include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37  * offset from end of service tree
38  */
39 #define CFQ_IDLE_DELAY          (HZ / 5)
40
41 /*
42  * below this threshold, we consider thinktime immediate
43  */
44 #define CFQ_MIN_TT              (2)
45
46 #define CFQ_SLICE_SCALE         (5)
47 #define CFQ_HW_QUEUE_MIN        (5)
48 #define CFQ_SERVICE_SHIFT       12
49
50 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
51 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq)              \
55         ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81         unsigned count;
82         unsigned total_weight;
83         u64 min_vdisktime;
84         struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87                         .count = 0, .min_vdisktime = 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         unsigned int slice_dispatch;
122         /* time when first request from queue completed and slice started. */
123         unsigned long slice_start;
124         unsigned long slice_end;
125         long slice_resid;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         pid_t pid;
137
138         u32 seek_history;
139         sector_t last_request_pos;
140
141         struct cfq_rb_root *service_tree;
142         struct cfq_queue *new_cfqq;
143         struct cfq_group *cfqg;
144         struct cfq_group *orig_cfqg;
145         /* Sectors dispatched in current dispatch round */
146         unsigned long nr_sectors;
147 };
148
149 /*
150  * First index in the service_trees.
151  * IDLE is handled separately, so it has negative index
152  */
153 enum wl_prio_t {
154         BE_WORKLOAD = 0,
155         RT_WORKLOAD = 1,
156         IDLE_WORKLOAD = 2,
157 };
158
159 /*
160  * Second index in the service_trees.
161  */
162 enum wl_type_t {
163         ASYNC_WORKLOAD = 0,
164         SYNC_NOIDLE_WORKLOAD = 1,
165         SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170         /* group service_tree member */
171         struct rb_node rb_node;
172
173         /* group service_tree key */
174         u64 vdisktime;
175         unsigned int weight;
176         bool on_st;
177
178         /* number of cfqq currently on this group */
179         int nr_cfqq;
180
181         /* Per group busy queus average. Useful for workload slice calc. */
182         unsigned int busy_queues_avg[2];
183         /*
184          * rr lists of queues with requests, onle rr for each priority class.
185          * Counts are embedded in the cfq_rb_root
186          */
187         struct cfq_rb_root service_trees[2][3];
188         struct cfq_rb_root service_tree_idle;
189
190         unsigned long saved_workload_slice;
191         enum wl_type_t saved_workload;
192         enum wl_prio_t saved_serving_prio;
193         struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195         struct hlist_node cfqd_node;
196         atomic_t ref;
197 #endif
198 };
199
200 /*
201  * Per block device queue structure
202  */
203 struct cfq_data {
204         struct request_queue *queue;
205         /* Root service tree for cfq_groups */
206         struct cfq_rb_root grp_service_tree;
207         struct cfq_group root_group;
208
209         /*
210          * The priority currently being served
211          */
212         enum wl_prio_t serving_prio;
213         enum wl_type_t serving_type;
214         unsigned long workload_expires;
215         struct cfq_group *serving_group;
216         bool noidle_tree_requires_idle;
217
218         /*
219          * Each priority tree is sorted by next_request position.  These
220          * trees are used when determining if two or more queues are
221          * interleaving requests (see cfq_close_cooperator).
222          */
223         struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225         unsigned int busy_queues;
226
227         int rq_in_driver;
228         int rq_in_flight[2];
229
230         /*
231          * queue-depth detection
232          */
233         int rq_queued;
234         int hw_tag;
235         /*
236          * hw_tag can be
237          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239          *  0 => no NCQ
240          */
241         int hw_tag_est_depth;
242         unsigned int hw_tag_samples;
243
244         /*
245          * idle window management
246          */
247         struct timer_list idle_slice_timer;
248         struct work_struct unplug_work;
249
250         struct cfq_queue *active_queue;
251         struct cfq_io_context *active_cic;
252
253         /*
254          * async queue for each priority case
255          */
256         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257         struct cfq_queue *async_idle_cfqq;
258
259         sector_t last_position;
260
261         /*
262          * tunables, see top of file
263          */
264         unsigned int cfq_quantum;
265         unsigned int cfq_fifo_expire[2];
266         unsigned int cfq_back_penalty;
267         unsigned int cfq_back_max;
268         unsigned int cfq_slice[2];
269         unsigned int cfq_slice_async_rq;
270         unsigned int cfq_slice_idle;
271         unsigned int cfq_latency;
272         unsigned int cfq_group_isolation;
273
274         struct list_head cic_list;
275
276         /*
277          * Fallback dummy cfqq for extreme OOM conditions
278          */
279         struct cfq_queue oom_cfqq;
280
281         unsigned long last_delayed_sync;
282
283         /* List of cfq groups being managed on this device*/
284         struct hlist_head cfqg_list;
285         struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291                                             enum wl_prio_t prio,
292                                             enum wl_type_t type)
293 {
294         if (!cfqg)
295                 return NULL;
296
297         if (prio == IDLE_WORKLOAD)
298                 return &cfqg->service_tree_idle;
299
300         return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
305         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
306         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
307         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
309         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
310         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
311         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
312         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
313         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
314         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
315         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
316         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name)                                              \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
321 {                                                                       \
322         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
323 }                                                                       \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
325 {                                                                       \
326         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
327 }                                                                       \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
329 {                                                                       \
330         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
350         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
355         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
356                                 blkg_path(&(cfqg)->blkg), ##args);      \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
360         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...)     \
364         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368         for (i = 0; i <= IDLE_WORKLOAD; i++) \
369                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370                         : &cfqg->service_tree_idle; \
371                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372                         (i == IDLE_WORKLOAD && j == 0); \
373                         j++, st = i < IDLE_WORKLOAD ? \
374                         &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379         if (cfq_class_idle(cfqq))
380                 return IDLE_WORKLOAD;
381         if (cfq_class_rt(cfqq))
382                 return RT_WORKLOAD;
383         return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389         if (!cfq_cfqq_sync(cfqq))
390                 return ASYNC_WORKLOAD;
391         if (!cfq_cfqq_idle_window(cfqq))
392                 return SYNC_NOIDLE_WORKLOAD;
393         return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397                                         struct cfq_data *cfqd,
398                                         struct cfq_group *cfqg)
399 {
400         if (wl == IDLE_WORKLOAD)
401                 return cfqg->service_tree_idle.count;
402
403         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409                                         struct cfq_group *cfqg)
410 {
411         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417                                        struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419                                                 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422                                             bool is_sync)
423 {
424         return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428                                 struct cfq_queue *cfqq, bool is_sync)
429 {
430         cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434  * We regard a request as SYNC, if it's either a read or has the SYNC bit
435  * set (in which case it could also be direct WRITE).
436  */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443  * scheduler run of queue, if there are requests pending and no one in the
444  * driver that will restart queueing
445  */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448         if (cfqd->busy_queues) {
449                 cfq_log(cfqd, "schedule dispatch");
450                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451         }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456         struct cfq_data *cfqd = q->elevator->elevator_data;
457
458         return !cfqd->rq_queued;
459 }
460
461 /*
462  * Scale schedule slice based on io priority. Use the sync time slice only
463  * if a queue is marked sync and has sync io queued. A sync queue with async
464  * io only, should not get full sync slice length.
465  */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467                                  unsigned short prio)
468 {
469         const int base_slice = cfqd->cfq_slice[sync];
470
471         WARN_ON(prio >= IOPRIO_BE_NR);
472
473         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484         u64 d = delta << CFQ_SERVICE_SHIFT;
485
486         d = d * BLKIO_WEIGHT_DEFAULT;
487         do_div(d, cfqg->weight);
488         return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493         s64 delta = (s64)(vdisktime - min_vdisktime);
494         if (delta > 0)
495                 min_vdisktime = vdisktime;
496
497         return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502         s64 delta = (s64)(vdisktime - min_vdisktime);
503         if (delta < 0)
504                 min_vdisktime = vdisktime;
505
506         return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511         u64 vdisktime = st->min_vdisktime;
512         struct cfq_group *cfqg;
513
514         if (st->active) {
515                 cfqg = rb_entry_cfqg(st->active);
516                 vdisktime = cfqg->vdisktime;
517         }
518
519         if (st->left) {
520                 cfqg = rb_entry_cfqg(st->left);
521                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522         }
523
524         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528  * get averaged number of queues of RT/BE priority.
529  * average is updated, with a formula that gives more weight to higher numbers,
530  * to quickly follows sudden increases and decrease slowly
531  */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534                                         struct cfq_group *cfqg, bool rt)
535 {
536         unsigned min_q, max_q;
537         unsigned mult  = cfq_hist_divisor - 1;
538         unsigned round = cfq_hist_divisor / 2;
539         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541         min_q = min(cfqg->busy_queues_avg[rt], busy);
542         max_q = max(cfqg->busy_queues_avg[rt], busy);
543         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544                 cfq_hist_divisor;
545         return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551         struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553         return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560         if (cfqd->cfq_latency) {
561                 /*
562                  * interested queues (we consider only the ones with the same
563                  * priority class in the cfq group)
564                  */
565                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566                                                 cfq_class_rt(cfqq));
567                 unsigned sync_slice = cfqd->cfq_slice[1];
568                 unsigned expect_latency = sync_slice * iq;
569                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571                 if (expect_latency > group_slice) {
572                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573                         /* scale low_slice according to IO priority
574                          * and sync vs async */
575                         unsigned low_slice =
576                                 min(slice, base_low_slice * slice / sync_slice);
577                         /* the adapted slice value is scaled to fit all iqs
578                          * into the target latency */
579                         slice = max(slice * group_slice / expect_latency,
580                                     low_slice);
581                 }
582         }
583         cfqq->slice_start = jiffies;
584         cfqq->slice_end = jiffies + slice;
585         cfqq->allocated_slice = slice;
586         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591  * isn't valid until the first request from the dispatch is activated
592  * and the slice time set.
593  */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596         if (cfq_cfqq_slice_new(cfqq))
597                 return 0;
598         if (time_before(jiffies, cfqq->slice_end))
599                 return 0;
600
601         return 1;
602 }
603
604 /*
605  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606  * We choose the request that is closest to the head right now. Distance
607  * behind the head is penalized and only allowed to a certain extent.
608  */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612         sector_t s1, s2, d1 = 0, d2 = 0;
613         unsigned long back_max;
614 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
616         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618         if (rq1 == NULL || rq1 == rq2)
619                 return rq2;
620         if (rq2 == NULL)
621                 return rq1;
622
623         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624                 return rq1;
625         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626                 return rq2;
627         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628                 return rq1;
629         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630                 return rq2;
631
632         s1 = blk_rq_pos(rq1);
633         s2 = blk_rq_pos(rq2);
634
635         /*
636          * by definition, 1KiB is 2 sectors
637          */
638         back_max = cfqd->cfq_back_max * 2;
639
640         /*
641          * Strict one way elevator _except_ in the case where we allow
642          * short backward seeks which are biased as twice the cost of a
643          * similar forward seek.
644          */
645         if (s1 >= last)
646                 d1 = s1 - last;
647         else if (s1 + back_max >= last)
648                 d1 = (last - s1) * cfqd->cfq_back_penalty;
649         else
650                 wrap |= CFQ_RQ1_WRAP;
651
652         if (s2 >= last)
653                 d2 = s2 - last;
654         else if (s2 + back_max >= last)
655                 d2 = (last - s2) * cfqd->cfq_back_penalty;
656         else
657                 wrap |= CFQ_RQ2_WRAP;
658
659         /* Found required data */
660
661         /*
662          * By doing switch() on the bit mask "wrap" we avoid having to
663          * check two variables for all permutations: --> faster!
664          */
665         switch (wrap) {
666         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667                 if (d1 < d2)
668                         return rq1;
669                 else if (d2 < d1)
670                         return rq2;
671                 else {
672                         if (s1 >= s2)
673                                 return rq1;
674                         else
675                                 return rq2;
676                 }
677
678         case CFQ_RQ2_WRAP:
679                 return rq1;
680         case CFQ_RQ1_WRAP:
681                 return rq2;
682         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683         default:
684                 /*
685                  * Since both rqs are wrapped,
686                  * start with the one that's further behind head
687                  * (--> only *one* back seek required),
688                  * since back seek takes more time than forward.
689                  */
690                 if (s1 <= s2)
691                         return rq1;
692                 else
693                         return rq2;
694         }
695 }
696
697 /*
698  * The below is leftmost cache rbtree addon
699  */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702         /* Service tree is empty */
703         if (!root->count)
704                 return NULL;
705
706         if (!root->left)
707                 root->left = rb_first(&root->rb);
708
709         if (root->left)
710                 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712         return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717         if (!root->left)
718                 root->left = rb_first(&root->rb);
719
720         if (root->left)
721                 return rb_entry_cfqg(root->left);
722
723         return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728         rb_erase(n, root);
729         RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734         if (root->left == n)
735                 root->left = NULL;
736         rb_erase_init(n, &root->rb);
737         --root->count;
738 }
739
740 /*
741  * would be nice to take fifo expire time into account as well
742  */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745                   struct request *last)
746 {
747         struct rb_node *rbnext = rb_next(&last->rb_node);
748         struct rb_node *rbprev = rb_prev(&last->rb_node);
749         struct request *next = NULL, *prev = NULL;
750
751         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753         if (rbprev)
754                 prev = rb_entry_rq(rbprev);
755
756         if (rbnext)
757                 next = rb_entry_rq(rbnext);
758         else {
759                 rbnext = rb_first(&cfqq->sort_list);
760                 if (rbnext && rbnext != &last->rb_node)
761                         next = rb_entry_rq(rbnext);
762         }
763
764         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768                                       struct cfq_queue *cfqq)
769 {
770         /*
771          * just an approximation, should be ok.
