPU
2962  *              (CPU+RENDER, 0)
2963  *              flush_domains = CPU
2964  *              invalidate_domains = RENDER
2965  *              clflush (obj)
2966  *              MI_FLUSH
2967  *              drm_agp_chipset_flush
2968  *      4. Updated (written) by CPU again
2969  *              (CPU, CPU)
2970  *              flush_domains = 0 (no previous write domain)
2971  *              invalidate_domains = 0 (no new read domains)
2972  *      5. Read by GPU
2973  *              (CPU+RENDER, 0)
2974  *              flush_domains = CPU
2975  *              invalidate_domains = RENDER
2976  *              clflush (obj)
2977  *              MI_FLUSH
2978  *              drm_agp_chipset_flush
2979  */
2980 static void
2981 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2982 {
2983         struct drm_device               *dev = obj->dev;
2984         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2985         uint32_t                        invalidate_domains = 0;
2986         uint32_t                        flush_domains = 0;
2987         uint32_t                        old_read_domains;
2988
2989         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2990         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2991
2992         intel_mark_busy(dev, obj);
2993
2994 #if WATCH_BUF
2995         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2996                  __func__, obj,
2997                  obj->read_domains, obj->pending_read_domains,
2998                  obj->write_domain, obj->pending_write_domain);
2999 #endif
3000         /*
3001          * If the object isn't moving to a new write domain,
3002          * let the object stay in multiple read domains
3003          */
3004         if (obj->pending_write_domain == 0)
3005                 obj->pending_read_domains |= obj->read_domains;
3006         else
3007                 obj_priv->dirty = 1;
3008
3009         /*
3010          * Flush the current write domain if
3011          * the new read domains don't match. Invalidate
3012          * any read domains which differ from the old
3013          * write domain
3014          */
3015         if (obj->write_domain &&
3016             obj->write_domain != obj->pending_read_domains) {
3017                 flush_domains |= obj->write_domain;
3018                 invalidate_domains |=
3019                         obj->pending_read_domains & ~obj->write_domain;
3020         }
3021         /*
3022          * Invalidate any read caches which may have
3023          * stale data. That is, any new read domains.
3024          */
3025         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3026         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3027 #if WATCH_BUF
3028                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3029                          __func__, flush_domains, invalidate_domains);
3030 #endif
3031                 i915_gem_clflush_object(obj);
3032         }
3033
3034         old_read_domains = obj->read_domains;
3035
3036         /* The actual obj->write_domain will be updated with
3037          * pending_write_domain after we emit the accumulated flush for all
3038          * of our domain changes in execbuffers (which clears objects'
3039          * write_domains).  So if we have a current write domain that we
3040          * aren't changing, set pending_write_domain to that.
3041          */
3042         if (flush_domains == 0 && obj->pending_write_domain == 0)
3043                 obj->pending_write_domain = obj->write_domain;
3044         obj->read_domains = obj->pending_read_domains;
3045
3046         dev->invalidate_domains |= invalidate_domains;
3047         dev->flush_domains |= flush_domains;
3048 #if WATCH_BUF
3049         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3050                  __func__,
3051                  obj->read_domains, obj->write_domain,
3052                  dev->invalidate_domains, dev->flush_domains);
3053 #endif
3054
3055         trace_i915_gem_object_change_domain(obj,
3056                                             old_read_domains,
3057                                             obj->write_domain);
3058 }
3059
3060 /**
3061  * Moves the object from a partially CPU read to a full one.
3062  *
3063  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3064  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3065  */
3066 static void
3067 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3068 {
3069         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3070
3071         if (!obj_priv->page_cpu_valid)
3072                 return;
3073
3074         /* If we're partially in the CPU read domain, finish moving it in.
3075          */
3076         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3077                 int i;
3078
3079                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3080                         if (obj_priv->page_cpu_valid[i])
3081                                 continue;
3082                         drm_clflush_pages(obj_priv->pages + i, 1);
3083                 }
3084         }
3085
3086         /* Free the page_cpu_valid mappings which are now stale, whether
3087          * or not we've got I915_GEM_DOMAIN_CPU.
3088          */
3089         kfree(obj_priv->page_cpu_valid);
3090         obj_priv->page_cpu_valid = NULL;
3091 }
3092
3093 /**
3094  * Set the CPU read domain on a range of the object.
3095  *
3096  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3097  * not entirely valid.  The page_cpu_valid member of the object flags which
3098  * pages have been flushed, and will be respected by
3099  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3100  * of the whole object.
3101  *
3102  * This function returns when the move is complete, including waiting on
3103  * flushes to occur.
3104  */
3105 static int
3106 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3107                                           uint64_t offset, uint64_t size)
3108 {
3109         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3110         uint32_t old_read_domains;
3111         int i, ret;
3112
3113         if (offset == 0 && size == obj->size)
3114                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3115
3116         i915_gem_object_flush_gpu_write_domain(obj);
3117         /* Wait on any GPU rendering and flushing to occur. */
3118         ret = i915_gem_object_wait_rendering(obj);
3119         if (ret != 0)
3120                 return ret;
3121         i915_gem_object_flush_gtt_write_domain(obj);
3122
3123         /* If we're already fully in the CPU read domain, we're done. */
3124         if (obj_priv->page_cpu_valid == NULL &&
3125             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3126                 return 0;
3127
3128         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3129          * newly adding I915_GEM_DOMAIN_CPU
3130          */
3131         if (obj_priv->page_cpu_valid == NULL) {
3132                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3133                                                    GFP_KERNEL);
3134                 if (obj_priv->page_cpu_valid == NULL)
3135                         return -ENOMEM;
3136         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3137                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3138
3139         /* Flush the cache on any pages that are still invalid from the CPU's
3140          * perspective.
3141          */
3142         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3143              i++) {
3144                 if (obj_priv->page_cpu_valid[i])
3145                         continue;
3146
3147                 drm_clflush_pages(obj_priv->pages + i, 1);
3148
3149                 obj_priv->page_cpu_valid[i] = 1;
3150         }
3151
3152         /* It should now be out of any other write domains, and we can update
3153          * the domain values for our changes.
3154          */
3155         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3156
3157         old_read_domains = obj->read_domains;
3158         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3159
3160         trace_i915_gem_object_change_domain(obj,
3161                                             old_read_domains,
3162                                             obj->write_domain);
3163
3164         return 0;
3165 }
3166
3167 /**
3168  * Pin an object to the GTT and evaluate the relocations landing in it.
3169  */
3170 static int
3171 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3172                                  struct drm_file *file_priv,
3173                                  struct drm_i915_gem_exec_object *entry,
3174                                  struct drm_i915_gem_relocation_entry *relocs)
3175 {
3176         struct drm_device *dev = obj->dev;
3177         drm_i915_private_t *dev_priv = dev->dev_private;
3178         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3179         int i, ret;
3180         void __iomem *reloc_page;
3181
3182         /* Choose the GTT offset for our buffer and put it there. */
3183         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3184         if (ret)
3185                 return ret;
3186
3187         entry->offset = obj_priv->gtt_offset;
3188
3189         /* Apply the relocations, using the GTT aperture to avoid cache
3190          * flushing requirements.
3191          */
3192         for (i = 0; i < entry->relocation_count; i++) {
3193                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3194                 struct drm_gem_object *target_obj;
3195                 struct drm_i915_gem_object *target_obj_priv;
3196                 uint32_t reloc_val, reloc_offset;
3197                 uint32_t __iomem *reloc_entry;
3198
3199                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3200                                                    reloc->target_handle);
3201                 if (target_obj == NULL) {
3202                         i915_gem_object_unpin(obj);
3203                         return -EBADF;
3204                 }
3205                 target_obj_priv = target_obj->driver_private;
3206
3207 #if WATCH_RELOC
3208                 DRM_INFO("%s: obj %p offset %08x target %d "
3209                          "read %08x write %08x gtt %08x "
3210                          "presumed %08x delta %08x\n",
3211                          __func__,
3212                          obj,
3213                          (int) reloc->offset,
3214                          (int) reloc->target_handle,
3215                          (int) reloc->read_domains,
3216                          (int) reloc->write_domain,
3217                          (int) target_obj_priv->gtt_offset,
3218                          (int) reloc->presumed_offset,
3219                          reloc->delta);
3220 #endif
3221
3222                 /* The target buffer should have appeared before us in the
3223                  * exec_object list, so it should have a GTT space bound by now.
