include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144
145 static int num_cards;
146
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149 static void check_batteries(struct cardinfo *card);
150
151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153         unsigned char led;
154
155         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156         return led & bit;
157 }
158
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161         unsigned char led;
162
163         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164         if (state)
165                 led |= bit;
166         else
167                 led &= ~bit;
168         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170         return 0;
171 }
172
173 /*
174  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175  */
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178         unsigned char led;
179
180         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181         if (state == LED_FLIP)
182                 led ^= (1<<shift);
183         else {
184                 led &= ~(0x03 << shift);
185                 led |= (state << shift);
186         }
187         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189 }
190
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
193 {
194         unsigned char *p;
195         int i, i1;
196
197         p = card->csr_remap;
198         for (i = 0; i < 8; i++) {
199                 printk(KERN_DEBUG "%p   ", p);
200
201                 for (i1 = 0; i1 < 16; i1++)
202                         printk("%02x ", *p++);
203
204                 printk("\n");
205         }
206 }
207 #endif
208
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212         if (dmastat & DMASCR_ANY_ERR)
213                 printk(KERN_CONT "ANY_ERR ");
214         if (dmastat & DMASCR_MBE_ERR)
215                 printk(KERN_CONT "MBE_ERR ");
216         if (dmastat & DMASCR_PARITY_ERR_REP)
217                 printk(KERN_CONT "PARITY_ERR_REP ");
218         if (dmastat & DMASCR_PARITY_ERR_DET)
219                 printk(KERN_CONT "PARITY_ERR_DET ");
220         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222         if (dmastat & DMASCR_TARGET_ABT)
223                 printk(KERN_CONT "TARGET_ABT ");
224         if (dmastat & DMASCR_MASTER_ABT)
225                 printk(KERN_CONT "MASTER_ABT ");
226         if (dmastat & DMASCR_CHAIN_COMPLETE)
227                 printk(KERN_CONT "CHAIN_COMPLETE ");
228         if (dmastat & DMASCR_DMA_COMPLETE)
229                 printk(KERN_CONT "DMA_COMPLETE ");
230         printk("\n");
231 }
232
233 /*
234  * Theory of request handling
235  *
236  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237  * We have two pages of mm_dma_desc, holding about 64 descriptors
238  * each.  These are allocated at init time.
239  * One page is "Ready" and is either full, or can have request added.
240  * The other page might be "Active", which DMA is happening on it.
241  *
242  * Whenever IO on the active page completes, the Ready page is activated
243  * and the ex-Active page is clean out and made Ready.
244  * Otherwise the Ready page is only activated when it becomes full, or
245  * when mm_unplug_device is called via the unplug_io_fn.
246  *
247  * If a request arrives while both pages a full, it is queued, and b_rdev is
248  * overloaded to record whether it was a read or a write.
249  *
250  * The interrupt handler only polls the device to clear the interrupt.
251  * The processing of the result is done in a tasklet.
252  */
253
254 static void mm_start_io(struct cardinfo *card)
255 {
256         /* we have the lock, we know there is
257          * no IO active, and we know that card->Active
258          * is set
259          */
260         struct mm_dma_desc *desc;
261         struct mm_page *page;
262         int offset;
263
264         /* make the last descriptor end the chain */
265         page = &card->mm_pages[card->Active];
266         pr_debug("start_io: %d %d->%d\n",
267                 card->Active, page->headcnt, page->cnt - 1);
268         desc = &page->desc[page->cnt-1];
269
270         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
271         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
272         desc->sem_control_bits = desc->control_bits;
273
274
275         if (debug & DEBUG_LED_ON_TRANSFER)
276                 set_led(card, LED_REMOVE, LED_ON);
277
278         desc = &page->desc[page->headcnt];
279         writel(0, card->csr_remap + DMA_PCI_ADDR);
280         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
281
282         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
283         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
284
285         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
286         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
287
288         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
289         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
290
291         offset = ((char *)desc) - ((char *)page->desc);
292         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
293                card->csr_remap + DMA_DESCRIPTOR_ADDR);
294         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
295          * and on some ports will do nothing ! */
296         writel(cpu_to_le32(((u64)page->page_dma)>>32),
297                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
298
299         /* Go, go, go */
300         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
301                card->csr_remap + DMA_STATUS_CTRL);
302 }
303
304 static int add_bio(struct cardinfo *card);
305
306 static void activate(struct cardinfo *card)
307 {
308         /* if No page is Active, and Ready is
309          * not empty, then switch Ready page
310          * to active and start IO.