772          */
773         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780         return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786         struct rb_node **node = &st->rb.rb_node;
787         struct rb_node *parent = NULL;
788         struct cfq_group *__cfqg;
789         s64 key = cfqg_key(st, cfqg);
790         int left = 1;
791
792         while (*node != NULL) {
793                 parent = *node;
794                 __cfqg = rb_entry_cfqg(parent);
795
796                 if (key < cfqg_key(st, __cfqg))
797                         node = &parent->rb_left;
798                 else {
799                         node = &parent->rb_right;
800                         left = 0;
801                 }
802         }
803
804         if (left)
805                 st->left = &cfqg->rb_node;
806
807         rb_link_node(&cfqg->rb_node, parent, node);
808         rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814         struct cfq_rb_root *st = &cfqd->grp_service_tree;
815         struct cfq_group *__cfqg;
816         struct rb_node *n;
817
818         cfqg->nr_cfqq++;
819         if (cfqg->on_st)
820                 return;
821
822         /*
823          * Currently put the group at the end. Later implement something
824          * so that groups get lesser vtime based on their weights, so that
825          * if group does not loose all if it was not continously backlogged.
826          */
827         n = rb_last(&st->rb);
828         if (n) {
829                 __cfqg = rb_entry_cfqg(n);
830                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831         } else
832                 cfqg->vdisktime = st->min_vdisktime;
833
834         __cfq_group_service_tree_add(st, cfqg);
835         cfqg->on_st = true;
836         st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842         struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844         if (st->active == &cfqg->rb_node)
845                 st->active = NULL;
846
847         BUG_ON(cfqg->nr_cfqq < 1);
848         cfqg->nr_cfqq--;
849
850         /* If there are other cfq queues under this group, don't delete it */
851         if (cfqg->nr_cfqq)
852                 return;
853
854         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855         cfqg->on_st = false;
856         st->total_weight -= cfqg->weight;
857         if (!RB_EMPTY_NODE(&cfqg->rb_node))
858                 cfq_rb_erase(&cfqg->rb_node, st);
859         cfqg->saved_workload_slice = 0;
860         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865         unsigned int slice_used;
866
867         /*
868          * Queue got expired before even a single request completed or
869          * got expired immediately after first request completion.
870          */
871         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872                 /*
873                  * Also charge the seek time incurred to the group, otherwise
874                  * if there are mutiple queues in the group, each can dispatch
875                  * a single request on seeky media and cause lots of seek time
876                  * and group will never know it.
877                  */
878                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879                                         1);
880         } else {
881                 slice_used = jiffies - cfqq->slice_start;
882                 if (slice_used > cfqq->allocated_slice)
883                         slice_used = cfqq->allocated_slice;
884         }
885
886         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887                                 cfqq->nr_sectors);
888         return slice_used;
889 }
890
891 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892                                 struct cfq_queue *cfqq)
893 {
894         struct cfq_rb_root *st = &cfqd->grp_service_tree;
895         unsigned int used_sl, charge_sl;
896         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897                         - cfqg->service_tree_idle.count;
898
899         BUG_ON(nr_sync < 0);
900         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
901
902         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903                 charge_sl = cfqq->allocated_slice;
904
905         /* Can't update vdisktime while group is on service tree */
906         cfq_rb_erase(&cfqg->rb_node, st);
907         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908         __cfq_group_service_tree_add(st, cfqg);
909
910         /* This group is being expired. Save the context */
911         if (time_after(cfqd->workload_expires, jiffies)) {
912                 cfqg->saved_workload_slice = cfqd->workload_expires
913                                                 - jiffies;
914                 cfqg->saved_workload = cfqd->serving_type;
915                 cfqg->saved_serving_prio = cfqd->serving_prio;
916         } else
917                 cfqg->saved_workload_slice = 0;
918
919         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920                                         st->min_vdisktime);
921         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922                                                 cfqq->nr_sectors);
923 }
924
925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
926 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927 {
928         if (blkg)
929                 return container_of(blkg, struct cfq_group, blkg);
930         return NULL;
931 }
932
933 void
934 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935 {
936         cfqg_of_blkg(blkg)->weight = weight;
937 }
938
939 static struct cfq_group *
940 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941 {
942         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943         struct cfq_group *cfqg = NULL;
944         void *key = cfqd;
945         int i, j;
946         struct cfq_rb_root *st;
947         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948         unsigned int major, minor;
949
950         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951         if (cfqg || !create)
952                 goto done;
953
954         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955         if (!cfqg)
956                 goto done;
957
958         cfqg->weight = blkcg->weight;
959         for_each_cfqg_st(cfqg, i, j, st)
960                 *st = CFQ_RB_ROOT;
961         RB_CLEAR_NODE(&cfqg->rb_node);
962
963         /*
964          * Take the initial reference that will be released on destroy
965          * This can be thought of a joint reference by cgroup and
966          * elevator which will be dropped by either elevator exit
967          * or cgroup deletion path depending on who is exiting first.
968          */
969         atomic_set(&cfqg->ref, 1);
970
971         /* Add group onto cgroup list */
972         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974                                         MKDEV(major, minor));
975
976         /* Add group on cfqd list */
977         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
978
979 done:
980         return cfqg;
981 }
982
983 /*
984  * Search for the cfq group current task belongs to. If create = 1, then also
985  * create the cfq group if it does not exist. request_queue lock must be held.
986  */
987 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
988 {
989         struct cgroup *cgroup;
990         struct cfq_group *cfqg = NULL;
991
992         rcu_read_lock();
993         cgroup = task_cgroup(current, blkio_subsys_id);
994         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995         if (!cfqg && create)
996                 cfqg = &cfqd->root_group;
997         rcu_read_unlock();
998         return cfqg;
999 }
1000
1001 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1002 {
1003         /* Currently, all async queues are mapped to root group */
1004         if (!cfq_cfqq_sync(cfqq))
1005                 cfqg = &cfqq->cfqd->root_group;
1006
1007         cfqq->cfqg = cfqg;
1008         /* cfqq reference on cfqg */
1009         atomic_inc(&cfqq->cfqg->ref);
1010 }
1011
1012 static void cfq_put_cfqg(struct cfq_group *cfqg)
1013 {
1014         struct cfq_rb_root *st;
1015         int i, j;
1016
1017         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018         if (!atomic_dec_and_test(&cfqg->ref))
1019                 return;
1020         for_each_cfqg_st(cfqg, i, j, st)
1021                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022         kfree(cfqg);
1023 }
1024
1025 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1026 {
1027         /* Something wrong if we are trying to remove same group twice */
1028         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1029
1030         hlist_del_init(&cfqg->cfqd_node);
1031
1032         /*
1033          * Put the reference taken at the time of creation so that when all
1034          * queues are gone, group can be destroyed.
1035          */
1036         cfq_put_cfqg(cfqg);
1037 }
1038
1039 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1040 {
1041         struct hlist_node *pos, *n;
1042         struct cfq_group *cfqg;
1043
1044         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1045                 /*
1046                  * If cgroup removal path got to blk_group first and removed
1047                  * it from cgroup list, then it will take care of destroying
1048                  * cfqg also.
1049                  */
1050                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051                         cfq_destroy_cfqg(cfqd, cfqg);
1052         }
1053 }
1054
1055 /*
1056  * Blk cgroup controller notification saying that blkio_group object is being
1057  * delinked as associated cgroup object is going away. That also means that
1058  * no new IO will come in this group. So get rid of this group as soon as
1059  * any pending IO in the group is finished.
1060  *
1061  * This function is called under rcu_read_lock(). key is the rcu protected
1062  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063  * read lock.
1064  *
1065  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066  * it should not be NULL as even if elevator was exiting, cgroup deltion
1067  * path got to it first.
1068  */
1069 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1070 {
1071         unsigned long  flags;
1072         struct cfq_data *cfqd = key;
1073
1074         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1077 }
1078
1079 #else /* GROUP_IOSCHED */
1080 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081 {
1082         return &cfqd->root_group;
1083 }
1084 static inline void
1085 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086         cfqq->cfqg = cfqg;
1087 }
1088
1089 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1091
1092 #endif /* GROUP_IOSCHED */
1093
1094 /*
1095  * The cfqd->service_trees holds all pending cfq_queue's that have
1096  * requests waiting to be processed. It is sorted in the order that
1097  * we will service the queues.
1098  */
1099 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100                                  bool add_front)
1101 {
1102         struct rb_node **p, *parent;
1103         struct cfq_queue *__cfqq;
1104         unsigned long rb_key;
1105         struct cfq_rb_root *service_tree;
1106         int left;
1107         int new_cfqq = 1;
1108         int group_changed = 0;
1109
1110 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1111         if (!cfqd->cfq_group_isolation
1112             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114                 /* Move this cfq to root group */
1115                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118                 cfqq->orig_cfqg = cfqq->cfqg;
1119                 cfqq->cfqg = &cfqd->root_group;
1120                 atomic_inc(&cfqd->root_group.ref);
1121                 group_changed = 1;
1122         } else if (!cfqd->cfq_group_isolation
1123                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124                 /* cfqq is sequential now needs to go to its original group */
1125                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128                 cfq_put_cfqg(cfqq->cfqg);
1129                 cfqq->cfqg = cfqq->orig_cfqg;
1130                 cfqq->orig_cfqg = NULL;
1131                 group_changed = 1;
1132                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1133         }
1134 #endif
1135
1136         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137                                                 cfqq_type(cfqq));
1138         if (cfq_class_idle(cfqq)) {
1139                 rb_key = CFQ_IDLE_DELAY;
1140                 parent = rb_last(&service_tree->rb);
1141                 if (parent && parent != &cfqq->rb_node) {
1142                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143                         rb_key += __cfqq->rb_key;
1144                 } else
1145                         rb_key += jiffies;
1146         } else if (!add_front) {
1147                 /*
1148                  * Get our rb key offset. Subtract any residual slice
1149                  * value carried from last service. A negative resid
1150                  * count indicates slice overrun, and this should position
1151                  * the next service time further away in the tree.
1152                  */
1153                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154                 rb_key -= cfqq->slice_resid;
1155                 cfqq->slice_resid = 0;
1156         } else {
1157                 rb_key = -HZ;
1158                 __cfqq = cfq_rb_first(service_tree);
1159                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1160         }
1161
1162         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163                 new_cfqq = 0;
1164                 /*
1165                  * same position, nothing more to do
1166                  */
1167                 if (rb_key == cfqq->rb_key &&
1168                     cfqq->service_tree == service_tree)
1169                         return;
1170
1171                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172                 cfqq->service_tree = NULL;
1173         }
1174
1175         left = 1;
1176         parent = NULL;
1177         cfqq->service_tree = service_tree;
1178         p = &service_tree->rb.rb_node;
1179         while (*p) {
1180                 struct rb_node **n;
1181
1182                 parent = *p;
1183                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1184
1185                 /*
1186                  * sort by key, that represents service time.
1187                  */
1188                 if (time_before(rb_key, __cfqq->rb_key))
1189                         n = &(*p)->rb_left;
1190                 else {
1191                         n = &(*p)->rb_right;
1192                         left = 0;
1193                 }
1194
1195                 p = n;
1196         }
1197
1198         if (left)
1199                 service_tree->left = &cfqq->rb_node;
1200
1201         cfqq->rb_key = rb_key;
1202         rb_link_node(&cfqq->rb_node, parent, p);
1203         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204         service_tree->count++;
1205         if ((add_front || !new_cfqq) && !group_changed)
1206                 return;
1207         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1208 }
1209
1210 static struct cfq_queue *
1211 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212                      sector_t sector, struct rb_node **ret_parent,
1213                      struct rb_node ***rb_link)
1214 {
1215         struct rb_node **p, *parent;
1216         struct cfq_queue *cfqq = NULL;
1217
1218         parent = NULL;
1219         p = &root->rb_node;
1220         while (*p) {
1221                 struct rb_node **n;
1222
1223                 parent = *p;
1224                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1225
1226                 /*
1227                  * Sort strictly based on sector.  Smallest to the left,
1228                  * largest to the right.
