include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <asm/unaligned.h>
28 #include <net/arp.h>
29
30 #define FWNET_MAX_FRAGMENTS     25      /* arbitrary limit */
31 #define FWNET_ISO_PAGE_COUNT    (PAGE_SIZE < 16 * 1024 ? 4 : 2)
32
33 #define IEEE1394_BROADCAST_CHANNEL      31
34 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
35 #define IEEE1394_MAX_PAYLOAD_S100       512
36 #define FWNET_NO_FIFO_ADDR              (~0ULL)
37
38 #define IANA_SPECIFIER_ID               0x00005eU
39 #define RFC2734_SW_VERSION              0x000001U
40
41 #define IEEE1394_GASP_HDR_SIZE  8
42
43 #define RFC2374_UNFRAG_HDR_SIZE 4
44 #define RFC2374_FRAG_HDR_SIZE   8
45 #define RFC2374_FRAG_OVERHEAD   4
46
47 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
48 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
49 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
50 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
51
52 #define RFC2734_HW_ADDR_LEN     16
53
54 struct rfc2734_arp {
55         __be16 hw_type;         /* 0x0018       */
56         __be16 proto_type;      /* 0x0806       */
57         u8 hw_addr_len;         /* 16           */
58         u8 ip_addr_len;         /* 4            */
59         __be16 opcode;          /* ARP Opcode   */
60         /* Above is exactly the same format as struct arphdr */
61
62         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
63         u8 max_rec;             /* Sender's max packet size             */
64         u8 sspd;                /* Sender's max speed                   */
65         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
66         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
67         __be32 sip;             /* Sender's IP Address                  */
68         __be32 tip;             /* IP Address of requested hw addr      */
69 } __attribute__((packed));
70
71 /* This header format is specific to this driver implementation. */
72 #define FWNET_ALEN      8
73 #define FWNET_HLEN      10
74 struct fwnet_header {
75         u8 h_dest[FWNET_ALEN];  /* destination address */
76         __be16 h_proto;         /* packet type ID field */
77 } __attribute__((packed));
78
79 /* IPv4 and IPv6 encapsulation header */
80 struct rfc2734_header {
81         u32 w0;
82         u32 w1;
83 };
84
85 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
86 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
87 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
88 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
89 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
90
91 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
92 #define fwnet_set_hdr_ether_type(et)    (et)
93 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
94 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
95
96 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
97
98 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
99                 unsigned ether_type)
100 {
101         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
102                   | fwnet_set_hdr_ether_type(ether_type);
103 }
104
105 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
106                 unsigned ether_type, unsigned dg_size, unsigned dgl)
107 {
108         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
109                   | fwnet_set_hdr_dg_size(dg_size)
110                   | fwnet_set_hdr_ether_type(ether_type);
111         hdr->w1 = fwnet_set_hdr_dgl(dgl);
112 }
113
114 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
115                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
116 {
117         hdr->w0 = fwnet_set_hdr_lf(lf)
118                   | fwnet_set_hdr_dg_size(dg_size)
119                   | fwnet_set_hdr_fg_off(fg_off);
120         hdr->w1 = fwnet_set_hdr_dgl(dgl);
121 }
122
123 /* This list keeps track of what parts of the datagram have been filled in */
124 struct fwnet_fragment_info {
125         struct list_head fi_link;
126         u16 offset;
127         u16 len;
128 };
129
130 struct fwnet_partial_datagram {
131         struct list_head pd_link;
132         struct list_head fi_list;
133         struct sk_buff *skb;
134         /* FIXME Why not use skb->data? */
135         char *pbuf;
136         u16 datagram_label;
137         u16 ether_type;
138         u16 datagram_size;
139 };
140
141 static DEFINE_MUTEX(fwnet_device_mutex);
142 static LIST_HEAD(fwnet_device_list);
143
144 struct fwnet_device {
145         struct list_head dev_link;
146         spinlock_t lock;
147         enum {
148                 FWNET_BROADCAST_ERROR,
149                 FWNET_BROADCAST_RUNNING,
150                 FWNET_BROADCAST_STOPPED,
151         } broadcast_state;
152         struct fw_iso_context *broadcast_rcv_context;
153         struct fw_iso_buffer broadcast_rcv_buffer;
154         void **broadcast_rcv_buffer_ptrs;
155         unsigned broadcast_rcv_next_ptr;
156         unsigned num_broadcast_rcv_ptrs;
157         unsigned rcv_buffer_size;
158         /*
159          * This value is the maximum unfragmented datagram size that can be
160          * sent by the hardware.  It already has the GASP overhead and the
161          * unfragmented datagram header overhead calculated into it.
162          */
163         unsigned broadcast_xmt_max_payload;
164         u16 broadcast_xmt_datagramlabel;
165
166         /*
167          * The CSR address that remote nodes must send datagrams to for us to
168          * receive them.
169          */
170         struct fw_address_handler handler;
171         u64 local_fifo;
172
173         /* List of packets to be sent */
174         struct list_head packet_list;
175         /*
176          * List of packets that were broadcasted.  When we get an ISO interrupt
177          * one of them has been sent
178          */
179         struct list_head broadcasted_list;
180         /* List of packets that have been sent but not yet acked */
181         struct list_head sent_list;
182
183         struct list_head peer_list;
184         struct fw_card *card;
185         struct net_device *netdev;
186 };
187
188 struct fwnet_peer {
189         struct list_head peer_link;
190         struct fwnet_device *dev;
191         u64 guid;
192         u64 fifo;
193
194         /* guarded by dev->lock */
195         struct list_head pd_list; /* received partial datagrams */
196         unsigned pdg_size;        /* pd_list size */
197
198         u16 datagram_label;       /* outgoing datagram label */
199         unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
200         int node_id;
201         int generation;
202         unsigned speed;
203 };
204
205 /* This is our task struct. It's used for the packet complete callback.  */
206 struct fwnet_packet_task {
207         /*
208          * ptask can actually be on dev->packet_list, dev->broadcasted_list,
209          * or dev->sent_list depending on its current state.
210          */
211         struct list_head pt_link;
212         struct fw_transaction transaction;
213         struct rfc2734_header hdr;
214         struct sk_buff *skb;
215         struct fwnet_device *dev;
216
217         int outstanding_pkts;
218         unsigned max_payload;
219         u64 fifo_addr;
220         u16 dest_node;
221         u8 generation;
222         u8 speed;
223 };
224
225 /*
226  * saddr == NULL means use device source address.