311          * Then add any bh's that are available to Ready
312          */
313
314         do {
315                 while (add_bio(card))
316                         ;
317
318                 if (card->Active == -1 &&
319                     card->mm_pages[card->Ready].cnt > 0) {
320                         card->Active = card->Ready;
321                         card->Ready = 1-card->Ready;
322                         mm_start_io(card);
323                 }
324
325         } while (card->Active == -1 && add_bio(card));
326 }
327
328 static inline void reset_page(struct mm_page *page)
329 {
330         page->cnt = 0;
331         page->headcnt = 0;
332         page->bio = NULL;
333         page->biotail = &page->bio;
334 }
335
336 static void mm_unplug_device(struct request_queue *q)
337 {
338         struct cardinfo *card = q->queuedata;
339         unsigned long flags;
340
341         spin_lock_irqsave(&card->lock, flags);
342         if (blk_remove_plug(q))
343                 activate(card);
344         spin_unlock_irqrestore(&card->lock, flags);
345 }
346
347 /*
348  * If there is room on Ready page, take
349  * one bh off list and add it.
350  * return 1 if there was room, else 0.
351  */
352 static int add_bio(struct cardinfo *card)
353 {
354         struct mm_page *p;
355         struct mm_dma_desc *desc;
356         dma_addr_t dma_handle;
357         int offset;
358         struct bio *bio;
359         struct bio_vec *vec;
360         int idx;
361         int rw;
362         int len;
363
364         bio = card->currentbio;
365         if (!bio && card->bio) {
366                 card->currentbio = card->bio;
367                 card->current_idx = card->bio->bi_idx;
368                 card->current_sector = card->bio->bi_sector;
369                 card->bio = card->bio->bi_next;
370                 if (card->bio == NULL)
371                         card->biotail = &card->bio;
372                 card->currentbio->bi_next = NULL;
373                 return 1;
374         }
375         if (!bio)
376                 return 0;
377         idx = card->current_idx;
378
379         rw = bio_rw(bio);
380         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
381                 return 0;
382
383         vec = bio_iovec_idx(bio, idx);
384         len = vec->bv_len;
385         dma_handle = pci_map_page(card->dev,
386                                   vec->bv_page,
387                                   vec->bv_offset,
388                                   len,
389                                   (rw == READ) ?
390                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
391
392         p = &card->mm_pages[card->Ready];
393         desc = &p->desc[p->cnt];
394         p->cnt++;
395         if (p->bio == NULL)
396                 p->idx = idx;
397         if ((p->biotail) != &bio->bi_next) {
398                 *(p->biotail) = bio;
399                 p->biotail = &(bio->bi_next);
400                 bio->bi_next = NULL;
401         }
402
403         desc->data_dma_handle = dma_handle;
404
405         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
406         desc->local_addr = cpu_to_le64(card->current_sector << 9);
407         desc->transfer_size = cpu_to_le32(len);
408         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
409         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
410         desc->zero1 = desc->zero2 = 0;
411         offset = (((char *)(desc+1)) - ((char *)p->desc));
412         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
413         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
414                                          DMASCR_PARITY_INT_EN|
415                                          DMASCR_CHAIN_EN |
416                                          DMASCR_SEM_EN |
417                                          pci_cmds);
418         if (rw == WRITE)
419                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
420         desc->sem_control_bits = desc->control_bits;
421
422         card->current_sector += (len >> 9);
423         idx++;
424         card->current_idx = idx;
425         if (idx >= bio->bi_vcnt)
426                 card->currentbio = NULL;
427
428         return 1;
429 }
430
431 static void process_page(unsigned long data)
432 {
433         /* check if any of the requests in the page are DMA_COMPLETE,
434          * and deal with them appropriately.
435          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
436          * dma must have hit an error on that descriptor, so use dma_status
437          * instead and assume that all following descriptors must be re-tried.