1229                  */
1230                 if (sector > blk_rq_pos(cfqq->next_rq))
1231                         n = &(*p)->rb_right;
1232                 else if (sector < blk_rq_pos(cfqq->next_rq))
1233                         n = &(*p)->rb_left;
1234                 else
1235                         break;
1236                 p = n;
1237                 cfqq = NULL;
1238         }
1239
1240         *ret_parent = parent;
1241         if (rb_link)
1242                 *rb_link = p;
1243         return cfqq;
1244 }
1245
1246 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1247 {
1248         struct rb_node **p, *parent;
1249         struct cfq_queue *__cfqq;
1250
1251         if (cfqq->p_root) {
1252                 rb_erase(&cfqq->p_node, cfqq->p_root);
1253                 cfqq->p_root = NULL;
1254         }
1255
1256         if (cfq_class_idle(cfqq))
1257                 return;
1258         if (!cfqq->next_rq)
1259                 return;
1260
1261         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1264         if (!__cfqq) {
1265                 rb_link_node(&cfqq->p_node, parent, p);
1266                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267         } else
1268                 cfqq->p_root = NULL;
1269 }
1270
1271 /*
1272  * Update cfqq's position in the service tree.
1273  */
1274 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275 {
1276         /*
1277          * Resorting requires the cfqq to be on the RR list already.
1278          */
1279         if (cfq_cfqq_on_rr(cfqq)) {
1280                 cfq_service_tree_add(cfqd, cfqq, 0);
1281                 cfq_prio_tree_add(cfqd, cfqq);
1282         }
1283 }
1284
1285 /*
1286  * add to busy list of queues for service, trying to be fair in ordering
1287  * the pending list according to last request service
1288  */
1289 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290 {
1291         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292         BUG_ON(cfq_cfqq_on_rr(cfqq));
1293         cfq_mark_cfqq_on_rr(cfqq);
1294         cfqd->busy_queues++;
1295
1296         cfq_resort_rr_list(cfqd, cfqq);
1297 }
1298
1299 /*
1300  * Called when the cfqq no longer has requests pending, remove it from
1301  * the service tree.
1302  */
1303 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1304 {
1305         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307         cfq_clear_cfqq_on_rr(cfqq);
1308
1309         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311                 cfqq->service_tree = NULL;
1312         }
1313         if (cfqq->p_root) {
1314                 rb_erase(&cfqq->p_node, cfqq->p_root);
1315                 cfqq->p_root = NULL;
1316         }
1317
1318         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319         BUG_ON(!cfqd->busy_queues);
1320         cfqd->busy_queues--;
1321 }
1322
1323 /*
1324  * rb tree support functions
1325  */
1326 static void cfq_del_rq_rb(struct request *rq)
1327 {
1328         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329         const int sync = rq_is_sync(rq);
1330
1331         BUG_ON(!cfqq->queued[sync]);
1332         cfqq->queued[sync]--;
1333
1334         elv_rb_del(&cfqq->sort_list, rq);
1335
1336         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1337                 /*
1338                  * Queue will be deleted from service tree when we actually
1339                  * expire it later. Right now just remove it from prio tree
1340                  * as it is empty.
1341                  */
1342                 if (cfqq->p_root) {
1343                         rb_erase(&cfqq->p_node, cfqq->p_root);
1344                         cfqq->p_root = NULL;
1345                 }
1346         }
1347 }
1348
1349 static void cfq_add_rq_rb(struct request *rq)
1350 {
1351         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352         struct cfq_data *cfqd = cfqq->cfqd;
1353         struct request *__alias, *prev;
1354
1355         cfqq->queued[rq_is_sync(rq)]++;
1356
1357         /*
1358          * looks a little odd, but the first insert might return an alias.
1359          * if that happens, put the alias on the dispatch list
1360          */
1361         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362                 cfq_dispatch_insert(cfqd->queue, __alias);
1363
1364         if (!cfq_cfqq_on_rr(cfqq))
1365                 cfq_add_cfqq_rr(cfqd, cfqq);
1366
1367         /*
1368          * check if this request is a better next-serve candidate
1369          */
1370         prev = cfqq->next_rq;
1371         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1372
1373         /*
1374          * adjust priority tree position, if ->next_rq changes
1375          */
1376         if (prev != cfqq->next_rq)
1377                 cfq_prio_tree_add(cfqd, cfqq);
1378
1379         BUG_ON(!cfqq->next_rq);
1380 }
1381
1382 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1383 {
1384         elv_rb_del(&cfqq->sort_list, rq);
1385         cfqq->queued[rq_is_sync(rq)]--;
1386         cfq_add_rq_rb(rq);
1387 }
1388
1389 static struct request *
1390 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1391 {
1392         struct task_struct *tsk = current;
1393         struct cfq_io_context *cic;
1394         struct cfq_queue *cfqq;
1395
1396         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397         if (!cic)
1398                 return NULL;
1399
1400         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401         if (cfqq) {
1402                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1403
1404                 return elv_rb_find(&cfqq->sort_list, sector);
1405         }
1406
1407         return NULL;
1408 }
1409
1410 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1411 {
1412         struct cfq_data *cfqd = q->elevator->elevator_data;
1413
1414         cfqd->rq_in_driver++;
1415         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416                                                 cfqd->rq_in_driver);
1417
1418         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1419 }
1420
1421 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1422 {
1423         struct cfq_data *cfqd = q->elevator->elevator_data;
1424
1425         WARN_ON(!cfqd->rq_in_driver);
1426         cfqd->rq_in_driver--;
1427         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428                                                 cfqd->rq_in_driver);
1429 }
1430
1431 static void cfq_remove_request(struct request *rq)
1432 {
1433         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1434
1435         if (cfqq->next_rq == rq)
1436                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1437
1438         list_del_init(&rq->queuelist);
1439         cfq_del_rq_rb(rq);
1440
1441         cfqq->cfqd->rq_queued--;
1442         if (rq_is_meta(rq)) {
1443                 WARN_ON(!cfqq->meta_pending);
1444                 cfqq->meta_pending--;
1445         }
1446 }
1447
1448 static int cfq_merge(struct request_queue *q, struct request **req,
1449                      struct bio *bio)
1450 {
1451         struct cfq_data *cfqd = q->elevator->elevator_data;
1452         struct request *__rq;
1453
1454         __rq = cfq_find_rq_fmerge(cfqd, bio);
1455         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456                 *req = __rq;
1457                 return ELEVATOR_FRONT_MERGE;
1458         }
1459
1460         return ELEVATOR_NO_MERGE;
1461 }
1462
1463 static void cfq_merged_request(struct request_queue *q, struct request *req,
1464                                int type)
1465 {
1466         if (type == ELEVATOR_FRONT_MERGE) {
1467                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1468
1469                 cfq_reposition_rq_rb(cfqq, req);
1470         }
1471 }
1472
1473 static void
1474 cfq_merged_requests(struct request_queue *q, struct request *rq,
1475                     struct request *next)
1476 {
1477         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478         /*
1479          * reposition in fifo if next is older than rq
1480          */
1481         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483                 list_move(&rq->queuelist, &next->queuelist);
1484                 rq_set_fifo_time(rq, rq_fifo_time(next));
1485         }
1486
1487         if (cfqq->next_rq == next)
1488                 cfqq->next_rq = rq;
1489         cfq_remove_request(next);
1490 }
1491
1492 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493                            struct bio *bio)
1494 {
1495         struct cfq_data *cfqd = q->elevator->elevator_data;
1496         struct cfq_io_context *cic;
1497         struct cfq_queue *cfqq;
1498
1499         /*
1500          * Disallow merge of a sync bio into an async request.
1501          */
1502         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503                 return false;
1504
1505         /*
1506          * Lookup the cfqq that this bio will be queued with. Allow
1507          * merge only if rq is queued there.
1508          */
1509         cic = cfq_cic_lookup(cfqd, current->io_context);
1510         if (!cic)
1511                 return false;
1512
1513         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514         return cfqq == RQ_CFQQ(rq);
1515 }
1516
1517 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518                                    struct cfq_queue *cfqq)
1519 {
1520         if (cfqq) {
1521                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1522                 cfqq->slice_start = 0;
1523                 cfqq->dispatch_start = jiffies;
1524                 cfqq->allocated_slice = 0;
1525                 cfqq->slice_end = 0;
1526                 cfqq->slice_dispatch = 0;
1527                 cfqq->nr_sectors = 0;
1528
1529                 cfq_clear_cfqq_wait_request(cfqq);
1530                 cfq_clear_cfqq_must_dispatch(cfqq);
1531                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1532                 cfq_clear_cfqq_fifo_expire(cfqq);
1533                 cfq_mark_cfqq_slice_new(cfqq);
1534
1535                 del_timer(&cfqd->idle_slice_timer);
1536         }
1537
1538         cfqd->active_queue = cfqq;
1539 }
1540
1541 /*
1542  * current cfqq expired its slice (or was too idle), select new one
1543  */
1544 static void
1545 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1546                     bool timed_out)
1547 {
1548         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1549
1550         if (cfq_cfqq_wait_request(cfqq))
1551                 del_timer(&cfqd->idle_slice_timer);
1552
1553         cfq_clear_cfqq_wait_request(cfqq);
1554         cfq_clear_cfqq_wait_busy(cfqq);
1555
1556         /*
1557          * If this cfqq is shared between multiple processes, check to
1558          * make sure that those processes are still issuing I/Os within
1559          * the mean seek distance.  If not, it may be time to break the
1560          * queues apart again.
1561          */
1562         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1563                 cfq_mark_cfqq_split_coop(cfqq);
1564
1565         /*
1566          * store what was left of this slice, if the queue idled/timed out
1567          */
1568         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1569                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1570                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1571         }
1572
1573         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1574
1575         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1576                 cfq_del_cfqq_rr(cfqd, cfqq);
1577
1578         cfq_resort_rr_list(cfqd, cfqq);
1579
1580         if (cfqq == cfqd->active_queue)
1581                 cfqd->active_queue = NULL;
1582
1583         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1584                 cfqd->grp_service_tree.active = NULL;
1585
1586         if (cfqd->active_cic) {
1587                 put_io_context(cfqd->active_cic->ioc);
1588                 cfqd->active_cic = NULL;
1589         }
1590 }
1591
1592 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1593 {
1594         struct cfq_queue *cfqq = cfqd->active_queue;
1595
1596         if (cfqq)
1597                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1598 }
1599
1600 /*
1601  * Get next queue for service. Unless we have a queue preemption,
1602  * we'll simply select the first cfqq in the service tree.
1603  */
1604 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1605 {
1606         struct cfq_rb_root *service_tree =
1607                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1608                                         cfqd->serving_type);
1609
1610         if (!cfqd->rq_queued)
1611                 return NULL;
1612
1613         /* There is nothing to dispatch */
1614         if (!service_tree)
1615                 return NULL;
1616         if (RB_EMPTY_ROOT(&service_tree->rb))
1617                 return NULL;
1618         return cfq_rb_first(service_tree);
1619 }
1620
1621 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1622 {
1623         struct cfq_group *cfqg;
1624         struct cfq_queue *cfqq;
1625         int i, j;
1626         struct cfq_rb_root *st;
1627
1628         if (!cfqd->rq_queued)
1629                 return NULL;
1630
1631         cfqg = cfq_get_next_cfqg(cfqd);
1632         if (!cfqg)
1633                 return NULL;
1634
1635         for_each_cfqg_st(cfqg, i, j, st)
1636                 if ((cfqq = cfq_rb_first(st)) != NULL)
1637                         return cfqq;
1638         return NULL;
1639 }
1640
1641 /*
1642  * Get and set a new active queue for service.
1643  */
1644 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1645                                               struct cfq_queue *cfqq)
1646 {
1647         if (!cfqq)
1648                 cfqq = cfq_get_next_queue(cfqd);
1649
1650         __cfq_set_active_queue(cfqd, cfqq);
1651         return cfqq;
1652 }
1653
1654 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1655                                           struct request *rq)
1656 {
1657         if (blk_rq_pos(rq) >= cfqd->last_position)
1658                 return blk_rq_pos(rq) - cfqd->last_position;
1659         else
1660                 return cfqd->last_position - blk_rq_pos(rq);
1661 }
1662
1663 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1664                                struct request *rq, bool for_preempt)
1665 {
1666         return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1667 }
1668
1669 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1670                                     struct cfq_queue *cur_cfqq)
1671 {
1672         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1673         struct rb_node *parent, *node;
1674         struct cfq_queue *__cfqq;
1675         sector_t sector = cfqd->last_position;
1676
1677         if (RB_EMPTY_ROOT(root))
1678                 return NULL;
1679
1680         /*
1681          * First, if we find a request starting at the end of the last
1682          * request, choose it.
1683          */
1684         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1685         if (__cfqq)
1686                 return __cfqq;
1687
1688         /*
1689          * If the exact sector wasn't found, the parent of the NULL leaf
1690          * will contain the closest sector.
1691          */
1692         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1693         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1694                 return __cfqq;
1695
1696         if (blk_rq_pos(__cfqq->next_rq) < sector)
1697                 node = rb_next(&__cfqq->p_node);
1698         else
1699                 node = rb_prev(&__cfqq->p_node);
1700         if (!node)
1701                 return NULL;
1702
1703         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1704         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1705                 return __cfqq;
1706
1707         return NULL;
1708 }
1709
1710 /*
1711  * cfqd - obvious
1712  * cur_cfqq - passed in so that we don't decide that the current queue is
1713  *            closely cooperating with itself.
