include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/list.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/pci_ids.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
235
236 #define QUIRK_CYCLE_TIMER               1
237 #define QUIRK_RESET_PACKET              2
238 #define QUIRK_BE_HEADERS                4
239
240 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
241 static const struct {
242         unsigned short vendor, device, flags;
243 } ohci_quirks[] = {
244         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
245                                                             QUIRK_RESET_PACKET},
246         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
247         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
248         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
249         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
250         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
251 };
252
253 /* This overrides anything that was found in ohci_quirks[]. */
254 static int param_quirks;
255 module_param_named(quirks, param_quirks, int, 0644);
256 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
257         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
258         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
259         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
260         ")");
261
262 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
263
264 #define OHCI_PARAM_DEBUG_AT_AR          1
265 #define OHCI_PARAM_DEBUG_SELFIDS        2
266 #define OHCI_PARAM_DEBUG_IRQS           4
267 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
268
269 static int param_debug;
270 module_param_named(debug, param_debug, int, 0644);
271 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
272         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
273         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
274         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
275         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276         ", or a combination, or all = -1)");
277
278 static void log_irqs(u32 evt)
279 {
280         if (likely(!(param_debug &
281                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
282                 return;
283
284         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
285             !(evt & OHCI1394_busReset))
286                 return;
287
288         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
290             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
291             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
292             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
293             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
294             evt & OHCI1394_isochRx              ? " IR"                 : "",
295             evt & OHCI1394_isochTx              ? " IT"                 : "",
296             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
297             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
298             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
299             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
300             evt & OHCI1394_busReset             ? " busReset"           : "",
301             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
302                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
303                     OHCI1394_respTxComplete | OHCI1394_isochRx |
304                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
305                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306                     OHCI1394_regAccessFail | OHCI1394_busReset)
307                                                 ? " ?"                  : "");
308 }
309
310 static const char *speed[] = {
311         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
312 };
313 static const char *power[] = {
314         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
315         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
316 };
317 static const char port[] = { '.', '-', 'p', 'c', };
318
319 static char _p(u32 *s, int shift)
320 {
321         return port[*s >> shift & 3];
322 }
323
324 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 {
326         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
327                 return;
328
329         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
330                   self_id_count, generation, node_id);
331
332         for (; self_id_count--; ++s)
333                 if ((*s & 1 << 23) == 0)
334                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
335                             "%s gc=%d %s %s%s%s\n",
336                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
337                             speed[*s >> 14 & 3], *s >> 16 & 63,
338                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
339                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340                 else
341                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
342                             *s, *s >> 24 & 63,
343                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
344                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
345 }
346
347 static const char *evts[] = {
348         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
349         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
350         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
351         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
352         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
353         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
354         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
355         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
356         [0x10] = "-reserved-",          [0x11] = "ack_complete",
357         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
358         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
359         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
360         [0x18] = "-reserved-",          [0x19] = "-reserved-",
361         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
362         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
363         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
364         [0x20] = "pending/cancelled",
365 };
366 static const char *tcodes[] = {
367         [0x0] = "QW req",               [0x1] = "BW req",
368         [0x2] = "W resp",               [0x3] = "-reserved-",
369         [0x4] = "QR req",               [0x5] = "BR req",
370         [0x6] = "QR resp",              [0x7] = "BR resp",
371         [0x8] = "cycle start",          [0x9] = "Lk req",
372         [0xa] = "async stream packet",  [0xb] = "Lk resp",
373         [0xc] = "-reserved-",           [0xd] = "-reserved-",
374         [0xe] = "link internal",        [0xf] = "-reserved-",
375 };
376 static const char *phys[] = {
377         [0x0] = "phy config packet",    [0x1] = "link-on packet",
378         [0x2] = "self-id packet",       [0x3] = "-reserved-",
379 };
380
381 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
382 {
383         int tcode = header[0] >> 4 & 0xf;
384         char specific[12];
385
386         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
387                 return;
388
389         if (unlikely(evt >= ARRAY_SIZE(evts)))
390                         evt = 0x1f;
391
392         if (evt == OHCI1394_evt_bus_reset) {
393                 fw_notify("A%c evt_bus_reset, generation %d\n",
394                     dir, (header[2] >> 16) & 0xff);
395                 return;
396         }
397
398         if (header[0] == ~header[1]) {
399                 fw_notify("A%c %s, %s, %08x\n",
400                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401                 return;
402         }
403
404         switch (tcode) {
405         case 0x0: case 0x6: case 0x8:
406                 snprintf(specific, sizeof(specific), " = %08x",
407                          be32_to_cpu((__force __be32)header[3]));
408                 break;
409         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
410                 snprintf(specific, sizeof(specific), " %x,%x",
411                          header[3] >> 16, header[3] & 0xffff);
412                 break;
413         default:
414                 specific[0] = '\0';
415         }
416
417         switch (tcode) {
418         case 0xe: case 0xa:
419                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420                 break;
421         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422                 fw_notify("A%c spd %x tl %02x, "
423                     "%04x -> %04x, %s, "
424                     "%s, %04x%08x%s\n",
425                     dir, speed, header[0] >> 10 & 0x3f,
426                     header[1] >> 16, header[0] >> 16, evts[evt],
427                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
428                 break;
429         default:
430                 fw_notify("A%c spd %x tl %02x, "
431                     "%04x -> %04x, %s, "
432                     "%s%s\n",
433                     dir, speed, header[0] >> 10 & 0x3f,
434                     header[1] >> 16, header[0] >> 16, evts[evt],
435                     tcodes[tcode], specific);
436         }
437 }
438
439 #else
440
441 #define log_irqs(evt)
442 #define log_selfids(node_id, generation, self_id_count, sid)
443 #define log_ar_at_event(dir, speed, header, evt)
444
445 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
446
447 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 {
449         writel(data, ohci->registers + offset);
450 }
451
452 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 {
454         return readl(ohci->registers + offset);
455 }
456
457 static inline void flush_writes(const struct fw_ohci *ohci)
458 {
459         /* Do a dummy read to flush writes. */
460         reg_read(ohci, OHCI1394_Version);
461 }
462
463 static int ohci_update_phy_reg(struct fw_card *card, int addr,
464                                int clear_bits, int set_bits)
465 {
466         struct fw_ohci *ohci = fw_ohci(card);
467         u32 val, old;
468
469         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
470         flush_writes(ohci);
471         msleep(2);
472         val = reg_read(ohci, OHCI1394_PhyControl);
473         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
474                 fw_error("failed to set phy reg bits.\n");
475                 return -EBUSY;
476         }
477
478         old = OHCI1394_PhyControl_ReadData(val);
479         old = (old & ~clear_bits) | set_bits;
480         reg_write(ohci, OHCI1394_PhyControl,
481                   OHCI1394_PhyControl_Write(addr, old));
482
483         return 0;
484 }
485
486 static int ar_context_add_page(struct ar_context *ctx)
487 {
488         struct device *dev = ctx->ohci->card.device;
489         struct ar_buffer *ab;
490         dma_addr_t uninitialized_var(ab_bus);
491         size_t offset;
492
493         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
494         if (ab == NULL)
495                 return -ENOMEM;
496
497         ab->next = NULL;
498         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
499         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
500                                                     DESCRIPTOR_STATUS |
501                                                     DESCRIPTOR_BRANCH_ALWAYS);
502         offset = offsetof(struct ar_buffer, data);
503         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
504         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
505         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
506         ab->descriptor.branch_address = 0;
507
508         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
509         ctx->last_buffer->next = ab;
510         ctx->last_buffer = ab;
511
512         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
513         flush_writes(ctx->ohci);
514
515         return 0;
516 }
517
518 static void ar_context_release(struct ar_context *ctx)
519 {
520         struct ar_buffer *ab, *ab_next;
521         size_t offset;
522         dma_addr_t ab_bus;
523
524         for (ab = ctx->current_buffer; ab; ab = ab_next) {
525                 ab_next = ab->next;
526                 offset = offsetof(struct ar_buffer, data);
527                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
528                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
529                                   ab, ab_bus);
530         }
531 }
532
533 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
534 #define cond_le32_to_cpu(v) \
535         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
536 #else
537 #define cond_le32_to_cpu(v) le32_to_cpu(v)
538 #endif
539
540 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
541 {
542         struct fw_ohci *ohci = ctx->ohci;
543         struct fw_packet p;
544         u32 status, length, tcode;
545         int evt;
546
547         p.header[0] = cond_le32_to_cpu(buffer[0]);
548         p.header[1] = cond_le32_to_cpu(buffer[1]);
549         p.header[2] = cond_le32_to_cpu(buffer[2]);
550
551         tcode = (p.header[0] >> 4) & 0x0f;
552         switch (tcode) {
553         case TCODE_WRITE_QUADLET_REQUEST:
554         case TCODE_READ_QUADLET_RESPONSE:
555                 p.header[3] = (__force __u32) buffer[3];
556                 p.header_length = 16;
557                 p.payload_length = 0;
558                 break;
559
560         case TCODE_READ_BLOCK_REQUEST :
561                 p.header[3] = cond_le32_to_cpu(buffer[3]);
562                 p.header_length = 16;
563                 p.payload_length = 0;
564                 break;
565
566         case TCODE_WRITE_BLOCK_REQUEST:
567         case TCODE_READ_BLOCK_RESPONSE:
568         case TCODE_LOCK_REQUEST:
569         case TCODE_LOCK_RESPONSE:
570                 p.header[3] = cond_le32_to_cpu(buffer[3]);
571                 p.header_length = 16;
572                 p.payload_length = p.header[3] >> 16;
573                 break;
574
575         case TCODE_WRITE_RESPONSE:
576         case TCODE_READ_QUADLET_REQUEST:
577         case OHCI_TCODE_PHY_PACKET:
578                 p.header_length = 12;
579                 p.payload_length = 0;
580                 break;
581
582         default:
583                 /* FIXME: Stop context, discard everything, and restart? */
584                 p.header_length = 0;
585                 p.payload_length = 0;
586         }
587
588         p.payload = (void *) buffer + p.header_length;
589
590         /* FIXME: What to do about evt_* errors? */
591         length = (p.header_length + p.payload_length + 3) / 4;
592         status = cond_le32_to_cpu(buffer[length]);
593         evt    = (status >> 16) & 0x1f;
594
595         p.ack        = evt - 16;
596         p.speed      = (status >> 21) & 0x7;
597         p.timestamp  = status & 0xffff;
598         p.generation = ohci->request_generation;
599
600         log_ar_at_event('R', p.speed, p.header, evt);
601
602         /*
603          * The OHCI bus reset handler synthesizes a phy packet with
604          * the new generation number when a bus reset happens (see
605          * section 8.4.2.3).  This helps us determine when a request
606          * was received and make sure we send the response in the same
607          * generation.  We only need this for requests; for responses
608          * we use the unique tlabel for finding the matching
609          * request.