3224                  */
3225                 if (target_obj_priv->gtt_space == NULL) {
3226                         DRM_ERROR("No GTT space found for object %d\n",
3227                                   reloc->target_handle);
3228                         drm_gem_object_unreference(target_obj);
3229                         i915_gem_object_unpin(obj);
3230                         return -EINVAL;
3231                 }
3232
3233                 /* Validate that the target is in a valid r/w GPU domain */
3234                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3235                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3236                         DRM_ERROR("reloc with read/write CPU domains: "
3237                                   "obj %p target %d offset %d "
3238                                   "read %08x write %08x",
3239                                   obj, reloc->target_handle,
3240                                   (int) reloc->offset,
3241                                   reloc->read_domains,
3242                                   reloc->write_domain);
3243                         drm_gem_object_unreference(target_obj);
3244                         i915_gem_object_unpin(obj);
3245                         return -EINVAL;
3246                 }
3247                 if (reloc->write_domain && target_obj->pending_write_domain &&
3248                     reloc->write_domain != target_obj->pending_write_domain) {
3249                         DRM_ERROR("Write domain conflict: "
3250                                   "obj %p target %d offset %d "
3251                                   "new %08x old %08x\n",
3252                                   obj, reloc->target_handle,
3253                                   (int) reloc->offset,
3254                                   reloc->write_domain,
3255                                   target_obj->pending_write_domain);
3256                         drm_gem_object_unreference(target_obj);
3257                         i915_gem_object_unpin(obj);
3258                         return -EINVAL;
3259                 }
3260
3261                 target_obj->pending_read_domains |= reloc->read_domains;
3262                 target_obj->pending_write_domain |= reloc->write_domain;
3263
3264                 /* If the relocation already has the right value in it, no
3265                  * more work needs to be done.
3266                  */
3267                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3268                         drm_gem_object_unreference(target_obj);
3269                         continue;
3270                 }
3271
3272                 /* Check that the relocation address is valid... */
3273                 if (reloc->offset > obj->size - 4) {
3274                         DRM_ERROR("Relocation beyond object bounds: "
3275                                   "obj %p target %d offset %d size %d.\n",
3276                                   obj, reloc->target_handle,
3277                                   (int) reloc->offset, (int) obj->size);
3278                         drm_gem_object_unreference(target_obj);
3279                         i915_gem_object_unpin(obj);
3280                         return -EINVAL;
3281                 }
3282                 if (reloc->offset & 3) {
3283                         DRM_ERROR("Relocation not 4-byte aligned: "
3284                                   "obj %p target %d offset %d.\n",
3285                                   obj, reloc->target_handle,
3286                                   (int) reloc->offset);
3287                         drm_gem_object_unreference(target_obj);
3288                         i915_gem_object_unpin(obj);
3289                         return -EINVAL;
3290                 }
3291
3292                 /* and points to somewhere within the target object. */
3293                 if (reloc->delta >= target_obj->size) {
3294                         DRM_ERROR("Relocation beyond target object bounds: "
3295                                   "obj %p target %d delta %d size %d.\n",
3296                                   obj, reloc->target_handle,
3297                                   (int) reloc->delta, (int) target_obj->size);
3298                         drm_gem_object_unreference(target_obj);
3299                         i915_gem_object_unpin(obj);
3300                         return -EINVAL;
3301                 }
3302
3303                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3304                 if (ret != 0) {
3305                         drm_gem_object_unreference(target_obj);
3306                         i915_gem_object_unpin(obj);
3307                         return -EINVAL;
3308                 }
3309
3310                 /* Map the page containing the relocation we're going to
3311                  * perform.
3312                  */
3313                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3314                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3315                                                       (reloc_offset &
3316                                                        ~(PAGE_SIZE - 1)));
3317                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3318                                                    (reloc_offset & (PAGE_SIZE - 1)));
3319                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3320
3321 #if WATCH_BUF
3322                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3323                           obj, (unsigned int) reloc->offset,
3324                           readl(reloc_entry), reloc_val);
3325 #endif
3326                 writel(reloc_val, reloc_entry);
3327                 io_mapping_unmap_atomic(reloc_page);
3328
3329                 /* The updated presumed offset for this entry will be
3330                  * copied back out to the user.
3331                  */
3332                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3333
3334                 drm_gem_object_unreference(target_obj);
3335         }
3336
3337 #if WATCH_BUF
3338         if (0)
3339                 i915_gem_dump_object(obj, 128, __func__, ~0);
3340 #endif
3341         return 0;
3342 }
3343
3344 /** Dispatch a batchbuffer to the ring
3345  */
3346 static int
3347 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3348                               struct drm_i915_gem_execbuffer *exec,
3349                               struct drm_clip_rect *cliprects,
3350                               uint64_t exec_offset)
3351 {
3352         drm_i915_private_t *dev_priv = dev->dev_private;
3353         int nbox = exec->num_cliprects;
3354         int i = 0, count;
3355         uint32_t exec_start, exec_len;
3356         RING_LOCALS;
3357
3358         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3359         exec_len = (uint32_t) exec->batch_len;
3360
3361         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3362
3363         count = nbox ? nbox : 1;
3364
3365         for (i = 0; i < count; i++) {
3366                 if (i < nbox) {
3367                         int ret = i915_emit_box(dev, cliprects, i,
3368                                                 exec->DR1, exec->DR4);
3369                         if (ret)
3370                                 return ret;
3371                 }
3372
3373                 if (IS_I830(dev) || IS_845G(dev)) {
3374                         BEGIN_LP_RING(4);
3375                         OUT_RING(MI_BATCH_BUFFER);
3376                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3377                         OUT_RING(exec_start + exec_len - 4);
3378                         OUT_RING(0);
3379                         ADVANCE_LP_RING();
3380                 } else {
3381                         BEGIN_LP_RING(2);
3382                         if (IS_I965G(dev)) {
3383                                 OUT_RING(MI_BATCH_BUFFER_START |
3384                                          (2 << 6) |
3385                                          MI_BATCH_NON_SECURE_I965);
3386                                 OUT_RING(exec_start);
3387                         } else {
3388                                 OUT_RING(MI_BATCH_BUFFER_START |
3389                                          (2 << 6));
3390                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3391                         }
3392                         ADVANCE_LP_RING();
3393                 }
3394         }
3395
3396         /* XXX breadcrumb */
3397         return 0;
3398 }
3399
3400 /* Throttle our rendering by waiting until the ring has completed our requests
3401  * emitted over 20 msec ago.
3402  *
3403  * Note that if we were to use the current jiffies each time around the loop,
3404  * we wouldn't escape the function with any frames outstanding if the time to
3405  * render a frame was over 20ms.
3406  *
3407  * This should get us reasonable parallelism between CPU and GPU but also
3408  * relatively low latency when blocking on a particular request to finish.