1714  *
1715  * So, basically we're assuming that that cur_cfqq has dispatched at least
1716  * one request, and that cfqd->last_position reflects a position on the disk
1717  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1718  * assumption.
1719  */
1720 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1721                                               struct cfq_queue *cur_cfqq)
1722 {
1723         struct cfq_queue *cfqq;
1724
1725         if (!cfq_cfqq_sync(cur_cfqq))
1726                 return NULL;
1727         if (CFQQ_SEEKY(cur_cfqq))
1728                 return NULL;
1729
1730         /*
1731          * Don't search priority tree if it's the only queue in the group.
1732          */
1733         if (cur_cfqq->cfqg->nr_cfqq == 1)
1734                 return NULL;
1735
1736         /*
1737          * We should notice if some of the queues are cooperating, eg
1738          * working closely on the same area of the disk. In that case,
1739          * we can group them together and don't waste time idling.
1740          */
1741         cfqq = cfqq_close(cfqd, cur_cfqq);
1742         if (!cfqq)
1743                 return NULL;
1744
1745         /* If new queue belongs to different cfq_group, don't choose it */
1746         if (cur_cfqq->cfqg != cfqq->cfqg)
1747                 return NULL;
1748
1749         /*
1750          * It only makes sense to merge sync queues.
1751          */
1752         if (!cfq_cfqq_sync(cfqq))
1753                 return NULL;
1754         if (CFQQ_SEEKY(cfqq))
1755                 return NULL;
1756
1757         /*
1758          * Do not merge queues of different priority classes
1759          */
1760         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1761                 return NULL;
1762
1763         return cfqq;
1764 }
1765
1766 /*
1767  * Determine whether we should enforce idle window for this queue.
1768  */
1769
1770 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1771 {
1772         enum wl_prio_t prio = cfqq_prio(cfqq);
1773         struct cfq_rb_root *service_tree = cfqq->service_tree;
1774
1775         BUG_ON(!service_tree);
1776         BUG_ON(!service_tree->count);
1777
1778         /* We never do for idle class queues. */
1779         if (prio == IDLE_WORKLOAD)
1780                 return false;
1781
1782         /* We do for queues that were marked with idle window flag. */
1783         if (cfq_cfqq_idle_window(cfqq) &&
1784            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1785                 return true;
1786
1787         /*
1788          * Otherwise, we do only if they are the last ones
1789          * in their service tree.
1790          */
1791         return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1792 }
1793
1794 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1795 {
1796         struct cfq_queue *cfqq = cfqd->active_queue;
1797         struct cfq_io_context *cic;
1798         unsigned long sl;
1799
1800         /*
1801          * SSD device without seek penalty, disable idling. But only do so
1802          * for devices that support queuing, otherwise we still have a problem
1803          * with sync vs async workloads.
1804          */
1805         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1806                 return;
1807
1808         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1809         WARN_ON(cfq_cfqq_slice_new(cfqq));
1810
1811         /*
1812          * idle is disabled, either manually or by past process history
1813          */
1814         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1815                 return;
1816
1817         /*
1818          * still active requests from this queue, don't idle
1819          */
1820         if (cfqq->dispatched)
1821                 return;
1822
1823         /*
1824          * task has exited, don't wait
1825          */
1826         cic = cfqd->active_cic;
1827         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1828                 return;
1829
1830         /*
1831          * If our average think time is larger than the remaining time
1832          * slice, then don't idle. This avoids overrunning the allotted
1833          * time slice.
1834          */
1835         if (sample_valid(cic->ttime_samples) &&
1836             (cfqq->slice_end - jiffies < cic->ttime_mean))
1837                 return;
1838
1839         cfq_mark_cfqq_wait_request(cfqq);
1840
1841         sl = cfqd->cfq_slice_idle;
1842
1843         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1844         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1845 }
1846
1847 /*
1848  * Move request from internal lists to the request queue dispatch list.
1849  */
1850 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1851 {
1852         struct cfq_data *cfqd = q->elevator->elevator_data;
1853         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1854
1855         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1856
1857         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1858         cfq_remove_request(rq);
1859         cfqq->dispatched++;
1860         elv_dispatch_sort(q, rq);
1861
1862         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1863         cfqq->nr_sectors += blk_rq_sectors(rq);
1864 }
1865
1866 /*
1867  * return expired entry, or NULL to just start from scratch in rbtree
1868  */
1869 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1870 {
1871         struct request *rq = NULL;
1872
1873         if (cfq_cfqq_fifo_expire(cfqq))
1874                 return NULL;
1875
1876         cfq_mark_cfqq_fifo_expire(cfqq);
1877
1878         if (list_empty(&cfqq->fifo))
1879                 return NULL;
1880
1881         rq = rq_entry_fifo(cfqq->fifo.next);
1882         if (time_before(jiffies, rq_fifo_time(rq)))
1883                 rq = NULL;
1884
1885         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1886         return rq;
1887 }
1888
1889 static inline int
1890 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1891 {
1892         const int base_rq = cfqd->cfq_slice_async_rq;
1893
1894         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1895
1896         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1897 }
1898
1899 /*
1900  * Must be called with the queue_lock held.
1901  */
1902 static int cfqq_process_refs(struct cfq_queue *cfqq)
1903 {
1904         int process_refs, io_refs;
1905
1906         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1907         process_refs = atomic_read(&cfqq->ref) - io_refs;
1908         BUG_ON(process_refs < 0);
1909         return process_refs;
1910 }
1911
1912 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1913 {
1914         int process_refs, new_process_refs;
1915         struct cfq_queue *__cfqq;
1916
1917         /* Avoid a circular list and skip interim queue merges */
1918         while ((__cfqq = new_cfqq->new_cfqq)) {
1919                 if (__cfqq == cfqq)
1920                         return;
1921                 new_cfqq = __cfqq;
1922         }
1923
1924         process_refs = cfqq_process_refs(cfqq);
1925         /*
1926          * If the process for the cfqq has gone away, there is no
1927          * sense in merging the queues.
1928          */
1929         if (process_refs == 0)
1930                 return;
1931
1932         /*
1933          * Merge in the direction of the lesser amount of work.
1934          */
1935         new_process_refs = cfqq_process_refs(new_cfqq);
1936         if (new_process_refs >= process_refs) {
1937                 cfqq->new_cfqq = new_cfqq;
1938                 atomic_add(process_refs, &new_cfqq->ref);
1939         } else {
1940                 new_cfqq->new_cfqq = cfqq;
1941                 atomic_add(new_process_refs, &cfqq->ref);
1942         }
1943 }
1944
1945 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1946                                 struct cfq_group *cfqg, enum wl_prio_t prio)
1947 {
1948         struct cfq_queue *queue;
1949         int i;
1950         bool key_valid = false;
1951         unsigned long lowest_key = 0;
1952         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1953
1954         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1955                 /* select the one with lowest rb_key */
1956                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1957                 if (queue &&
1958                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1959                         lowest_key = queue->rb_key;
1960                         cur_best = i;
1961                         key_valid = true;
1962                 }
1963         }
1964
1965         return cur_best;
1966 }
1967
1968 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1969 {
1970         unsigned slice;
1971         unsigned count;
1972         struct cfq_rb_root *st;
1973         unsigned group_slice;
1974
1975         if (!cfqg) {
1976                 cfqd->serving_prio = IDLE_WORKLOAD;
1977                 cfqd->workload_expires = jiffies + 1;
1978                 return;
1979         }
1980
1981         /* Choose next priority. RT > BE > IDLE */
1982         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1983                 cfqd->serving_prio = RT_WORKLOAD;
1984         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1985                 cfqd->serving_prio = BE_WORKLOAD;
1986         else {
1987                 cfqd->serving_prio = IDLE_WORKLOAD;
1988                 cfqd->workload_expires = jiffies + 1;
1989                 return;
1990         }
1991
1992         /*
1993          * For RT and BE, we have to choose also the type
1994          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1995          * expiration time
1996          */
1997         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
1998         count = st->count;
1999
2000         /*
2001          * check workload expiration, and that we still have other queues ready
2002          */
2003         if (count && !time_after(jiffies, cfqd->workload_expires))
2004                 return;
2005
2006         /* otherwise select new workload type */
2007         cfqd->serving_type =
2008                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2009         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2010         count = st->count;
2011
2012         /*
2013          * the workload slice is computed as a fraction of target latency
2014          * proportional to the number of queues in that workload, over
2015          * all the queues in the same priority class
2016          */
2017         group_slice = cfq_group_slice(cfqd, cfqg);
2018
2019         slice = group_slice * count /
2020                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2021                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2022
2023         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2024                 unsigned int tmp;
2025
2026                 /*
2027                  * Async queues are currently system wide. Just taking
2028                  * proportion of queues with-in same group will lead to higher
2029                  * async ratio system wide as generally root group is going
2030                  * to have higher weight. A more accurate thing would be to
2031                  * calculate system wide asnc/sync ratio.
2032                  */
2033                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2034                 tmp = tmp/cfqd->busy_queues;
2035                 slice = min_t(unsigned, slice, tmp);
2036
2037                 /* async workload slice is scaled down according to
2038                  * the sync/async slice ratio. */
2039                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2040         } else
2041                 /* sync workload slice is at least 2 * cfq_slice_idle */
2042                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2043
2044         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2045         cfqd->workload_expires = jiffies + slice;
2046         cfqd->noidle_tree_requires_idle = false;
2047 }
2048
2049 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2050 {
2051         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2052         struct cfq_group *cfqg;
2053
2054         if (RB_EMPTY_ROOT(&st->rb))
2055                 return NULL;
2056         cfqg = cfq_rb_first_group(st);
2057         st->active = &cfqg->rb_node;
2058         update_min_vdisktime(st);
2059         return cfqg;
2060 }
2061
2062 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2063 {
2064         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2065
2066         cfqd->serving_group = cfqg;
2067
2068         /* Restore the workload type data */
2069         if (cfqg->saved_workload_slice) {
2070                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2071                 cfqd->serving_type = cfqg->saved_workload;
2072                 cfqd->serving_prio = cfqg->saved_serving_prio;
2073         } else
2074                 cfqd->workload_expires = jiffies - 1;
2075
2076         choose_service_tree(cfqd, cfqg);
2077 }
2078
2079 /*
2080  * Select a queue for service. If we have a current active queue,
2081  * check whether to continue servicing it, or retrieve and set a new one.
2082  */
2083 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2084 {
2085         struct cfq_queue *cfqq, *new_cfqq = NULL;
2086
2087         cfqq = cfqd->active_queue;
2088         if (!cfqq)
2089                 goto new_queue;
2090
2091         if (!cfqd->rq_queued)
2092                 return NULL;
2093
2094         /*
2095          * We were waiting for group to get backlogged. Expire the queue
2096          */
2097         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2098                 goto expire;
2099
2100         /*
2101          * The active queue has run out of time, expire it and select new.
2102          */
2103         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2104                 /*
2105                  * If slice had not expired at the completion of last request
2106                  * we might not have turned on wait_busy flag. Don't expire
2107                  * the queue yet. Allow the group to get backlogged.
2108                  *
2109                  * The very fact that we have used the slice, that means we
2110                  * have been idling all along on this queue and it should be
2111                  * ok to wait for this request to complete.
2112                  */
2113                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2114                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2115                         cfqq = NULL;
2116                         goto keep_queue;
2117                 } else
2118                         goto expire;
2119         }
2120
2121         /*
2122          * The active queue has requests and isn't expired, allow it to
2123          * dispatch.
2124          */
2125         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2126                 goto keep_queue;
2127
2128         /*
2129          * If another queue has a request waiting within our mean seek
2130          * distance, let it run.  The expire code will check for close
2131          * cooperators and put the close queue at the front of the service
2132          * tree.  If possible, merge the expiring queue with the new cfqq.
2133          */
2134         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2135         if (new_cfqq) {
2136                 if (!cfqq->new_cfqq)
2137                         cfq_setup_merge(cfqq, new_cfqq);
2138                 goto expire;
2139         }
2140
2141         /*
2142          * No requests pending. If the active queue still has requests in
2143          * flight or is idling for a new request, allow either of these
2144          * conditions to happen (or time out) before selecting a new queue.
2145          */
2146         if (timer_pending(&cfqd->idle_slice_timer) ||
2147             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2148                 cfqq = NULL;
2149                 goto keep_queue;
2150         }
2151
2152 expire:
2153         cfq_slice_expired(cfqd, 0);
2154 new_queue:
2155         /*
2156          * Current queue expired. Check if we have to switch to a new
2157          * service tree
2158          */
2159         if (!new_cfqq)
2160                 cfq_choose_cfqg(cfqd);
2161
2162         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2163 keep_queue:
2164         return cfqq;
2165 }
2166
2167 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2168 {
2169         int dispatched = 0;
2170
2171         while (cfqq->next_rq) {
2172                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2173                 dispatched++;
2174         }
2175
2176         BUG_ON(!list_empty(&cfqq->fifo));
2177
2178         /* By default cfqq is not expired if it is empty. Do it explicitly */
2179         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2180         return dispatched;
2181 }
2182
2183 /*
2184  * Drain our current requests. Used for barriers and when switching
2185  * io schedulers on-the-fly.