610          *
611          * Alas some chips sometimes emit bus reset packets with a
612          * wrong generation.  We set the correct generation for these
613          * at a slightly incorrect time (in bus_reset_tasklet).
614          */
615         if (evt == OHCI1394_evt_bus_reset) {
616                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
617                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
618         } else if (ctx == &ohci->ar_request_ctx) {
619                 fw_core_handle_request(&ohci->card, &p);
620         } else {
621                 fw_core_handle_response(&ohci->card, &p);
622         }
623
624         return buffer + length + 1;
625 }
626
627 static void ar_context_tasklet(unsigned long data)
628 {
629         struct ar_context *ctx = (struct ar_context *)data;
630         struct fw_ohci *ohci = ctx->ohci;
631         struct ar_buffer *ab;
632         struct descriptor *d;
633         void *buffer, *end;
634
635         ab = ctx->current_buffer;
636         d = &ab->descriptor;
637
638         if (d->res_count == 0) {
639                 size_t size, rest, offset;
640                 dma_addr_t start_bus;
641                 void *start;
642
643                 /*
644                  * This descriptor is finished and we may have a
645                  * packet split across this and the next buffer. We
646                  * reuse the page for reassembling the split packet.
647                  */
648
649                 offset = offsetof(struct ar_buffer, data);
650                 start = buffer = ab;
651                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
652
653                 ab = ab->next;
654                 d = &ab->descriptor;
655                 size = buffer + PAGE_SIZE - ctx->pointer;
656                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
657                 memmove(buffer, ctx->pointer, size);
658                 memcpy(buffer + size, ab->data, rest);
659                 ctx->current_buffer = ab;
660                 ctx->pointer = (void *) ab->data + rest;
661                 end = buffer + size + rest;
662
663                 while (buffer < end)
664                         buffer = handle_ar_packet(ctx, buffer);
665
666                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
667                                   start, start_bus);
668                 ar_context_add_page(ctx);
669         } else {
670                 buffer = ctx->pointer;
671                 ctx->pointer = end =
672                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
673
674                 while (buffer < end)
675                         buffer = handle_ar_packet(ctx, buffer);
676         }
677 }
678
679 static int ar_context_init(struct ar_context *ctx,
680                            struct fw_ohci *ohci, u32 regs)
681 {
682         struct ar_buffer ab;
683
684         ctx->regs        = regs;
685         ctx->ohci        = ohci;
686         ctx->last_buffer = &ab;
687         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
688
689         ar_context_add_page(ctx);
690         ar_context_add_page(ctx);
691         ctx->current_buffer = ab.next;
692         ctx->pointer = ctx->current_buffer->data;
693
694         return 0;
695 }
696
697 static void ar_context_run(struct ar_context *ctx)
698 {
699         struct ar_buffer *ab = ctx->current_buffer;
700         dma_addr_t ab_bus;
701         size_t offset;
702
703         offset = offsetof(struct ar_buffer, data);
704         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
705
706         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
707         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
708         flush_writes(ctx->ohci);
709 }
710
711 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
712 {
713         int b, key;
714
715         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
716         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
717
718         /* figure out which descriptor the branch address goes in */
719         if (z == 2 && (b == 3 || key == 2))
720                 return d;
721         else
722                 return d + z - 1;
723 }
724
725 static void context_tasklet(unsigned long data)
726 {
727         struct context *ctx = (struct context *) data;
728         struct descriptor *d, *last;
729         u32 address;
730         int z;
731         struct descriptor_buffer *desc;
732
733         desc = list_entry(ctx->buffer_list.next,
734                         struct descriptor_buffer, list);
735         last = ctx->last;
736         while (last->branch_address != 0) {
737                 struct descriptor_buffer *old_desc = desc;
738                 address = le32_to_cpu(last->branch_address);
739                 z = address & 0xf;
740                 address &= ~0xf;
741
742                 /* If the branch address points to a buffer outside of the
743                  * current buffer, advance to the next buffer. */
744                 if (address < desc->buffer_bus ||
745                                 address >= desc->buffer_bus + desc->used)
746                         desc = list_entry(desc->list.next,
747                                         struct descriptor_buffer, list);
748                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
749                 last = find_branch_descriptor(d, z);
750
751                 if (!ctx->callback(ctx, d, last))
752                         break;
753
754                 if (old_desc != desc) {
755                         /* If we've advanced to the next buffer, move the
756                          * previous buffer to the free list. */
757                         unsigned long flags;
758                         old_desc->used = 0;
759                         spin_lock_irqsave(&ctx->ohci->lock, flags);
760                         list_move_tail(&old_desc->list, &ctx->buffer_list);
761                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
762                 }
763                 ctx->last = last;
764         }
765 }
766
767 /*
768  * Allocate a new buffer and add it to the list of free buffers for this
769  * context.  Must be called with ohci->lock held.
770  */
771 static int context_add_buffer(struct context *ctx)
772 {
773         struct descriptor_buffer *desc;
774         dma_addr_t uninitialized_var(bus_addr);
775         int offset;
776
777         /*
778          * 16MB of descriptors should be far more than enough for any DMA
779          * program.  This will catch run-away userspace or DoS attacks.
780          */
781         if (ctx->total_allocation >= 16*1024*1024)
782                 return -ENOMEM;
783
784         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
785                         &bus_addr, GFP_ATOMIC);
786         if (!desc)
787                 return -ENOMEM;
788
789         offset = (void *)&desc->buffer - (void *)desc;
790         desc->buffer_size = PAGE_SIZE - offset;
791         desc->buffer_bus = bus_addr + offset;
792         desc->used = 0;
793
794         list_add_tail(&desc->list, &ctx->buffer_list);
795         ctx->total_allocation += PAGE_SIZE;
796
797         return 0;
798 }
799
800 static int context_init(struct context *ctx, struct fw_ohci *ohci,
801                         u32 regs, descriptor_callback_t callback)
802 {
803         ctx->ohci = ohci;
804         ctx->regs = regs;
805         ctx->total_allocation = 0;
806
807         INIT_LIST_HEAD(&ctx->buffer_list);
808         if (context_add_buffer(ctx) < 0)
809                 return -ENOMEM;
810
811         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
812                         struct descriptor_buffer, list);
813
814         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
815         ctx->callback = callback;
816
817         /*
818          * We put a dummy descriptor in the buffer that has a NULL
819          * branch address and looks like it's been sent.  That way we
820          * have a descriptor to append DMA programs to.
