include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21
22 #include <crypto/ctr.h>
23 #include <crypto/des.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aead.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <mach/npe.h>
32 #include <mach/qmgr.h>
33
34 #define MAX_KEYLEN 32
35
36 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
37 #define NPE_CTX_LEN 80
38 #define AES_BLOCK128 16
39
40 #define NPE_OP_HASH_VERIFY   0x01
41 #define NPE_OP_CCM_ENABLE    0x04
42 #define NPE_OP_CRYPT_ENABLE  0x08
43 #define NPE_OP_HASH_ENABLE   0x10
44 #define NPE_OP_NOT_IN_PLACE  0x20
45 #define NPE_OP_HMAC_DISABLE  0x40
46 #define NPE_OP_CRYPT_ENCRYPT 0x80
47
48 #define NPE_OP_CCM_GEN_MIC   0xcc
49 #define NPE_OP_HASH_GEN_ICV  0x50
50 #define NPE_OP_ENC_GEN_KEY   0xc9
51
52 #define MOD_ECB     0x0000
53 #define MOD_CTR     0x1000
54 #define MOD_CBC_ENC 0x2000
55 #define MOD_CBC_DEC 0x3000
56 #define MOD_CCM_ENC 0x4000
57 #define MOD_CCM_DEC 0x5000
58
59 #define KEYLEN_128  4
60 #define KEYLEN_192  6
61 #define KEYLEN_256  8
62
63 #define CIPH_DECR   0x0000
64 #define CIPH_ENCR   0x0400
65
66 #define MOD_DES     0x0000
67 #define MOD_TDEA2   0x0100
68 #define MOD_3DES   0x0200
69 #define MOD_AES     0x0800
70 #define MOD_AES128  (0x0800 | KEYLEN_128)
71 #define MOD_AES192  (0x0900 | KEYLEN_192)
72 #define MOD_AES256  (0x0a00 | KEYLEN_256)
73
74 #define MAX_IVLEN   16
75 #define NPE_ID      2  /* NPE C */
76 #define NPE_QLEN    16
77 /* Space for registering when the first
78  * NPE_QLEN crypt_ctl are busy */
79 #define NPE_QLEN_TOTAL 64
80
81 #define SEND_QID    29
82 #define RECV_QID    30
83
84 #define CTL_FLAG_UNUSED         0x0000
85 #define CTL_FLAG_USED           0x1000
86 #define CTL_FLAG_PERFORM_ABLK   0x0001
87 #define CTL_FLAG_GEN_ICV        0x0002
88 #define CTL_FLAG_GEN_REVAES     0x0004
89 #define CTL_FLAG_PERFORM_AEAD   0x0008
90 #define CTL_FLAG_MASK           0x000f
91
92 #define HMAC_IPAD_VALUE   0x36
93 #define HMAC_OPAD_VALUE   0x5C
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96 #define MD5_DIGEST_SIZE   16
97
98 struct buffer_desc {
99         u32 phys_next;
100         u16 buf_len;
101         u16 pkt_len;
102         u32 phys_addr;
103         u32 __reserved[4];
104         struct buffer_desc *next;
105         enum dma_data_direction dir;
106 };
107
108 struct crypt_ctl {
109         u8 mode;                /* NPE_OP_*  operation mode */
110         u8 init_len;
111         u16 reserved;
112         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
113         u32 icv_rev_aes;        /* icv or rev aes */
114         u32 src_buf;
115         u32 dst_buf;
116         u16 auth_offs;          /* Authentication start offset */
117         u16 auth_len;           /* Authentication data length */
118         u16 crypt_offs;         /* Cryption start offset */
119         u16 crypt_len;          /* Cryption data length */
120         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
121         u32 crypto_ctx;         /* NPE Crypto Param structure address */
122
123         /* Used by Host: 4*4 bytes*/
124         unsigned ctl_flags;
125         union {
126                 struct ablkcipher_request *ablk_req;
127                 struct aead_request *aead_req;
128                 struct crypto_tfm *tfm;
129         } data;
130         struct buffer_desc *regist_buf;
131         u8 *regist_ptr;
132 };
133
134 struct ablk_ctx {
135         struct buffer_desc *src;
136         struct buffer_desc *dst;
137 };
138
139 struct aead_ctx {
140         struct buffer_desc *buffer;
141         struct scatterlist ivlist;
142         /* used when the hmac is not on one sg entry */
143         u8 *hmac_virt;
144         int encrypt;
145 };
146
147 struct ix_hash_algo {
148         u32 cfgword;
149         unsigned char *icv;
150 };
151
152 struct ix_sa_dir {
153         unsigned char *npe_ctx;
154         dma_addr_t npe_ctx_phys;
155         int npe_ctx_idx;
156         u8 npe_mode;
157 };
158
159 struct ixp_ctx {
160         struct ix_sa_dir encrypt;
161         struct ix_sa_dir decrypt;
162         int authkey_len;
163         u8 authkey[MAX_KEYLEN];
164         int enckey_len;
165         u8 enckey[MAX_KEYLEN];
166         u8 salt[MAX_IVLEN];
167         u8 nonce[CTR_RFC3686_NONCE_SIZE];
168         unsigned salted;
169         atomic_t configuring;
170         struct completion completion;
171 };
172
173 struct ixp_alg {
174         struct crypto_alg crypto;
175         const struct ix_hash_algo *hash;
176         u32 cfg_enc;
177         u32 cfg_dec;
178
179         int registered;
180 };
181
182 static const struct ix_hash_algo hash_alg_md5 = {
183         .cfgword        = 0xAA010004,
184         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
185                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
186 };
187 static const struct ix_hash_algo hash_alg_sha1 = {
188         .cfgword        = 0x00000005,
189         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
190                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
191 };
192
193 static struct npe *npe_c;
194 static struct dma_pool *buffer_pool = NULL;
195 static struct dma_pool *ctx_pool = NULL;
196
197 static struct crypt_ctl *crypt_virt = NULL;
198 static dma_addr_t crypt_phys;
199
200 static int support_aes = 1;
201
202 static void dev_release(struct device *dev)
203 {
204         return;
205 }
206
207 #define DRIVER_NAME "ixp4xx_crypto"
208 static struct platform_device pseudo_dev = {
209         .name = DRIVER_NAME,
210         .id   = 0,
211         .num_resources = 0,
212         .dev  = {
213                 .coherent_dma_mask = DMA_BIT_MASK(32),
214                 .release = dev_release,
215         }
216 };
217
218 static struct device *dev = &pseudo_dev.dev;
219
220 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
221 {
222         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
223 }
224
225 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
226 {
227         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
228 }
229
230 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
231 {
232         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
233 }
234
235 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
236 {
237         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
238 }
239
240 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
241 {
242         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
243 }
244
245 static int setup_crypt_desc(void)
246 {
247         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
248         crypt_virt = dma_alloc_coherent(dev,
249                         NPE_QLEN * sizeof(struct crypt_ctl),
250                         &crypt_phys, GFP_KERNEL);
251         if (!crypt_virt)