3409  */
3410 static int
3411 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3412 {
3413         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3414         int ret = 0;
3415         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3416
3417         mutex_lock(&dev->struct_mutex);
3418         while (!list_empty(&i915_file_priv->mm.request_list)) {
3419                 struct drm_i915_gem_request *request;
3420
3421                 request = list_first_entry(&i915_file_priv->mm.request_list,
3422                                            struct drm_i915_gem_request,
3423                                            client_list);
3424
3425                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3426                         break;
3427
3428                 ret = i915_wait_request(dev, request->seqno);
3429                 if (ret != 0)
3430                         break;
3431         }
3432         mutex_unlock(&dev->struct_mutex);
3433
3434         return ret;
3435 }
3436
3437 static int
3438 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3439                               uint32_t buffer_count,
3440                               struct drm_i915_gem_relocation_entry **relocs)
3441 {
3442         uint32_t reloc_count = 0, reloc_index = 0, i;
3443         int ret;
3444
3445         *relocs = NULL;
3446         for (i = 0; i < buffer_count; i++) {
3447                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3448                         return -EINVAL;
3449                 reloc_count += exec_list[i].relocation_count;
3450         }
3451
3452         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3453         if (*relocs == NULL)
3454                 return -ENOMEM;
3455
3456         for (i = 0; i < buffer_count; i++) {
3457                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3458
3459                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3460
3461                 ret = copy_from_user(&(*relocs)[reloc_index],
3462                                      user_relocs,
3463                                      exec_list[i].relocation_count *
3464                                      sizeof(**relocs));
3465                 if (ret != 0) {
3466                         drm_free_large(*relocs);
3467                         *relocs = NULL;
3468                         return -EFAULT;
3469                 }
3470
3471                 reloc_index += exec_list[i].relocation_count;
3472         }
3473
3474         return 0;
3475 }
3476
3477 static int
3478 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3479                             uint32_t buffer_count,
3480                             struct drm_i915_gem_relocation_entry *relocs)
3481 {
3482         uint32_t reloc_count = 0, i;
3483         int ret = 0;
3484
3485         for (i = 0; i < buffer_count; i++) {
3486                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3487                 int unwritten;
3488
3489                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3490
3491                 unwritten = copy_to_user(user_relocs,
3492                                          &relocs[reloc_count],
3493                                          exec_list[i].relocation_count *
3494                                          sizeof(*relocs));
3495
3496                 if (unwritten) {
3497                         ret = -EFAULT;
3498                         goto err;
3499                 }
3500
3501                 reloc_count += exec_list[i].relocation_count;
3502         }
3503
3504 err:
3505         drm_free_large(relocs);
3506
3507         return ret;
3508 }
3509
3510 static int
3511 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3512                            uint64_t exec_offset)
3513 {
3514         uint32_t exec_start, exec_len;
3515
3516         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3517         exec_len = (uint32_t) exec->batch_len;
3518
3519         if ((exec_start | exec_len) & 0x7)
3520                 return -EINVAL;
3521
3522         if (!exec_start)
3523                 return -EINVAL;
3524
3525         return 0;
3526 }
3527
3528 int
3529 i915_gem_execbuffer(struct drm_device *dev, void *data,
3530                     struct drm_file *file_priv)
3531 {
3532         drm_i915_private_t *dev_priv = dev->dev_private;
3533         struct drm_i915_gem_execbuffer *args = data;
3534         struct drm_i915_gem_exec_object *exec_list = NULL;
3535         struct drm_gem_object **object_list = NULL;
3536         struct drm_gem_object *batch_obj;
3537         struct drm_i915_gem_object *obj_priv;
3538         struct drm_clip_rect *cliprects = NULL;
3539         struct drm_i915_gem_relocation_entry *relocs;
3540         int ret, ret2, i, pinned = 0;
3541         uint64_t exec_offset;
3542         uint32_t seqno, flush_domains, reloc_index;
3543         int pin_tries;
3544
3545 #if WATCH_EXEC
3546         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3547                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3548 #endif
3549
3550         if (args->buffer_count < 1) {
3551                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3552                 return -EINVAL;
3553         }
3554         /* Copy in the exec list from userland */
3555         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3556         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3557         if (exec_list == NULL || object_list == NULL) {
3558                 DRM_ERROR("Failed to allocate exec or object list "
3559                           "for %d buffers\n",
3560                           args->buffer_count);
3561                 ret = -ENOMEM;
3562                 goto pre_mutex_err;
3563         }
3564         ret = copy_from_user(exec_list,
3565                              (struct drm_i915_relocation_entry __user *)
3566                              (uintptr_t) args->buffers_ptr,
3567                              sizeof(*exec_list) * args->buffer_count);
3568         if (ret != 0) {
3569                 DRM_ERROR("copy %d exec entries failed %d\n",
3570                           args->buffer_count, ret);
3571                 goto pre_mutex_err;
3572         }
3573
3574         if (args->num_cliprects != 0) {
3575                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3576                                     GFP_KERNEL);
3577                 if (cliprects == NULL)
3578                         goto pre_mutex_err;
3579
3580                 ret = copy_from_user(cliprects,
3581                                      (struct drm_clip_rect __user *)
3582                                      (uintptr_t) args->cliprects_ptr,
3583                                      sizeof(*cliprects) * args->num_cliprects);
3584                 if (ret != 0) {
3585                         DRM_ERROR("copy %d cliprects failed: %d\n",
3586                                   args->num_cliprects, ret);
3587                         goto pre_mutex_err;
3588                 }
3589         }
3590
3591         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3592                                             &relocs);
3593         if (ret != 0)
3594                 goto pre_mutex_err;
3595
3596         mutex_lock(&dev->struct_mutex);
3597
3598         i915_verify_inactive(dev, __FILE__, __LINE__);
3599
3600         if (atomic_read(&dev_priv->mm.wedged)) {
3601                 DRM_ERROR("Execbuf while wedged\n");
3602                 mutex_unlock(&dev->struct_mutex);
3603                 ret = -EIO;
3604                 goto pre_mutex_err;
3605         }
3606
3607         if (dev_priv->mm.suspended) {
3608                 DRM_ERROR("Execbuf while VT-switched.\n");
3609                 mutex_unlock(&dev->struct_mutex);
3610                 ret = -EBUSY;
3611                 goto pre_mutex_err;
3612         }
3613
3614         /* Look up object handles */
3615         for (i = 0; i < args->buffer_count; i++) {
3616                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3617                                                        exec_list[i].handle);
3618                 if (object_list[i] == NULL) {
3619                         DRM_ERROR("Invalid object handle %d at index %d\n",
3620                                    exec_list[i].handle, i);
3621                         ret = -EBADF;
3622                         goto err;
3623                 }
3624
3625                 obj_priv = object_list[i]->driver_private;
3626                 if (obj_priv->in_execbuffer) {
3627                         DRM_ERROR("Object %p appears more than once in object list\n",
3628                                    object_list[i]);
3629                         ret = -EBADF;
3630                         goto err;
3631                 }
3632                 obj_priv->in_execbuffer = true;
3633         }
3634
3635         /* Pin and relocate */
3636         for (pin_tries = 0; ; pin_tries++) {
3637                 ret = 0;
3638                 reloc_index = 0;
3639
3640                 for (i = 0; i < args->buffer_count; i++) {
3641                         object_list[i]->pending_read_domains = 0;
3642                         object_list[i]->pending_write_domain = 0;
3643                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3644                                                                file_priv,
3645                                                                &exec_list[i],