821          */
822         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
823         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
824         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
825         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
826         ctx->last = ctx->buffer_tail->buffer;
827         ctx->prev = ctx->buffer_tail->buffer;
828
829         return 0;
830 }
831
832 static void context_release(struct context *ctx)
833 {
834         struct fw_card *card = &ctx->ohci->card;
835         struct descriptor_buffer *desc, *tmp;
836
837         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
838                 dma_free_coherent(card->device, PAGE_SIZE, desc,
839                         desc->buffer_bus -
840                         ((void *)&desc->buffer - (void *)desc));
841 }
842
843 /* Must be called with ohci->lock held */
844 static struct descriptor *context_get_descriptors(struct context *ctx,
845                                                   int z, dma_addr_t *d_bus)
846 {
847         struct descriptor *d = NULL;
848         struct descriptor_buffer *desc = ctx->buffer_tail;
849
850         if (z * sizeof(*d) > desc->buffer_size)
851                 return NULL;
852
853         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
854                 /* No room for the descriptor in this buffer, so advance to the
855                  * next one. */
856
857                 if (desc->list.next == &ctx->buffer_list) {
858                         /* If there is no free buffer next in the list,
859                          * allocate one. */
860                         if (context_add_buffer(ctx) < 0)
861                                 return NULL;
862                 }
863                 desc = list_entry(desc->list.next,
864                                 struct descriptor_buffer, list);
865                 ctx->buffer_tail = desc;
866         }
867
868         d = desc->buffer + desc->used / sizeof(*d);
869         memset(d, 0, z * sizeof(*d));
870         *d_bus = desc->buffer_bus + desc->used;
871
872         return d;
873 }
874
875 static void context_run(struct context *ctx, u32 extra)
876 {
877         struct fw_ohci *ohci = ctx->ohci;
878
879         reg_write(ohci, COMMAND_PTR(ctx->regs),
880                   le32_to_cpu(ctx->last->branch_address));
881         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
882         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
883         flush_writes(ohci);
884 }
885
886 static void context_append(struct context *ctx,
887                            struct descriptor *d, int z, int extra)
888 {
889         dma_addr_t d_bus;
890         struct descriptor_buffer *desc = ctx->buffer_tail;
891
892         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
893
894         desc->used += (z + extra) * sizeof(*d);
895         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
896         ctx->prev = find_branch_descriptor(d, z);
897
898         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
899         flush_writes(ctx->ohci);
900 }
901
902 static void context_stop(struct context *ctx)
903 {
904         u32 reg;
905         int i;
906
907         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
908         flush_writes(ctx->ohci);
909
910         for (i = 0; i < 10; i++) {
911                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
912                 if ((reg & CONTEXT_ACTIVE) == 0)
913                         return;
914
915                 mdelay(1);
916         }
917         fw_error("Error: DMA context still active (0x%08x)\n", reg);
918 }
919
920 struct driver_data {
921         struct fw_packet *packet;
922 };
923
924 /*
925  * This function apppends a packet to the DMA queue for transmission.
926  * Must always be called with the ochi->lock held to ensure proper
927  * generation handling and locking around packet queue manipulation.
928  */
929 static int at_context_queue_packet(struct context *ctx,
930                                    struct fw_packet *packet)
931 {
932         struct fw_ohci *ohci = ctx->ohci;
933         dma_addr_t d_bus, uninitialized_var(payload_bus);
934         struct driver_data *driver_data;
935         struct descriptor *d, *last;
936         __le32 *header;
937         int z, tcode;
938         u32 reg;
939
940         d = context_get_descriptors(ctx, 4, &d_bus);
941         if (d == NULL) {
942                 packet->ack = RCODE_SEND_ERROR;
943                 return -1;
944         }
945
946         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
947         d[0].res_count = cpu_to_le16(packet->timestamp);
948
949         /*
950          * The DMA format for asyncronous link packets is different
951          * from the IEEE1394 layout, so shift the fields around
952          * accordingly.  If header_length is 8, it's a PHY packet, to
953          * which we need to prepend an extra quadlet.
954          */
955
956         header = (__le32 *) &d[1];
957         switch (packet->header_length) {
958         case 16:
959         case 12:
960                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
961                                         (packet->speed << 16));
962                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
963                                         (packet->header[0] & 0xffff0000));
964                 header[2] = cpu_to_le32(packet->header[2]);
965
966                 tcode = (packet->header[0] >> 4) & 0x0f;
967                 if (TCODE_IS_BLOCK_PACKET(tcode))
968                         header[3] = cpu_to_le32(packet->header[3]);
969                 else
970                         header[3] = (__force __le32) packet->header[3];
971
972                 d[0].req_count = cpu_to_le16(packet->header_length);
973                 break;
974
975         case 8:
976                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
977                                         (packet->speed << 16));
978                 header[1] = cpu_to_le32(packet->header[0]);
979                 header[2] = cpu_to_le32(packet->header[1]);
980                 d[0].req_count = cpu_to_le16(12);
981                 break;
982
983         case 4:
984                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
985                                         (packet->speed << 16));
986                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
987                 d[0].req_count = cpu_to_le16(8);
988                 break;
989
990         default:
991                 /* BUG(); */
992                 packet->ack = RCODE_SEND_ERROR;
993                 return -1;
994         }
995
996         driver_data = (struct driver_data *) &d[3];
997         driver_data->packet = packet;
998         packet->driver_data = driver_data;
999
1000         if (packet->payload_length > 0) {
1001                 payload_bus =
1002                         dma_map_single(ohci->card.device, packet->payload,
1003                                        packet->payload_length, DMA_TO_DEVICE);
1004                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1005                         packet->ack = RCODE_SEND_ERROR;
1006                         return -1;
1007                 }
1008                 packet->payload_bus     = payload_bus;
1009                 packet->payload_mapped  = true;
1010
1011                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1012                 d[2].data_address = cpu_to_le32(payload_bus);
1013                 last = &d[2];
1014                 z = 3;
1015         } else {
1016                 last = &d[0];
1017                 z = 2;
1018         }
1019
1020         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1021                                      DESCRIPTOR_IRQ_ALWAYS |
1022                                      DESCRIPTOR_BRANCH_ALWAYS);
1023
1024         /*
1025          * If the controller and packet generations don't match, we need to
1026          * bail out and try again.  If IntEvent.busReset is set, the AT context
1027          * is halted, so appending to the context and trying to run it is
1028          * futile.  Most controllers do the right thing and just flush the AT
1029          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1030          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1031          * up stalling out.  So we just bail out in software and try again
1032          * later, and everyone is happy.
1033          * FIXME: Document how the locking works.
1034          */
1035         if (ohci->generation != packet->generation ||
1036             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1037                 if (packet->payload_mapped)
1038                         dma_unmap_single(ohci->card.device, payload_bus,
1039                                          packet->payload_length, DMA_TO_DEVICE);
1040                 packet->ack = RCODE_GENERATION;
1041                 return -1;
1042         }
1043
1044         context_append(ctx, d, z, 4 - z);
1045
1046         /* If the context isn't already running, start it up. */
1047         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1048         if ((reg & CONTEXT_RUN) == 0)
1049                 context_run(ctx, 0);
1050
1051         return 0;
1052 }
1053
1054 static int handle_at_packet(struct context *context,
1055                             struct descriptor *d,
1056                             struct descriptor *last)
1057 {
1058         struct driver_data *driver_data;
1059         struct fw_packet *packet;
1060         struct fw_ohci *ohci = context->ohci;
1061         int evt;
1062
1063         if (last->transfer_status == 0)
1064                 /* This descriptor isn't done yet, stop iteration. */
1065                 return 0;
1066
1067         driver_data = (struct driver_data *) &d[3];
1068         packet = driver_data->packet;
1069         if (packet == NULL)
1070                 /* This packet was cancelled, just continue. */
1071                 return 1;
1072
1073         if (packet->payload_mapped)
1074                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1075                                  packet->payload_length, DMA_TO_DEVICE);
1076
1077         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1078         packet->timestamp = le16_to_cpu(last->res_count);
1079
1080         log_ar_at_event('T', packet->speed, packet->header, evt);
1081
1082         switch (evt) {
1083         case OHCI1394_evt_timeout:
1084                 /* Async response transmit timed out. */
1085                 packet->ack = RCODE_CANCELLED;
1086                 break;
1087
1088         case OHCI1394_evt_flushed:
1089                 /*
1090                  * The packet was flushed should give same error as
1091                  * when we try to use a stale generation count.
1092                  */
1093                 packet->ack = RCODE_GENERATION;
1094                 break;
1095
1096         case OHCI1394_evt_missing_ack:
1097                 /*
1098                  * Using a valid (current) generation count, but the
1099                  * node is not on the bus or not sending acks.