252                 return -ENOMEM;
253         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
254         return 0;
255 }
256
257 static spinlock_t desc_lock;
258 static struct crypt_ctl *get_crypt_desc(void)
259 {
260         int i;
261         static int idx = 0;
262         unsigned long flags;
263
264         spin_lock_irqsave(&desc_lock, flags);
265
266         if (unlikely(!crypt_virt))
267                 setup_crypt_desc();
268         if (unlikely(!crypt_virt)) {
269                 spin_unlock_irqrestore(&desc_lock, flags);
270                 return NULL;
271         }
272         i = idx;
273         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
274                 if (++idx >= NPE_QLEN)
275                         idx = 0;
276                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
277                 spin_unlock_irqrestore(&desc_lock, flags);
278                 return crypt_virt +i;
279         } else {
280                 spin_unlock_irqrestore(&desc_lock, flags);
281                 return NULL;
282         }
283 }
284
285 static spinlock_t emerg_lock;
286 static struct crypt_ctl *get_crypt_desc_emerg(void)
287 {
288         int i;
289         static int idx = NPE_QLEN;
290         struct crypt_ctl *desc;
291         unsigned long flags;
292
293         desc = get_crypt_desc();
294         if (desc)
295                 return desc;
296         if (unlikely(!crypt_virt))
297                 return NULL;
298
299         spin_lock_irqsave(&emerg_lock, flags);
300         i = idx;
301         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
302                 if (++idx >= NPE_QLEN_TOTAL)
303                         idx = NPE_QLEN;
304                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
305                 spin_unlock_irqrestore(&emerg_lock, flags);
306                 return crypt_virt +i;
307         } else {
308                 spin_unlock_irqrestore(&emerg_lock, flags);
309                 return NULL;
310         }
311 }
312
313 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
314 {
315         while (buf) {
316                 struct buffer_desc *buf1;
317                 u32 phys1;
318
319                 buf1 = buf->next;
320                 phys1 = buf->phys_next;
321                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
322                 dma_pool_free(buffer_pool, buf, phys);
323                 buf = buf1;
324                 phys = phys1;
325         }
326 }
327
328 static struct tasklet_struct crypto_done_tasklet;
329
330 static void finish_scattered_hmac(struct crypt_ctl *crypt)
331 {
332         struct aead_request *req = crypt->data.aead_req;
333         struct aead_ctx *req_ctx = aead_request_ctx(req);
334         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
335         int authsize = crypto_aead_authsize(tfm);
336         int decryptlen = req->cryptlen - authsize;
337
338         if (req_ctx->encrypt) {
339                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
340                         req->src, decryptlen, authsize, 1);
341         }
342         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
343 }
344
345 static void one_packet(dma_addr_t phys)
346 {
347         struct crypt_ctl *crypt;
348         struct ixp_ctx *ctx;
349         int failed;
350
351         failed = phys & 0x1 ? -EBADMSG : 0;
352         phys &= ~0x3;
353         crypt = crypt_phys2virt(phys);
354
355         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
356         case CTL_FLAG_PERFORM_AEAD: {
357                 struct aead_request *req = crypt->data.aead_req;
358                 struct aead_ctx *req_ctx = aead_request_ctx(req);
359
360                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
361                 if (req_ctx->hmac_virt) {
362                         finish_scattered_hmac(crypt);
363                 }
364                 req->base.complete(&req->base, failed);
365                 break;
366         }
367         case CTL_FLAG_PERFORM_ABLK: {
368                 struct ablkcipher_request *req = crypt->data.ablk_req;
369                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
370
371                 if (req_ctx->dst) {
372                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
373                 }
374                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
375                 req->base.complete(&req->base, failed);
376                 break;
377         }
378         case CTL_FLAG_GEN_ICV:
379                 ctx = crypto_tfm_ctx(crypt->data.tfm);
380                 dma_pool_free(ctx_pool, crypt->regist_ptr,
381                                 crypt->regist_buf->phys_addr);
382                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
383                 if (atomic_dec_and_test(&ctx->configuring))
384                         complete(&ctx->completion);
385                 break;
386         case CTL_FLAG_GEN_REVAES:
387                 ctx = crypto_tfm_ctx(crypt->data.tfm);
388                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
389                 if (atomic_dec_and_test(&ctx->configuring))
390                         complete(&ctx->completion);
391                 break;
392         default:
393                 BUG();
394         }
395         crypt->ctl_flags = CTL_FLAG_UNUSED;
396 }
397
398 static void irqhandler(void *_unused)
399 {
400         tasklet_schedule(&crypto_done_tasklet);
401 }
402
403 static void crypto_done_action(unsigned long arg)
404 {
405         int i;
406
407         for(i=0; i<4; i++) {
408                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
409                 if (!phys)
410                         return;
411                 one_packet(phys);
412         }
413         tasklet_schedule(&crypto_done_tasklet);
414 }
415
416 static int init_ixp_crypto(void)
417 {
418         int ret = -ENODEV;
419         u32 msg[2] = { 0, 0 };
420
421         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
422                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
423                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
424                 return ret;
425         }
426         npe_c = npe_request(NPE_ID);
427         if (!npe_c)
428                 return ret;
429
430         if (!npe_running(npe_c)) {
431                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
432                 if (ret) {
433                         return ret;
434                 }
435                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
436                         goto npe_error;
437         } else {
438                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
439                         goto npe_error;
440