227  * daddr == NULL means leave destination address (eg unresolved arp).
228  */
229 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
230                         unsigned short type, const void *daddr,
231                         const void *saddr, unsigned len)
232 {
233         struct fwnet_header *h;
234
235         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
236         put_unaligned_be16(type, &h->h_proto);
237
238         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
239                 memset(h->h_dest, 0, net->addr_len);
240
241                 return net->hard_header_len;
242         }
243
244         if (daddr) {
245                 memcpy(h->h_dest, daddr, net->addr_len);
246
247                 return net->hard_header_len;
248         }
249
250         return -net->hard_header_len;
251 }
252
253 static int fwnet_header_rebuild(struct sk_buff *skb)
254 {
255         struct fwnet_header *h = (struct fwnet_header *)skb->data;
256
257         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
258                 return arp_find((unsigned char *)&h->h_dest, skb);
259
260         fw_notify("%s: unable to resolve type %04x addresses\n",
261                   skb->dev->name, be16_to_cpu(h->h_proto));
262         return 0;
263 }
264
265 static int fwnet_header_cache(const struct neighbour *neigh,
266                               struct hh_cache *hh)
267 {
268         struct net_device *net;
269         struct fwnet_header *h;
270
271         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
272                 return -1;
273         net = neigh->dev;
274         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
275         h->h_proto = hh->hh_type;
276         memcpy(h->h_dest, neigh->ha, net->addr_len);
277         hh->hh_len = FWNET_HLEN;
278
279         return 0;
280 }
281
282 /* Called by Address Resolution module to notify changes in address. */
283 static void fwnet_header_cache_update(struct hh_cache *hh,
284                 const struct net_device *net, const unsigned char *haddr)
285 {
286         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
287 }
288
289 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
290 {
291         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
292
293         return FWNET_ALEN;
294 }
295
296 static const struct header_ops fwnet_header_ops = {
297         .create         = fwnet_header_create,
298         .rebuild        = fwnet_header_rebuild,
299         .cache          = fwnet_header_cache,
300         .cache_update   = fwnet_header_cache_update,
301         .parse          = fwnet_header_parse,
302 };
303
304 /* FIXME: is this correct for all cases? */
305 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
306                                unsigned offset, unsigned len)
307 {
308         struct fwnet_fragment_info *fi;
309         unsigned end = offset + len;
310
311         list_for_each_entry(fi, &pd->fi_list, fi_link)
312                 if (offset < fi->offset + fi->len && end > fi->offset)
313                         return true;
314
315         return false;
316 }
317
318 /* Assumes that new fragment does not overlap any existing fragments */
319 static struct fwnet_fragment_info *fwnet_frag_new(
320         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
321 {
322         struct fwnet_fragment_info *fi, *fi2, *new;
323         struct list_head *list;
324
325         list = &pd->fi_list;
326         list_for_each_entry(fi, &pd->fi_list, fi_link) {
327                 if (fi->offset + fi->len == offset) {
328                         /* The new fragment can be tacked on to the end */
329                         /* Did the new fragment plug a hole? */
330                         fi2 = list_entry(fi->fi_link.next,
331                                          struct fwnet_fragment_info, fi_link);
332                         if (fi->offset + fi->len == fi2->offset) {
333                                 /* glue fragments together */
334                                 fi->len += len + fi2->len;
335                                 list_del(&fi2->fi_link);
336                                 kfree(fi2);
337                         } else {
338                                 fi->len += len;
339                         }
340
341                         return fi;
342                 }
343                 if (offset + len == fi->offset) {
344                         /* The new fragment can be tacked on to the beginning */
345                         /* Did the new fragment plug a hole? */
346                         fi2 = list_entry(fi->fi_link.prev,
347                                          struct fwnet_fragment_info, fi_link);
348                         if (fi2->offset + fi2->len == fi->offset) {
349                                 /* glue fragments together */
350                                 fi2->len += fi->len + len;
351                                 list_del(&fi->fi_link);
352                                 kfree(fi);
353
354                                 return fi2;
355                         }
356                         fi->offset = offset;
357                         fi->len += len;
358
359                         return fi;
360                 }
361                 if (offset > fi->offset + fi->len) {
362                         list = &fi->fi_link;
363                         break;
364                 }
365                 if (offset + len < fi->offset) {
366                         list = fi->fi_link.prev;
367                         break;
368                 }
369         }
370
371         new = kmalloc(sizeof(*new), GFP_ATOMIC);
372         if (!new) {
373                 fw_error("out of memory\n");
374                 return NULL;
375         }
376
377         new->offset = offset;
378         new->len = len;
379         list_add(&new->fi_link, list);
380
381         return new;
382 }
383
384 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
385                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
386                 void *frag_buf, unsigned frag_off, unsigned frag_len)
387 {
388         struct fwnet_partial_datagram *new;
389         struct fwnet_fragment_info *fi;
390
391         new = kmalloc(sizeof(*new), GFP_ATOMIC);
392         if (!new)
393                 goto fail;
394
395         INIT_LIST_HEAD(&new->fi_list);
396         fi = fwnet_frag_new(new, frag_off, frag_len);
397         if (fi == NULL)
398                 goto fail_w_new;
399
400         new->datagram_label = datagram_label;
401         new->datagram_size = dg_size;
402         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
403         if (new->skb == NULL)
404                 goto fail_w_fi;
405
406         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
407         new->pbuf = skb_put(new->skb, dg_size);
408         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
409         list_add_tail(&new->pd_link, &peer->pd_list);
410
411         return new;
412
413 fail_w_fi:
414         kfree(fi);
415 fail_w_new:
416         kfree(new);
417 fail:
418         fw_error("out of memory\n");
419
420         return NULL;
421 }
422
423 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
424                                                     u16 datagram_label)
425 {
426         struct fwnet_partial_datagram *pd;
427
428         list_for_each_entry(pd, &peer->pd_list, pd_link)
429                 if (pd->datagram_label == datagram_label)
430                         return pd;
431
432         return NULL;
433 }
434
435
436 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
437 {
438         struct fwnet_fragment_info *fi, *n;
439
440         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
441                 kfree(fi);
442
443         list_del(&old->pd_link);
444         dev_kfree_skb_any(old->skb);
445         kfree(old);
446 }
447
448 static bool fwnet_pd_update(struct fwnet_peer *peer,
449                 struct fwnet_partial_datagram *pd, void *frag_buf,
450                 unsigned frag_off, unsigned frag_len)
451 {
452         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
453                 return false;
454
455         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
456
457         /*
458          * Move list entry to beginnig of list so that oldest partial
459          * datagrams percolate to the end of the list
460          */
461         list_move_tail(&pd->pd_link, &peer->pd_list);
462
463         return true;
464 }
465
466 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
467 {
468         struct fwnet_fragment_info *fi;
469
470         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
471
472         return fi->len == pd->datagram_size;
473 }
474
475 /* caller must hold dev->lock */
476 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