2186  */
2187 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2188 {
2189         struct cfq_queue *cfqq;
2190         int dispatched = 0;
2191
2192         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2193                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2194
2195         cfq_slice_expired(cfqd, 0);
2196         BUG_ON(cfqd->busy_queues);
2197
2198         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2199         return dispatched;
2200 }
2201
2202 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2203         struct cfq_queue *cfqq)
2204 {
2205         /* the queue hasn't finished any request, can't estimate */
2206         if (cfq_cfqq_slice_new(cfqq))
2207                 return 1;
2208         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2209                 cfqq->slice_end))
2210                 return 1;
2211
2212         return 0;
2213 }
2214
2215 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2216 {
2217         unsigned int max_dispatch;
2218
2219         /*
2220          * Drain async requests before we start sync IO
2221          */
2222         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2223                 return false;
2224
2225         /*
2226          * If this is an async queue and we have sync IO in flight, let it wait
2227          */
2228         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2229                 return false;
2230
2231         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2232         if (cfq_class_idle(cfqq))
2233                 max_dispatch = 1;
2234
2235         /*
2236          * Does this cfqq already have too much IO in flight?
2237          */
2238         if (cfqq->dispatched >= max_dispatch) {
2239                 /*
2240                  * idle queue must always only have a single IO in flight
2241                  */
2242                 if (cfq_class_idle(cfqq))
2243                         return false;
2244
2245                 /*
2246                  * We have other queues, don't allow more IO from this one
2247                  */
2248                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2249                         return false;
2250
2251                 /*
2252                  * Sole queue user, no limit
2253                  */
2254                 if (cfqd->busy_queues == 1)
2255                         max_dispatch = -1;
2256                 else
2257                         /*
2258                          * Normally we start throttling cfqq when cfq_quantum/2
2259                          * requests have been dispatched. But we can drive
2260                          * deeper queue depths at the beginning of slice
2261                          * subjected to upper limit of cfq_quantum.
2262                          * */
2263                         max_dispatch = cfqd->cfq_quantum;
2264         }
2265
2266         /*
2267          * Async queues must wait a bit before being allowed dispatch.
2268          * We also ramp up the dispatch depth gradually for async IO,
2269          * based on the last sync IO we serviced
2270          */
2271         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2272                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2273                 unsigned int depth;
2274
2275                 depth = last_sync / cfqd->cfq_slice[1];
2276                 if (!depth && !cfqq->dispatched)
2277                         depth = 1;
2278                 if (depth < max_dispatch)
2279                         max_dispatch = depth;
2280         }
2281
2282         /*
2283          * If we're below the current max, allow a dispatch
2284          */
2285         return cfqq->dispatched < max_dispatch;
2286 }
2287
2288 /*
2289  * Dispatch a request from cfqq, moving them to the request queue
2290  * dispatch list.
2291  */
2292 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2293 {
2294         struct request *rq;
2295
2296         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2297
2298         if (!cfq_may_dispatch(cfqd, cfqq))
2299                 return false;
2300
2301         /*
2302          * follow expired path, else get first next available
2303          */
2304         rq = cfq_check_fifo(cfqq);
2305         if (!rq)
2306                 rq = cfqq->next_rq;
2307
2308         /*
2309          * insert request into driver dispatch list
2310          */
2311         cfq_dispatch_insert(cfqd->queue, rq);
2312
2313         if (!cfqd->active_cic) {
2314                 struct cfq_io_context *cic = RQ_CIC(rq);
2315
2316                 atomic_long_inc(&cic->ioc->refcount);
2317                 cfqd->active_cic = cic;
2318         }
2319
2320         return true;
2321 }
2322
2323 /*
2324  * Find the cfqq that we need to service and move a request from that to the
2325  * dispatch list
2326  */
2327 static int cfq_dispatch_requests(struct request_queue *q, int force)
2328 {
2329         struct cfq_data *cfqd = q->elevator->elevator_data;
2330         struct cfq_queue *cfqq;
2331
2332         if (!cfqd->busy_queues)
2333                 return 0;
2334
2335         if (unlikely(force))
2336                 return cfq_forced_dispatch(cfqd);
2337
2338         cfqq = cfq_select_queue(cfqd);
2339         if (!cfqq)
2340                 return 0;
2341
2342         /*
2343          * Dispatch a request from this cfqq, if it is allowed
2344          */
2345         if (!cfq_dispatch_request(cfqd, cfqq))
2346                 return 0;
2347
2348         cfqq->slice_dispatch++;
2349         cfq_clear_cfqq_must_dispatch(cfqq);
2350
2351         /*
2352          * expire an async queue immediately if it has used up its slice. idle
2353          * queue always expire after 1 dispatch round.
2354          */
2355         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2356             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2357             cfq_class_idle(cfqq))) {
2358                 cfqq->slice_end = jiffies + 1;
2359                 cfq_slice_expired(cfqd, 0);
2360         }
2361
2362         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2363         return 1;
2364 }
2365
2366 /*
2367  * task holds one reference to the queue, dropped when task exits. each rq
2368  * in-flight on this queue also holds a reference, dropped when rq is freed.
2369  *
2370  * Each cfq queue took a reference on the parent group. Drop it now.
2371  * queue lock must be held here.
2372  */
2373 static void cfq_put_queue(struct cfq_queue *cfqq)
2374 {
2375         struct cfq_data *cfqd = cfqq->cfqd;
2376         struct cfq_group *cfqg, *orig_cfqg;
2377
2378         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2379
2380         if (!atomic_dec_and_test(&cfqq->ref))
2381                 return;
2382
2383         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2384         BUG_ON(rb_first(&cfqq->sort_list));
2385         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2386         cfqg = cfqq->cfqg;
2387         orig_cfqg = cfqq->orig_cfqg;
2388
2389         if (unlikely(cfqd->active_queue == cfqq)) {
2390                 __cfq_slice_expired(cfqd, cfqq, 0);
2391                 cfq_schedule_dispatch(cfqd);
2392         }
2393
2394         BUG_ON(cfq_cfqq_on_rr(cfqq));
2395         kmem_cache_free(cfq_pool, cfqq);
2396         cfq_put_cfqg(cfqg);
2397         if (orig_cfqg)
2398                 cfq_put_cfqg(orig_cfqg);
2399 }
2400
2401 /*
2402  * Must always be called with the rcu_read_lock() held
2403  */
2404 static void
2405 __call_for_each_cic(struct io_context *ioc,
2406                     void (*func)(struct io_context *, struct cfq_io_context *))
2407 {
2408         struct cfq_io_context *cic;
2409         struct hlist_node *n;
2410
2411         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2412                 func(ioc, cic);
2413 }
2414
2415 /*
2416  * Call func for each cic attached to this ioc.
2417  */
2418 static void
2419 call_for_each_cic(struct io_context *ioc,
2420                   void (*func)(struct io_context *, struct cfq_io_context *))
2421 {
2422         rcu_read_lock();
2423         __call_for_each_cic(ioc, func);
2424         rcu_read_unlock();
2425 }
2426
2427 static void cfq_cic_free_rcu(struct rcu_head *head)
2428 {
2429         struct cfq_io_context *cic;
2430
2431         cic = container_of(head, struct cfq_io_context, rcu_head);
2432
2433         kmem_cache_free(cfq_ioc_pool, cic);
2434         elv_ioc_count_dec(cfq_ioc_count);
2435
2436         if (ioc_gone) {
2437                 /*
2438                  * CFQ scheduler is exiting, grab exit lock and check
2439                  * the pending io context count. If it hits zero,
2440                  * complete ioc_gone and set it back to NULL
2441                  */
2442                 spin_lock(&ioc_gone_lock);
2443                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2444                         complete(ioc_gone);
2445                         ioc_gone = NULL;
2446                 }
2447                 spin_unlock(&ioc_gone_lock);
2448         }
2449 }
2450
2451 static void cfq_cic_free(struct cfq_io_context *cic)
2452 {
2453         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2454 }
2455
2456 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2457 {
2458         unsigned long flags;
2459
2460         BUG_ON(!cic->dead_key);
2461
2462         spin_lock_irqsave(&ioc->lock, flags);
2463         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2464         hlist_del_rcu(&cic->cic_list);
2465         spin_unlock_irqrestore(&ioc->lock, flags);
2466
2467         cfq_cic_free(cic);
2468 }
2469
2470 /*
2471  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2472  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2473  * and ->trim() which is called with the task lock held
2474  */
2475 static void cfq_free_io_context(struct io_context *ioc)
2476 {
2477         /*
2478          * ioc->refcount is zero here, or we are called from elv_unregister(),
2479          * so no more cic's are allowed to be linked into this ioc.  So it
2480          * should be ok to iterate over the known list, we will see all cic's
2481          * since no new ones are added.
2482          */
2483         __call_for_each_cic(ioc, cic_free_func);
2484 }
2485
2486 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2487 {
2488         struct cfq_queue *__cfqq, *next;
2489
2490         if (unlikely(cfqq == cfqd->active_queue)) {
2491                 __cfq_slice_expired(cfqd, cfqq, 0);
2492                 cfq_schedule_dispatch(cfqd);
2493         }
2494
2495         /*
2496          * If this queue was scheduled to merge with another queue, be
2497          * sure to drop the reference taken on that queue (and others in
2498          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2499          */
2500         __cfqq = cfqq->new_cfqq;
2501         while (__cfqq) {
2502                 if (__cfqq == cfqq) {
2503                         WARN(1, "cfqq->new_cfqq loop detected\n");
2504                         break;
2505                 }
2506                 next = __cfqq->new_cfqq;
2507                 cfq_put_queue(__cfqq);
2508                 __cfqq = next;
2509         }
2510
2511         cfq_put_queue(cfqq);
2512 }
2513
2514 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2515                                          struct cfq_io_context *cic)
2516 {
2517         struct io_context *ioc = cic->ioc;
2518
2519         list_del_init(&cic->queue_list);
2520
2521         /*
2522          * Make sure key == NULL is seen for dead queues
2523          */
2524         smp_wmb();
2525         cic->dead_key = (unsigned long) cic->key;
2526         cic->key = NULL;
2527
2528         if (ioc->ioc_data == cic)
2529                 rcu_assign_pointer(ioc->ioc_data, NULL);
2530
2531         if (cic->cfqq[BLK_RW_ASYNC]) {
2532                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2533                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2534         }
2535
2536         if (cic->cfqq[BLK_RW_SYNC]) {
2537                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2538                 cic->cfqq[BLK_RW_SYNC] = NULL;
2539         }
2540 }
2541
2542 static void cfq_exit_single_io_context(struct io_context *ioc,
2543                                        struct cfq_io_context *cic)
2544 {
2545         struct cfq_data *cfqd = cic->key;
2546
2547         if (cfqd) {
2548                 struct request_queue *q = cfqd->queue;
2549                 unsigned long flags;
2550
2551                 spin_lock_irqsave(q->queue_lock, flags);
2552
2553                 /*
2554                  * Ensure we get a fresh copy of the ->key to prevent
2555                  * race between exiting task and queue
2556                  */
2557                 smp_read_barrier_depends();
2558                 if (cic->key)
2559                         __cfq_exit_single_io_context(cfqd, cic);
2560
2561                 spin_unlock_irqrestore(q->queue_lock, flags);
2562         }
2563 }
2564
2565 /*
2566  * The process that ioc belongs to has exited, we need to clean up
2567  * and put the internal structures we have that belongs to that process.