441                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
442                         goto npe_error;
443         }
444
445         switch ((msg[1]>>16) & 0xff) {
446         case 3:
447                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
448                                 npe_name(npe_c));
449                 support_aes = 0;
450                 break;
451         case 4:
452         case 5:
453                 support_aes = 1;
454                 break;
455         default:
456                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
457                         npe_name(npe_c));
458                 return -ENODEV;
459         }
460         /* buffer_pool will also be used to sometimes store the hmac,
461          * so assure it is large enough
462          */
463         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
464         buffer_pool = dma_pool_create("buffer", dev,
465                         sizeof(struct buffer_desc), 32, 0);
466         ret = -ENOMEM;
467         if (!buffer_pool) {
468                 goto err;
469         }
470         ctx_pool = dma_pool_create("context", dev,
471                         NPE_CTX_LEN, 16, 0);
472         if (!ctx_pool) {
473                 goto err;
474         }
475         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
476                                  "ixp_crypto:out", NULL);
477         if (ret)
478                 goto err;
479         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
480                                  "ixp_crypto:in", NULL);
481         if (ret) {
482                 qmgr_release_queue(SEND_QID);
483                 goto err;
484         }
485         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
486         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
487
488         qmgr_enable_irq(RECV_QID);
489         return 0;
490
491 npe_error:
492         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
493         ret = -EIO;
494 err:
495         if (ctx_pool)
496                 dma_pool_destroy(ctx_pool);
497         if (buffer_pool)
498                 dma_pool_destroy(buffer_pool);
499         npe_release(npe_c);
500         return ret;
501 }
502
503 static void release_ixp_crypto(void)
504 {
505         qmgr_disable_irq(RECV_QID);
506         tasklet_kill(&crypto_done_tasklet);
507
508         qmgr_release_queue(SEND_QID);
509         qmgr_release_queue(RECV_QID);
510
511         dma_pool_destroy(ctx_pool);
512         dma_pool_destroy(buffer_pool);
513
514         npe_release(npe_c);
515
516         if (crypt_virt) {
517                 dma_free_coherent(dev,
518                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
519                         crypt_virt, crypt_phys);
520         }
521         return;
522 }
523
524 static void reset_sa_dir(struct ix_sa_dir *dir)
525 {
526         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
527         dir->npe_ctx_idx = 0;
528         dir->npe_mode = 0;
529 }
530
531 static int init_sa_dir(struct ix_sa_dir *dir)
532 {
533         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
534         if (!dir->npe_ctx) {
535                 return -ENOMEM;
536         }
537         reset_sa_dir(dir);
538         return 0;
539 }
540
541 static void free_sa_dir(struct ix_sa_dir *dir)
542 {
543         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
544         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
545 }
546
547 static int init_tfm(struct crypto_tfm *tfm)
548 {
549         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
550         int ret;
551
552         atomic_set(&ctx->configuring, 0);
553         ret = init_sa_dir(&ctx->encrypt);
554         if (ret)
555                 return ret;
556         ret = init_sa_dir(&ctx->decrypt);
557         if (ret) {
558                 free_sa_dir(&ctx->encrypt);
559         }
560         return ret;
561 }
562
563 static int init_tfm_ablk(struct crypto_tfm *tfm)
564 {
565         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
566         return init_tfm(tfm);
567 }
568
569 static int init_tfm_aead(struct crypto_tfm *tfm)
570 {
571         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
572         return init_tfm(tfm);
573 }
574
575 static void exit_tfm(struct crypto_tfm *tfm)
576 {
577         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
578         free_sa_dir(&ctx->encrypt);
579         free_sa_dir(&ctx->decrypt);
580 }
581
582 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
583                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
584 {
585         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
586         struct crypt_ctl *crypt;
587         struct buffer_desc *buf;
588         int i;
589         u8 *pad;
590         u32 pad_phys, buf_phys;
591
592         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
593         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
594         if (!pad)
595                 return -ENOMEM;
596         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
597         if (!buf) {
598                 dma_pool_free(ctx_pool, pad, pad_phys);
599                 return -ENOMEM;
600         }
601         crypt = get_crypt_desc_emerg();
602         if (!crypt) {
603                 dma_pool_free(ctx_pool, pad, pad_phys);
604                 dma_pool_free(buffer_pool, buf, buf_phys);
605                 return -EAGAIN;
606         }
607
608         memcpy(pad, key, key_len);
609         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
610         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
611                 pad[i] ^= xpad;
612         }
613
614         crypt->data.tfm = tfm;
615         crypt->regist_ptr = pad;
616         crypt->regist_buf = buf;
617
618         crypt->auth_offs = 0;
619         crypt->auth_len = HMAC_PAD_BLOCKLEN;
620         crypt->crypto_ctx = ctx_addr;
621         crypt->src_buf = buf_phys;
622         crypt->icv_rev_aes = target;
623         crypt->mode = NPE_OP_HASH_GEN_ICV;
624         crypt->init_len = init_len;
625         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
626
627         buf->next = 0;
628         buf->buf_len = HMAC_PAD_BLOCKLEN;
629         buf->pkt_len = 0;
630         buf->phys_addr = pad_phys;
631
632         atomic_inc(&ctx->configuring);
633         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
634         BUG_ON(qmgr_stat_overflow(SEND_QID));
635         return 0;
636 }
637
638 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
639                 const u8 *key, int key_len, unsigned digest_len)
640 {
641         u32 itarget, otarget, npe_ctx_addr;
642         unsigned char *cinfo;
643         int init_len, ret = 0;
644         u32 cfgword;
645         struct ix_sa_dir *dir;