1100                  */
1101                 packet->ack = RCODE_NO_ACK;
1102                 break;
1103
1104         case ACK_COMPLETE + 0x10:
1105         case ACK_PENDING + 0x10:
1106         case ACK_BUSY_X + 0x10:
1107         case ACK_BUSY_A + 0x10:
1108         case ACK_BUSY_B + 0x10:
1109         case ACK_DATA_ERROR + 0x10:
1110         case ACK_TYPE_ERROR + 0x10:
1111                 packet->ack = evt - 0x10;
1112                 break;
1113
1114         default:
1115                 packet->ack = RCODE_SEND_ERROR;
1116                 break;
1117         }
1118
1119         packet->callback(packet, &ohci->card, packet->ack);
1120
1121         return 1;
1122 }
1123
1124 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1125 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1126 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1127 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1128 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1129
1130 static void handle_local_rom(struct fw_ohci *ohci,
1131                              struct fw_packet *packet, u32 csr)
1132 {
1133         struct fw_packet response;
1134         int tcode, length, i;
1135
1136         tcode = HEADER_GET_TCODE(packet->header[0]);
1137         if (TCODE_IS_BLOCK_PACKET(tcode))
1138                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1139         else
1140                 length = 4;
1141
1142         i = csr - CSR_CONFIG_ROM;
1143         if (i + length > CONFIG_ROM_SIZE) {
1144                 fw_fill_response(&response, packet->header,
1145                                  RCODE_ADDRESS_ERROR, NULL, 0);
1146         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1147                 fw_fill_response(&response, packet->header,
1148                                  RCODE_TYPE_ERROR, NULL, 0);
1149         } else {
1150                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1151                                  (void *) ohci->config_rom + i, length);
1152         }
1153
1154         fw_core_handle_response(&ohci->card, &response);
1155 }
1156
1157 static void handle_local_lock(struct fw_ohci *ohci,
1158                               struct fw_packet *packet, u32 csr)
1159 {
1160         struct fw_packet response;
1161         int tcode, length, ext_tcode, sel;
1162         __be32 *payload, lock_old;
1163         u32 lock_arg, lock_data;
1164
1165         tcode = HEADER_GET_TCODE(packet->header[0]);
1166         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1167         payload = packet->payload;
1168         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1169
1170         if (tcode == TCODE_LOCK_REQUEST &&
1171             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1172                 lock_arg = be32_to_cpu(payload[0]);
1173                 lock_data = be32_to_cpu(payload[1]);
1174         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1175                 lock_arg = 0;
1176                 lock_data = 0;
1177         } else {
1178                 fw_fill_response(&response, packet->header,
1179                                  RCODE_TYPE_ERROR, NULL, 0);
1180                 goto out;
1181         }
1182
1183         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1184         reg_write(ohci, OHCI1394_CSRData, lock_data);
1185         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1186         reg_write(ohci, OHCI1394_CSRControl, sel);
1187
1188         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1189                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1190         else
1191                 fw_notify("swap not done yet\n");
1192
1193         fw_fill_response(&response, packet->header,
1194                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1195  out:
1196         fw_core_handle_response(&ohci->card, &response);
1197 }
1198
1199 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1200 {
1201         u64 offset;
1202         u32 csr;
1203
1204         if (ctx == &ctx->ohci->at_request_ctx) {
1205                 packet->ack = ACK_PENDING;
1206                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1207         }
1208
1209         offset =
1210                 ((unsigned long long)
1211                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1212                 packet->header[2];
1213         csr = offset - CSR_REGISTER_BASE;
1214
1215         /* Handle config rom reads. */
1216         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1217                 handle_local_rom(ctx->ohci, packet, csr);
1218         else switch (csr) {
1219         case CSR_BUS_MANAGER_ID:
1220         case CSR_BANDWIDTH_AVAILABLE:
1221         case CSR_CHANNELS_AVAILABLE_HI:
1222         case CSR_CHANNELS_AVAILABLE_LO:
1223                 handle_local_lock(ctx->ohci, packet, csr);
1224                 break;
1225         default:
1226                 if (ctx == &ctx->ohci->at_request_ctx)
1227                         fw_core_handle_request(&ctx->ohci->card, packet);
1228                 else
1229                         fw_core_handle_response(&ctx->ohci->card, packet);
1230                 break;
1231         }
1232
1233         if (ctx == &ctx->ohci->at_response_ctx) {
1234                 packet->ack = ACK_COMPLETE;
1235                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1236         }
1237 }
1238
1239 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1240 {
1241         unsigned long flags;
1242         int ret;
1243
1244         spin_lock_irqsave(&ctx->ohci->lock, flags);
1245
1246         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1247             ctx->ohci->generation == packet->generation) {
1248                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1249                 handle_local_request(ctx, packet);
1250                 return;
1251         }
1252
1253         ret = at_context_queue_packet(ctx, packet);
1254         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1255
1256         if (ret < 0)
1257                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1258
1259 }
1260
1261 static void bus_reset_tasklet(unsigned long data)
1262 {
1263         struct fw_ohci *ohci = (struct fw_ohci *)data;
1264         int self_id_count, i, j, reg;
1265         int generation, new_generation;
1266         unsigned long flags;
1267         void *free_rom = NULL;
1268         dma_addr_t free_rom_bus = 0;
1269
1270         reg = reg_read(ohci, OHCI1394_NodeID);
1271         if (!(reg & OHCI1394_NodeID_idValid)) {
1272                 fw_notify("node ID not valid, new bus reset in progress\n");
1273                 return;
1274         }
1275         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1276                 fw_notify("malconfigured bus\n");
1277                 return;
1278         }
1279         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1280                                OHCI1394_NodeID_nodeNumber);
1281
1282         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1283         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1284                 fw_notify("inconsistent self IDs\n");
1285                 return;
1286         }
1287         /*
1288          * The count in the SelfIDCount register is the number of
1289          * bytes in the self ID receive buffer.  Since we also receive
1290          * the inverted quadlets and a header quadlet, we shift one
1291          * bit extra to get the actual number of self IDs.
1292          */
1293         self_id_count = (reg >> 3) & 0xff;
1294         if (self_id_count == 0 || self_id_count > 252) {
1295                 fw_notify("inconsistent self IDs\n");
1296                 return;
1297         }
1298         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1299         rmb();
1300
1301         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1302                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1303                         fw_notify("inconsistent self IDs\n");
1304                         return;
1305                 }
1306                 ohci->self_id_buffer[j] =
1307                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1308         }
1309         rmb();
1310
1311         /*
1312          * Check the consistency of the self IDs we just read.  The
1313          * problem we face is that a new bus reset can start while we
1314          * read out the self IDs from the DMA buffer. If this happens,
1315          * the DMA buffer will be overwritten with new self IDs and we
1316          * will read out inconsistent data.  The OHCI specification
1317          * (section 11.2) recommends a technique similar to
1318          * linux/seqlock.h, where we remember the generation of the
1319          * self IDs in the buffer before reading them out and compare
1320          * it to the current generation after reading them out.  If
1321          * the two generations match we know we have a consistent set
1322          * of self IDs.
1323          */
1324
1325         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1326         if (new_generation != generation) {
1327                 fw_notify("recursive bus reset detected, "
1328                           "discarding self ids\n");
1329                 return;
1330         }
1331
1332         /* FIXME: Document how the locking works. */
1333         spin_lock_irqsave(&ohci->lock, flags);
1334
1335         ohci->generation = generation;
1336         context_stop(&ohci->at_request_ctx);
1337         context_stop(&ohci->at_response_ctx);
1338         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1339
1340         if (ohci->quirks & QUIRK_RESET_PACKET)
1341                 ohci->request_generation = generation;
1342
1343         /*
1344          * This next bit is unrelated to the AT context stuff but we
1345          * have to do it under the spinlock also.  If a new config rom
1346          * was set up before this reset, the old one is now no longer
1347          * in use and we can free it. Update the config rom pointers
1348          * to point to the current config rom and clear the
1349          * next_config_rom pointer so a new udpate can take place.
1350          */
1351
1352         if (ohci->next_config_rom != NULL) {
1353                 if (ohci->next_config_rom != ohci->config_rom) {
1354                         free_rom      = ohci->config_rom;
1355                         free_rom_bus  = ohci->config_rom_bus;
1356                 }
1357                 ohci->config_rom      = ohci->next_config_rom;
1358                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1359                 ohci->next_config_rom = NULL;
1360
1361                 /*
1362                  * Restore config_rom image and manually update
1363                  * config_rom registers.  Writing the header quadlet
1364                  * will indicate that the config rom is ready, so we
1365                  * do that last.
1366                  */
1367                 reg_write(ohci, OHCI1394_BusOptions,
1368                           be32_to_cpu(ohci->config_rom[2]));
1369                 ohci->config_rom[0] = ohci->next_header;
1370                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1371                           be32_to_cpu(ohci->next_header));
1372         }
1373
1374 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1375         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1376         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1377 #endif
1378
1379         spin_unlock_irqrestore(&ohci->lock, flags);
1380
1381         if (free_rom)
1382                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1383                                   free_rom, free_rom_bus);
1384
1385         log_selfids(ohci->node_id, generation,
1386                     self_id_count, ohci->self_id_buffer);
1387
1388         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1389                                  self_id_count, ohci->self_id_buffer);
1390 }
1391
1392 static irqreturn_t irq_handler(int irq, void *data)
1393 {
1394         struct fw_ohci *ohci = data;
1395         u32 event, iso_event;
1396         int i;
1397
1398         event = reg_read(ohci, OHCI1394_IntEventClear);
1399
1400         if (!event || !~event)
1401                 return IRQ_NONE;
1402
1403         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1404         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1405         log_irqs(event);
1406
1407         if (event & OHCI1394_selfIDComplete)
1408                 tasklet_schedule(&ohci->bus_reset_tasklet);
1409
1410         if (event & OHCI1394_RQPkt)
1411                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1412
1413         if (event & OHCI1394_RSPkt)
1414                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1415
1416         if (event & OHCI1394_reqTxComplete)
1417                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1418
1419         if (event & OHCI1394_respTxComplete)
1420                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1421
1422         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1423         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1424
1425         while (iso_event) {
1426                 i = ffs(iso_event) - 1;
1427                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1428                 iso_event &= ~(1 << i);
1429         }
1430
1431         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1432         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1433
1434         while (iso_event) {
1435                 i = ffs(iso_event) - 1;
1436                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1437                 iso_event &= ~(1 << i);
1438         }
1439
1440         if (unlikely(event & OHCI1394_regAccessFail))
1441                 fw_error("Register access failure - "
1442                          "please notify linux1394-devel@lists.sf.net\n");
1443
1444         if (unlikely(event & OHCI1394_postedWriteErr))
1445                 fw_error("PCI posted write error\n");
1446
1447         if (unlikely(event & OHCI1394_cycleTooLong)) {
1448                 if (printk_ratelimit())
1449                         fw_notify("isochronous cycle too long\n");
1450                 reg_write(ohci, OHCI1394_LinkControlSet,
1451                           OHCI1394_LinkControl_cycleMaster);
1452         }
1453
1454         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1455                 /*
1456                  * We need to clear this event bit in order to make
1457                  * cycleMatch isochronous I/O work.  In theory we should
1458                  * stop active cycleMatch iso contexts now and restart
1459                  * them at least two cycles later.  (FIXME?)