438          */
439         struct mm_page *page;
440         struct bio *return_bio = NULL;
441         struct cardinfo *card = (struct cardinfo *)data;
442         unsigned int dma_status = card->dma_status;
443
444         spin_lock_bh(&card->lock);
445         if (card->Active < 0)
446                 goto out_unlock;
447         page = &card->mm_pages[card->Active];
448
449         while (page->headcnt < page->cnt) {
450                 struct bio *bio = page->bio;
451                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
452                 int control = le32_to_cpu(desc->sem_control_bits);
453                 int last = 0;
454                 int idx;
455
456                 if (!(control & DMASCR_DMA_COMPLETE)) {
457                         control = dma_status;
458                         last = 1;
459                 }
460                 page->headcnt++;
461                 idx = page->idx;
462                 page->idx++;
463                 if (page->idx >= bio->bi_vcnt) {
464                         page->bio = bio->bi_next;
465                         if (page->bio)
466                                 page->idx = page->bio->bi_idx;
467                 }
468
469                 pci_unmap_page(card->dev, desc->data_dma_handle,
470                                bio_iovec_idx(bio, idx)->bv_len,
471                                  (control & DMASCR_TRANSFER_READ) ?
472                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
473                 if (control & DMASCR_HARD_ERROR) {
474                         /* error */
475                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
476                         dev_printk(KERN_WARNING, &card->dev->dev,
477                                 "I/O error on sector %d/%d\n",
478                                 le32_to_cpu(desc->local_addr)>>9,
479                                 le32_to_cpu(desc->transfer_size));
480                         dump_dmastat(card, control);
481                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
482                            le32_to_cpu(desc->local_addr) >> 9 ==
483                                 card->init_size) {
484                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
485                         if (card->init_size >> 1 >= card->mm_size) {
486                                 dev_printk(KERN_INFO, &card->dev->dev,
487                                         "memory now initialised\n");
488                                 set_userbit(card, MEMORY_INITIALIZED, 1);
489                         }
490                 }
491                 if (bio != page->bio) {
492                         bio->bi_next = return_bio;
493                         return_bio = bio;
494                 }
495
496                 if (last)
497                         break;
498         }
499
500         if (debug & DEBUG_LED_ON_TRANSFER)
501                 set_led(card, LED_REMOVE, LED_OFF);
502
503         if (card->check_batteries) {
504                 card->check_batteries = 0;
505                 check_batteries(card);
506         }
507         if (page->headcnt >= page->cnt) {
508                 reset_page(page);
509                 card->Active = -1;
510                 activate(card);
511         } else {
512                 /* haven't finished with this one yet */
513                 pr_debug("do some more\n");
514                 mm_start_io(card);
515         }
516  out_unlock:
517         spin_unlock_bh(&card->lock);
518
519         while (return_bio) {
520                 struct bio *bio = return_bio;
521
522                 return_bio = bio->bi_next;
523                 bio->bi_next = NULL;
524                 bio_endio(bio, 0);
525         }
526 }
527
528 static int mm_make_request(struct request_queue *q, struct bio *bio)
529 {
530         struct cardinfo *card = q->queuedata;
531         pr_debug("mm_make_request %llu %u\n",
532                  (unsigned long long)bio->bi_sector, bio->bi_size);
533
534         spin_lock_irq(&card->lock);
535         *card->biotail = bio;
536         bio->bi_next = NULL;
537         card->biotail = &bio->bi_next;
538         blk_plug_device(q);
539         spin_unlock_irq(&card->lock);
540
541         return 0;
542 }
543
544 static irqreturn_t mm_interrupt(int irq, void *__card)
545 {
546         struct cardinfo *card = (struct cardinfo *) __card;
547         unsigned int dma_status;
548         unsigned short cfg_status;
549
550 HW_TRACE(0x30);
551
552         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
553
554         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
555                 /* interrupt wasn't for me ... */
556                 return IRQ_NONE;
557         }
558
559         /* clear COMPLETION interrupts */
560         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
561                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
562                        card->csr_remap + DMA_STATUS_CTRL);
563         else
564                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
565                        card->csr_remap + DMA_STATUS_CTRL + 2);
566
567         /* log errors and clear interrupt status */
568         if (dma_status & DMASCR_ANY_ERR) {
569                 unsigned int    data_log1, data_log2;
570                 unsigned int    addr_log1, addr_log2;
571                 unsigned char   stat, count, syndrome, check;
572
573                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
574