646         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
647         const struct ix_hash_algo *algo;
648
649         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
650         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
651         algo = ix_hash(tfm);
652
653         /* write cfg word to cryptinfo */
654         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
655         *(u32*)cinfo = cpu_to_be32(cfgword);
656         cinfo += sizeof(cfgword);
657
658         /* write ICV to cryptinfo */
659         memcpy(cinfo, algo->icv, digest_len);
660         cinfo += digest_len;
661
662         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
663                                 + sizeof(algo->cfgword);
664         otarget = itarget + digest_len;
665         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
666         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
667
668         dir->npe_ctx_idx += init_len;
669         dir->npe_mode |= NPE_OP_HASH_ENABLE;
670
671         if (!encrypt)
672                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
673
674         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
675                         init_len, npe_ctx_addr, key, key_len);
676         if (ret)
677                 return ret;
678         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
679                         init_len, npe_ctx_addr, key, key_len);
680 }
681
682 static int gen_rev_aes_key(struct crypto_tfm *tfm)
683 {
684         struct crypt_ctl *crypt;
685         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
686         struct ix_sa_dir *dir = &ctx->decrypt;
687
688         crypt = get_crypt_desc_emerg();
689         if (!crypt) {
690                 return -EAGAIN;
691         }
692         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
693
694         crypt->data.tfm = tfm;
695         crypt->crypt_offs = 0;
696         crypt->crypt_len = AES_BLOCK128;
697         crypt->src_buf = 0;
698         crypt->crypto_ctx = dir->npe_ctx_phys;
699         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
700         crypt->mode = NPE_OP_ENC_GEN_KEY;
701         crypt->init_len = dir->npe_ctx_idx;
702         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
703
704         atomic_inc(&ctx->configuring);
705         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
706         BUG_ON(qmgr_stat_overflow(SEND_QID));
707         return 0;
708 }
709
710 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
711                 const u8 *key, int key_len)
712 {
713         u8 *cinfo;
714         u32 cipher_cfg;
715         u32 keylen_cfg = 0;
716         struct ix_sa_dir *dir;
717         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
718         u32 *flags = &tfm->crt_flags;
719
720         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
721         cinfo = dir->npe_ctx;
722
723         if (encrypt) {
724                 cipher_cfg = cipher_cfg_enc(tfm);
725                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
726         } else {
727                 cipher_cfg = cipher_cfg_dec(tfm);
728         }
729         if (cipher_cfg & MOD_AES) {
730                 switch (key_len) {
731                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
732                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
733                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
734                         default:
735                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
736                                 return -EINVAL;
737                 }
738                 cipher_cfg |= keylen_cfg;
739         } else if (cipher_cfg & MOD_3DES) {
740                 const u32 *K = (const u32 *)key;
741                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
742                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
743                 {
744                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
745                         return -EINVAL;
746                 }
747         } else {
748                 u32 tmp[DES_EXPKEY_WORDS];
749                 if (des_ekey(tmp, key) == 0) {
750                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
751                 }
752         }
753         /* write cfg word to cryptinfo */
754         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
755         cinfo += sizeof(cipher_cfg);
756
757         /* write cipher key to cryptinfo */
758         memcpy(cinfo, key, key_len);
759         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
760         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
761                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
762                 key_len = DES3_EDE_KEY_SIZE;
763         }
764         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
765         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
766         if ((cipher_cfg & MOD_AES) && !encrypt) {
767                 return gen_rev_aes_key(tfm);
768         }
769         return 0;
770 }
771
772 static struct buffer_desc *chainup_buffers(struct device *dev,
773                 struct scatterlist *sg, unsigned nbytes,
774                 struct buffer_desc *buf, gfp_t flags,
775                 enum dma_data_direction dir)
776 {
777         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
778                 unsigned len = min(nbytes, sg->length);
779                 struct buffer_desc *next_buf;
780                 u32 next_buf_phys;
781                 void *ptr;
782
783                 nbytes -= len;
784                 ptr = page_address(sg_page(sg)) + sg->offset;
785                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
786                 if (!next_buf) {
787                         buf = NULL;
788                         break;
789                 }
790                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
791                 buf->next = next_buf;
792                 buf->phys_next = next_buf_phys;
793                 buf = next_buf;
794
795                 buf->phys_addr = sg_dma_address(sg);
796                 buf->buf_len = len;
797                 buf->dir = dir;
798         }
799         buf->next = NULL;
800         buf->phys_next = 0;
801         return buf;
802 }
803
804 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
805                         unsigned int key_len)
806 {
807         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
808         u32 *flags = &tfm->base.crt_flags;
809         int ret;
810
811         init_completion(&ctx->completion);
812         atomic_inc(&ctx->configuring);
813
814         reset_sa_dir(&ctx->encrypt);
815         reset_sa_dir(&ctx->decrypt);
816