3646                                                                &relocs[reloc_index]);
3647                         if (ret)
3648                                 break;
3649                         pinned = i + 1;
3650                         reloc_index += exec_list[i].relocation_count;
3651                 }
3652                 /* success */
3653                 if (ret == 0)
3654                         break;
3655
3656                 /* error other than GTT full, or we've already tried again */
3657                 if (ret != -ENOSPC || pin_tries >= 1) {
3658                         if (ret != -ERESTARTSYS) {
3659                                 unsigned long long total_size = 0;
3660                                 for (i = 0; i < args->buffer_count; i++)
3661                                         total_size += object_list[i]->size;
3662                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3663                                           pinned+1, args->buffer_count,
3664                                           total_size, ret);
3665                                 DRM_ERROR("%d objects [%d pinned], "
3666                                           "%d object bytes [%d pinned], "
3667                                           "%d/%d gtt bytes\n",
3668                                           atomic_read(&dev->object_count),
3669                                           atomic_read(&dev->pin_count),
3670                                           atomic_read(&dev->object_memory),
3671                                           atomic_read(&dev->pin_memory),
3672                                           atomic_read(&dev->gtt_memory),
3673                                           dev->gtt_total);
3674                         }
3675                         goto err;
3676                 }
3677
3678                 /* unpin all of our buffers */
3679                 for (i = 0; i < pinned; i++)
3680                         i915_gem_object_unpin(object_list[i]);
3681                 pinned = 0;
3682
3683                 /* evict everyone we can from the aperture */
3684                 ret = i915_gem_evict_everything(dev);
3685                 if (ret && ret != -ENOSPC)
3686                         goto err;
3687         }
3688
3689         /* Set the pending read domains for the batch buffer to COMMAND */
3690         batch_obj = object_list[args->buffer_count-1];
3691         if (batch_obj->pending_write_domain) {
3692                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3693                 ret = -EINVAL;
3694                 goto err;
3695         }
3696         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3697
3698         /* Sanity check the batch buffer, prior to moving objects */
3699         exec_offset = exec_list[args->buffer_count - 1].offset;
3700         ret = i915_gem_check_execbuffer (args, exec_offset);
3701         if (ret != 0) {
3702                 DRM_ERROR("execbuf with invalid offset/length\n");
3703                 goto err;
3704         }
3705
3706         i915_verify_inactive(dev, __FILE__, __LINE__);
3707
3708         /* Zero the global flush/invalidate flags. These
3709          * will be modified as new domains are computed
3710          * for each object
3711          */
3712         dev->invalidate_domains = 0;
3713         dev->flush_domains = 0;
3714
3715         for (i = 0; i < args->buffer_count; i++) {
3716                 struct drm_gem_object *obj = object_list[i];
3717
3718                 /* Compute new gpu domains and update invalidate/flush */
3719                 i915_gem_object_set_to_gpu_domain(obj);
3720         }
3721
3722         i915_verify_inactive(dev, __FILE__, __LINE__);
3723
3724         if (dev->invalidate_domains | dev->flush_domains) {
3725 #if WATCH_EXEC
3726                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3727                           __func__,
3728                          dev->invalidate_domains,
3729                          dev->flush_domains);
3730 #endif
3731                 i915_gem_flush(dev,
3732                                dev->invalidate_domains,
3733                                dev->flush_domains);
3734                 if (dev->flush_domains)
3735                         (void)i915_add_request(dev, file_priv,
3736                                                dev->flush_domains);
3737         }
3738
3739         for (i = 0; i < args->buffer_count; i++) {
3740                 struct drm_gem_object *obj = object_list[i];
3741                 uint32_t old_write_domain = obj->write_domain;
3742
3743                 obj->write_domain = obj->pending_write_domain;
3744                 trace_i915_gem_object_change_domain(obj,
3745                                                     obj->read_domains,
3746                                                     old_write_domain);
3747         }
3748
3749         i915_verify_inactive(dev, __FILE__, __LINE__);
3750
3751 #if WATCH_COHERENCY
3752         for (i = 0; i < args->buffer_count; i++) {
3753                 i915_gem_object_check_coherency(object_list[i],
3754                                                 exec_list[i].handle);
3755         }
3756 #endif
3757
3758 #if WATCH_EXEC
3759         i915_gem_dump_object(batch_obj,
3760                               args->batch_len,
3761                               __func__,
3762                               ~0);
3763 #endif
3764
3765         /* Exec the batchbuffer */
3766         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3767         if (ret) {
3768                 DRM_ERROR("dispatch failed %d\n", ret);
3769                 goto err;
3770         }
3771
3772         /*
3773          * Ensure that the commands in the batch buffer are
3774          * finished before the interrupt fires
3775          */
3776         flush_domains = i915_retire_commands(dev);
3777
3778         i915_verify_inactive(dev, __FILE__, __LINE__);
3779
3780         /*
3781          * Get a seqno representing the execution of the current buffer,
3782          * which we can wait on.  We would like to mitigate these interrupts,
3783          * likely by only creating seqnos occasionally (so that we have
3784          * *some* interrupts representing completion of buffers that we can
3785          * wait on when trying to clear up gtt space).
3786          */
3787         seqno = i915_add_request(dev, file_priv, flush_domains);
3788         BUG_ON(seqno == 0);
3789         for (i = 0; i < args->buffer_count; i++) {
3790                 struct drm_gem_object *obj = object_list[i];
3791
3792                 i915_gem_object_move_to_active(obj, seqno);
3793 #if WATCH_LRU
3794                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3795 #endif
3796         }
3797 #if WATCH_LRU
3798         i915_dump_lru(dev, __func__);
3799 #endif
3800
3801         i915_verify_inactive(dev, __FILE__, __LINE__);
3802
3803 err:
3804         for (i = 0; i < pinned; i++)
3805                 i915_gem_object_unpin(object_list[i]);
3806
3807         for (i = 0; i < args->buffer_count; i++) {
3808                 if (object_list[i]) {
3809                         obj_priv = object_list[i]->driver_private;
3810                         obj_priv->in_execbuffer = false;
3811                 }
3812                 drm_gem_object_unreference(object_list[i]);
3813         }
3814
3815         mutex_unlock(&dev->struct_mutex);
3816
3817         if (!ret) {
3818                 /* Copy the new buffer offsets back to the user's exec list. */
3819                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3820                                    (uintptr_t) args->buffers_ptr,
3821                                    exec_list,
3822                                    sizeof(*exec_list) * args->buffer_count);
3823                 if (ret) {
3824                         ret = -EFAULT;
3825                         DRM_ERROR("failed to copy %d exec entries "
3826                                   "back to user (%d)\n",
3827                                   args->buffer_count, ret);
3828                 }
3829         }
3830
3831         /* Copy the updated relocations out regardless of current error
3832          * state.  Failure to update the relocs would mean that the next
3833          * time userland calls execbuf, it would do so with presumed offset
3834          * state that didn't match the actual object state.
3835          */
3836         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3837                                            relocs);
3838         if (ret2 != 0) {
3839                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3840
3841                 if (ret == 0)
3842                         ret = ret2;
3843         }
3844
3845 pre_mutex_err:
3846         drm_free_large(object_list);
3847         drm_free_large(exec_list);
3848         kfree(cliprects);
3849
3850         return ret;
3851 }
3852
3853 int
3854 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3855 {
3856         struct drm_device *dev = obj->dev;
3857         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3858         int ret;
3859
3860         i915_verify_inactive(dev, __FILE__, __LINE__);
3861         if (obj_priv->gtt_space == NULL) {
3862                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3863                 if (ret)
3864                         return ret;
3865         }
3866         /*
3867          * Pre-965 chips need a fence register set up in order to
3868          * properly handle tiled surfaces.