2568  */
2569 static void cfq_exit_io_context(struct io_context *ioc)
2570 {
2571         call_for_each_cic(ioc, cfq_exit_single_io_context);
2572 }
2573
2574 static struct cfq_io_context *
2575 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2576 {
2577         struct cfq_io_context *cic;
2578
2579         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2580                                                         cfqd->queue->node);
2581         if (cic) {
2582                 cic->last_end_request = jiffies;
2583                 INIT_LIST_HEAD(&cic->queue_list);
2584                 INIT_HLIST_NODE(&cic->cic_list);
2585                 cic->dtor = cfq_free_io_context;
2586                 cic->exit = cfq_exit_io_context;
2587                 elv_ioc_count_inc(cfq_ioc_count);
2588         }
2589
2590         return cic;
2591 }
2592
2593 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2594 {
2595         struct task_struct *tsk = current;
2596         int ioprio_class;
2597
2598         if (!cfq_cfqq_prio_changed(cfqq))
2599                 return;
2600
2601         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2602         switch (ioprio_class) {
2603         default:
2604                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2605         case IOPRIO_CLASS_NONE:
2606                 /*
2607                  * no prio set, inherit CPU scheduling settings
2608                  */
2609                 cfqq->ioprio = task_nice_ioprio(tsk);
2610                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2611                 break;
2612         case IOPRIO_CLASS_RT:
2613                 cfqq->ioprio = task_ioprio(ioc);
2614                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2615                 break;
2616         case IOPRIO_CLASS_BE:
2617                 cfqq->ioprio = task_ioprio(ioc);
2618                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2619                 break;
2620         case IOPRIO_CLASS_IDLE:
2621                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2622                 cfqq->ioprio = 7;
2623                 cfq_clear_cfqq_idle_window(cfqq);
2624                 break;
2625         }
2626
2627         /*
2628          * keep track of original prio settings in case we have to temporarily
2629          * elevate the priority of this queue
2630          */
2631         cfqq->org_ioprio = cfqq->ioprio;
2632         cfqq->org_ioprio_class = cfqq->ioprio_class;
2633         cfq_clear_cfqq_prio_changed(cfqq);
2634 }
2635
2636 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2637 {
2638         struct cfq_data *cfqd = cic->key;
2639         struct cfq_queue *cfqq;
2640         unsigned long flags;
2641
2642         if (unlikely(!cfqd))
2643                 return;
2644
2645         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2646
2647         cfqq = cic->cfqq[BLK_RW_ASYNC];
2648         if (cfqq) {
2649                 struct cfq_queue *new_cfqq;
2650                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2651                                                 GFP_ATOMIC);
2652                 if (new_cfqq) {
2653                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2654                         cfq_put_queue(cfqq);
2655                 }
2656         }
2657
2658         cfqq = cic->cfqq[BLK_RW_SYNC];
2659         if (cfqq)
2660                 cfq_mark_cfqq_prio_changed(cfqq);
2661
2662         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2663 }
2664
2665 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2666 {
2667         call_for_each_cic(ioc, changed_ioprio);
2668         ioc->ioprio_changed = 0;
2669 }
2670
2671 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2672                           pid_t pid, bool is_sync)
2673 {
2674         RB_CLEAR_NODE(&cfqq->rb_node);
2675         RB_CLEAR_NODE(&cfqq->p_node);
2676         INIT_LIST_HEAD(&cfqq->fifo);
2677
2678         atomic_set(&cfqq->ref, 0);
2679         cfqq->cfqd = cfqd;
2680
2681         cfq_mark_cfqq_prio_changed(cfqq);
2682
2683         if (is_sync) {
2684                 if (!cfq_class_idle(cfqq))
2685                         cfq_mark_cfqq_idle_window(cfqq);
2686                 cfq_mark_cfqq_sync(cfqq);
2687         }
2688         cfqq->pid = pid;
2689 }
2690
2691 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2692 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2693 {
2694         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2695         struct cfq_data *cfqd = cic->key;
2696         unsigned long flags;
2697         struct request_queue *q;
2698
2699         if (unlikely(!cfqd))
2700                 return;
2701
2702         q = cfqd->queue;
2703
2704         spin_lock_irqsave(q->queue_lock, flags);
2705
2706         if (sync_cfqq) {
2707                 /*
2708                  * Drop reference to sync queue. A new sync queue will be
2709                  * assigned in new group upon arrival of a fresh request.
2710                  */
2711                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2712                 cic_set_cfqq(cic, NULL, 1);
2713                 cfq_put_queue(sync_cfqq);
2714         }
2715
2716         spin_unlock_irqrestore(q->queue_lock, flags);
2717 }
2718
2719 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2720 {
2721         call_for_each_cic(ioc, changed_cgroup);
2722         ioc->cgroup_changed = 0;
2723 }
2724 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2725
2726 static struct cfq_queue *
2727 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2728                      struct io_context *ioc, gfp_t gfp_mask)
2729 {
2730         struct cfq_queue *cfqq, *new_cfqq = NULL;
2731         struct cfq_io_context *cic;
2732         struct cfq_group *cfqg;
2733
2734 retry:
2735         cfqg = cfq_get_cfqg(cfqd, 1);
2736         cic = cfq_cic_lookup(cfqd, ioc);
2737         /* cic always exists here */
2738         cfqq = cic_to_cfqq(cic, is_sync);
2739
2740         /*
2741          * Always try a new alloc if we fell back to the OOM cfqq
2742          * originally, since it should just be a temporary situation.
2743          */
2744         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2745                 cfqq = NULL;
2746                 if (new_cfqq) {
2747                         cfqq = new_cfqq;
2748                         new_cfqq = NULL;
2749                 } else if (gfp_mask & __GFP_WAIT) {
2750                         spin_unlock_irq(cfqd->queue->queue_lock);
2751                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2752                                         gfp_mask | __GFP_ZERO,
2753                                         cfqd->queue->node);
2754                         spin_lock_irq(cfqd->queue->queue_lock);
2755                         if (new_cfqq)
2756                                 goto retry;
2757                 } else {
2758                         cfqq = kmem_cache_alloc_node(cfq_pool,
2759                                         gfp_mask | __GFP_ZERO,
2760                                         cfqd->queue->node);
2761                 }
2762
2763                 if (cfqq) {
2764                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2765                         cfq_init_prio_data(cfqq, ioc);
2766                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2767                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2768                 } else
2769                         cfqq = &cfqd->oom_cfqq;
2770         }
2771
2772         if (new_cfqq)
2773                 kmem_cache_free(cfq_pool, new_cfqq);
2774
2775         return cfqq;
2776 }
2777
2778 static struct cfq_queue **
2779 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2780 {
2781         switch (ioprio_class) {
2782         case IOPRIO_CLASS_RT:
2783                 return &cfqd->async_cfqq[0][ioprio];
2784         case IOPRIO_CLASS_BE:
2785                 return &cfqd->async_cfqq[1][ioprio];
2786         case IOPRIO_CLASS_IDLE:
2787                 return &cfqd->async_idle_cfqq;
2788         default:
2789                 BUG();
2790         }
2791 }
2792
2793 static struct cfq_queue *
2794 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2795               gfp_t gfp_mask)
2796 {
2797         const int ioprio = task_ioprio(ioc);
2798         const int ioprio_class = task_ioprio_class(ioc);
2799         struct cfq_queue **async_cfqq = NULL;
2800         struct cfq_queue *cfqq = NULL;
2801
2802         if (!is_sync) {
2803                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2804                 cfqq = *async_cfqq;
2805         }
2806
2807         if (!cfqq)
2808                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2809
2810         /*
2811          * pin the queue now that it's allocated, scheduler exit will prune it
2812          */
2813         if (!is_sync && !(*async_cfqq)) {
2814                 atomic_inc(&cfqq->ref);
2815                 *async_cfqq = cfqq;
2816         }
2817
2818         atomic_inc(&cfqq->ref);
2819         return cfqq;
2820 }
2821
2822 /*
2823  * We drop cfq io contexts lazily, so we may find a dead one.
2824  */
2825 static void
2826 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2827                   struct cfq_io_context *cic)
2828 {
2829         unsigned long flags;
2830
2831         WARN_ON(!list_empty(&cic->queue_list));
2832
2833         spin_lock_irqsave(&ioc->lock, flags);
2834
2835         BUG_ON(ioc->ioc_data == cic);
2836
2837         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2838         hlist_del_rcu(&cic->cic_list);
2839         spin_unlock_irqrestore(&ioc->lock, flags);
2840
2841         cfq_cic_free(cic);
2842 }
2843
2844 static struct cfq_io_context *
2845 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2846 {
2847         struct cfq_io_context *cic;
2848         unsigned long flags;
2849         void *k;
2850
2851         if (unlikely(!ioc))
2852                 return NULL;
2853
2854         rcu_read_lock();
2855
2856         /*
2857          * we maintain a last-hit cache, to avoid browsing over the tree
2858          */
2859         cic = rcu_dereference(ioc->ioc_data);
2860         if (cic && cic->key == cfqd) {
2861                 rcu_read_unlock();
2862                 return cic;
2863         }
2864
2865         do {
2866                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2867                 rcu_read_unlock();
2868                 if (!cic)
2869                         break;
2870                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2871                 k = cic->key;
2872                 if (unlikely(!k)) {
2873                         cfq_drop_dead_cic(cfqd, ioc, cic);
2874                         rcu_read_lock();
2875                         continue;
2876                 }
2877
2878                 spin_lock_irqsave(&ioc->lock, flags);
2879                 rcu_assign_pointer(ioc->ioc_data, cic);
2880                 spin_unlock_irqrestore(&ioc->lock, flags);
2881                 break;
2882         } while (1);
2883
2884         return cic;
2885 }
2886
2887 /*
2888  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2889  * the process specific cfq io context when entered from the block layer.
2890  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2891  */
2892 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2893                         struct cfq_io_context *cic, gfp_t gfp_mask)
2894 {
2895         unsigned long flags;
2896         int ret;
2897
2898         ret = radix_tree_preload(gfp_mask);
2899         if (!ret) {
2900                 cic->ioc = ioc;
2901                 cic->key = cfqd;
2902
2903                 spin_lock_irqsave(&ioc->lock, flags);
2904                 ret = radix_tree_insert(&ioc->radix_root,
2905                                                 (unsigned long) cfqd, cic);
2906                 if (!ret)
2907                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2908                 spin_unlock_irqrestore(&ioc->lock, flags);
2909
2910                 radix_tree_preload_end();
2911
2912                 if (!ret) {
2913                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2914                         list_add(&cic->queue_list, &cfqd->cic_list);
2915                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2916                 }
2917         }
2918
2919         if (ret)
2920                 printk(KERN_ERR "cfq: cic link failed!\n");
2921
2922         return ret;
2923 }
2924
2925 /*
2926  * Setup general io context and cfq io context. There can be several cfq
2927  * io contexts per general io context, if this process is doing io to more
2928  * than one device managed by cfq.
2929  */
2930 static struct cfq_io_context *
2931 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2932 {
2933         struct io_context *ioc = NULL;
2934         struct cfq_io_context *cic;
2935
2936         might_sleep_if(gfp_mask & __GFP_WAIT);
2937
2938         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2939         if (!ioc)
2940                 return NULL;
2941
2942         cic = cfq_cic_lookup(cfqd, ioc);
2943         if (cic)
2944                 goto out;
2945
2946         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2947         if (cic == NULL)
2948                 goto err;
2949
2950         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2951                 goto err_free;
2952
2953 out:
2954         smp_read_barrier_depends();
2955         if (unlikely(ioc->ioprio_changed))
2956                 cfq_ioc_set_ioprio(ioc);
2957
2958 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2959         if (unlikely(ioc->cgroup_changed))
2960                 cfq_ioc_set_cgroup(ioc);
2961 #endif
2962         return cic;
2963 err_free:
2964         cfq_cic_free(cic);
2965 err:
2966         put_io_context(ioc);
2967         return NULL;
2968 }
2969
2970 static void
2971 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2972 {
2973         unsigned long elapsed = jiffies - cic->last_end_request;
2974         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2975
2976         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2977         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2978         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2979 }
2980
2981 static void
2982 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2983                        struct request *rq)
2984 {
2985         sector_t sdist = 0;
2986         sector_t n_sec = blk_rq_sectors(rq);
2987         if (cfqq->last_request_pos) {
2988                 if (cfqq->last_request_pos < blk_rq_pos(rq))
2989                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2990                 else
2991                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2992         }
2993
2994         cfqq->seek_history <<= 1;
2995         if (blk_queue_nonrot(cfqd->queue))
2996                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2997         else
2998                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2999 }
3000
3001 /*
3002  * Disable idle window if the process thinks too long or seeks so much that
3003  * it doesn't matter
3004  */
3005 static void
3006 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3007                        struct cfq_io_context *cic)
3008 {
3009         int old_idle, enable_idle;
3010
3011         /*
3012          * Don't idle for async or idle io prio class
3013          */
3014         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3015                 return;
3016
3017         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3018
3019         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3020                 cfq_mark_cfqq_deep(cfqq);
3021
3022         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3023             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3024                 enable_idle = 0;
3025         else if (sample_valid(cic->ttime_samples)) {
3026                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3027                         enable_idle = 0;
3028                 else
3029                         enable_idle = 1;
3030         }
3031
3032         if (old_idle != enable_idle) {
3033                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3034                 if (enable_idle)
3035                         cfq_mark_cfqq_idle_window(cfqq);
3036                 else
3037                         cfq_clear_cfqq_idle_window(cfqq);
3038         }
3039 }
3040
3041 /*
3042  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3043  * no or if we aren't sure, a 1 will cause a preempt.
3044  */
3045 static bool
3046 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3047                    struct request *rq)
3048 {
3049         struct cfq_queue *cfqq;
3050
3051         cfqq = cfqd->active_queue;
3052         if (!cfqq)
3053                 return false;
3054
3055         if (cfq_class_idle(new_cfqq))
3056                 return false;
3057
3058         if (cfq_class_idle(cfqq))
3059                 return true;
3060
3061         /*
3062          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3063          */
3064         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3065                 return false;
3066
3067         /*
3068          * if the new request is sync, but the currently running queue is
3069          * not, let the sync request have priority.