817         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
818         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
819
820         ret = setup_cipher(&tfm->base, 0, key, key_len);
821         if (ret)
822                 goto out;
823         ret = setup_cipher(&tfm->base, 1, key, key_len);
824         if (ret)
825                 goto out;
826
827         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
828                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
829                         ret = -EINVAL;
830                 } else {
831                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
832                 }
833         }
834 out:
835         if (!atomic_dec_and_test(&ctx->configuring))
836                 wait_for_completion(&ctx->completion);
837         return ret;
838 }
839
840 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
841                 unsigned int key_len)
842 {
843         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
844
845         /* the nonce is stored in bytes at end of key */
846         if (key_len < CTR_RFC3686_NONCE_SIZE)
847                 return -EINVAL;
848
849         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
850                         CTR_RFC3686_NONCE_SIZE);
851
852         key_len -= CTR_RFC3686_NONCE_SIZE;
853         return ablk_setkey(tfm, key, key_len);
854 }
855
856 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
857 {
858         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
859         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
860         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
861         struct ix_sa_dir *dir;
862         struct crypt_ctl *crypt;
863         unsigned int nbytes = req->nbytes;
864         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
865         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
866         struct buffer_desc src_hook;
867         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
868                                 GFP_KERNEL : GFP_ATOMIC;
869
870         if (qmgr_stat_full(SEND_QID))
871                 return -EAGAIN;
872         if (atomic_read(&ctx->configuring))
873                 return -EAGAIN;
874
875         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
876
877         crypt = get_crypt_desc();
878         if (!crypt)
879                 return -ENOMEM;
880
881         crypt->data.ablk_req = req;
882         crypt->crypto_ctx = dir->npe_ctx_phys;
883         crypt->mode = dir->npe_mode;
884         crypt->init_len = dir->npe_ctx_idx;
885
886         crypt->crypt_offs = 0;
887         crypt->crypt_len = nbytes;
888
889         BUG_ON(ivsize && !req->info);
890         memcpy(crypt->iv, req->info, ivsize);
891         if (req->src != req->dst) {
892                 struct buffer_desc dst_hook;
893                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
894                 /* This was never tested by Intel
895                  * for more than one dst buffer, I think. */
896                 BUG_ON(req->dst->length < nbytes);
897                 req_ctx->dst = NULL;
898                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
899                                         flags, DMA_FROM_DEVICE))
900                         goto free_buf_dest;
901                 src_direction = DMA_TO_DEVICE;
902                 req_ctx->dst = dst_hook.next;
903                 crypt->dst_buf = dst_hook.phys_next;
904         } else {
905                 req_ctx->dst = NULL;
906         }
907         req_ctx->src = NULL;
908         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
909                                 flags, src_direction))
910                 goto free_buf_src;
911
912         req_ctx->src = src_hook.next;
913         crypt->src_buf = src_hook.phys_next;
914         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
915         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
916         BUG_ON(qmgr_stat_overflow(SEND_QID));
917         return -EINPROGRESS;
918
919 free_buf_src:
920         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
921 free_buf_dest:
922         if (req->src != req->dst) {
923                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
924         }
925         crypt->ctl_flags = CTL_FLAG_UNUSED;
926         return -ENOMEM;
927 }
928
929 static int ablk_encrypt(struct ablkcipher_request *req)
930 {
931         return ablk_perform(req, 1);
932 }
933
934 static int ablk_decrypt(struct ablkcipher_request *req)
935 {
936         return ablk_perform(req, 0);
937 }
938
939 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
940 {
941         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
942         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
943         u8 iv[CTR_RFC3686_BLOCK_SIZE];
944         u8 *info = req->info;
945         int ret;
946
947         /* set up counter block */
948         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
949         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
950
951         /* initialize counter portion of counter block */
952         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
953                 cpu_to_be32(1);
954
955         req->info = iv;
956         ret = ablk_perform(req, 1);
957         req->info = info;
958         return ret;
959 }
960
961 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
962                 unsigned int nbytes)
963 {
964         int offset = 0;
965
966         if (!nbytes)
967                 return 0;
968
969         for (;;) {
970                 if (start < offset + sg->length)
971                         break;
972
973                 offset += sg->length;
974                 sg = scatterwalk_sg_next(sg);
975         }
976         return (start + nbytes > offset + sg->length);
977 }
978
979 static int aead_perform(struct aead_request *req, int encrypt,
980                 int cryptoffset, int eff_cryptlen, u8 *iv)
981 {
982         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
983         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
984         unsigned ivsize = crypto_aead_ivsize(tfm);
985         unsigned authsize = crypto_aead_authsize(tfm);
986         struct ix_sa_dir *dir;
987         struct crypt_ctl *crypt;
988         unsigned int cryptlen;
989         struct buffer_desc *buf, src_hook;
990         struct aead_ctx *req_ctx = aead_request_ctx(req);
991         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
992                                 GFP_KERNEL : GFP_ATOMIC;
993
994         if (qmgr_stat_full(SEND_QID))
995                 return -EAGAIN;
996         if (atomic_read(&ctx->configuring))
997                 return -EAGAIN;
998
999         if (encrypt) {