3869          */
3870         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3871                 ret = i915_gem_object_get_fence_reg(obj);
3872                 if (ret != 0) {
3873                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3874                                 DRM_ERROR("Failure to install fence: %d\n",
3875                                           ret);
3876                         return ret;
3877                 }
3878         }
3879         obj_priv->pin_count++;
3880
3881         /* If the object is not active and not pending a flush,
3882          * remove it from the inactive list
3883          */
3884         if (obj_priv->pin_count == 1) {
3885                 atomic_inc(&dev->pin_count);
3886                 atomic_add(obj->size, &dev->pin_memory);
3887                 if (!obj_priv->active &&
3888                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3889                     !list_empty(&obj_priv->list))
3890                         list_del_init(&obj_priv->list);
3891         }
3892         i915_verify_inactive(dev, __FILE__, __LINE__);
3893
3894         return 0;
3895 }
3896
3897 void
3898 i915_gem_object_unpin(struct drm_gem_object *obj)
3899 {
3900         struct drm_device *dev = obj->dev;
3901         drm_i915_private_t *dev_priv = dev->dev_private;
3902         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3903
3904         i915_verify_inactive(dev, __FILE__, __LINE__);
3905         obj_priv->pin_count--;
3906         BUG_ON(obj_priv->pin_count < 0);
3907         BUG_ON(obj_priv->gtt_space == NULL);
3908
3909         /* If the object is no longer pinned, and is
3910          * neither active nor being flushed, then stick it on
3911          * the inactive list
3912          */
3913         if (obj_priv->pin_count == 0) {
3914                 if (!obj_priv->active &&
3915                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3916                         list_move_tail(&obj_priv->list,
3917                                        &dev_priv->mm.inactive_list);
3918                 atomic_dec(&dev->pin_count);
3919                 atomic_sub(obj->size, &dev->pin_memory);
3920         }
3921         i915_verify_inactive(dev, __FILE__, __LINE__);
3922 }
3923
3924 int
3925 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3926                    struct drm_file *file_priv)
3927 {
3928         struct drm_i915_gem_pin *args = data;
3929         struct drm_gem_object *obj;
3930         struct drm_i915_gem_object *obj_priv;
3931         int ret;
3932
3933         mutex_lock(&dev->struct_mutex);
3934
3935         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3936         if (obj == NULL) {
3937                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3938                           args->handle);
3939                 mutex_unlock(&dev->struct_mutex);
3940                 return -EBADF;
3941         }
3942         obj_priv = obj->driver_private;
3943
3944         if (obj_priv->madv != I915_MADV_WILLNEED) {
3945                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3946                 drm_gem_object_unreference(obj);
3947                 mutex_unlock(&dev->struct_mutex);
3948                 return -EINVAL;
3949         }
3950
3951         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3952                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3953                           args->handle);
3954                 drm_gem_object_unreference(obj);
3955                 mutex_unlock(&dev->struct_mutex);
3956                 return -EINVAL;
3957         }
3958
3959         obj_priv->user_pin_count++;
3960         obj_priv->pin_filp = file_priv;
3961         if (obj_priv->user_pin_count == 1) {
3962                 ret = i915_gem_object_pin(obj, args->alignment);
3963                 if (ret != 0) {
3964                         drm_gem_object_unreference(obj);
3965                         mutex_unlock(&dev->struct_mutex);
3966                         return ret;
3967                 }
3968         }
3969
3970         /* XXX - flush the CPU caches for pinned objects
3971          * as the X server doesn't manage domains yet
3972          */
3973         i915_gem_object_flush_cpu_write_domain(obj);
3974         args->offset = obj_priv->gtt_offset;
3975         drm_gem_object_unreference(obj);
3976         mutex_unlock(&dev->struct_mutex);
3977
3978         return 0;
3979 }
3980
3981 int
3982 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3983                      struct drm_file *file_priv)
3984 {
3985         struct drm_i915_gem_pin *args = data;
3986         struct drm_gem_object *obj;
3987         struct drm_i915_gem_object *obj_priv;
3988
3989         mutex_lock(&dev->struct_mutex);
3990
3991         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3992         if (obj == NULL) {
3993                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3994                           args->handle);
3995                 mutex_unlock(&dev->struct_mutex);
3996                 return -EBADF;
3997         }
3998
3999         obj_priv = obj->driver_private;
4000         if (obj_priv->pin_filp != file_priv) {
4001                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4002                           args->handle);
4003                 drm_gem_object_unreference(obj);
4004                 mutex_unlock(&dev->struct_mutex);
4005                 return -EINVAL;
4006         }
4007         obj_priv->user_pin_count--;
4008         if (obj_priv->user_pin_count == 0) {
4009                 obj_priv->pin_filp = NULL;
4010                 i915_gem_object_unpin(obj);
4011         }
4012
4013         drm_gem_object_unreference(obj);
4014         mutex_unlock(&dev->struct_mutex);
4015         return 0;
4016 }
4017
4018 int
4019 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4020                     struct drm_file *file_priv)
4021 {
4022         struct drm_i915_gem_busy *args = data;
4023         struct drm_gem_object *obj;
4024         struct drm_i915_gem_object *obj_priv;
4025
4026         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4027         if (obj == NULL) {
4028                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4029                           args->handle);
4030                 return -EBADF;
4031         }
4032
4033         mutex_lock(&dev->struct_mutex);
4034         /* Update the active list for the hardware's current position.
4035          * Otherwise this only updates on a delayed timer or when irqs are
4036          * actually unmasked, and our working set ends up being larger than
4037          * required.
4038          */
4039         i915_gem_retire_requests(dev);
4040
4041         obj_priv = obj->driver_private;
4042         /* Don't count being on the flushing list against the object being
4043          * done.  Otherwise, a buffer left on the flushing list but not getting
4044          * flushed (because nobody's flushing that domain) won't ever return
4045          * unbusy and get reused by libdrm's bo cache.  The other expected
4046          * consumer of this interface, OpenGL's occlusion queries, also specs
4047          * that the objects get unbusy "eventually" without any interference.
4048          */
4049         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4050
4051         drm_gem_object_unreference(obj);
4052         mutex_unlock(&dev->struct_mutex);
4053         return 0;
4054 }
4055
4056 int
4057 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4058                         struct drm_file *file_priv)
4059 {
4060     return i915_gem_ring_throttle(dev, file_priv);
4061 }
4062
4063 int
4064 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4065                        struct drm_file *file_priv)
4066 {
4067         struct drm_i915_gem_madvise *args = data;
4068         struct drm_gem_object *obj;
4069         struct drm_i915_gem_object *obj_priv;
4070
4071         switch (args->madv) {
4072         case I915_MADV_DONTNEED:
4073         case I915_MADV_WILLNEED:
4074             break;
4075         default:
4076             return -EINVAL;
4077         }
4078
4079         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4080         if (obj == NULL) {
4081                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4082                           args->handle);
4083                 return -EBADF;
4084         }
4085
4086         mutex_lock(&dev->struct_mutex);
4087         obj_priv = obj->driver_private;
4088
4089         if (obj_priv->pin_count) {
4090                 drm_gem_object_unreference(obj);
4091                 mutex_unlock(&dev->struct_mutex);
4092
4093                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4094                 return -EINVAL;
4095         }
4096
4097         if (obj_priv->madv != __I915_MADV_PURGED)
4098                 obj_priv->madv = args->madv;
4099
4100         /* if the object is no longer bound, discard its backing storage */
4101         if (i915_gem_object_is_purgeable(obj_priv) &&
4102             obj_priv->gtt_space == NULL)
4103                 i915_gem_object_truncate(obj);
4104
4105         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4106
4107         drm_gem_object_unreference(obj);
4108         mutex_unlock(&dev->struct_mutex);
4109
4110         return 0;
4111 }
4112
4113 int i915_gem_init_object(struct drm_gem_object *obj)
4114 {
4115         struct drm_i915_gem_object *obj_priv;
4116
4117         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4118         if (obj_priv == NULL)
4119                 return -ENOMEM;
4120
4121         /*
4122          * We've just allocated pages from the kernel,
4123          * so they've just been written by the CPU with
4124          * zeros. They'll need to be clflushed before we
4125          * use them with the GPU.