575                 data_log1 = le32_to_cpu(readl(card->csr_remap +
576                                                 ERROR_DATA_LOG));
577                 data_log2 = le32_to_cpu(readl(card->csr_remap +
578                                                 ERROR_DATA_LOG + 4));
579                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
580                                                 ERROR_ADDR_LOG));
581                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
582
583                 count = readb(card->csr_remap + ERROR_COUNT);
584                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
585                 check = readb(card->csr_remap + ERROR_CHECK);
586
587                 dump_dmastat(card, dma_status);
588
589                 if (stat & 0x01)
590                         dev_printk(KERN_ERR, &card->dev->dev,
591                                 "Memory access error detected (err count %d)\n",
592                                 count);
593                 if (stat & 0x02)
594                         dev_printk(KERN_ERR, &card->dev->dev,
595                                 "Multi-bit EDC error\n");
596
597                 dev_printk(KERN_ERR, &card->dev->dev,
598                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
599                         addr_log2, addr_log1, data_log2, data_log1);
600                 dev_printk(KERN_ERR, &card->dev->dev,
601                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
602                         check, syndrome);
603
604                 writeb(0, card->csr_remap + ERROR_COUNT);
605         }
606
607         if (dma_status & DMASCR_PARITY_ERR_REP) {
608                 dev_printk(KERN_ERR, &card->dev->dev,
609                         "PARITY ERROR REPORTED\n");
610                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
611                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
612         }
613
614         if (dma_status & DMASCR_PARITY_ERR_DET) {
615                 dev_printk(KERN_ERR, &card->dev->dev,
616                         "PARITY ERROR DETECTED\n");
617                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
618                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
619         }
620
621         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
622                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
623                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
624                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
625         }
626
627         if (dma_status & DMASCR_TARGET_ABT) {
628                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
629                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
630                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
631         }
632
633         if (dma_status & DMASCR_MASTER_ABT) {
634                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
635                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
636                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
637         }
638
639         /* and process the DMA descriptors */
640         card->dma_status = dma_status;
641         tasklet_schedule(&card->tasklet);
642
643 HW_TRACE(0x36);
644
645         return IRQ_HANDLED;
646 }
647
648 /*
649  * If both batteries are good, no LED
650  * If either battery has been warned, solid LED
651  * If both batteries are bad, flash the LED quickly
652  * If either battery is bad, flash the LED semi quickly
653  */
654 static void set_fault_to_battery_status(struct cardinfo *card)
655 {
656         if (card->battery[0].good && card->battery[1].good)
657                 set_led(card, LED_FAULT, LED_OFF);
658         else if (card->battery[0].warned || card->battery[1].warned)
659                 set_led(card, LED_FAULT, LED_ON);
660         else if (!card->battery[0].good && !card->battery[1].good)
661                 set_led(card, LED_FAULT, LED_FLASH_7_0);
662         else
663                 set_led(card, LED_FAULT, LED_FLASH_3_5);
664 }
665
666 static void init_battery_timer(void);
667
668 static int check_battery(struct cardinfo *card, int battery, int status)
669 {
670         if (status != card->battery[battery].good) {
671                 card->battery[battery].good = !card->battery[battery].good;
672                 card->battery[battery].last_change = jiffies;
673
674                 if (card->battery[battery].good) {
675                         dev_printk(KERN_ERR, &card->dev->dev,
676                                 "Battery %d now good\n", battery + 1);
677                         card->battery[battery].warned = 0;
678                 } else
679                         dev_printk(KERN_ERR, &card->dev->dev,
680                                 "Battery %d now FAILED\n", battery + 1);
681
682                 return 1;
683         } else if (!card->battery[battery].good &&
684                    !card->battery[battery].warned &&
685                    time_after_eq(jiffies, card->battery[battery].last_change +
686                                  (HZ * 60 * 60 * 5))) {
687                 dev_printk(KERN_ERR, &card->dev->dev,
688                         "Battery %d still FAILED after 5 hours\n", battery + 1);
689                 card->battery[battery].warned = 1;
690
691                 return 1;
692         }
693
694         return 0;
695 }
696
697 static void check_batteries(struct cardinfo *card)
698 {