1000                 dir = &ctx->encrypt;
1001                 cryptlen = req->cryptlen;
1002         } else {
1003                 dir = &ctx->decrypt;
1004                 /* req->cryptlen includes the authsize when decrypting */
1005                 cryptlen = req->cryptlen -authsize;
1006                 eff_cryptlen -= authsize;
1007         }
1008         crypt = get_crypt_desc();
1009         if (!crypt)
1010                 return -ENOMEM;
1011
1012         crypt->data.aead_req = req;
1013         crypt->crypto_ctx = dir->npe_ctx_phys;
1014         crypt->mode = dir->npe_mode;
1015         crypt->init_len = dir->npe_ctx_idx;
1016
1017         crypt->crypt_offs = cryptoffset;
1018         crypt->crypt_len = eff_cryptlen;
1019
1020         crypt->auth_offs = 0;
1021         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1022         BUG_ON(ivsize && !req->iv);
1023         memcpy(crypt->iv, req->iv, ivsize);
1024
1025         if (req->src != req->dst) {
1026                 BUG(); /* -ENOTSUP because of my lazyness */
1027         }
1028
1029         /* ASSOC data */
1030         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1031                 flags, DMA_TO_DEVICE);
1032         req_ctx->buffer = src_hook.next;
1033         crypt->src_buf = src_hook.phys_next;
1034         if (!buf)
1035                 goto out;
1036         /* IV */
1037         sg_init_table(&req_ctx->ivlist, 1);
1038         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1039         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1040                         DMA_BIDIRECTIONAL);
1041         if (!buf)
1042                 goto free_chain;
1043         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1044                 /* The 12 hmac bytes are scattered,
1045                  * we need to copy them into a safe buffer */
1046                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1047                                 &crypt->icv_rev_aes);
1048                 if (unlikely(!req_ctx->hmac_virt))
1049                         goto free_chain;
1050                 if (!encrypt) {
1051                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1052                                 req->src, cryptlen, authsize, 0);
1053                 }
1054                 req_ctx->encrypt = encrypt;
1055         } else {
1056                 req_ctx->hmac_virt = NULL;
1057         }
1058         /* Crypt */
1059         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1060                         DMA_BIDIRECTIONAL);
1061         if (!buf)
1062                 goto free_hmac_virt;
1063         if (!req_ctx->hmac_virt) {
1064                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1065         }
1066
1067         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1068         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1069         BUG_ON(qmgr_stat_overflow(SEND_QID));
1070         return -EINPROGRESS;
1071 free_hmac_virt:
1072         if (req_ctx->hmac_virt) {
1073                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1074                                 crypt->icv_rev_aes);
1075         }
1076 free_chain:
1077         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1078 out:
1079         crypt->ctl_flags = CTL_FLAG_UNUSED;
1080         return -ENOMEM;
1081 }
1082
1083 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1084 {
1085         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1086         u32 *flags = &tfm->base.crt_flags;
1087         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1088         int ret;
1089
1090         if (!ctx->enckey_len && !ctx->authkey_len)
1091                 return 0;
1092         init_completion(&ctx->completion);
1093         atomic_inc(&ctx->configuring);
1094
1095         reset_sa_dir(&ctx->encrypt);
1096         reset_sa_dir(&ctx->decrypt);
1097
1098         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1099         if (ret)
1100                 goto out;
1101         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1102         if (ret)
1103                 goto out;
1104         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1105                         ctx->authkey_len, digest_len);
1106         if (ret)
1107                 goto out;
1108         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1109                         ctx->authkey_len, digest_len);
1110         if (ret)
1111                 goto out;
1112
1113         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1114                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1115                         ret = -EINVAL;
1116                         goto out;
1117                 } else {
1118                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1119                 }
1120         }
1121 out:
1122         if (!atomic_dec_and_test(&ctx->configuring))
1123                 wait_for_completion(&ctx->completion);
1124         return ret;
1125 }
1126
1127 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1128 {
1129         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1130
1131         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1132                 return -EINVAL;
1133         return aead_setup(tfm, authsize);
1134 }
1135
1136 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1137                         unsigned int keylen)
1138 {
1139         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1140         struct rtattr *rta = (struct rtattr *)key;
1141         struct crypto_authenc_key_param *param;
1142
1143         if (!RTA_OK(rta, keylen))
1144                 goto badkey;
1145         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1146                 goto badkey;
1147         if (RTA_PAYLOAD(rta) < sizeof(*param))
1148                 goto badkey;
1149
1150         param = RTA_DATA(rta);
1151         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1152
1153         key += RTA_ALIGN(rta->rta_len);
1154         keylen -= RTA_ALIGN(rta->rta_len);
1155
1156         if (keylen < ctx->enckey_len)
1157                 goto badkey;
1158
1159         ctx->authkey_len = keylen - ctx->enckey_len;
1160         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1161         memcpy(ctx->authkey, key, ctx->authkey_len);
1162
1163         return aead_setup(tfm, crypto_aead_authsize(tfm));
1164 badkey:
1165         ctx->enckey_len = 0;
1166         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1167         return -EINVAL;
1168 }
1169
1170 static int aead_encrypt(struct aead_request *req)
1171 {
1172         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1173         return aead_perform(req, 1, req->assoclen + ivsize,
1174                         req->cryptlen, req->iv);