1460                  */
1461                 if (printk_ratelimit())
1462                         fw_notify("isochronous cycle inconsistent\n");
1463         }
1464
1465         return IRQ_HANDLED;
1466 }
1467
1468 static int software_reset(struct fw_ohci *ohci)
1469 {
1470         int i;
1471
1472         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1473
1474         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1475                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1476                      OHCI1394_HCControl_softReset) == 0)
1477                         return 0;
1478                 msleep(1);
1479         }
1480
1481         return -EBUSY;
1482 }
1483
1484 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1485 {
1486         size_t size = length * 4;
1487
1488         memcpy(dest, src, size);
1489         if (size < CONFIG_ROM_SIZE)
1490                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1491 }
1492
1493 static int ohci_enable(struct fw_card *card,
1494                        const __be32 *config_rom, size_t length)
1495 {
1496         struct fw_ohci *ohci = fw_ohci(card);
1497         struct pci_dev *dev = to_pci_dev(card->device);
1498         u32 lps;
1499         int i;
1500
1501         if (software_reset(ohci)) {
1502                 fw_error("Failed to reset ohci card.\n");
1503                 return -EBUSY;
1504         }
1505
1506         /*
1507          * Now enable LPS, which we need in order to start accessing
1508          * most of the registers.  In fact, on some cards (ALI M5251),
1509          * accessing registers in the SClk domain without LPS enabled
1510          * will lock up the machine.  Wait 50msec to make sure we have
1511          * full link enabled.  However, with some cards (well, at least
1512          * a JMicron PCIe card), we have to try again sometimes.
1513          */
1514         reg_write(ohci, OHCI1394_HCControlSet,
1515                   OHCI1394_HCControl_LPS |
1516                   OHCI1394_HCControl_postedWriteEnable);
1517         flush_writes(ohci);
1518
1519         for (lps = 0, i = 0; !lps && i < 3; i++) {
1520                 msleep(50);
1521                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1522                       OHCI1394_HCControl_LPS;
1523         }
1524
1525         if (!lps) {
1526                 fw_error("Failed to set Link Power Status\n");
1527                 return -EIO;
1528         }
1529
1530         reg_write(ohci, OHCI1394_HCControlClear,
1531                   OHCI1394_HCControl_noByteSwapData);
1532
1533         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1534         reg_write(ohci, OHCI1394_LinkControlClear,
1535                   OHCI1394_LinkControl_rcvPhyPkt);
1536         reg_write(ohci, OHCI1394_LinkControlSet,
1537                   OHCI1394_LinkControl_rcvSelfID |
1538                   OHCI1394_LinkControl_cycleTimerEnable |
1539                   OHCI1394_LinkControl_cycleMaster);
1540
1541         reg_write(ohci, OHCI1394_ATRetries,
1542                   OHCI1394_MAX_AT_REQ_RETRIES |
1543                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1544                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1545
1546         ar_context_run(&ohci->ar_request_ctx);
1547         ar_context_run(&ohci->ar_response_ctx);
1548
1549         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1550         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1551         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1552         reg_write(ohci, OHCI1394_IntMaskSet,
1553                   OHCI1394_selfIDComplete |
1554                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1555                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1556                   OHCI1394_isochRx | OHCI1394_isochTx |
1557                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1558                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1559                   OHCI1394_masterIntEnable);
1560         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1561                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1562
1563         /* Activate link_on bit and contender bit in our self ID packets.*/
1564         if (ohci_update_phy_reg(card, 4, 0,
1565                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1566                 return -EIO;
1567
1568         /*
1569          * When the link is not yet enabled, the atomic config rom
1570          * update mechanism described below in ohci_set_config_rom()
1571          * is not active.  We have to update ConfigRomHeader and
1572          * BusOptions manually, and the write to ConfigROMmap takes
1573          * effect immediately.  We tie this to the enabling of the
1574          * link, so we have a valid config rom before enabling - the
1575          * OHCI requires that ConfigROMhdr and BusOptions have valid
1576          * values before enabling.
1577          *
1578          * However, when the ConfigROMmap is written, some controllers
1579          * always read back quadlets 0 and 2 from the config rom to
1580          * the ConfigRomHeader and BusOptions registers on bus reset.
1581          * They shouldn't do that in this initial case where the link
1582          * isn't enabled.  This means we have to use the same
1583          * workaround here, setting the bus header to 0 and then write
1584          * the right values in the bus reset tasklet.
1585          */
1586
1587         if (config_rom) {
1588                 ohci->next_config_rom =
1589                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1590                                            &ohci->next_config_rom_bus,
1591                                            GFP_KERNEL);
1592                 if (ohci->next_config_rom == NULL)
1593                         return -ENOMEM;
1594
1595                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1596         } else {
1597                 /*
1598                  * In the suspend case, config_rom is NULL, which
1599                  * means that we just reuse the old config rom.
1600                  */
1601                 ohci->next_config_rom = ohci->config_rom;
1602                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1603         }
1604
1605         ohci->next_header = ohci->next_config_rom[0];
1606         ohci->next_config_rom[0] = 0;
1607         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1608         reg_write(ohci, OHCI1394_BusOptions,
1609                   be32_to_cpu(ohci->next_config_rom[2]));
1610         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1611
1612         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1613
1614         if (request_irq(dev->irq, irq_handler,
1615                         IRQF_SHARED, ohci_driver_name, ohci)) {
1616                 fw_error("Failed to allocate shared interrupt %d.\n",
1617                          dev->irq);
1618                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1619                                   ohci->config_rom, ohci->config_rom_bus);
1620                 return -EIO;
1621         }
1622
1623         reg_write(ohci, OHCI1394_HCControlSet,
1624                   OHCI1394_HCControl_linkEnable |
1625                   OHCI1394_HCControl_BIBimageValid);
1626         flush_writes(ohci);
1627
1628         /*
1629          * We are ready to go, initiate bus reset to finish the
1630          * initialization.
1631          */
1632
1633         fw_core_initiate_bus_reset(&ohci->card, 1);
1634
1635         return 0;
1636 }
1637
1638 static int ohci_set_config_rom(struct fw_card *card,
1639                                const __be32 *config_rom, size_t length)
1640 {
1641         struct fw_ohci *ohci;
1642         unsigned long flags;
1643         int ret = -EBUSY;
1644         __be32 *next_config_rom;
1645         dma_addr_t uninitialized_var(next_config_rom_bus);
1646
1647         ohci = fw_ohci(card);
1648
1649         /*
1650          * When the OHCI controller is enabled, the config rom update
1651          * mechanism is a bit tricky, but easy enough to use.  See
1652          * section 5.5.6 in the OHCI specification.
1653          *
1654          * The OHCI controller caches the new config rom address in a
1655          * shadow register (ConfigROMmapNext) and needs a bus reset
1656          * for the changes to take place.  When the bus reset is
1657          * detected, the controller loads the new values for the
1658          * ConfigRomHeader and BusOptions registers from the specified
1659          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1660          * shadow register. All automatically and atomically.
1661          *
1662          * Now, there's a twist to this story.  The automatic load of
1663          * ConfigRomHeader and BusOptions doesn't honor the
1664          * noByteSwapData bit, so with a be32 config rom, the
1665          * controller will load be32 values in to these registers
1666          * during the atomic update, even on litte endian
1667          * architectures.  The workaround we use is to put a 0 in the
1668          * header quadlet; 0 is endian agnostic and means that the
1669          * config rom isn't ready yet.  In the bus reset tasklet we
1670          * then set up the real values for the two registers.
1671          *
1672          * We use ohci->lock to avoid racing with the code that sets
1673          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1674          */
1675
1676         next_config_rom =
1677                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1678                                    &next_config_rom_bus, GFP_KERNEL);
1679         if (next_config_rom == NULL)
1680                 return -ENOMEM;
1681
1682         spin_lock_irqsave(&ohci->lock, flags);
1683
1684         if (ohci->next_config_rom == NULL) {
1685                 ohci->next_config_rom = next_config_rom;
1686                 ohci->next_config_rom_bus = next_config_rom_bus;
1687
1688                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1689
1690                 ohci->next_header = config_rom[0];
1691                 ohci->next_config_rom[0] = 0;
1692
1693                 reg_write(ohci, OHCI1394_ConfigROMmap,
1694                           ohci->next_config_rom_bus);
1695                 ret = 0;
1696         }
1697
1698         spin_unlock_irqrestore(&ohci->lock, flags);
1699
1700         /*
1701          * Now initiate a bus reset to have the changes take
1702          * effect. We clean up the old config rom memory and DMA
1703          * mappings in the bus reset tasklet, since the OHCI
1704          * controller could need to access it before the bus reset
1705          * takes effect.