477                                                   u64 guid)
478 {
479         struct fwnet_peer *peer;
480
481         list_for_each_entry(peer, &dev->peer_list, peer_link)
482                 if (peer->guid == guid)
483                         return peer;
484
485         return NULL;
486 }
487
488 /* caller must hold dev->lock */
489 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
490                                                 int node_id, int generation)
491 {
492         struct fwnet_peer *peer;
493
494         list_for_each_entry(peer, &dev->peer_list, peer_link)
495                 if (peer->node_id    == node_id &&
496                     peer->generation == generation)
497                         return peer;
498
499         return NULL;
500 }
501
502 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
503 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
504 {
505         max_rec = min(max_rec, speed + 8);
506         max_rec = min(max_rec, 0xbU); /* <= 4096 */
507         if (max_rec < 8) {
508                 fw_notify("max_rec %x out of range\n", max_rec);
509                 max_rec = 8;
510         }
511
512         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
513 }
514
515
516 static int fwnet_finish_incoming_packet(struct net_device *net,
517                                         struct sk_buff *skb, u16 source_node_id,
518                                         bool is_broadcast, u16 ether_type)
519 {
520         struct fwnet_device *dev;
521         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
522         int status;
523         __be64 guid;
524
525         dev = netdev_priv(net);
526         /* Write metadata, and then pass to the receive level */
527         skb->dev = net;
528         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
529
530         /*
531          * Parse the encapsulation header. This actually does the job of
532          * converting to an ethernet frame header, as well as arp
533          * conversion if needed. ARP conversion is easier in this
534          * direction, since we are using ethernet as our backend.
535          */
536         /*
537          * If this is an ARP packet, convert it. First, we want to make
538          * use of some of the fields, since they tell us a little bit
539          * about the sending machine.
540          */
541         if (ether_type == ETH_P_ARP) {
542                 struct rfc2734_arp *arp1394;
543                 struct arphdr *arp;
544                 unsigned char *arp_ptr;
545                 u64 fifo_addr;
546                 u64 peer_guid;
547                 unsigned sspd;
548                 u16 max_payload;
549                 struct fwnet_peer *peer;
550                 unsigned long flags;
551
552                 arp1394   = (struct rfc2734_arp *)skb->data;
553                 arp       = (struct arphdr *)skb->data;
554                 arp_ptr   = (unsigned char *)(arp + 1);
555                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
556                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
557                                 | get_unaligned_be32(&arp1394->fifo_lo);
558
559                 sspd = arp1394->sspd;
560                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
561                 if (sspd > SCODE_3200) {
562                         fw_notify("sspd %x out of range\n", sspd);
563                         sspd = SCODE_3200;
564                 }
565                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
566
567                 spin_lock_irqsave(&dev->lock, flags);
568                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
569                 if (peer) {
570                         peer->fifo = fifo_addr;
571
572                         if (peer->speed > sspd)
573                                 peer->speed = sspd;
574                         if (peer->max_payload > max_payload)
575                                 peer->max_payload = max_payload;
576                 }
577                 spin_unlock_irqrestore(&dev->lock, flags);
578
579                 if (!peer) {
580                         fw_notify("No peer for ARP packet from %016llx\n",
581                                   (unsigned long long)peer_guid);
582                         goto failed_proto;
583                 }
584
585                 /*
586                  * Now that we're done with the 1394 specific stuff, we'll
587                  * need to alter some of the data.  Believe it or not, all
588                  * that needs to be done is sender_IP_address needs to be
589                  * moved, the destination hardware address get stuffed
590                  * in and the hardware address length set to 8.
591                  *
592                  * IMPORTANT: The code below overwrites 1394 specific data
593                  * needed above so keep the munging of the data for the
594                  * higher level IP stack last.
595                  */
596
597                 arp->ar_hln = 8;
598                 /* skip over sender unique id */
599                 arp_ptr += arp->ar_hln;
600                 /* move sender IP addr */
601                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
602                 /* skip over sender IP addr */
603                 arp_ptr += arp->ar_pln;
604
605                 if (arp->ar_op == htons(ARPOP_REQUEST))
606                         memset(arp_ptr, 0, sizeof(u64));
607                 else
608                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
609         }
610
611         /* Now add the ethernet header. */
612         guid = cpu_to_be64(dev->card->guid);
613         if (dev_hard_header(skb, net, ether_type,
614                            is_broadcast ? &broadcast_hw : &guid,
615                            NULL, skb->len) >= 0) {
616                 struct fwnet_header *eth;
617                 u16 *rawp;
618                 __be16 protocol;
619
620                 skb_reset_mac_header(skb);
621                 skb_pull(skb, sizeof(*eth));
622                 eth = (struct fwnet_header *)skb_mac_header(skb);
623                 if (*eth->h_dest & 1) {
624                         if (memcmp(eth->h_dest, net->broadcast,
625                                    net->addr_len) == 0)
626                                 skb->pkt_type = PACKET_BROADCAST;
627 #if 0
628                         else
629                                 skb->pkt_type = PACKET_MULTICAST;
630 #endif
631                 } else {
632                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
633                                 skb->pkt_type = PACKET_OTHERHOST;
634                 }
635                 if (ntohs(eth->h_proto) >= 1536) {
636                         protocol = eth->h_proto;
637                 } else {
638                         rawp = (u16 *)skb->data;
639                         if (*rawp == 0xffff)
640                                 protocol = htons(ETH_P_802_3);
641                         else
642                                 protocol = htons(ETH_P_802_2);
643                 }
644                 skb->protocol = protocol;
645         }
646         status = netif_rx(skb);
647         if (status == NET_RX_DROP) {
648                 net->stats.rx_errors++;
649                 net->stats.rx_dropped++;
650         } else {
651                 net->stats.rx_packets++;
652                 net->stats.rx_bytes += skb->len;
653         }
654         if (netif_queue_stopped(net))
655                 netif_wake_queue(net);
656
657         return 0;
658
659  failed_proto:
660         net->stats.rx_errors++;
661         net->stats.rx_dropped++;
662
663         dev_kfree_skb_any(skb);
664         if (netif_queue_stopped(net))
665                 netif_wake_queue(net);
666
667         return 0;
668 }
669
670 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
671                                  int source_node_id, int generation,
672                                  bool is_broadcast)
673 {
674         struct sk_buff *skb;
675         struct net_device *net = dev->netdev;
676         struct rfc2734_header hdr;
677         unsigned lf;
678         unsigned long flags;
679         struct fwnet_peer *peer;
680         struct fwnet_partial_datagram *pd;
681         int fg_off;
682         int dg_size;
683         u16 datagram_label;
684         int retval;
685         u16 ether_type;
686
687         hdr.w0 = be32_to_cpu(buf[0]);
688         lf = fwnet_get_hdr_lf(&hdr);
689         if (lf == RFC2374_HDR_UNFRAG) {
690                 /*
691                  * An unfragmented datagram has been received by the ieee1394
692                  * bus. Build an skbuff around it so we can pass it to the
693                  * high level network layer.