3070          */
3071         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3072                 return true;
3073
3074         if (new_cfqq->cfqg != cfqq->cfqg)
3075                 return false;
3076
3077         if (cfq_slice_used(cfqq))
3078                 return true;
3079
3080         /* Allow preemption only if we are idling on sync-noidle tree */
3081         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3082             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3083             new_cfqq->service_tree->count == 2 &&
3084             RB_EMPTY_ROOT(&cfqq->sort_list))
3085                 return true;
3086
3087         /*
3088          * So both queues are sync. Let the new request get disk time if
3089          * it's a metadata request and the current queue is doing regular IO.
3090          */
3091         if (rq_is_meta(rq) && !cfqq->meta_pending)
3092                 return true;
3093
3094         /*
3095          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3096          */
3097         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3098                 return true;
3099
3100         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3101                 return false;
3102
3103         /*
3104          * if this request is as-good as one we would expect from the
3105          * current cfqq, let it preempt
3106          */
3107         if (cfq_rq_close(cfqd, cfqq, rq, true))
3108                 return true;
3109
3110         return false;
3111 }
3112
3113 /*
3114  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3115  * let it have half of its nominal slice.
3116  */
3117 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3118 {
3119         cfq_log_cfqq(cfqd, cfqq, "preempt");
3120         cfq_slice_expired(cfqd, 1);
3121
3122         /*
3123          * Put the new queue at the front of the of the current list,
3124          * so we know that it will be selected next.
3125          */
3126         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3127
3128         cfq_service_tree_add(cfqd, cfqq, 1);
3129
3130         cfqq->slice_end = 0;
3131         cfq_mark_cfqq_slice_new(cfqq);
3132 }
3133
3134 /*
3135  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3136  * something we should do about it
3137  */
3138 static void
3139 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3140                 struct request *rq)
3141 {
3142         struct cfq_io_context *cic = RQ_CIC(rq);
3143
3144         cfqd->rq_queued++;
3145         if (rq_is_meta(rq))
3146                 cfqq->meta_pending++;
3147
3148         cfq_update_io_thinktime(cfqd, cic);
3149         cfq_update_io_seektime(cfqd, cfqq, rq);
3150         cfq_update_idle_window(cfqd, cfqq, cic);
3151
3152         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3153
3154         if (cfqq == cfqd->active_queue) {
3155                 /*
3156                  * Remember that we saw a request from this process, but
3157                  * don't start queuing just yet. Otherwise we risk seeing lots
3158                  * of tiny requests, because we disrupt the normal plugging
3159                  * and merging. If the request is already larger than a single
3160                  * page, let it rip immediately. For that case we assume that
3161                  * merging is already done. Ditto for a busy system that
3162                  * has other work pending, don't risk delaying until the
3163                  * idle timer unplug to continue working.
3164                  */
3165                 if (cfq_cfqq_wait_request(cfqq)) {
3166                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3167                             cfqd->busy_queues > 1) {
3168                                 del_timer(&cfqd->idle_slice_timer);
3169                                 cfq_clear_cfqq_wait_request(cfqq);
3170                                 __blk_run_queue(cfqd->queue);
3171                         } else
3172                                 cfq_mark_cfqq_must_dispatch(cfqq);
3173                 }
3174         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3175                 /*
3176                  * not the active queue - expire current slice if it is
3177                  * idle and has expired it's mean thinktime or this new queue
3178                  * has some old slice time left and is of higher priority or
3179                  * this new queue is RT and the current one is BE
3180                  */
3181                 cfq_preempt_queue(cfqd, cfqq);
3182                 __blk_run_queue(cfqd->queue);
3183         }
3184 }
3185
3186 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3187 {
3188         struct cfq_data *cfqd = q->elevator->elevator_data;
3189         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3190
3191         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3192         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3193
3194         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3195         list_add_tail(&rq->queuelist, &cfqq->fifo);
3196         cfq_add_rq_rb(rq);
3197
3198         cfq_rq_enqueued(cfqd, cfqq, rq);
3199 }
3200
3201 /*
3202  * Update hw_tag based on peak queue depth over 50 samples under
3203  * sufficient load.
3204  */
3205 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3206 {
3207         struct cfq_queue *cfqq = cfqd->active_queue;
3208
3209         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3210                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3211
3212         if (cfqd->hw_tag == 1)
3213                 return;
3214
3215         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3216             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3217                 return;
3218
3219         /*
3220          * If active queue hasn't enough requests and can idle, cfq might not
3221          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3222          * case
3223          */
3224         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3225             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3226             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3227                 return;
3228
3229         if (cfqd->hw_tag_samples++ < 50)
3230                 return;
3231
3232         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3233                 cfqd->hw_tag = 1;
3234         else
3235                 cfqd->hw_tag = 0;
3236 }
3237
3238 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3239 {
3240         struct cfq_io_context *cic = cfqd->active_cic;
3241
3242         /* If there are other queues in the group, don't wait */
3243         if (cfqq->cfqg->nr_cfqq > 1)
3244                 return false;
3245
3246         if (cfq_slice_used(cfqq))
3247                 return true;
3248
3249         /* if slice left is less than think time, wait busy */
3250         if (cic && sample_valid(cic->ttime_samples)
3251             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3252                 return true;
3253
3254         /*
3255          * If think times is less than a jiffy than ttime_mean=0 and above
3256          * will not be true. It might happen that slice has not expired yet
3257          * but will expire soon (4-5 ns) during select_queue(). To cover the
3258          * case where think time is less than a jiffy, mark the queue wait
3259          * busy if only 1 jiffy is left in the slice.
3260          */
3261         if (cfqq->slice_end - jiffies == 1)
3262                 return true;
3263
3264         return false;
3265 }
3266
3267 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3268 {
3269         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3270         struct cfq_data *cfqd = cfqq->cfqd;
3271         const int sync = rq_is_sync(rq);
3272         unsigned long now;
3273
3274         now = jiffies;
3275         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3276
3277         cfq_update_hw_tag(cfqd);
3278
3279         WARN_ON(!cfqd->rq_in_driver);
3280         WARN_ON(!cfqq->dispatched);
3281         cfqd->rq_in_driver--;
3282         cfqq->dispatched--;
3283
3284         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3285
3286         if (sync) {
3287                 RQ_CIC(rq)->last_end_request = now;
3288                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3289                         cfqd->last_delayed_sync = now;
3290         }
3291
3292         /*
3293          * If this is the active queue, check if it needs to be expired,
3294          * or if we want to idle in case it has no pending requests.
3295          */
3296         if (cfqd->active_queue == cfqq) {
3297                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3298
3299                 if (cfq_cfqq_slice_new(cfqq)) {
3300                         cfq_set_prio_slice(cfqd, cfqq);
3301                         cfq_clear_cfqq_slice_new(cfqq);
3302                 }
3303
3304                 /*
3305                  * Should we wait for next request to come in before we expire
3306                  * the queue.
3307                  */
3308                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3309                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3310                         cfq_mark_cfqq_wait_busy(cfqq);
3311                 }
3312
3313                 /*
3314                  * Idling is not enabled on:
3315                  * - expired queues
3316                  * - idle-priority queues
3317                  * - async queues
3318                  * - queues with still some requests queued
3319                  * - when there is a close cooperator
3320                  */
3321                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3322                         cfq_slice_expired(cfqd, 1);
3323                 else if (sync && cfqq_empty &&
3324                          !cfq_close_cooperator(cfqd, cfqq)) {
3325                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3326                         /*
3327                          * Idling is enabled for SYNC_WORKLOAD.
3328                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3329                          * only if we processed at least one !rq_noidle request
3330                          */
3331                         if (cfqd->serving_type == SYNC_WORKLOAD
3332                             || cfqd->noidle_tree_requires_idle
3333                             || cfqq->cfqg->nr_cfqq == 1)
3334                                 cfq_arm_slice_timer(cfqd);
3335                 }
3336         }
3337
3338         if (!cfqd->rq_in_driver)
3339                 cfq_schedule_dispatch(cfqd);
3340 }
3341
3342 /*
3343  * we temporarily boost lower priority queues if they are holding fs exclusive
3344  * resources. they are boosted to normal prio (CLASS_BE/4)
3345  */
3346 static void cfq_prio_boost(struct cfq_queue *cfqq)
3347 {
3348         if (has_fs_excl()) {
3349                 /*
3350                  * boost idle prio on transactions that would lock out other
3351                  * users of the filesystem
3352                  */
3353                 if (cfq_class_idle(cfqq))
3354                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3355                 if (cfqq->ioprio > IOPRIO_NORM)
3356                         cfqq->ioprio = IOPRIO_NORM;
3357         } else {
3358                 /*
3359                  * unboost the queue (if needed)
3360                  */
3361                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3362                 cfqq->ioprio = cfqq->org_ioprio;
3363         }
3364 }
3365
3366 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3367 {
3368         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3369                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3370                 return ELV_MQUEUE_MUST;
3371         }
3372
3373         return ELV_MQUEUE_MAY;
3374 }
3375
3376 static int cfq_may_queue(struct request_queue *q, int rw)
3377 {
3378         struct cfq_data *cfqd = q->elevator->elevator_data;
3379         struct task_struct *tsk = current;
3380         struct cfq_io_context *cic;
3381         struct cfq_queue *cfqq;
3382
3383         /*
3384          * don't force setup of a queue from here, as a call to may_queue
3385          * does not necessarily imply that a request actually will be queued.
3386          * so just lookup a possibly existing queue, or return 'may queue'
3387          * if that fails
3388          */
3389         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3390         if (!cic)
3391                 return ELV_MQUEUE_MAY;
3392
3393         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3394         if (cfqq) {
3395                 cfq_init_prio_data(cfqq, cic->ioc);
3396                 cfq_prio_boost(cfqq);
3397
3398                 return __cfq_may_queue(cfqq);
3399         }
3400
3401         return ELV_MQUEUE_MAY;
3402 }
3403
3404 /*
3405  * queue lock held here
3406  */
3407 static void cfq_put_request(struct request *rq)
3408 {
3409         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3410
3411         if (cfqq) {
3412                 const int rw = rq_data_dir(rq);
3413
3414                 BUG_ON(!cfqq->allocated[rw]);
3415                 cfqq->allocated[rw]--;
3416
3417                 put_io_context(RQ_CIC(rq)->ioc);
3418
3419                 rq->elevator_private = NULL;
3420                 rq->elevator_private2 = NULL;
3421
3422                 cfq_put_queue(cfqq);
3423         }
3424 }
3425
3426 static struct cfq_queue *
3427 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3428                 struct cfq_queue *cfqq)
3429 {
3430         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3431         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3432         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3433         cfq_put_queue(cfqq);
3434         return cic_to_cfqq(cic, 1);
3435 }
3436
3437 /*
3438  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3439  * was the last process referring to said cfqq.
3440  */
3441 static struct cfq_queue *
3442 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3443 {
3444         if (cfqq_process_refs(cfqq) == 1) {
3445                 cfqq->pid = current->pid;
3446                 cfq_clear_cfqq_coop(cfqq);
3447                 cfq_clear_cfqq_split_coop(cfqq);
3448                 return cfqq;
3449         }
3450
3451         cic_set_cfqq(cic, NULL, 1);
3452         cfq_put_queue(cfqq);
3453         return NULL;
3454 }
3455 /*
3456  * Allocate cfq data structures associated with this request.
3457  */
3458 static int
3459 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3460 {
3461         struct cfq_data *cfqd = q->elevator->elevator_data;
3462         struct cfq_io_context *cic;
3463         const int rw = rq_data_dir(rq);
3464         const bool is_sync = rq_is_sync(rq);
3465         struct cfq_queue *cfqq;
3466         unsigned long flags;
3467
3468         might_sleep_if(gfp_mask & __GFP_WAIT);
3469
3470         cic = cfq_get_io_context(cfqd, gfp_mask);
3471
3472         spin_lock_irqsave(q->queue_lock, flags);
3473
3474         if (!cic)
3475                 goto queue_fail;
3476
3477 new_queue:
3478         cfqq = cic_to_cfqq(cic, is_sync);
3479         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3480                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3481                 cic_set_cfqq(cic, cfqq, is_sync);
3482         } else {
3483                 /*
3484                  * If the queue was seeky for too long, break it apart.
3485                  */
3486                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3487                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3488                         cfqq = split_cfqq(cic, cfqq);
3489                         if (!cfqq)
3490                                 goto new_queue;
3491                 }
3492
3493                 /*
3494                  * Check to see if this queue is scheduled to merge with
3495                  * another, closely cooperating queue.  The merging of
3496                  * queues happens here as it must be done in process context.
3497                  * The reference on new_cfqq was taken in merge_cfqqs.