699         /* NOTE: this must *never* be called while the card
700          * is doing (bus-to-card) DMA, or you will need the
701          * reset switch
702          */
703         unsigned char status;
704         int ret1, ret2;
705
706         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
707         if (debug & DEBUG_BATTERY_POLLING)
708                 dev_printk(KERN_DEBUG, &card->dev->dev,
709                         "checking battery status, 1 = %s, 2 = %s\n",
710                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
711                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
712
713         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
714         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
715
716         if (ret1 || ret2)
717                 set_fault_to_battery_status(card);
718 }
719
720 static void check_all_batteries(unsigned long ptr)
721 {
722         int i;
723
724         for (i = 0; i < num_cards; i++)
725                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
726                         struct cardinfo *card = &cards[i];
727                         spin_lock_bh(&card->lock);
728                         if (card->Active >= 0)
729                                 card->check_batteries = 1;
730                         else
731                                 check_batteries(card);
732                         spin_unlock_bh(&card->lock);
733                 }
734
735         init_battery_timer();
736 }
737
738 static void init_battery_timer(void)
739 {
740         init_timer(&battery_timer);
741         battery_timer.function = check_all_batteries;
742         battery_timer.expires = jiffies + (HZ * 60);
743         add_timer(&battery_timer);
744 }
745
746 static void del_battery_timer(void)
747 {
748         del_timer(&battery_timer);
749 }
750
751 /*
752  * Note no locks taken out here.  In a worst case scenario, we could drop
753  * a chunk of system memory.  But that should never happen, since validation
754  * happens at open or mount time, when locks are held.
755  *
756  *      That's crap, since doing that while some partitions are opened
757  * or mounted will give you really nasty results.
758  */
759 static int mm_revalidate(struct gendisk *disk)
760 {
761         struct cardinfo *card = disk->private_data;
762         set_capacity(disk, card->mm_size << 1);
763         return 0;
764 }
765
766 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
767 {
768         struct cardinfo *card = bdev->bd_disk->private_data;
769         int size = card->mm_size * (1024 / MM_HARDSECT);
770
771         /*
772          * get geometry: we have to fake one...  trim the size to a
773          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
774          * whatever cylinders.
775          */
776         geo->heads     = 64;
777         geo->sectors   = 32;
778         geo->cylinders = size / (geo->heads * geo->sectors);
779         return 0;
780 }
781
782 /*
783  * Future support for removable devices
784  */
785 static int mm_check_change(struct gendisk *disk)
786 {
787 /*  struct cardinfo *dev = disk->private_data; */
788         return 0;
789 }
790
791 static const struct block_device_operations mm_fops = {
792         .owner          = THIS_MODULE,
793         .getgeo         = mm_getgeo,
794         .revalidate_disk = mm_revalidate,
795         .media_changed  = mm_check_change,
796 };
797
798 static int __devinit mm_pci_probe(struct pci_dev *dev,
799                                 const struct pci_device_id *id)
800 {
801         int ret = -ENODEV;
802         struct cardinfo *card = &cards[num_cards];
803         unsigned char   mem_present;
804         unsigned char   batt_status;
805         unsigned int    saved_bar, data;
806         unsigned long   csr_base;
807         unsigned long   csr_len;
808         int             magic_number;
809         static int      printed_version;
810
811         if (!printed_version++)
812                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
813
814         ret = pci_enable_device(dev);
815         if (ret)
816                 return ret;
817
818         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
819         pci_set_master(dev);
820
821         card->dev         = dev;
822
823         csr_base = pci_resource_start(dev, 0);
824         csr_len  = pci_resource_len(dev, 0);
825         if (!csr_base || !csr_len)
826                 return -ENODEV;
827
828         dev_printk(KERN_INFO, &dev->dev,
829           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
830
831         if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
832             pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
833                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
834                 return  -ENOMEM;
835         }
836
837         ret = pci_request_regions(dev, DRIVER_NAME);
838         if (ret) {
839                 dev_printk(KERN_ERR, &card->dev->dev,
840                         "Unable to request memory region\n");
841                 goto failed_req_csr;
842         }
843
844         card->csr_remap = ioremap_nocache(csr_base, csr_len);
845         if (!card->csr_remap) {
846                 dev_printk(KERN_ERR, &card->dev->dev,
847                         "Unable to remap memory region\n");
848                 ret = -ENOMEM;
849
850                 goto failed_remap_csr;
851         }
852
853         dev_printk(KERN_INFO, &card->dev->dev,
854                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