694                  */
695                 ether_type = fwnet_get_hdr_ether_type(&hdr);
696                 buf++;
697                 len -= RFC2374_UNFRAG_HDR_SIZE;
698
699                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
700                 if (unlikely(!skb)) {
701                         fw_error("out of memory\n");
702                         net->stats.rx_dropped++;
703
704                         return -1;
705                 }
706                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
707                 memcpy(skb_put(skb, len), buf, len);
708
709                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
710                                                     is_broadcast, ether_type);
711         }
712         /* A datagram fragment has been received, now the fun begins. */
713         hdr.w1 = ntohl(buf[1]);
714         buf += 2;
715         len -= RFC2374_FRAG_HDR_SIZE;
716         if (lf == RFC2374_HDR_FIRSTFRAG) {
717                 ether_type = fwnet_get_hdr_ether_type(&hdr);
718                 fg_off = 0;
719         } else {
720                 ether_type = 0;
721                 fg_off = fwnet_get_hdr_fg_off(&hdr);
722         }
723         datagram_label = fwnet_get_hdr_dgl(&hdr);
724         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
725
726         spin_lock_irqsave(&dev->lock, flags);
727
728         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
729         if (!peer)
730                 goto bad_proto;
731
732         pd = fwnet_pd_find(peer, datagram_label);
733         if (pd == NULL) {
734                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
735                         /* remove the oldest */
736                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
737                                 struct fwnet_partial_datagram, pd_link));
738                         peer->pdg_size--;
739                 }
740                 pd = fwnet_pd_new(net, peer, datagram_label,
741                                   dg_size, buf, fg_off, len);
742                 if (pd == NULL) {
743                         retval = -ENOMEM;
744                         goto bad_proto;
745                 }
746                 peer->pdg_size++;
747         } else {
748                 if (fwnet_frag_overlap(pd, fg_off, len) ||
749                     pd->datagram_size != dg_size) {
750                         /*
751                          * Differing datagram sizes or overlapping fragments,
752                          * discard old datagram and start a new one.
753                          */
754                         fwnet_pd_delete(pd);
755                         pd = fwnet_pd_new(net, peer, datagram_label,
756                                           dg_size, buf, fg_off, len);
757                         if (pd == NULL) {
758                                 retval = -ENOMEM;
759                                 peer->pdg_size--;
760                                 goto bad_proto;
761                         }
762                 } else {
763                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
764                                 /*
765                                  * Couldn't save off fragment anyway
766                                  * so might as well obliterate the
767                                  * datagram now.
768                                  */
769                                 fwnet_pd_delete(pd);
770                                 peer->pdg_size--;
771                                 goto bad_proto;
772                         }
773                 }
774         } /* new datagram or add to existing one */
775
776         if (lf == RFC2374_HDR_FIRSTFRAG)
777                 pd->ether_type = ether_type;
778
779         if (fwnet_pd_is_complete(pd)) {
780                 ether_type = pd->ether_type;
781                 peer->pdg_size--;
782                 skb = skb_get(pd->skb);
783                 fwnet_pd_delete(pd);
784
785                 spin_unlock_irqrestore(&dev->lock, flags);
786
787                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
788                                                     false, ether_type);
789         }
790         /*
791          * Datagram is not complete, we're done for the
792          * moment.