4126          */
4127         obj->write_domain = I915_GEM_DOMAIN_CPU;
4128         obj->read_domains = I915_GEM_DOMAIN_CPU;
4129
4130         obj_priv->agp_type = AGP_USER_MEMORY;
4131
4132         obj->driver_private = obj_priv;
4133         obj_priv->obj = obj;
4134         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4135         INIT_LIST_HEAD(&obj_priv->list);
4136         INIT_LIST_HEAD(&obj_priv->fence_list);
4137         obj_priv->madv = I915_MADV_WILLNEED;
4138
4139         trace_i915_gem_object_create(obj);
4140
4141         return 0;
4142 }
4143
4144 void i915_gem_free_object(struct drm_gem_object *obj)
4145 {
4146         struct drm_device *dev = obj->dev;
4147         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4148
4149         trace_i915_gem_object_destroy(obj);
4150
4151         while (obj_priv->pin_count > 0)
4152                 i915_gem_object_unpin(obj);
4153
4154         if (obj_priv->phys_obj)
4155                 i915_gem_detach_phys_object(dev, obj);
4156
4157         i915_gem_object_unbind(obj);
4158
4159         if (obj_priv->mmap_offset)
4160                 i915_gem_free_mmap_offset(obj);
4161
4162         kfree(obj_priv->page_cpu_valid);
4163         kfree(obj_priv->bit_17);
4164         kfree(obj->driver_private);
4165 }
4166
4167 /** Unbinds all inactive objects. */
4168 static int
4169 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4170 {
4171         drm_i915_private_t *dev_priv = dev->dev_private;
4172
4173         while (!list_empty(&dev_priv->mm.inactive_list)) {
4174                 struct drm_gem_object *obj;
4175                 int ret;
4176
4177                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4178                                        struct drm_i915_gem_object,
4179                                        list)->obj;
4180
4181                 ret = i915_gem_object_unbind(obj);
4182                 if (ret != 0) {
4183                         DRM_ERROR("Error unbinding object: %d\n", ret);
4184                         return ret;
4185                 }
4186         }
4187
4188         return 0;
4189 }
4190
4191 int
4192 i915_gem_idle(struct drm_device *dev)
4193 {
4194         drm_i915_private_t *dev_priv = dev->dev_private;
4195         uint32_t seqno, cur_seqno, last_seqno;
4196         int stuck, ret;
4197
4198         mutex_lock(&dev->struct_mutex);
4199
4200         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4201                 mutex_unlock(&dev->struct_mutex);
4202                 return 0;
4203         }
4204
4205         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4206          * We need to replace this with a semaphore, or something.
4207          */
4208         dev_priv->mm.suspended = 1;
4209         del_timer(&dev_priv->hangcheck_timer);
4210
4211         /* Cancel the retire work handler, wait for it to finish if running
4212          */
4213         mutex_unlock(&dev->struct_mutex);
4214         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4215         mutex_lock(&dev->struct_mutex);
4216
4217         i915_kernel_lost_context(dev);
4218
4219         /* Flush the GPU along with all non-CPU write domains
4220          */
4221         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4222         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4223
4224         if (seqno == 0) {
4225                 mutex_unlock(&dev->struct_mutex);
4226                 return -ENOMEM;
4227         }
4228
4229         dev_priv->mm.waiting_gem_seqno = seqno;
4230         last_seqno = 0;
4231         stuck = 0;
4232         for (;;) {
4233                 cur_seqno = i915_get_gem_seqno(dev);
4234                 if (i915_seqno_passed(cur_seqno, seqno))
4235                         break;
4236                 if (last_seqno == cur_seqno) {
4237                         if (stuck++ > 100) {
4238                                 DRM_ERROR("hardware wedged\n");
4239                                 atomic_set(&dev_priv->mm.wedged, 1);
4240                                 DRM_WAKEUP(&dev_priv->irq_queue);
4241                                 break;
4242                         }
4243                 }
4244                 msleep(10);
4245                 last_seqno = cur_seqno;
4246         }
4247         dev_priv->mm.waiting_gem_seqno = 0;
4248
4249         i915_gem_retire_requests(dev);
4250
4251         spin_lock(&dev_priv->mm.active_list_lock);
4252         if (!atomic_read(&dev_priv->mm.wedged)) {
4253                 /* Active and flushing should now be empty as we've
4254                  * waited for a sequence higher than any pending execbuffer
4255                  */
4256                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4257                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4258                 /* Request should now be empty as we've also waited
4259                  * for the last request in the list
4260                  */
4261                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4262         }
4263
4264         /* Empty the active and flushing lists to inactive.  If there's
4265          * anything left at this point, it means that we're wedged and
4266          * nothing good's going to happen by leaving them there.  So strip
4267          * the GPU domains and just stuff them onto inactive.
4268          */
4269         while (!list_empty(&dev_priv->mm.active_list)) {
4270                 struct drm_gem_object *obj;
4271                 uint32_t old_write_domain;
4272
4273                 obj = list_first_entry(&dev_priv->mm.active_list,
4274                                        struct drm_i915_gem_object,
4275                                        list)->obj;
4276                 old_write_domain = obj->write_domain;
4277                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4278                 i915_gem_object_move_to_inactive(obj);
4279
4280                 trace_i915_gem_object_change_domain(obj,
4281                                                     obj->read_domains,
4282                                                     old_write_domain);
4283         }
4284         spin_unlock(&dev_priv->mm.active_list_lock);
4285
4286         while (!list_empty(&dev_priv->mm.flushing_list)) {
4287                 struct drm_gem_object *obj;
4288                 uint32_t old_write_domain;
4289
4290                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4291                                        struct drm_i915_gem_object,
4292                                        list)->obj;
4293                 old_write_domain = obj->write_domain;
4294                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4295                 i915_gem_object_move_to_inactive(obj);
4296
4297                 trace_i915_gem_object_change_domain(obj,
4298                                                     obj->read_domains,
4299                                                     old_write_domain);
4300         }
4301
4302
4303         /* Move all inactive buffers out of the GTT. */
4304         ret = i915_gem_evict_from_inactive_list(dev);
4305         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4306         if (ret) {
4307                 mutex_unlock(&dev->struct_mutex);
4308                 return ret;
4309         }
4310
4311         i915_gem_cleanup_ringbuffer(dev);
4312         mutex_unlock(&dev->struct_mutex);
4313
4314         return 0;
4315 }
4316
4317 static int
4318 i915_gem_init_hws(struct drm_device *dev)
4319 {
4320         drm_i915_private_t *dev_priv = dev->dev_private;
4321         struct drm_gem_object *obj;
4322         struct drm_i915_gem_object *obj_priv;
4323         int ret;
4324
4325         /* If we need a physical address for the status page, it's already
4326          * initialized at driver load time.
4327          */
4328         if (!I915_NEED_GFX_HWS(dev))
4329                 return 0;
4330
4331         obj = drm_gem_object_alloc(dev, 4096);
4332         if (obj == NULL) {
4333                 DRM_ERROR("Failed to allocate status page\n");
4334                 return -ENOMEM;
4335         }
4336         obj_priv = obj->driver_private;
4337         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4338
4339         ret = i915_gem_object_pin(obj, 4096);
4340         if (ret != 0) {
4341                 drm_gem_object_unreference(obj);
4342                 return ret;
4343         }
4344
4345         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4346
4347         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4348         if (dev_priv->hw_status_page == NULL) {
4349                 DRM_ERROR("Failed to map status page.\n");
4350                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4351                 i915_gem_object_unpin(obj);
4352                 drm_gem_object_unreference(obj);
4353                 return -EINVAL;
4354         }
4355         dev_priv->hws_obj = obj;
4356         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4357         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4358         I915_READ(HWS_PGA); /* posting read */
4359         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4360
4361         return 0;
4362 }
4363
4364 static void
4365 i915_gem_cleanup_hws(struct drm_device *dev)
4366 {
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368         struct drm_gem_object *obj;
4369         struct drm_i915_gem_object *obj_priv;
4370
4371         if (dev_priv->hws_obj == NULL)
4372                 return;
4373
4374         obj = dev_priv->hws_obj;
4375         obj_priv = obj->driver_private;
4376
4377         kunmap(obj_priv->pages[0]);
4378         i915_gem_object_unpin(obj);
4379         drm_gem_object_unreference(obj);
4380         dev_priv->hws_obj = NULL;