1175 }
1176
1177 static int aead_decrypt(struct aead_request *req)
1178 {
1179         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1180         return aead_perform(req, 0, req->assoclen + ivsize,
1181                         req->cryptlen, req->iv);
1182 }
1183
1184 static int aead_givencrypt(struct aead_givcrypt_request *req)
1185 {
1186         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1187         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1188         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1189         __be64 seq;
1190
1191         /* copied from eseqiv.c */
1192         if (!ctx->salted) {
1193                 get_random_bytes(ctx->salt, ivsize);
1194                 ctx->salted = 1;
1195         }
1196         memcpy(req->areq.iv, ctx->salt, ivsize);
1197         len = ivsize;
1198         if (ivsize > sizeof(u64)) {
1199                 memset(req->giv, 0, ivsize - sizeof(u64));
1200                 len = sizeof(u64);
1201         }
1202         seq = cpu_to_be64(req->seq);
1203         memcpy(req->giv + ivsize - len, &seq, len);
1204         return aead_perform(&req->areq, 1, req->areq.assoclen,
1205                         req->areq.cryptlen +ivsize, req->giv);
1206 }
1207
1208 static struct ixp_alg ixp4xx_algos[] = {
1209 {
1210         .crypto = {
1211                 .cra_name       = "cbc(des)",
1212                 .cra_blocksize  = DES_BLOCK_SIZE,
1213                 .cra_u          = { .ablkcipher = {
1214                         .min_keysize    = DES_KEY_SIZE,
1215                         .max_keysize    = DES_KEY_SIZE,
1216                         .ivsize         = DES_BLOCK_SIZE,
1217                         .geniv          = "eseqiv",
1218                         }
1219                 }
1220         },
1221         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1222         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1223
1224 }, {
1225         .crypto = {
1226                 .cra_name       = "ecb(des)",
1227                 .cra_blocksize  = DES_BLOCK_SIZE,
1228                 .cra_u          = { .ablkcipher = {
1229                         .min_keysize    = DES_KEY_SIZE,
1230                         .max_keysize    = DES_KEY_SIZE,
1231                         }
1232                 }
1233         },
1234         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1235         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1236 }, {
1237         .crypto = {
1238                 .cra_name       = "cbc(des3_ede)",
1239                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1240                 .cra_u          = { .ablkcipher = {
1241                         .min_keysize    = DES3_EDE_KEY_SIZE,
1242                         .max_keysize    = DES3_EDE_KEY_SIZE,
1243                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1244                         .geniv          = "eseqiv",
1245                         }
1246                 }
1247         },
1248         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1249         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1250 }, {
1251         .crypto = {
1252                 .cra_name       = "ecb(des3_ede)",
1253                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1254                 .cra_u          = { .ablkcipher = {
1255                         .min_keysize    = DES3_EDE_KEY_SIZE,
1256                         .max_keysize    = DES3_EDE_KEY_SIZE,
1257                         }
1258                 }
1259         },
1260         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1261         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1262 }, {
1263         .crypto = {
1264                 .cra_name       = "cbc(aes)",
1265                 .cra_blocksize  = AES_BLOCK_SIZE,
1266                 .cra_u          = { .ablkcipher = {
1267                         .min_keysize    = AES_MIN_KEY_SIZE,
1268                         .max_keysize    = AES_MAX_KEY_SIZE,
1269                         .ivsize         = AES_BLOCK_SIZE,
1270                         .geniv          = "eseqiv",
1271                         }
1272                 }
1273         },
1274         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1275         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1276 }, {
1277         .crypto = {
1278                 .cra_name       = "ecb(aes)",
1279                 .cra_blocksize  = AES_BLOCK_SIZE,
1280                 .cra_u          = { .ablkcipher = {
1281                         .min_keysize    = AES_MIN_KEY_SIZE,
1282                         .max_keysize    = AES_MAX_KEY_SIZE,
1283                         }
1284                 }
1285         },
1286         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1287         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1288 }, {
1289         .crypto = {
1290                 .cra_name       = "ctr(aes)",
1291                 .cra_blocksize  = AES_BLOCK_SIZE,
1292                 .cra_u          = { .ablkcipher = {
1293                         .min_keysize    = AES_MIN_KEY_SIZE,
1294                         .max_keysize    = AES_MAX_KEY_SIZE,
1295                         .ivsize         = AES_BLOCK_SIZE,
1296                         .geniv          = "eseqiv",
1297                         }
1298                 }
1299         },
1300         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1301         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1302 }, {
1303         .crypto = {
1304                 .cra_name       = "rfc3686(ctr(aes))",
1305                 .cra_blocksize  = AES_BLOCK_SIZE,
1306                 .cra_u          = { .ablkcipher = {
1307                         .min_keysize    = AES_MIN_KEY_SIZE,
1308                         .max_keysize    = AES_MAX_KEY_SIZE,
1309                         .ivsize         = AES_BLOCK_SIZE,
1310                         .geniv          = "eseqiv",
1311                         .setkey         = ablk_rfc3686_setkey,
1312                         .encrypt        = ablk_rfc3686_crypt,
1313                         .decrypt        = ablk_rfc3686_crypt }
1314                 }
1315         },
1316         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1317         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1318 }, {
1319         .crypto = {
1320                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1321                 .cra_blocksize  = DES_BLOCK_SIZE,
1322                 .cra_u          = { .aead = {
1323                         .ivsize         = DES_BLOCK_SIZE,
1324                         .maxauthsize    = MD5_DIGEST_SIZE,
1325                         }
1326                 }
1327         },
1328         .hash = &hash_alg_md5,