793          */
794         spin_unlock_irqrestore(&dev->lock, flags);
795
796         return 0;
797
798  bad_proto:
799         spin_unlock_irqrestore(&dev->lock, flags);
800
801         if (netif_queue_stopped(net))
802                 netif_wake_queue(net);
803
804         return 0;
805 }
806
807 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
808                 int tcode, int destination, int source, int generation,
809                 int speed, unsigned long long offset, void *payload,
810                 size_t length, void *callback_data)
811 {
812         struct fwnet_device *dev = callback_data;
813         int rcode;
814
815         if (destination == IEEE1394_ALL_NODES) {
816                 kfree(r);
817
818                 return;
819         }
820
821         if (offset != dev->handler.offset)
822                 rcode = RCODE_ADDRESS_ERROR;
823         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
824                 rcode = RCODE_TYPE_ERROR;
825         else if (fwnet_incoming_packet(dev, payload, length,
826                                        source, generation, false) != 0) {
827                 fw_error("Incoming packet failure\n");
828                 rcode = RCODE_CONFLICT_ERROR;
829         } else
830                 rcode = RCODE_COMPLETE;
831
832         fw_send_response(card, r, rcode);
833 }
834
835 static void fwnet_receive_broadcast(struct fw_iso_context *context,
836                 u32 cycle, size_t header_length, void *header, void *data)
837 {
838         struct fwnet_device *dev;
839         struct fw_iso_packet packet;
840         struct fw_card *card;
841         __be16 *hdr_ptr;
842         __be32 *buf_ptr;
843         int retval;
844         u32 length;
845         u16 source_node_id;
846         u32 specifier_id;
847         u32 ver;
848         unsigned long offset;
849         unsigned long flags;
850
851         dev = data;
852         card = dev->card;
853         hdr_ptr = header;
854         length = be16_to_cpup(hdr_ptr);
855
856         spin_lock_irqsave(&dev->lock, flags);
857
858         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
859         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
860         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
861                 dev->broadcast_rcv_next_ptr = 0;
862
863         spin_unlock_irqrestore(&dev->lock, flags);
864
865         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
866                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
867         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
868         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
869
870         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
871                 buf_ptr += 2;
872                 length -= IEEE1394_GASP_HDR_SIZE;
873                 fwnet_incoming_packet(dev, buf_ptr, length,
874                                       source_node_id, -1, true);
875         }
876
877         packet.payload_length = dev->rcv_buffer_size;
878         packet.interrupt = 1;
879         packet.skip = 0;
880         packet.tag = 3;
881         packet.sy = 0;
882         packet.header_length = IEEE1394_GASP_HDR_SIZE;
883
884         spin_lock_irqsave(&dev->lock, flags);
885
886         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
887                                       &dev->broadcast_rcv_buffer, offset);
888
889         spin_unlock_irqrestore(&dev->lock, flags);
890
891         if (retval < 0)
892                 fw_error("requeue failed\n");
893 }
894
895 static struct kmem_cache *fwnet_packet_task_cache;
896
897 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
898 {
899         dev_kfree_skb_any(ptask->skb);
900         kmem_cache_free(fwnet_packet_task_cache, ptask);
901 }
902
903 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
904
905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
906 {
907         struct fwnet_device *dev = ptask->dev;
908         unsigned long flags;
909         bool free;
910
911         spin_lock_irqsave(&dev->lock, flags);
912
913         ptask->outstanding_pkts--;
914
915         /* Check whether we or the networking TX soft-IRQ is last user. */
916         free = (ptask->outstanding_pkts == 0 && !list_empty(&ptask->pt_link));
917
918         if (ptask->outstanding_pkts == 0)
919                 list_del(&ptask->pt_link);
920
921         spin_unlock_irqrestore(&dev->lock, flags);
922
923         if (ptask->outstanding_pkts > 0) {
924                 u16 dg_size;
925                 u16 fg_off;
926                 u16 datagram_label;
927                 u16 lf;
928                 struct sk_buff *skb;
929
930                 /* Update the ptask to point to the next fragment and send it */
931                 lf = fwnet_get_hdr_lf(&ptask->hdr);
932                 switch (lf) {
933                 case RFC2374_HDR_LASTFRAG:
934                 case RFC2374_HDR_UNFRAG:
935                 default:
936                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
937                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
938                                  ptask->hdr.w1);
939                         BUG();
940
941                 case RFC2374_HDR_FIRSTFRAG:
942                         /* Set frag type here for future interior fragments */
943                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
944                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
945                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
946                         break;
947
948                 case RFC2374_HDR_INTFRAG:
949                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
950                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
951                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
952                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
953                         break;
954                 }
955                 skb = ptask->skb;
956                 skb_pull(skb, ptask->max_payload);
957                 if (ptask->outstanding_pkts > 1) {
958                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
959                                           dg_size, fg_off, datagram_label);
960                 } else {
961                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
962                                           dg_size, fg_off, datagram_label);
963                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
964                 }
965                 fwnet_send_packet(ptask);
966         }
967
968         if (free)
969                 fwnet_free_ptask(ptask);
970 }
971
972 static void fwnet_write_complete(struct fw_card *card, int rcode,
973                                  void *payload, size_t length, void *data)
974 {
975         struct fwnet_packet_task *ptask;
976
977         ptask = data;
978
979         if (rcode == RCODE_COMPLETE)
980                 fwnet_transmit_packet_done(ptask);
981         else
982                 fw_error("fwnet_write_complete: failed: %x\n", rcode);
983                 /* ??? error recovery */
984 }
985
986 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
987 {
988         struct fwnet_device *dev;
989         unsigned tx_len;
990         struct rfc2734_header *bufhdr;
991         unsigned long flags;
992         bool free;
993
994         dev = ptask->dev;
995         tx_len = ptask->max_payload;
996         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
997         case RFC2374_HDR_UNFRAG:
998                 bufhdr = (struct rfc2734_header *)
999                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1000                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1001                 break;
1002
1003         case RFC2374_HDR_FIRSTFRAG:
1004         case RFC2374_HDR_INTFRAG:
1005         case RFC2374_HDR_LASTFRAG:
1006                 bufhdr = (struct rfc2734_header *)
1007                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1008                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1009                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1010                 break;
1011
1012         default:
1013                 BUG();
1014         }
1015         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1016                 u8 *p;
1017                 int generation;
1018                 int node_id;
1019
1020                 /* ptask->generation may not have been set yet */
1021                 generation = dev->card->generation;
1022                 smp_rmb();
1023                 node_id = dev->card->node_id;
1024
1025                 p = skb_push(ptask->skb, 8);