1706          */
1707         if (ret == 0)
1708                 fw_core_initiate_bus_reset(&ohci->card, 1);
1709         else
1710                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1711                                   next_config_rom, next_config_rom_bus);
1712
1713         return ret;
1714 }
1715
1716 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1717 {
1718         struct fw_ohci *ohci = fw_ohci(card);
1719
1720         at_context_transmit(&ohci->at_request_ctx, packet);
1721 }
1722
1723 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1724 {
1725         struct fw_ohci *ohci = fw_ohci(card);
1726
1727         at_context_transmit(&ohci->at_response_ctx, packet);
1728 }
1729
1730 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1731 {
1732         struct fw_ohci *ohci = fw_ohci(card);
1733         struct context *ctx = &ohci->at_request_ctx;
1734         struct driver_data *driver_data = packet->driver_data;
1735         int ret = -ENOENT;
1736
1737         tasklet_disable(&ctx->tasklet);
1738
1739         if (packet->ack != 0)
1740                 goto out;
1741
1742         if (packet->payload_mapped)
1743                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1744                                  packet->payload_length, DMA_TO_DEVICE);
1745
1746         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1747         driver_data->packet = NULL;
1748         packet->ack = RCODE_CANCELLED;
1749         packet->callback(packet, &ohci->card, packet->ack);
1750         ret = 0;
1751  out:
1752         tasklet_enable(&ctx->tasklet);
1753
1754         return ret;
1755 }
1756
1757 static int ohci_enable_phys_dma(struct fw_card *card,
1758                                 int node_id, int generation)
1759 {
1760 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1761         return 0;
1762 #else
1763         struct fw_ohci *ohci = fw_ohci(card);
1764         unsigned long flags;
1765         int n, ret = 0;
1766
1767         /*
1768          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1769          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1770          */
1771
1772         spin_lock_irqsave(&ohci->lock, flags);
1773
1774         if (ohci->generation != generation) {
1775                 ret = -ESTALE;
1776                 goto out;
1777         }
1778
1779         /*
1780          * Note, if the node ID contains a non-local bus ID, physical DMA is
1781          * enabled for _all_ nodes on remote buses.
1782          */
1783
1784         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1785         if (n < 32)
1786                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1787         else
1788                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1789
1790         flush_writes(ohci);
1791  out:
1792         spin_unlock_irqrestore(&ohci->lock, flags);
1793
1794         return ret;
1795 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1796 }
1797
1798 static u32 cycle_timer_ticks(u32 cycle_timer)
1799 {
1800         u32 ticks;
1801
1802         ticks = cycle_timer & 0xfff;
1803         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1804         ticks += (3072 * 8000) * (cycle_timer >> 25);
1805
1806         return ticks;
1807 }
1808
1809 /*
1810  * Some controllers exhibit one or more of the following bugs when updating the
1811  * iso cycle timer register:
1812  *  - When the lowest six bits are wrapping around to zero, a read that happens
1813  *    at the same time will return garbage in the lowest ten bits.
1814  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1815  *    not incremented for about 60 ns.
1816  *  - Occasionally, the entire register reads zero.
1817  *
1818  * To catch these, we read the register three times and ensure that the
1819  * difference between each two consecutive reads is approximately the same, i.e.
1820  * less than twice the other.  Furthermore, any negative difference indicates an
1821  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1822  * execute, so we have enough precision to compute the ratio of the differences.)
1823  */
1824 static u32 ohci_get_cycle_time(struct fw_card *card)
1825 {
1826         struct fw_ohci *ohci = fw_ohci(card);
1827         u32 c0, c1, c2;
1828         u32 t0, t1, t2;
1829         s32 diff01, diff12;
1830         int i;
1831
1832         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1833
1834         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1835                 i = 0;
1836                 c1 = c2;
1837                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1838                 do {
1839                         c0 = c1;
1840                         c1 = c2;
1841                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1842                         t0 = cycle_timer_ticks(c0);
1843                         t1 = cycle_timer_ticks(c1);
1844                         t2 = cycle_timer_ticks(c2);
1845                         diff01 = t1 - t0;
1846                         diff12 = t2 - t1;
1847                 } while ((diff01 <= 0 || diff12 <= 0 ||
1848                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1849                          && i++ < 20);
1850         }
1851
1852         return c2;
1853 }
1854
1855 static void copy_iso_headers(struct iso_context *ctx, void *p)
1856 {
1857         int i = ctx->header_length;
1858
1859         if (i + ctx->base.header_size > PAGE_SIZE)
1860                 return;
1861
1862         /*
1863          * The iso header is byteswapped to little endian by
1864          * the controller, but the remaining header quadlets
1865          * are big endian.  We want to present all the headers
1866          * as big endian, so we have to swap the first quadlet.
1867          */
1868         if (ctx->base.header_size > 0)
1869                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1870         if (ctx->base.header_size > 4)
1871                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1872         if (ctx->base.header_size > 8)
1873                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1874         ctx->header_length += ctx->base.header_size;
1875 }
1876
1877 static int handle_ir_packet_per_buffer(struct context *context,
1878                                        struct descriptor *d,
1879                                        struct descriptor *last)
1880 {
1881         struct iso_context *ctx =
1882                 container_of(context, struct iso_context, context);
1883         struct descriptor *pd;
1884         __le32 *ir_header;
1885         void *p;
1886
1887         for (pd = d; pd <= last; pd++) {
1888                 if (pd->transfer_status)
1889                         break;
1890         }
1891         if (pd > last)
1892                 /* Descriptor(s) not done yet, stop iteration */
1893                 return 0;
1894
1895         p = last + 1;
1896         copy_iso_headers(ctx, p);
1897
1898         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1899                 ir_header = (__le32 *) p;
1900                 ctx->base.callback(&ctx->base,
1901                                    le32_to_cpu(ir_header[0]) & 0xffff,
1902                                    ctx->header_length, ctx->header,
1903                                    ctx->base.callback_data);
1904                 ctx->header_length = 0;
1905         }
1906
1907         return 1;
1908 }
1909
1910 static int handle_it_packet(struct context *context,
1911                             struct descriptor *d,
1912                             struct descriptor *last)
1913 {
1914         struct iso_context *ctx =
1915                 container_of(context, struct iso_context, context);
1916         int i;
1917         struct descriptor *pd;
1918
1919         for (pd = d; pd <= last; pd++)
1920                 if (pd->transfer_status)
1921                         break;
1922         if (pd > last)
1923                 /* Descriptor(s) not done yet, stop iteration */
1924                 return 0;
1925
1926         i = ctx->header_length;
1927         if (i + 4 < PAGE_SIZE) {
1928                 /* Present this value as big-endian to match the receive code */
1929                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1930                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1931                                 le16_to_cpu(pd->res_count));
1932                 ctx->header_length += 4;
1933         }
1934         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936                                    ctx->header_length, ctx->header,
1937                                    ctx->base.callback_data);
1938                 ctx->header_length = 0;
1939         }
1940         return 1;
1941 }
1942
1943 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944                                 int type, int channel, size_t header_size)
1945 {
1946         struct fw_ohci *ohci = fw_ohci(card);
1947         struct iso_context *ctx, *list;
1948         descriptor_callback_t callback;
1949         u64 *channels, dont_care = ~0ULL;
1950         u32 *mask, regs;
1951         unsigned long flags;
1952         int index, ret = -ENOMEM;
1953
1954         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955                 channels = &dont_care;
1956                 mask = &ohci->it_context_mask;
1957                 list = ohci->it_context_list;
1958                 callback = handle_it_packet;
1959         } else {
1960                 channels = &ohci->ir_context_channels;
1961                 mask = &ohci->ir_context_mask;
1962                 list = ohci->ir_context_list;
1963                 callback = handle_ir_packet_per_buffer;
1964         }
1965
1966         spin_lock_irqsave(&ohci->lock, flags);
1967         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1968         if (index >= 0) {
1969                 *channels &= ~(1ULL << channel);
1970                 *mask &= ~(1 << index);
1971         }
1972         spin_unlock_irqrestore(&ohci->lock, flags);
1973
1974         if (index < 0)
1975                 return ERR_PTR(-EBUSY);
1976
1977         if (type == FW_ISO_CONTEXT_TRANSMIT)
1978                 regs = OHCI1394_IsoXmitContextBase(index);
1979         else
1980                 regs = OHCI1394_IsoRcvContextBase(index);
1981
1982         ctx = &list[index];
1983         memset(ctx, 0, sizeof(*ctx));
1984         ctx->header_length = 0;
1985         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1986         if (ctx->header == NULL)
1987                 goto out;
1988
1989         ret = context_init(&ctx->context, ohci, regs, callback);
1990         if (ret < 0)
1991                 goto out_with_header;
1992
1993         return &ctx->base;
1994
1995  out_with_header:
1996         free_page((unsigned long)ctx->header);
1997  out:
1998         spin_lock_irqsave(&ohci->lock, flags);
1999         *mask |= 1 << index;
2000         spin_unlock_irqrestore(&ohci->lock, flags);
2001
2002         return ERR_PTR(ret);
2003 }
2004
2005 static int ohci_start_iso(struct fw_iso_context *base,
2006                           s32 cycle, u32 sync, u32 tags)
2007 {
2008         struct iso_context *ctx = container_of(base, struct iso_context, base);
2009         struct fw_ohci *ohci = ctx->context.ohci;
2010         u32 control, match;
2011         int index;
2012
2013         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2014                 index = ctx - ohci->it_context_list;
2015                 match = 0;