4381
4382         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4383         dev_priv->hw_status_page = NULL;
4384
4385         /* Write high address into HWS_PGA when disabling. */
4386         I915_WRITE(HWS_PGA, 0x1ffff000);
4387 }
4388
4389 int
4390 i915_gem_init_ringbuffer(struct drm_device *dev)
4391 {
4392         drm_i915_private_t *dev_priv = dev->dev_private;
4393         struct drm_gem_object *obj;
4394         struct drm_i915_gem_object *obj_priv;
4395         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4396         int ret;
4397         u32 head;
4398
4399         ret = i915_gem_init_hws(dev);
4400         if (ret != 0)
4401                 return ret;
4402
4403         obj = drm_gem_object_alloc(dev, 128 * 1024);
4404         if (obj == NULL) {
4405                 DRM_ERROR("Failed to allocate ringbuffer\n");
4406                 i915_gem_cleanup_hws(dev);
4407                 return -ENOMEM;
4408         }
4409         obj_priv = obj->driver_private;
4410
4411         ret = i915_gem_object_pin(obj, 4096);
4412         if (ret != 0) {
4413                 drm_gem_object_unreference(obj);
4414                 i915_gem_cleanup_hws(dev);
4415                 return ret;
4416         }
4417
4418         /* Set up the kernel mapping for the ring. */
4419         ring->Size = obj->size;
4420
4421         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4422         ring->map.size = obj->size;
4423         ring->map.type = 0;
4424         ring->map.flags = 0;
4425         ring->map.mtrr = 0;
4426
4427         drm_core_ioremap_wc(&ring->map, dev);
4428         if (ring->map.handle == NULL) {
4429                 DRM_ERROR("Failed to map ringbuffer.\n");
4430                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4431                 i915_gem_object_unpin(obj);
4432                 drm_gem_object_unreference(obj);
4433                 i915_gem_cleanup_hws(dev);
4434                 return -EINVAL;
4435         }
4436         ring->ring_obj = obj;
4437         ring->virtual_start = ring->map.handle;
4438
4439         /* Stop the ring if it's running. */
4440         I915_WRITE(PRB0_CTL, 0);
4441         I915_WRITE(PRB0_TAIL, 0);
4442         I915_WRITE(PRB0_HEAD, 0);
4443
4444         /* Initialize the ring. */
4445         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4446         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4447
4448         /* G45 ring initialization fails to reset head to zero */
4449         if (head != 0) {
4450                 DRM_ERROR("Ring head not reset to zero "
4451                           "ctl %08x head %08x tail %08x start %08x\n",
4452                           I915_READ(PRB0_CTL),
4453                           I915_READ(PRB0_HEAD),
4454                           I915_READ(PRB0_TAIL),
4455                           I915_READ(PRB0_START));
4456                 I915_WRITE(PRB0_HEAD, 0);
4457
4458                 DRM_ERROR("Ring head forced to zero "
4459                           "ctl %08x head %08x tail %08x start %08x\n",
4460                           I915_READ(PRB0_CTL),
4461                           I915_READ(PRB0_HEAD),
4462                           I915_READ(PRB0_TAIL),
4463                           I915_READ(PRB0_START));
4464         }
4465
4466         I915_WRITE(PRB0_CTL,
4467                    ((obj->size - 4096) & RING_NR_PAGES) |
4468                    RING_NO_REPORT |
4469                    RING_VALID);
4470
4471         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4472
4473         /* If the head is still not zero, the ring is dead */
4474         if (head != 0) {
4475                 DRM_ERROR("Ring initialization failed "
4476                           "ctl %08x head %08x tail %08x start %08x\n",
4477                           I915_READ(PRB0_CTL),
4478                           I915_READ(PRB0_HEAD),
4479                           I915_READ(PRB0_TAIL),
4480                           I915_READ(PRB0_START));
4481                 return -EIO;
4482         }
4483
4484         /* Update our cache of the ring state */
4485         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486                 i915_kernel_lost_context(dev);
4487         else {
4488                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4489                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4490                 ring->space = ring->head - (ring->tail + 8);
4491                 if (ring->space < 0)
4492                         ring->space += ring->Size;
4493         }
4494
4495         return 0;
4496 }
4497
4498 void
4499 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4500 {
4501         drm_i915_private_t *dev_priv = dev->dev_private;
4502
4503         if (dev_priv->ring.ring_obj == NULL)
4504                 return;
4505
4506         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4507
4508         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4509         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4510         dev_priv->ring.ring_obj = NULL;
4511         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4512
4513         i915_gem_cleanup_hws(dev);
4514 }
4515
4516 int
4517 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4518                        struct drm_file *file_priv)
4519 {
4520         drm_i915_private_t *dev_priv = dev->dev_private;
4521         int ret;
4522
4523         if (drm_core_check_feature(dev, DRIVER_MODESET))
4524                 return 0;
4525
4526         if (atomic_read(&dev_priv->mm.wedged)) {
4527                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4528                 atomic_set(&dev_priv->mm.wedged, 0);
4529         }
4530
4531         mutex_lock(&dev->struct_mutex);
4532         dev_priv->mm.suspended = 0;
4533
4534         ret = i915_gem_init_ringbuffer(dev);
4535         if (ret != 0) {
4536                 mutex_unlock(&dev->struct_mutex);
4537                 return ret;
4538         }
4539
4540         spin_lock(&dev_priv->mm.active_list_lock);
4541         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4542         spin_unlock(&dev_priv->mm.active_list_lock);
4543
4544         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4545         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4546         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4547         mutex_unlock(&dev->struct_mutex);
4548
4549         drm_irq_install(dev);
4550
4551         return 0;
4552 }
4553
4554 int
4555 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4556                        struct drm_file *file_priv)
4557 {
4558         if (drm_core_check_feature(dev, DRIVER_MODESET))
4559                 return 0;
4560
4561         drm_irq_uninstall(dev);
4562         return i915_gem_idle(dev);
4563 }
4564
4565 void
4566 i915_gem_lastclose(struct drm_device *dev)
4567 {
4568         int ret;
4569
4570         if (drm_core_check_feature(dev, DRIVER_MODESET))
4571                 return;
4572
4573         ret = i915_gem_idle(dev);
4574         if (ret)
4575                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4576 }
4577
4578 void
4579 i915_gem_load(struct drm_device *dev)
4580 {
4581         int i;
4582         drm_i915_private_t *dev_priv = dev->dev_private;
4583
4584         spin_lock_init(&dev_priv->mm.active_list_lock);
4585         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4586         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4587         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4588         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4589         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4590         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4591                           i915_gem_retire_work_handler);
4592         dev_priv->mm.next_gem_seqno = 1;
4593
4594         spin_lock(&shrink_list_lock);
4595         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4596         spin_unlock(&shrink_list_lock);
4597
4598         /* Old X drivers will take 0-2 for front, back, depth buffers */
4599         dev_priv->fence_reg_start = 3;
4600
4601         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4602                 dev_priv->num_fence_regs = 16;
4603         else
4604                 dev_priv->num_fence_regs = 8;
4605
4606         /* Initialize fence registers to zero */
4607         if (IS_I965G(dev)) {
4608                 for (i = 0; i < 16; i++)
4609                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4610         } else {
4611                 for (i = 0; i < 8; i++)
4612                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4613                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4614                         for (i = 0; i < 8; i++)
4615                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4616         }
4617
4618         i915_gem_detect_bit_6_swizzle(dev);
4619 }
4620
4621 /*
4622  * Create a physically contiguous memory object for this object
4623  * e.g. for cursor + overlay regs
4624  */
4625 int i915_gem_init_phys_object(struct drm_device *dev,
4626                               int id, int size)
4627 {
4628         drm_i915_private_t *dev_priv = dev->dev_private;
4629         struct drm_i915_gem_phys_object *phys_obj;
4630         int ret;
4631
4632         if (dev_priv->mm.phys_objs[id - 1] || !size)
4633                 return 0;
4634
4635         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4636         if (!phys_obj)
4637                 return -ENOMEM;
4638
4639         phys_obj->id = id;
4640
4641         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4642         if (!phys_obj->handle) {
4643                 ret = -ENOMEM;
4644                 goto kfree_obj;