1026                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1027                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1028                                                 | RFC2734_SW_VERSION, &p[4]);
1029
1030                 /* We should not transmit if broadcast_channel.valid == 0. */
1031                 fw_send_request(dev->card, &ptask->transaction,
1032                                 TCODE_STREAM_DATA,
1033                                 fw_stream_packet_destination_id(3,
1034                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1035                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1036                                 tx_len + 8, fwnet_write_complete, ptask);
1037
1038                 spin_lock_irqsave(&dev->lock, flags);
1039
1040                 /* If the AT tasklet already ran, we may be last user. */
1041                 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1042                 if (!free)
1043                         list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1044
1045                 spin_unlock_irqrestore(&dev->lock, flags);
1046
1047                 goto out;
1048         }
1049
1050         fw_send_request(dev->card, &ptask->transaction,
1051                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1052                         ptask->generation, ptask->speed, ptask->fifo_addr,
1053                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1054
1055         spin_lock_irqsave(&dev->lock, flags);
1056
1057         /* If the AT tasklet already ran, we may be last user. */
1058         free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1059         if (!free)
1060                 list_add_tail(&ptask->pt_link, &dev->sent_list);
1061
1062         spin_unlock_irqrestore(&dev->lock, flags);
1063
1064         dev->netdev->trans_start = jiffies;
1065  out:
1066         if (free)
1067                 fwnet_free_ptask(ptask);
1068
1069         return 0;
1070 }
1071
1072 static int fwnet_broadcast_start(struct fwnet_device *dev)
1073 {
1074         struct fw_iso_context *context;
1075         int retval;
1076         unsigned num_packets;
1077         unsigned max_receive;
1078         struct fw_iso_packet packet;
1079         unsigned long offset;
1080         unsigned u;
1081
1082         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1083                 /* outside OHCI posted write area? */
1084                 static const struct fw_address_region region = {
1085                         .start = 0xffff00000000ULL,
1086                         .end   = CSR_REGISTER_BASE,
1087                 };
1088
1089                 dev->handler.length = 4096;
1090                 dev->handler.address_callback = fwnet_receive_packet;
1091                 dev->handler.callback_data = dev;
1092
1093                 retval = fw_core_add_address_handler(&dev->handler, &region);
1094                 if (retval < 0)
1095                         goto failed_initial;
1096
1097                 dev->local_fifo = dev->handler.offset;
1098         }
1099
1100         max_receive = 1U << (dev->card->max_receive + 1);
1101         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1102
1103         if (!dev->broadcast_rcv_context) {
1104                 void **ptrptr;
1105
1106                 context = fw_iso_context_create(dev->card,
1107                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1108                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1109                 if (IS_ERR(context)) {
1110                         retval = PTR_ERR(context);
1111                         goto failed_context_create;
1112                 }
1113
1114                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1115                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1116                 if (retval < 0)
1117                         goto failed_buffer_init;
1118
1119                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1120                 if (!ptrptr) {
1121                         retval = -ENOMEM;
1122                         goto failed_ptrs_alloc;
1123                 }
1124
1125                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1126                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1127                         void *ptr;
1128                         unsigned v;
1129
1130                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1131                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1132                                 *ptrptr++ = (void *)
1133                                                 ((char *)ptr + v * max_receive);
1134                 }
1135                 dev->broadcast_rcv_context = context;
1136         } else {
1137                 context = dev->broadcast_rcv_context;
1138         }
1139
1140         packet.payload_length = max_receive;
1141         packet.interrupt = 1;
1142         packet.skip = 0;
1143         packet.tag = 3;
1144         packet.sy = 0;
1145         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1146         offset = 0;
1147
1148         for (u = 0; u < num_packets; u++) {
1149                 retval = fw_iso_context_queue(context, &packet,
1150                                 &dev->broadcast_rcv_buffer, offset);
1151                 if (retval < 0)
1152                         goto failed_rcv_queue;
1153
1154                 offset += max_receive;
1155         }
1156         dev->num_broadcast_rcv_ptrs = num_packets;
1157         dev->rcv_buffer_size = max_receive;
1158         dev->broadcast_rcv_next_ptr = 0U;
1159         retval = fw_iso_context_start(context, -1, 0,
1160                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1161         if (retval < 0)
1162                 goto failed_rcv_queue;
1163
1164         /* FIXME: adjust it according to the min. speed of all known peers? */
1165         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1166                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1167         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1168
1169         return 0;
1170
1171  failed_rcv_queue:
1172         kfree(dev->broadcast_rcv_buffer_ptrs);
1173         dev->broadcast_rcv_buffer_ptrs = NULL;
1174  failed_ptrs_alloc:
1175         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1176  failed_buffer_init:
1177         fw_iso_context_destroy(context);
1178         dev->broadcast_rcv_context = NULL;
1179  failed_context_create:
1180         fw_core_remove_address_handler(&dev->handler);
1181  failed_initial:
1182         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1183
1184         return retval;
1185 }
1186
1187 /* ifup */
1188 static int fwnet_open(struct net_device *net)
1189 {
1190         struct fwnet_device *dev = netdev_priv(net);
1191         int ret;
1192
1193         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1194                 ret = fwnet_broadcast_start(dev);
1195                 if (ret)
1196                         return ret;
1197         }
1198         netif_start_queue(net);
1199
1200         return 0;
1201 }
1202
1203 /* ifdown */
1204 static int fwnet_stop(struct net_device *net)
1205 {
1206         netif_stop_queue(net);
1207
1208         /* Deallocate iso context for use by other applications? */
1209
1210         return 0;
1211 }
1212
1213 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1214 {
1215         struct fwnet_header hdr_buf;
1216         struct fwnet_device *dev = netdev_priv(net);
1217         __be16 proto;
1218         u16 dest_node;
1219         unsigned max_payload;
1220         u16 dg_size;
1221         u16 *datagram_label_ptr;
1222         struct fwnet_packet_task *ptask;
1223         struct fwnet_peer *peer;
1224         unsigned long flags;
1225
1226         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1227         if (ptask == NULL)
1228                 goto fail;
1229
1230         skb = skb_share_check(skb, GFP_ATOMIC);
1231         if (!skb)
1232                 goto fail;
1233
1234         /*
1235          * Make a copy of the driver-specific header.
1236          * We might need to rebuild the header on tx failure.
1237          */
1238         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1239         skb_pull(skb, sizeof(hdr_buf));
1240
1241         proto = hdr_buf.h_proto;
1242         dg_size = skb->len;
1243
1244         /* serialize access to peer, including peer->datagram_label */
1245         spin_lock_irqsave(&dev->lock, flags);
1246
1247         /*
1248          * Set the transmission type for the packet.  ARP packets and IP
1249          * broadcast packets are sent via GASP.