2016                 if (cycle >= 0)
2017                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2018                                 (cycle & 0x7fff) << 16;
2019
2020                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2021                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2022                 context_run(&ctx->context, match);
2023         } else {
2024                 index = ctx - ohci->ir_context_list;
2025                 control = IR_CONTEXT_ISOCH_HEADER;
2026                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2027                 if (cycle >= 0) {
2028                         match |= (cycle & 0x07fff) << 12;
2029                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2030                 }
2031
2032                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2033                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2034                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2035                 context_run(&ctx->context, control);
2036         }
2037
2038         return 0;
2039 }
2040
2041 static int ohci_stop_iso(struct fw_iso_context *base)
2042 {
2043         struct fw_ohci *ohci = fw_ohci(base->card);
2044         struct iso_context *ctx = container_of(base, struct iso_context, base);
2045         int index;
2046
2047         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2048                 index = ctx - ohci->it_context_list;
2049                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2050         } else {
2051                 index = ctx - ohci->ir_context_list;
2052                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2053         }
2054         flush_writes(ohci);
2055         context_stop(&ctx->context);
2056
2057         return 0;
2058 }
2059
2060 static void ohci_free_iso_context(struct fw_iso_context *base)
2061 {
2062         struct fw_ohci *ohci = fw_ohci(base->card);
2063         struct iso_context *ctx = container_of(base, struct iso_context, base);
2064         unsigned long flags;
2065         int index;
2066
2067         ohci_stop_iso(base);
2068         context_release(&ctx->context);
2069         free_page((unsigned long)ctx->header);
2070
2071         spin_lock_irqsave(&ohci->lock, flags);
2072
2073         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2074                 index = ctx - ohci->it_context_list;
2075                 ohci->it_context_mask |= 1 << index;
2076         } else {
2077                 index = ctx - ohci->ir_context_list;
2078                 ohci->ir_context_mask |= 1 << index;
2079                 ohci->ir_context_channels |= 1ULL << base->channel;
2080         }
2081
2082         spin_unlock_irqrestore(&ohci->lock, flags);
2083 }
2084
2085 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2086                                    struct fw_iso_packet *packet,
2087                                    struct fw_iso_buffer *buffer,
2088                                    unsigned long payload)
2089 {
2090         struct iso_context *ctx = container_of(base, struct iso_context, base);
2091         struct descriptor *d, *last, *pd;
2092         struct fw_iso_packet *p;
2093         __le32 *header;
2094         dma_addr_t d_bus, page_bus;
2095         u32 z, header_z, payload_z, irq;
2096         u32 payload_index, payload_end_index, next_page_index;
2097         int page, end_page, i, length, offset;
2098
2099         p = packet;
2100         payload_index = payload;
2101
2102         if (p->skip)
2103                 z = 1;
2104         else
2105                 z = 2;
2106         if (p->header_length > 0)
2107                 z++;
2108
2109         /* Determine the first page the payload isn't contained in. */
2110         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2111         if (p->payload_length > 0)
2112                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2113         else
2114                 payload_z = 0;
2115
2116         z += payload_z;
2117
2118         /* Get header size in number of descriptors. */
2119         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2120
2121         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2122         if (d == NULL)
2123                 return -ENOMEM;
2124
2125         if (!p->skip) {
2126                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2127                 d[0].req_count = cpu_to_le16(8);
2128                 /*
2129                  * Link the skip address to this descriptor itself.  This causes
2130                  * a context to skip a cycle whenever lost cycles or FIFO
2131                  * overruns occur, without dropping the data.  The application
2132                  * should then decide whether this is an error condition or not.
2133                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2134                  */
2135                 d[0].branch_address = cpu_to_le32(d_bus | z);
2136
2137                 header = (__le32 *) &d[1];
2138                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2139                                         IT_HEADER_TAG(p->tag) |
2140                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2141                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2142                                         IT_HEADER_SPEED(ctx->base.speed));
2143                 header[1] =
2144                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2145                                                           p->payload_length));
2146         }
2147
2148         if (p->header_length > 0) {
2149                 d[2].req_count    = cpu_to_le16(p->header_length);
2150                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2151                 memcpy(&d[z], p->header, p->header_length);
2152         }
2153
2154         pd = d + z - payload_z;
2155         payload_end_index = payload_index + p->payload_length;
2156         for (i = 0; i < payload_z; i++) {
2157                 page               = payload_index >> PAGE_SHIFT;
2158                 offset             = payload_index & ~PAGE_MASK;
2159                 next_page_index    = (page + 1) << PAGE_SHIFT;
2160                 length             =
2161                         min(next_page_index, payload_end_index) - payload_index;
2162                 pd[i].req_count    = cpu_to_le16(length);
2163
2164                 page_bus = page_private(buffer->pages[page]);
2165                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2166
2167                 payload_index += length;
2168         }
2169
2170         if (p->interrupt)
2171                 irq = DESCRIPTOR_IRQ_ALWAYS;
2172         else
2173                 irq = DESCRIPTOR_NO_IRQ;
2174
2175         last = z == 2 ? d : d + z - 1;
2176         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2177                                      DESCRIPTOR_STATUS |
2178                                      DESCRIPTOR_BRANCH_ALWAYS |
2179                                      irq);
2180
2181         context_append(&ctx->context, d, z, header_z);
2182
2183         return 0;
2184 }
2185
2186 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2187                                         struct fw_iso_packet *packet,
2188                                         struct fw_iso_buffer *buffer,
2189                                         unsigned long payload)
2190 {
2191         struct iso_context *ctx = container_of(base, struct iso_context, base);
2192         struct descriptor *d, *pd;
2193         struct fw_iso_packet *p = packet;
2194         dma_addr_t d_bus, page_bus;
2195         u32 z, header_z, rest;
2196         int i, j, length;
2197         int page, offset, packet_count, header_size, payload_per_buffer;
2198
2199         /*
2200          * The OHCI controller puts the isochronous header and trailer in the
2201          * buffer, so we need at least 8 bytes.
2202          */
2203         packet_count = p->header_length / ctx->base.header_size;
2204         header_size  = max(ctx->base.header_size, (size_t)8);
2205
2206         /* Get header size in number of descriptors. */
2207         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2208         page     = payload >> PAGE_SHIFT;
2209         offset   = payload & ~PAGE_MASK;
2210         payload_per_buffer = p->payload_length / packet_count;
2211
2212         for (i = 0; i < packet_count; i++) {
2213                 /* d points to the header descriptor */
2214                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2215                 d = context_get_descriptors(&ctx->context,
2216                                 z + header_z, &d_bus);
2217                 if (d == NULL)
2218                         return -ENOMEM;
2219
2220                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2221                                               DESCRIPTOR_INPUT_MORE);
2222                 if (p->skip && i == 0)
2223                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2224                 d->req_count    = cpu_to_le16(header_size);
2225                 d->res_count    = d->req_count;
2226                 d->transfer_status = 0;
2227                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2228
2229                 rest = payload_per_buffer;
2230                 pd = d;
2231                 for (j = 1; j < z; j++) {
2232                         pd++;
2233                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2234                                                   DESCRIPTOR_INPUT_MORE);
2235
2236                         if (offset + rest < PAGE_SIZE)
2237                                 length = rest;
2238                         else
2239                                 length = PAGE_SIZE - offset;
2240                         pd->req_count = cpu_to_le16(length);
2241                         pd->res_count = pd->req_count;
2242                         pd->transfer_status = 0;
2243
2244                         page_bus = page_private(buffer->pages[page]);
2245                         pd->data_address = cpu_to_le32(page_bus + offset);
2246
2247                         offset = (offset + length) & ~PAGE_MASK;
2248                         rest -= length;
2249                         if (offset == 0)
2250                                 page++;
2251                 }
2252                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2253                                           DESCRIPTOR_INPUT_LAST |
2254                                           DESCRIPTOR_BRANCH_ALWAYS);
2255                 if (p->interrupt && i == packet_count - 1)
2256                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2257
2258                 context_append(&ctx->context, d, z, header_z);
2259         }
2260
2261         return 0;
2262 }
2263
2264 static int ohci_queue_iso(struct fw_iso_context *base,
2265                           struct fw_iso_packet *packet,
2266                           struct fw_iso_buffer *buffer,
2267                           unsigned long payload)
2268 {
2269         struct iso_context *ctx = container_of(base, struct iso_context, base);
2270         unsigned long flags;
2271         int ret;
2272
2273         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2274         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2275                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2276         else
2277                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2278                                                         buffer, payload);