4645         }
4646 #ifdef CONFIG_X86
4647         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4648 #endif
4649
4650         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4651
4652         return 0;
4653 kfree_obj:
4654         kfree(phys_obj);
4655         return ret;
4656 }
4657
4658 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4659 {
4660         drm_i915_private_t *dev_priv = dev->dev_private;
4661         struct drm_i915_gem_phys_object *phys_obj;
4662
4663         if (!dev_priv->mm.phys_objs[id - 1])
4664                 return;
4665
4666         phys_obj = dev_priv->mm.phys_objs[id - 1];
4667         if (phys_obj->cur_obj) {
4668                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4669         }
4670
4671 #ifdef CONFIG_X86
4672         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4673 #endif
4674         drm_pci_free(dev, phys_obj->handle);
4675         kfree(phys_obj);
4676         dev_priv->mm.phys_objs[id - 1] = NULL;
4677 }
4678
4679 void i915_gem_free_all_phys_object(struct drm_device *dev)
4680 {
4681         int i;
4682
4683         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4684                 i915_gem_free_phys_object(dev, i);
4685 }
4686
4687 void i915_gem_detach_phys_object(struct drm_device *dev,
4688                                  struct drm_gem_object *obj)
4689 {
4690         struct drm_i915_gem_object *obj_priv;
4691         int i;
4692         int ret;
4693         int page_count;
4694
4695         obj_priv = obj->driver_private;
4696         if (!obj_priv->phys_obj)
4697                 return;
4698
4699         ret = i915_gem_object_get_pages(obj);
4700         if (ret)
4701                 goto out;
4702
4703         page_count = obj->size / PAGE_SIZE;
4704
4705         for (i = 0; i < page_count; i++) {
4706                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4707                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4708
4709                 memcpy(dst, src, PAGE_SIZE);
4710                 kunmap_atomic(dst, KM_USER0);
4711         }
4712         drm_clflush_pages(obj_priv->pages, page_count);
4713         drm_agp_chipset_flush(dev);
4714
4715         i915_gem_object_put_pages(obj);
4716 out:
4717         obj_priv->phys_obj->cur_obj = NULL;
4718         obj_priv->phys_obj = NULL;
4719 }
4720
4721 int
4722 i915_gem_attach_phys_object(struct drm_device *dev,
4723                             struct drm_gem_object *obj, int id)
4724 {
4725         drm_i915_private_t *dev_priv = dev->dev_private;
4726         struct drm_i915_gem_object *obj_priv;
4727         int ret = 0;
4728         int page_count;
4729         int i;
4730
4731         if (id > I915_MAX_PHYS_OBJECT)
4732                 return -EINVAL;
4733
4734         obj_priv = obj->driver_private;
4735
4736         if (obj_priv->phys_obj) {
4737                 if (obj_priv->phys_obj->id == id)
4738                         return 0;
4739                 i915_gem_detach_phys_object(dev, obj);
4740         }
4741
4742
4743         /* create a new object */
4744         if (!dev_priv->mm.phys_objs[id - 1]) {
4745                 ret = i915_gem_init_phys_object(dev, id,
4746                                                 obj->size);
4747                 if (ret) {
4748                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4749                         goto out;
4750                 }
4751         }
4752
4753         /* bind to the object */
4754         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4755         obj_priv->phys_obj->cur_obj = obj;
4756
4757         ret = i915_gem_object_get_pages(obj);
4758         if (ret) {
4759                 DRM_ERROR("failed to get page list\n");
4760                 goto out;
4761         }
4762
4763         page_count = obj->size / PAGE_SIZE;
4764
4765         for (i = 0; i < page_count; i++) {
4766                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4767                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4768
4769                 memcpy(dst, src, PAGE_SIZE);
4770                 kunmap_atomic(src, KM_USER0);
4771         }
4772
4773         i915_gem_object_put_pages(obj);
4774
4775         return 0;
4776 out:
4777         return ret;
4778 }
4779
4780 static int
4781 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4782                      struct drm_i915_gem_pwrite *args,
4783                      struct drm_file *file_priv)
4784 {
4785         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4786         void *obj_addr;
4787         int ret;
4788         char __user *user_data;
4789
4790         user_data = (char __user *) (uintptr_t) args->data_ptr;
4791         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4792
4793         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4794         ret = copy_from_user(obj_addr, user_data, args->size);
4795         if (ret)
4796                 return -EFAULT;
4797
4798         drm_agp_chipset_flush(dev);
4799         return 0;
4800 }
4801
4802 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4803 {
4804         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4805
4806         /* Clean up our request list when the client is going away, so that
4807          * later retire_requests won't dereference our soon-to-be-gone
4808          * file_priv.
4809          */
4810         mutex_lock(&dev->struct_mutex);
4811         while (!list_empty(&i915_file_priv->mm.request_list))
4812                 list_del_init(i915_file_priv->mm.request_list.next);
4813         mutex_unlock(&dev->struct_mutex);
4814 }
4815
4816 static int
4817 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4818 {
4819         drm_i915_private_t *dev_priv, *next_dev;
4820         struct drm_i915_gem_object *obj_priv, *next_obj;
4821         int cnt = 0;
4822         int would_deadlock = 1;
4823
4824         /* "fast-path" to count number of available objects */
4825         if (nr_to_scan == 0) {
4826                 spin_lock(&shrink_list_lock);
4827                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4828                         struct drm_device *dev = dev_priv->dev;
4829
4830                         if (mutex_trylock(&dev->struct_mutex)) {
4831                                 list_for_each_entry(obj_priv,
4832                                                     &dev_priv->mm.inactive_list,
4833                                                     list)
4834                                         cnt++;
4835                                 mutex_unlock(&dev->struct_mutex);
4836                         }
4837                 }
4838                 spin_unlock(&shrink_list_lock);
4839
4840                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4841         }
4842
4843         spin_lock(&shrink_list_lock);
4844
4845         /* first scan for clean buffers */
4846         list_for_each_entry_safe(dev_priv, next_dev,
4847                                  &shrink_list, mm.shrink_list) {
4848                 struct drm_device *dev = dev_priv->dev;
4849
4850                 if (! mutex_trylock(&dev->struct_mutex))
4851                         continue;
4852
4853                 spin_unlock(&shrink_list_lock);
4854
4855                 i915_gem_retire_requests(dev);
4856
4857                 list_for_each_entry_safe(obj_priv, next_obj,
4858                                          &dev_priv->mm.inactive_list,
4859                                          list) {
4860                         if (i915_gem_object_is_purgeable(obj_priv)) {
4861                                 i915_gem_object_unbind(obj_priv->obj);
4862                                 if (--nr_to_scan <= 0)
4863                                         break;
4864                         }
4865                 }
4866
4867                 spin_lock(&shrink_list_lock);
4868                 mutex_unlock(&dev->struct_mutex);
4869
4870                 would_deadlock = 0;
4871
4872                 if (nr_to_scan <= 0)
4873                         break;
4874         }
4875
4876         /* second pass, evict/count anything still on the inactive list */
4877         list_for_each_entry_safe(dev_priv, next_dev,
4878                                  &shrink_list, mm.shrink_list) {
4879                 struct drm_device *dev = dev_priv->dev;
4880
4881                 if (! mutex_trylock(&dev->struct_mutex))
4882                         continue;
4883
4884                 spin_unlock(&shrink_list_lock);
4885
4886                 list_for_each_entry_safe(obj_priv, next_obj,
4887                                          &dev_priv->mm.inactive_list,
4888                                          list) {
4889                         if (nr_to_scan > 0) {
4890                                 i915_gem_object_unbind(obj_priv->obj);
4891                                 nr_to_scan--;
4892                         } else
4893                                 cnt++;
4894                 }
4895
4896                 spin_lock(&shrink_list_lock);
4897                 mutex_unlock(&dev->struct_mutex);
4898
4899                 would_deadlock = 0;
4900         }
4901
4902         spin_unlock(&shrink_list_lock);
4903
4904         if (would_deadlock)
4905                 return -1;
4906         else if (cnt > 0)
4907                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4908         else
4909                 return 0;
4910 }
4911
4912 static struct shrinker shrinker = {
4913         .shrink = i915_gem_shrink,
4914         .seeks = DEFAULT_SEEKS,
4915 };
4916
4917 __init void
4918 i915_gem_shrinker_init(void)
4919 {
4920     register_shrinker(&shrinker);
4921 }
4922
4923 __exit void
4924 i915_gem_shrinker_exit(void)
4925 {
4926     unregister_shrinker(&shrinker);
4927 }