1250          */
1251         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1252             || proto == htons(ETH_P_ARP)
1253             || (proto == htons(ETH_P_IP)
1254                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1255                 max_payload        = dev->broadcast_xmt_max_payload;
1256                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1257
1258                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1259                 ptask->generation  = 0;
1260                 ptask->dest_node   = IEEE1394_ALL_NODES;
1261                 ptask->speed       = SCODE_100;
1262         } else {
1263                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1264                 u8 generation;
1265
1266                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1267                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1268                         goto fail_unlock;
1269
1270                 generation         = peer->generation;
1271                 dest_node          = peer->node_id;
1272                 max_payload        = peer->max_payload;
1273                 datagram_label_ptr = &peer->datagram_label;
1274
1275                 ptask->fifo_addr   = peer->fifo;
1276                 ptask->generation  = generation;
1277                 ptask->dest_node   = dest_node;
1278                 ptask->speed       = peer->speed;
1279         }
1280
1281         /* If this is an ARP packet, convert it */
1282         if (proto == htons(ETH_P_ARP)) {
1283                 struct arphdr *arp = (struct arphdr *)skb->data;
1284                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1285                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1286                 __be32 ipaddr;
1287
1288                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1289
1290                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1291                 arp1394->max_rec        = dev->card->max_receive;
1292                 arp1394->sspd           = dev->card->link_speed;
1293
1294                 put_unaligned_be16(dev->local_fifo >> 32,
1295                                    &arp1394->fifo_hi);
1296                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1297                                    &arp1394->fifo_lo);
1298                 put_unaligned(ipaddr, &arp1394->sip);
1299         }
1300
1301         ptask->hdr.w0 = 0;
1302         ptask->hdr.w1 = 0;
1303         ptask->skb = skb;
1304         ptask->dev = dev;
1305
1306         /* Does it all fit in one packet? */
1307         if (dg_size <= max_payload) {
1308                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1309                 ptask->outstanding_pkts = 1;
1310                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1311         } else {
1312                 u16 datagram_label;
1313
1314                 max_payload -= RFC2374_FRAG_OVERHEAD;
1315                 datagram_label = (*datagram_label_ptr)++;
1316                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1317                                   datagram_label);
1318                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1319                 max_payload += RFC2374_FRAG_HDR_SIZE;
1320         }
1321
1322         spin_unlock_irqrestore(&dev->lock, flags);
1323
1324         ptask->max_payload = max_payload;
1325         INIT_LIST_HEAD(&ptask->pt_link);
1326
1327         fwnet_send_packet(ptask);
1328
1329         return NETDEV_TX_OK;
1330
1331  fail_unlock:
1332         spin_unlock_irqrestore(&dev->lock, flags);
1333  fail:
1334         if (ptask)
1335                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1336
1337         if (skb != NULL)
1338                 dev_kfree_skb(skb);
1339
1340         net->stats.tx_dropped++;
1341         net->stats.tx_errors++;
1342
1343         /*
1344          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1345          * causes serious problems" here, allegedly.  Before that patch,
1346          * -ERRNO was returned which is not appropriate under Linux 2.6.
1347          * Perhaps more needs to be done?  Stop the queue in serious
1348          * conditions and restart it elsewhere?
1349          */
1350         return NETDEV_TX_OK;
1351 }
1352
1353 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1354 {
1355         if (new_mtu < 68)
1356                 return -EINVAL;
1357
1358         net->mtu = new_mtu;
1359         return 0;
1360 }
1361
1362 static void fwnet_get_drvinfo(struct net_device *net,
1363                               struct ethtool_drvinfo *info)
1364 {
1365         strcpy(info->driver, KBUILD_MODNAME);
1366         strcpy(info->bus_info, "ieee1394");
1367 }
1368
1369 static const struct ethtool_ops fwnet_ethtool_ops = {
1370         .get_drvinfo = fwnet_get_drvinfo,
1371 };
1372
1373 static const struct net_device_ops fwnet_netdev_ops = {
1374         .ndo_open       = fwnet_open,
1375         .ndo_stop       = fwnet_stop,
1376         .ndo_start_xmit = fwnet_tx,
1377         .ndo_change_mtu = fwnet_change_mtu,
1378 };
1379
1380 static void fwnet_init_dev(struct net_device *net)
1381 {
1382         net->header_ops         = &fwnet_header_ops;
1383         net->netdev_ops         = &fwnet_netdev_ops;
1384         net->watchdog_timeo     = 2 * HZ;
1385         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1386         net->features           = NETIF_F_HIGHDMA;
1387         net->addr_len           = FWNET_ALEN;
1388         net->hard_header_len    = FWNET_HLEN;
1389         net->type               = ARPHRD_IEEE1394;
1390         net->tx_queue_len       = 10;
1391         SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1392 }
1393
1394 /* caller must hold fwnet_device_mutex */
1395 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1396 {
1397         struct fwnet_device *dev;
1398
1399         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1400                 if (dev->card == card)
1401                         return dev;
1402
1403         return NULL;
1404 }
1405
1406 static int fwnet_add_peer(struct fwnet_device *dev,
1407                           struct fw_unit *unit, struct fw_device *device)
1408 {
1409         struct fwnet_peer *peer;
1410
1411         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1412         if (!peer)
1413                 return -ENOMEM;
1414
1415         dev_set_drvdata(&unit->device, peer);
1416
1417         peer->dev = dev;
1418         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1419         peer->fifo = FWNET_NO_FIFO_ADDR;
1420         INIT_LIST_HEAD(&peer->pd_list);
1421         peer->pdg_size = 0;
1422         peer->datagram_label = 0;
1423         peer->speed = device->max_speed;
1424         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1425
1426         peer->generation = device->generation;
1427         smp_rmb();
1428         peer->node_id = device->node_id;
1429
1430         spin_lock_irq(&dev->lock);
1431         list_add_tail(&peer->peer_link, &dev->peer_list);
1432         spin_unlock_irq(&dev->lock);
1433
1434         return 0;
1435 }
1436
1437 static int fwnet_probe(struct device *_dev)
1438 {
1439         struct fw_unit *unit = fw_unit(_dev);
1440         struct fw_device *device = fw_parent_device(unit);
1441         struct fw_card *card = device->card;
1442         struct net_device *net;
1443         bool allocated_netdev = false;
1444         struct fwnet_device *dev;
1445         unsigned max_mtu;
1446         int ret;
1447
1448         mutex_lock(&fwnet_device_mutex);
1449
1450         dev = fwnet_dev_find(card);
1451         if (dev) {
1452                 net = dev->netdev;
1453                 goto have_dev;
1454         }
1455
1456         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1457         if (net == NULL) {
1458                 ret = -ENOMEM;
1459                 goto out;
1460         }
1461
1462         allocated_netdev = true;
1463         SET_NETDEV_DEV(net, card->device);
1464         dev = netdev_priv(net);
1465
1466         spin_lock_init(&dev->lock);