855                csr_base, card->csr_remap, csr_len);
856
857         switch (card->dev->device) {
858         case 0x5415:
859                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
860                 magic_number = 0x59;
861                 break;
862
863         case 0x5425:
864                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
865                 magic_number = 0x5C;
866                 break;
867
868         case 0x6155:
869                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
870                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
871                 magic_number = 0x99;
872                 break;
873
874         default:
875                 magic_number = 0x100;
876                 break;
877         }
878
879         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
880                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
881                 ret = -ENOMEM;
882                 goto failed_magic;
883         }
884
885         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
886                                                 PAGE_SIZE * 2,
887                                                 &card->mm_pages[0].page_dma);
888         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
889                                                 PAGE_SIZE * 2,
890                                                 &card->mm_pages[1].page_dma);
891         if (card->mm_pages[0].desc == NULL ||
892             card->mm_pages[1].desc == NULL) {
893                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
894                 goto failed_alloc;
895         }
896         reset_page(&card->mm_pages[0]);
897         reset_page(&card->mm_pages[1]);
898         card->Ready = 0;        /* page 0 is ready */
899         card->Active = -1;      /* no page is active */
900         card->bio = NULL;
901         card->biotail = &card->bio;
902
903         card->queue = blk_alloc_queue(GFP_KERNEL);
904         if (!card->queue)
905                 goto failed_alloc;
906
907         blk_queue_make_request(card->queue, mm_make_request);
908         card->queue->queue_lock = &card->lock;
909         card->queue->queuedata = card;
910         card->queue->unplug_fn = mm_unplug_device;
911
912         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
913
914         card->check_batteries = 0;
915
916         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
917         switch (mem_present) {
918         case MEM_128_MB:
919                 card->mm_size = 1024 * 128;
920                 break;
921         case MEM_256_MB:
922                 card->mm_size = 1024 * 256;
923                 break;
924         case MEM_512_MB:
925                 card->mm_size = 1024 * 512;
926                 break;
927         case MEM_1_GB:
928                 card->mm_size = 1024 * 1024;
929                 break;
930         case MEM_2_GB:
931                 card->mm_size = 1024 * 2048;
932                 break;
933         default:
934                 card->mm_size = 0;
935                 break;
936         }
937
938         /* Clear the LED's we control */
939         set_led(card, LED_REMOVE, LED_OFF);
940         set_led(card, LED_FAULT, LED_OFF);
941
942         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
943
944         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
945         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
946         card->battery[0].last_change = card->battery[1].last_change = jiffies;
947
948         if (card->flags & UM_FLAG_NO_BATT)
949                 dev_printk(KERN_INFO, &card->dev->dev,
950                         "Size %d KB\n", card->mm_size);
951         else {
952                 dev_printk(KERN_INFO, &card->dev->dev,
953                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
954                        card->mm_size,
955                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
956                        card->battery[0].good ? "OK" : "FAILURE",
957                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
958                        card->battery[1].good ? "OK" : "FAILURE");
959
960                 set_fault_to_battery_status(card);
961         }
962
963         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
964         data = 0xffffffff;
965         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
966         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
967         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
968         data &= 0xfffffff0;
969         data = ~data;
970         data += 1;
971
972         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
973                         card)) {
974                 dev_printk(KERN_ERR, &card->dev->dev,
975                         "Unable to allocate IRQ\n");
976                 ret = -ENODEV;
977                 goto failed_req_irq;
978         }
979
980         dev_printk(KERN_INFO, &card->dev->dev,
981                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
982
983         spin_lock_init(&card->lock);
984
985         pci_set_drvdata(dev, card);
986
987         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
988                 pci_write_cmd = 0x07;   /* then Memory Write command */
989
990         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
991                 unsigned short cfg_command;
992                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