1329         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1330         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1331 }, {
1332         .crypto = {
1333                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1334                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1335                 .cra_u          = { .aead = {
1336                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1337                         .maxauthsize    = MD5_DIGEST_SIZE,
1338                         }
1339                 }
1340         },
1341         .hash = &hash_alg_md5,
1342         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1343         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1344 }, {
1345         .crypto = {
1346                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1347                 .cra_blocksize  = DES_BLOCK_SIZE,
1348                 .cra_u          = { .aead = {
1349                         .ivsize         = DES_BLOCK_SIZE,
1350                         .maxauthsize    = SHA1_DIGEST_SIZE,
1351                         }
1352                 }
1353         },
1354         .hash = &hash_alg_sha1,
1355         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1356         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1357 }, {
1358         .crypto = {
1359                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1360                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1361                 .cra_u          = { .aead = {
1362                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1363                         .maxauthsize    = SHA1_DIGEST_SIZE,
1364                         }
1365                 }
1366         },
1367         .hash = &hash_alg_sha1,
1368         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1369         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1370 }, {
1371         .crypto = {
1372                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1373                 .cra_blocksize  = AES_BLOCK_SIZE,
1374                 .cra_u          = { .aead = {
1375                         .ivsize         = AES_BLOCK_SIZE,
1376                         .maxauthsize    = MD5_DIGEST_SIZE,
1377                         }
1378                 }
1379         },
1380         .hash = &hash_alg_md5,
1381         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1382         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1383 }, {
1384         .crypto = {
1385                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1386                 .cra_blocksize  = AES_BLOCK_SIZE,
1387                 .cra_u          = { .aead = {
1388                         .ivsize         = AES_BLOCK_SIZE,
1389                         .maxauthsize    = SHA1_DIGEST_SIZE,
1390                         }
1391                 }
1392         },
1393         .hash = &hash_alg_sha1,
1394         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1395         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1396 } };
1397
1398 #define IXP_POSTFIX "-ixp4xx"
1399 static int __init ixp_module_init(void)
1400 {
1401         int num = ARRAY_SIZE(ixp4xx_algos);
1402         int i,err ;
1403
1404         if (platform_device_register(&pseudo_dev))
1405                 return -ENODEV;
1406
1407         spin_lock_init(&desc_lock);
1408         spin_lock_init(&emerg_lock);
1409
1410         err = init_ixp_crypto();
1411         if (err) {
1412                 platform_device_unregister(&pseudo_dev);
1413                 return err;
1414         }
1415         for (i=0; i< num; i++) {
1416                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1417
1418                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1419                         "%s"IXP_POSTFIX, cra->cra_name) >=
1420                         CRYPTO_MAX_ALG_NAME)
1421                 {
1422                         continue;
1423                 }
1424                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1425                         continue;
1426                 }
1427                 if (!ixp4xx_algos[i].hash) {
1428                         /* block ciphers */
1429                         cra->cra_type = &crypto_ablkcipher_type;
1430                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1431                                          CRYPTO_ALG_ASYNC;
1432                         if (!cra->cra_ablkcipher.setkey)
1433                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1434                         if (!cra->cra_ablkcipher.encrypt)
1435                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1436                         if (!cra->cra_ablkcipher.decrypt)
1437                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1438                         cra->cra_init = init_tfm_ablk;
1439                 } else {
1440                         /* authenc */
1441                         cra->cra_type = &crypto_aead_type;
1442                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1443                                          CRYPTO_ALG_ASYNC;
1444                         cra->cra_aead.setkey = aead_setkey;
1445                         cra->cra_aead.setauthsize = aead_setauthsize;
1446                         cra->cra_aead.encrypt = aead_encrypt;
1447                         cra->cra_aead.decrypt = aead_decrypt;
1448                         cra->cra_aead.givencrypt = aead_givencrypt;
1449                         cra->cra_init = init_tfm_aead;
1450                 }
1451                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1452                 cra->cra_module = THIS_MODULE;
1453                 cra->cra_alignmask = 3;
1454                 cra->cra_priority = 300;
1455                 cra->cra_exit = exit_tfm;
1456                 if (crypto_register_alg(cra))
1457                         printk(KERN_ERR "Failed to register '%s'\n",
1458                                 cra->cra_name);
1459                 else
1460                         ixp4xx_algos[i].registered = 1;
1461         }
1462         return 0;
1463 }
1464
1465 static void __exit ixp_module_exit(void)
1466 {
1467         int num = ARRAY_SIZE(ixp4xx_algos);
1468         int i;
1469
1470         for (i=0; i< num; i++) {
1471                 if (ixp4xx_algos[i].registered)
1472                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1473         }
1474         release_ixp_crypto();
1475         platform_device_unregister(&pseudo_dev);
1476 }
1477
1478 module_init(ixp_module_init);
1479 module_exit(ixp_module_exit);
1480
1481 MODULE_LICENSE("GPL");
1482 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1483 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1484