1467         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1468         dev->broadcast_rcv_context = NULL;
1469         dev->broadcast_xmt_max_payload = 0;
1470         dev->broadcast_xmt_datagramlabel = 0;
1471
1472         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1473
1474         INIT_LIST_HEAD(&dev->packet_list);
1475         INIT_LIST_HEAD(&dev->broadcasted_list);
1476         INIT_LIST_HEAD(&dev->sent_list);
1477         INIT_LIST_HEAD(&dev->peer_list);
1478
1479         dev->card = card;
1480         dev->netdev = net;
1481
1482         /*
1483          * Use the RFC 2734 default 1500 octets or the maximum payload
1484          * as initial MTU
1485          */
1486         max_mtu = (1 << (card->max_receive + 1))
1487                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1488         net->mtu = min(1500U, max_mtu);
1489
1490         /* Set our hardware address while we're at it */
1491         put_unaligned_be64(card->guid, net->dev_addr);
1492         put_unaligned_be64(~0ULL, net->broadcast);
1493         ret = register_netdev(net);
1494         if (ret) {
1495                 fw_error("Cannot register the driver\n");
1496                 goto out;
1497         }
1498
1499         list_add_tail(&dev->dev_link, &fwnet_device_list);
1500         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1501                   net->name, (unsigned long long)card->guid);
1502  have_dev:
1503         ret = fwnet_add_peer(dev, unit, device);
1504         if (ret && allocated_netdev) {
1505                 unregister_netdev(net);
1506                 list_del(&dev->dev_link);
1507         }
1508  out:
1509         if (ret && allocated_netdev)
1510                 free_netdev(net);
1511
1512         mutex_unlock(&fwnet_device_mutex);
1513
1514         return ret;
1515 }
1516
1517 static void fwnet_remove_peer(struct fwnet_peer *peer)
1518 {
1519         struct fwnet_partial_datagram *pd, *pd_next;
1520
1521         spin_lock_irq(&peer->dev->lock);
1522         list_del(&peer->peer_link);
1523         spin_unlock_irq(&peer->dev->lock);
1524
1525         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1526                 fwnet_pd_delete(pd);
1527
1528         kfree(peer);
1529 }
1530
1531 static int fwnet_remove(struct device *_dev)
1532 {
1533         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1534         struct fwnet_device *dev = peer->dev;
1535         struct net_device *net;
1536         struct fwnet_packet_task *ptask, *pt_next;
1537
1538         mutex_lock(&fwnet_device_mutex);
1539
1540         fwnet_remove_peer(peer);
1541
1542         if (list_empty(&dev->peer_list)) {
1543                 net = dev->netdev;
1544                 unregister_netdev(net);
1545
1546                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1547                         fw_core_remove_address_handler(&dev->handler);
1548                 if (dev->broadcast_rcv_context) {
1549                         fw_iso_context_stop(dev->broadcast_rcv_context);
1550                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1551                                               dev->card);
1552                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1553                 }
1554                 list_for_each_entry_safe(ptask, pt_next,
1555                                          &dev->packet_list, pt_link) {
1556                         dev_kfree_skb_any(ptask->skb);
1557                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1558                 }
1559                 list_for_each_entry_safe(ptask, pt_next,
1560                                          &dev->broadcasted_list, pt_link) {
1561                         dev_kfree_skb_any(ptask->skb);
1562                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1563                 }
1564                 list_for_each_entry_safe(ptask, pt_next,
1565                                          &dev->sent_list, pt_link) {
1566                         dev_kfree_skb_any(ptask->skb);
1567                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1568                 }
1569                 list_del(&dev->dev_link);
1570
1571                 free_netdev(net);
1572         }
1573
1574         mutex_unlock(&fwnet_device_mutex);
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * FIXME abort partially sent fragmented datagrams,
1581  * discard partially received fragmented datagrams
1582  */
1583 static void fwnet_update(struct fw_unit *unit)
1584 {
1585         struct fw_device *device = fw_parent_device(unit);
1586         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1587         int generation;
1588
1589         generation = device->generation;
1590
1591         spin_lock_irq(&peer->dev->lock);
1592         peer->node_id    = device->node_id;
1593         peer->generation = generation;
1594         spin_unlock_irq(&peer->dev->lock);
1595 }
1596
1597 static const struct ieee1394_device_id fwnet_id_table[] = {
1598         {
1599                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1600                                 IEEE1394_MATCH_VERSION,
1601                 .specifier_id = IANA_SPECIFIER_ID,
1602                 .version      = RFC2734_SW_VERSION,
1603         },
1604         { }
1605 };
1606
1607 static struct fw_driver fwnet_driver = {
1608         .driver = {
1609                 .owner  = THIS_MODULE,
1610                 .name   = "net",
1611                 .bus    = &fw_bus_type,
1612                 .probe  = fwnet_probe,
1613                 .remove = fwnet_remove,
1614         },
1615         .update   = fwnet_update,
1616         .id_table = fwnet_id_table,
1617 };
1618
1619 static const u32 rfc2374_unit_directory_data[] = {
1620         0x00040000,     /* directory_length             */
1621         0x1200005e,     /* unit_specifier_id: IANA      */
1622         0x81000003,     /* textual descriptor offset    */
1623         0x13000001,     /* unit_sw_version: RFC 2734    */
1624         0x81000005,     /* textual descriptor offset    */
1625         0x00030000,     /* descriptor_length            */
1626         0x00000000,     /* text                         */
1627         0x00000000,     /* minimal ASCII, en            */
1628         0x49414e41,     /* I A N A                      */
1629         0x00030000,     /* descriptor_length            */
1630         0x00000000,     /* text                         */
1631         0x00000000,     /* minimal ASCII, en            */
1632         0x49507634,     /* I P v 4                      */
1633 };
1634
1635 static struct fw_descriptor rfc2374_unit_directory = {
1636         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1637         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1638         .data   = rfc2374_unit_directory_data
1639 };
1640
1641 static int __init fwnet_init(void)
1642 {
1643         int err;
1644
1645         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1646         if (err)
1647                 return err;
1648
1649         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1650                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1651         if (!fwnet_packet_task_cache) {
1652                 err = -ENOMEM;
1653                 goto out;
1654         }
1655
1656         err = driver_register(&fwnet_driver.driver);
1657         if (!err)
1658                 return 0;
1659
1660         kmem_cache_destroy(fwnet_packet_task_cache);
1661 out:
1662         fw_core_remove_descriptor(&rfc2374_unit_directory);
1663
1664         return err;
1665 }
1666 module_init(fwnet_init);
1667
1668 static void __exit fwnet_cleanup(void)
1669 {
1670         driver_unregister(&fwnet_driver.driver);
1671         kmem_cache_destroy(fwnet_packet_task_cache);
1672         fw_core_remove_descriptor(&rfc2374_unit_directory);
1673 }
1674 module_exit(fwnet_cleanup);
1675
1676 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1677 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1678 MODULE_LICENSE("GPL");
1679 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);