3498                  */
3499                 if (cfqq->new_cfqq)
3500                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3501         }
3502
3503         cfqq->allocated[rw]++;
3504         atomic_inc(&cfqq->ref);
3505
3506         spin_unlock_irqrestore(q->queue_lock, flags);
3507
3508         rq->elevator_private = cic;
3509         rq->elevator_private2 = cfqq;
3510         return 0;
3511
3512 queue_fail:
3513         if (cic)
3514                 put_io_context(cic->ioc);
3515
3516         cfq_schedule_dispatch(cfqd);
3517         spin_unlock_irqrestore(q->queue_lock, flags);
3518         cfq_log(cfqd, "set_request fail");
3519         return 1;
3520 }
3521
3522 static void cfq_kick_queue(struct work_struct *work)
3523 {
3524         struct cfq_data *cfqd =
3525                 container_of(work, struct cfq_data, unplug_work);
3526         struct request_queue *q = cfqd->queue;
3527
3528         spin_lock_irq(q->queue_lock);
3529         __blk_run_queue(cfqd->queue);
3530         spin_unlock_irq(q->queue_lock);
3531 }
3532
3533 /*
3534  * Timer running if the active_queue is currently idling inside its time slice
3535  */
3536 static void cfq_idle_slice_timer(unsigned long data)
3537 {
3538         struct cfq_data *cfqd = (struct cfq_data *) data;
3539         struct cfq_queue *cfqq;
3540         unsigned long flags;
3541         int timed_out = 1;
3542
3543         cfq_log(cfqd, "idle timer fired");
3544
3545         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3546
3547         cfqq = cfqd->active_queue;
3548         if (cfqq) {
3549                 timed_out = 0;
3550
3551                 /*
3552                  * We saw a request before the queue expired, let it through
3553                  */
3554                 if (cfq_cfqq_must_dispatch(cfqq))
3555                         goto out_kick;
3556
3557                 /*
3558                  * expired
3559                  */
3560                 if (cfq_slice_used(cfqq))
3561                         goto expire;
3562
3563                 /*
3564                  * only expire and reinvoke request handler, if there are
3565                  * other queues with pending requests
3566                  */
3567                 if (!cfqd->busy_queues)
3568                         goto out_cont;
3569
3570                 /*
3571                  * not expired and it has a request pending, let it dispatch
3572                  */
3573                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3574                         goto out_kick;
3575
3576                 /*
3577                  * Queue depth flag is reset only when the idle didn't succeed
3578                  */
3579                 cfq_clear_cfqq_deep(cfqq);
3580         }
3581 expire:
3582         cfq_slice_expired(cfqd, timed_out);
3583 out_kick:
3584         cfq_schedule_dispatch(cfqd);
3585 out_cont:
3586         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3587 }
3588
3589 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3590 {
3591         del_timer_sync(&cfqd->idle_slice_timer);
3592         cancel_work_sync(&cfqd->unplug_work);
3593 }
3594
3595 static void cfq_put_async_queues(struct cfq_data *cfqd)
3596 {
3597         int i;
3598
3599         for (i = 0; i < IOPRIO_BE_NR; i++) {
3600                 if (cfqd->async_cfqq[0][i])
3601                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3602                 if (cfqd->async_cfqq[1][i])
3603                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3604         }
3605
3606         if (cfqd->async_idle_cfqq)
3607                 cfq_put_queue(cfqd->async_idle_cfqq);
3608 }
3609
3610 static void cfq_cfqd_free(struct rcu_head *head)
3611 {
3612         kfree(container_of(head, struct cfq_data, rcu));
3613 }
3614
3615 static void cfq_exit_queue(struct elevator_queue *e)
3616 {
3617         struct cfq_data *cfqd = e->elevator_data;
3618         struct request_queue *q = cfqd->queue;
3619
3620         cfq_shutdown_timer_wq(cfqd);
3621
3622         spin_lock_irq(q->queue_lock);
3623
3624         if (cfqd->active_queue)
3625                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3626
3627         while (!list_empty(&cfqd->cic_list)) {
3628                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3629                                                         struct cfq_io_context,
3630                                                         queue_list);
3631
3632                 __cfq_exit_single_io_context(cfqd, cic);
3633         }
3634
3635         cfq_put_async_queues(cfqd);
3636         cfq_release_cfq_groups(cfqd);
3637         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3638
3639         spin_unlock_irq(q->queue_lock);
3640
3641         cfq_shutdown_timer_wq(cfqd);
3642
3643         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3644         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3645 }
3646
3647 static void *cfq_init_queue(struct request_queue *q)
3648 {
3649         struct cfq_data *cfqd;
3650         int i, j;
3651         struct cfq_group *cfqg;
3652         struct cfq_rb_root *st;
3653
3654         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3655         if (!cfqd)
3656                 return NULL;
3657
3658         /* Init root service tree */
3659         cfqd->grp_service_tree = CFQ_RB_ROOT;
3660
3661         /* Init root group */
3662         cfqg = &cfqd->root_group;
3663         for_each_cfqg_st(cfqg, i, j, st)
3664                 *st = CFQ_RB_ROOT;
3665         RB_CLEAR_NODE(&cfqg->rb_node);
3666
3667         /* Give preference to root group over other groups */
3668         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3669
3670 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3671         /*
3672          * Take a reference to root group which we never drop. This is just
3673          * to make sure that cfq_put_cfqg() does not try to kfree root group
3674          */
3675         atomic_set(&cfqg->ref, 1);
3676         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3677                                         0);
3678 #endif
3679         /*
3680          * Not strictly needed (since RB_ROOT just clears the node and we
3681          * zeroed cfqd on alloc), but better be safe in case someone decides
3682          * to add magic to the rb code
3683          */
3684         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3685                 cfqd->prio_trees[i] = RB_ROOT;
3686
3687         /*
3688          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3689          * Grab a permanent reference to it, so that the normal code flow
3690          * will not attempt to free it.
3691          */
3692         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3693         atomic_inc(&cfqd->oom_cfqq.ref);
3694         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3695
3696         INIT_LIST_HEAD(&cfqd->cic_list);
3697
3698         cfqd->queue = q;
3699
3700         init_timer(&cfqd->idle_slice_timer);
3701         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3702         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3703
3704         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3705
3706         cfqd->cfq_quantum = cfq_quantum;
3707         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3708         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3709         cfqd->cfq_back_max = cfq_back_max;
3710         cfqd->cfq_back_penalty = cfq_back_penalty;
3711         cfqd->cfq_slice[0] = cfq_slice_async;
3712         cfqd->cfq_slice[1] = cfq_slice_sync;
3713         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3714         cfqd->cfq_slice_idle = cfq_slice_idle;
3715         cfqd->cfq_latency = 1;
3716         cfqd->cfq_group_isolation = 0;
3717         cfqd->hw_tag = -1;
3718         /*
3719          * we optimistically start assuming sync ops weren't delayed in last
3720          * second, in order to have larger depth for async operations.
3721          */
3722         cfqd->last_delayed_sync = jiffies - HZ;
3723         INIT_RCU_HEAD(&cfqd->rcu);
3724         return cfqd;
3725 }
3726
3727 static void cfq_slab_kill(void)
3728 {
3729         /*
3730          * Caller already ensured that pending RCU callbacks are completed,
3731          * so we should have no busy allocations at this point.
3732          */
3733         if (cfq_pool)
3734                 kmem_cache_destroy(cfq_pool);
3735         if (cfq_ioc_pool)
3736                 kmem_cache_destroy(cfq_ioc_pool);
3737 }
3738
3739 static int __init cfq_slab_setup(void)
3740 {
3741         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3742         if (!cfq_pool)
3743                 goto fail;
3744
3745         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3746         if (!cfq_ioc_pool)
3747                 goto fail;
3748
3749         return 0;
3750 fail:
3751         cfq_slab_kill();
3752         return -ENOMEM;
3753 }
3754
3755 /*
3756  * sysfs parts below -->
3757  */
3758 static ssize_t
3759 cfq_var_show(unsigned int var, char *page)
3760 {
3761         return sprintf(page, "%d\n", var);
3762 }
3763
3764 static ssize_t
3765 cfq_var_store(unsigned int *var, const char *page, size_t count)
3766 {
3767         char *p = (char *) page;
3768
3769         *var = simple_strtoul(p, &p, 10);
3770         return count;
3771 }
3772
3773 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3774 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3775 {                                                                       \
3776         struct cfq_data *cfqd = e->elevator_data;                       \
3777         unsigned int __data = __VAR;                                    \
3778         if (__CONV)                                                     \
3779                 __data = jiffies_to_msecs(__data);                      \
3780         return cfq_var_show(__data, (page));                            \
3781 }
3782 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3783 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3784 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3785 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3786 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3787 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3788 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3789 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3790 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3791 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3792 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3793 #undef SHOW_FUNCTION
3794
3795 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3796 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3797 {                                                                       \
3798         struct cfq_data *cfqd = e->elevator_data;                       \
3799         unsigned int __data;                                            \
3800         int ret = cfq_var_store(&__data, (page), count);                \
3801         if (__data < (MIN))                                             \
3802                 __data = (MIN);                                         \
3803         else if (__data > (MAX))                                        \
3804                 __data = (MAX);                                         \
3805         if (__CONV)                                                     \
3806                 *(__PTR) = msecs_to_jiffies(__data);                    \
3807         else                                                            \
3808                 *(__PTR) = __data;                                      \
3809         return ret;                                                     \
3810 }
3811 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3812 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3813                 UINT_MAX, 1);
3814 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3815                 UINT_MAX, 1);
3816 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3817 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3818                 UINT_MAX, 0);
3819 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3820 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3821 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3823                 UINT_MAX, 0);
3824 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3825 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3826 #undef STORE_FUNCTION
3827
3828 #define CFQ_ATTR(name) \
3829         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3830
3831 static struct elv_fs_entry cfq_attrs[] = {
3832         CFQ_ATTR(quantum),
3833         CFQ_ATTR(fifo_expire_sync),
3834         CFQ_ATTR(fifo_expire_async),
3835         CFQ_ATTR(back_seek_max),
3836         CFQ_ATTR(back_seek_penalty),
3837         CFQ_ATTR(slice_sync),
3838         CFQ_ATTR(slice_async),
3839         CFQ_ATTR(slice_async_rq),
3840         CFQ_ATTR(slice_idle),
3841         CFQ_ATTR(low_latency),
3842         CFQ_ATTR(group_isolation),
3843         __ATTR_NULL
3844 };
3845
3846 static struct elevator_type iosched_cfq = {
3847         .ops = {
3848                 .elevator_merge_fn =            cfq_merge,
3849                 .elevator_merged_fn =           cfq_merged_request,
3850                 .elevator_merge_req_fn =        cfq_merged_requests,
3851                 .elevator_allow_merge_fn =      cfq_allow_merge,
3852                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3853                 .elevator_add_req_fn =          cfq_insert_request,
3854                 .elevator_activate_req_fn =     cfq_activate_request,
3855                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3856                 .elevator_queue_empty_fn =      cfq_queue_empty,
3857                 .elevator_completed_req_fn =    cfq_completed_request,
3858                 .elevator_former_req_fn =       elv_rb_former_request,
3859                 .elevator_latter_req_fn =       elv_rb_latter_request,
3860                 .elevator_set_req_fn =          cfq_set_request,
3861                 .elevator_put_req_fn =          cfq_put_request,
3862                 .elevator_may_queue_fn =        cfq_may_queue,
3863                 .elevator_init_fn =             cfq_init_queue,
3864                 .elevator_exit_fn =             cfq_exit_queue,
3865                 .trim =                         cfq_free_io_context,
3866         },
3867         .elevator_attrs =       cfq_attrs,
3868         .elevator_name =        "cfq",
3869         .elevator_owner =       THIS_MODULE,
3870 };
3871
3872 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3873 static struct blkio_policy_type blkio_policy_cfq = {
3874         .ops = {
3875                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3876                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3877         },
3878 };
3879 #else
3880 static struct blkio_policy_type blkio_policy_cfq;
3881 #endif
3882
3883 static int __init cfq_init(void)
3884 {
3885         /*
3886          * could be 0 on HZ < 1000 setups
3887          */
3888         if (!cfq_slice_async)
3889                 cfq_slice_async = 1;
3890         if (!cfq_slice_idle)
3891                 cfq_slice_idle = 1;
3892
3893         if (cfq_slab_setup())
3894                 return -ENOMEM;
3895
3896         elv_register(&iosched_cfq);
3897         blkio_policy_register(&blkio_policy_cfq);
3898
3899         return 0;
3900 }
3901
3902 static void __exit cfq_exit(void)
3903 {
3904         DECLARE_COMPLETION_ONSTACK(all_gone);
3905         blkio_policy_unregister(&blkio_policy_cfq);
3906         elv_unregister(&iosched_cfq);
3907         ioc_gone = &all_gone;
3908         /* ioc_gone's update must be visible before reading ioc_count */
3909         smp_wmb();
3910
3911         /*
3912          * this also protects us from entering cfq_slab_kill() with
3913          * pending RCU callbacks
3914          */
3915         if (elv_ioc_count_read(cfq_ioc_count))
3916                 wait_for_completion(&all_gone);
3917         cfq_slab_kill();
3918 }
3919
3920 module_init(cfq_init);
3921 module_exit(cfq_exit);
3922
3923 MODULE_AUTHOR("Jens Axboe");
3924 MODULE_LICENSE("GPL");
3925 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");