2279         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2280
2281         return ret;
2282 }
2283
2284 static const struct fw_card_driver ohci_driver = {
2285         .enable                 = ohci_enable,
2286         .update_phy_reg         = ohci_update_phy_reg,
2287         .set_config_rom         = ohci_set_config_rom,
2288         .send_request           = ohci_send_request,
2289         .send_response          = ohci_send_response,
2290         .cancel_packet          = ohci_cancel_packet,
2291         .enable_phys_dma        = ohci_enable_phys_dma,
2292         .get_cycle_time         = ohci_get_cycle_time,
2293
2294         .allocate_iso_context   = ohci_allocate_iso_context,
2295         .free_iso_context       = ohci_free_iso_context,
2296         .queue_iso              = ohci_queue_iso,
2297         .start_iso              = ohci_start_iso,
2298         .stop_iso               = ohci_stop_iso,
2299 };
2300
2301 #ifdef CONFIG_PPC_PMAC
2302 static void ohci_pmac_on(struct pci_dev *dev)
2303 {
2304         if (machine_is(powermac)) {
2305                 struct device_node *ofn = pci_device_to_OF_node(dev);
2306
2307                 if (ofn) {
2308                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2309                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2310                 }
2311         }
2312 }
2313
2314 static void ohci_pmac_off(struct pci_dev *dev)
2315 {
2316         if (machine_is(powermac)) {
2317                 struct device_node *ofn = pci_device_to_OF_node(dev);
2318
2319                 if (ofn) {
2320                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2321                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2322                 }
2323         }
2324 }
2325 #else
2326 #define ohci_pmac_on(dev)
2327 #define ohci_pmac_off(dev)
2328 #endif /* CONFIG_PPC_PMAC */
2329
2330 static int __devinit pci_probe(struct pci_dev *dev,
2331                                const struct pci_device_id *ent)
2332 {
2333         struct fw_ohci *ohci;
2334         u32 bus_options, max_receive, link_speed, version;
2335         u64 guid;
2336         int i, err, n_ir, n_it;
2337         size_t size;
2338
2339         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2340         if (ohci == NULL) {
2341                 err = -ENOMEM;
2342                 goto fail;
2343         }
2344
2345         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2346
2347         ohci_pmac_on(dev);
2348
2349         err = pci_enable_device(dev);
2350         if (err) {
2351                 fw_error("Failed to enable OHCI hardware\n");
2352                 goto fail_free;
2353         }
2354
2355         pci_set_master(dev);
2356         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2357         pci_set_drvdata(dev, ohci);
2358
2359         spin_lock_init(&ohci->lock);
2360
2361         tasklet_init(&ohci->bus_reset_tasklet,
2362                      bus_reset_tasklet, (unsigned long)ohci);
2363
2364         err = pci_request_region(dev, 0, ohci_driver_name);
2365         if (err) {
2366                 fw_error("MMIO resource unavailable\n");
2367                 goto fail_disable;
2368         }
2369
2370         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2371         if (ohci->registers == NULL) {
2372                 fw_error("Failed to remap registers\n");
2373                 err = -ENXIO;
2374                 goto fail_iomem;
2375         }
2376
2377         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2378                 if (ohci_quirks[i].vendor == dev->vendor &&
2379                     (ohci_quirks[i].device == dev->device ||
2380                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2381                         ohci->quirks = ohci_quirks[i].flags;
2382                         break;
2383                 }
2384         if (param_quirks)
2385                 ohci->quirks = param_quirks;
2386
2387         ar_context_init(&ohci->ar_request_ctx, ohci,
2388                         OHCI1394_AsReqRcvContextControlSet);
2389
2390         ar_context_init(&ohci->ar_response_ctx, ohci,
2391                         OHCI1394_AsRspRcvContextControlSet);
2392
2393         context_init(&ohci->at_request_ctx, ohci,
2394                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2395
2396         context_init(&ohci->at_response_ctx, ohci,
2397                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2398
2399         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2400         ohci->ir_context_channels = ~0ULL;
2401         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2402         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2403         n_ir = hweight32(ohci->ir_context_mask);
2404         size = sizeof(struct iso_context) * n_ir;
2405         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2406
2407         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2408         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2409         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2410         n_it = hweight32(ohci->it_context_mask);
2411         size = sizeof(struct iso_context) * n_it;
2412         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2413
2414         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2415                 err = -ENOMEM;
2416                 goto fail_contexts;
2417         }
2418
2419         /* self-id dma buffer allocation */
2420         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2421                                                SELF_ID_BUF_SIZE,
2422                                                &ohci->self_id_bus,
2423                                                GFP_KERNEL);
2424         if (ohci->self_id_cpu == NULL) {
2425                 err = -ENOMEM;
2426                 goto fail_contexts;
2427         }
2428
2429         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2430         max_receive = (bus_options >> 12) & 0xf;
2431         link_speed = bus_options & 0x7;
2432         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2433                 reg_read(ohci, OHCI1394_GUIDLo);
2434
2435         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2436         if (err)
2437                 goto fail_self_id;
2438
2439         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2440         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2441                   "%d IR + %d IT contexts, quirks 0x%x\n",
2442                   dev_name(&dev->dev), version >> 16, version & 0xff,
2443                   n_ir, n_it, ohci->quirks);
2444
2445         return 0;
2446
2447  fail_self_id:
2448         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2449                           ohci->self_id_cpu, ohci->self_id_bus);
2450  fail_contexts:
2451         kfree(ohci->ir_context_list);
2452         kfree(ohci->it_context_list);
2453         context_release(&ohci->at_response_ctx);
2454         context_release(&ohci->at_request_ctx);
2455         ar_context_release(&ohci->ar_response_ctx);
2456         ar_context_release(&ohci->ar_request_ctx);
2457         pci_iounmap(dev, ohci->registers);
2458  fail_iomem:
2459         pci_release_region(dev, 0);
2460  fail_disable:
2461         pci_disable_device(dev);
2462  fail_free:
2463         kfree(&ohci->card);
2464         ohci_pmac_off(dev);
2465  fail:
2466         if (err == -ENOMEM)
2467                 fw_error("Out of memory\n");
2468
2469         return err;
2470 }
2471
2472 static void pci_remove(struct pci_dev *dev)
2473 {
2474         struct fw_ohci *ohci;
2475
2476         ohci = pci_get_drvdata(dev);
2477         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2478         flush_writes(ohci);
2479         fw_core_remove_card(&ohci->card);
2480
2481         /*
2482          * FIXME: Fail all pending packets here, now that the upper
2483          * layers can't queue any more.
2484          */
2485
2486         software_reset(ohci);
2487         free_irq(dev->irq, ohci);
2488
2489         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2490                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2491                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2492         if (ohci->config_rom)
2493                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494                                   ohci->config_rom, ohci->config_rom_bus);
2495         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2496                           ohci->self_id_cpu, ohci->self_id_bus);
2497         ar_context_release(&ohci->ar_request_ctx);
2498         ar_context_release(&ohci->ar_response_ctx);
2499         context_release(&ohci->at_request_ctx);
2500         context_release(&ohci->at_response_ctx);
2501         kfree(ohci->it_context_list);
2502         kfree(ohci->ir_context_list);
2503         pci_iounmap(dev, ohci->registers);
2504         pci_release_region(dev, 0);
2505         pci_disable_device(dev);
2506         kfree(&ohci->card);
2507         ohci_pmac_off(dev);
2508
2509         fw_notify("Removed fw-ohci device.\n");
2510 }
2511
2512 #ifdef CONFIG_PM
2513 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2514 {
2515         struct fw_ohci *ohci = pci_get_drvdata(dev);
2516         int err;
2517
2518         software_reset(ohci);
2519         free_irq(dev->irq, ohci);
2520         err = pci_save_state(dev);
2521         if (err) {
2522                 fw_error("pci_save_state failed\n");
2523                 return err;
2524         }
2525         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2526         if (err)
2527                 fw_error("pci_set_power_state failed with %d\n", err);
2528         ohci_pmac_off(dev);
2529
2530         return 0;
2531 }
2532
2533 static int pci_resume(struct pci_dev *dev)
2534 {
2535         struct fw_ohci *ohci = pci_get_drvdata(dev);
2536         int err;
2537
2538         ohci_pmac_on(dev);
2539         pci_set_power_state(dev, PCI_D0);
2540         pci_restore_state(dev);
2541         err = pci_enable_device(dev);
2542         if (err) {
2543                 fw_error("pci_enable_device failed\n");
2544                 return err;
2545         }
2546
2547         return ohci_enable(&ohci->card, NULL, 0);
2548 }
2549 #endif
2550
2551 static const struct pci_device_id pci_table[] = {
2552         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2553         { }
2554 };
2555
2556 MODULE_DEVICE_TABLE(pci, pci_table);
2557
2558 static struct pci_driver fw_ohci_pci_driver = {
2559         .name           = ohci_driver_name,
2560         .id_table       = pci_table,
2561         .probe          = pci_probe,
2562         .remove         = pci_remove,
2563 #ifdef CONFIG_PM
2564         .resume         = pci_resume,
2565         .suspend        = pci_suspend,
2566 #endif
2567 };
2568
2569 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2570 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2571 MODULE_LICENSE("GPL");
2572
2573 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2574 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2575 MODULE_ALIAS("ohci1394");
2576 #endif
2577
2578 static int __init fw_ohci_init(void)
2579 {
2580         return pci_register_driver(&fw_ohci_pci_driver);
2581 }
2582
2583 static void __exit fw_ohci_cleanup(void)
2584 {
2585         pci_unregister_driver(&fw_ohci_pci_driver);
2586 }
2587
2588 module_init(fw_ohci_init);
2589 module_exit(fw_ohci_cleanup);