993                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
994                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
995         }
996         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
997
998         num_cards++;
999
1000         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1001                 dev_printk(KERN_INFO, &card->dev->dev,
1002                   "memory NOT initialized. Consider over-writing whole device.\n");
1003                 card->init_size = 0;
1004         } else {
1005                 dev_printk(KERN_INFO, &card->dev->dev,
1006                         "memory already initialized\n");
1007                 card->init_size = card->mm_size;
1008         }
1009
1010         /* Enable ECC */
1011         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1012
1013         return 0;
1014
1015  failed_req_irq:
1016  failed_alloc:
1017         if (card->mm_pages[0].desc)
1018                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1019                                     card->mm_pages[0].desc,
1020                                     card->mm_pages[0].page_dma);
1021         if (card->mm_pages[1].desc)
1022                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1023                                     card->mm_pages[1].desc,
1024                                     card->mm_pages[1].page_dma);
1025  failed_magic:
1026         iounmap(card->csr_remap);
1027  failed_remap_csr:
1028         pci_release_regions(dev);
1029  failed_req_csr:
1030
1031         return ret;
1032 }
1033
1034 static void mm_pci_remove(struct pci_dev *dev)
1035 {
1036         struct cardinfo *card = pci_get_drvdata(dev);
1037
1038         tasklet_kill(&card->tasklet);
1039         free_irq(dev->irq, card);
1040         iounmap(card->csr_remap);
1041
1042         if (card->mm_pages[0].desc)
1043                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1044                                     card->mm_pages[0].desc,
1045                                     card->mm_pages[0].page_dma);
1046         if (card->mm_pages[1].desc)
1047                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1048                                     card->mm_pages[1].desc,
1049                                     card->mm_pages[1].page_dma);
1050         blk_cleanup_queue(card->queue);
1051
1052         pci_release_regions(dev);
1053         pci_disable_device(dev);
1054 }
1055
1056 static const struct pci_device_id mm_pci_ids[] = {
1057     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1058     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1059     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1060     {
1061         .vendor =       0x8086,
1062         .device =       0xB555,
1063         .subvendor =    0x1332,
1064         .subdevice =    0x5460,
1065         .class =        0x050000,
1066         .class_mask =   0,
1067     }, { /* end: all zeroes */ }
1068 };
1069
1070 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1071
1072 static struct pci_driver mm_pci_driver = {
1073         .name           = DRIVER_NAME,
1074         .id_table       = mm_pci_ids,
1075         .probe          = mm_pci_probe,
1076         .remove         = mm_pci_remove,
1077 };
1078
1079 static int __init mm_init(void)
1080 {
1081         int retval, i;
1082         int err;
1083
1084         retval = pci_register_driver(&mm_pci_driver);
1085         if (retval)
1086                 return -ENOMEM;
1087
1088         err = major_nr = register_blkdev(0, DRIVER_NAME);
1089         if (err < 0) {
1090                 pci_unregister_driver(&mm_pci_driver);
1091                 return -EIO;
1092         }
1093
1094         for (i = 0; i < num_cards; i++) {
1095                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1096                 if (!mm_gendisk[i])
1097                         goto out;
1098         }
1099
1100         for (i = 0; i < num_cards; i++) {
1101                 struct gendisk *disk = mm_gendisk[i];
1102                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1103                 spin_lock_init(&cards[i].lock);
1104                 disk->major = major_nr;
1105                 disk->first_minor  = i << MM_SHIFT;
1106                 disk->fops = &mm_fops;
1107                 disk->private_data = &cards[i];
1108                 disk->queue = cards[i].queue;
1109                 set_capacity(disk, cards[i].mm_size << 1);
1110                 add_disk(disk);
1111         }
1112
1113         init_battery_timer();
1114         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1115 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1116         return 0;
1117
1118 out:
1119         pci_unregister_driver(&mm_pci_driver);
1120         unregister_blkdev(major_nr, DRIVER_NAME);
1121         while (i--)
1122                 put_disk(mm_gendisk[i]);
1123         return -ENOMEM;
1124 }
1125
1126 static void __exit mm_cleanup(void)
1127 {
1128         int i;
1129
1130         del_battery_timer();
1131
1132         for (i = 0; i < num_cards ; i++) {
1133                 del_gendisk(mm_gendisk[i]);
1134                 put_disk(mm_gendisk[i]);
1135         }
1136
1137         pci_unregister_driver(&mm_pci_driver);
1138
1139         unregister_blkdev(major_nr, DRIVER_NAME);
1140 }
1141
1142 module_init(mm_init);
1143 module_exit(mm_cleanup);
1144
1145 MODULE_AUTHOR(DRIVER_AUTHOR);
1146 MODULE_DESCRIPTION(DRIVER_DESC);
1147 MODULE_LICENSE("GPL");