KVM: MMU: Rename "metaphysical" attribute to "direct"
[safe/jmp/linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28 #include <linux/swap.h>
29 #include <linux/hugetlb.h>
30 #include <linux/compiler.h>
31
32 #include <asm/page.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/io.h>
35 #include <asm/vmx.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72
73 static int oos_shadow = 1;
74 module_param(oos_shadow, bool, 0644);
75
76 #ifndef MMU_DEBUG
77 #define ASSERT(x) do { } while (0)
78 #else
79 #define ASSERT(x)                                                       \
80         if (!(x)) {                                                     \
81                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
82                        __FILE__, __LINE__, #x);                         \
83         }
84 #endif
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 9
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
90
91 #define PT64_LEVEL_BITS 9
92
93 #define PT64_LEVEL_SHIFT(level) \
94                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
95
96 #define PT64_LEVEL_MASK(level) \
97                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
98
99 #define PT64_INDEX(address, level)\
100         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
101
102
103 #define PT32_LEVEL_BITS 10
104
105 #define PT32_LEVEL_SHIFT(level) \
106                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
107
108 #define PT32_LEVEL_MASK(level) \
109                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
110
111 #define PT32_INDEX(address, level)\
112         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
113
114
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #define PT64_DIR_BASE_ADDR_MASK \
117         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
118
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
124                         | PT64_NX_MASK)
125
126 #define PFERR_PRESENT_MASK (1U << 0)
127 #define PFERR_WRITE_MASK (1U << 1)
128 #define PFERR_USER_MASK (1U << 2)
129 #define PFERR_FETCH_MASK (1U << 4)
130
131 #define PT_DIRECTORY_LEVEL 2
132 #define PT_PAGE_TABLE_LEVEL 1
133
134 #define RMAP_EXT 4
135
136 #define ACC_EXEC_MASK    1
137 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
138 #define ACC_USER_MASK    PT_USER_MASK
139 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
140
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
142
143 struct kvm_rmap_desc {
144         u64 *shadow_ptes[RMAP_EXT];
145         struct kvm_rmap_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         int level;
152         u64 *sptep;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161
162 struct kvm_unsync_walk {
163         int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
164 };
165
166 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
167
168 static struct kmem_cache *pte_chain_cache;
169 static struct kmem_cache *rmap_desc_cache;
170 static struct kmem_cache *mmu_page_header_cache;
171
172 static u64 __read_mostly shadow_trap_nonpresent_pte;
173 static u64 __read_mostly shadow_notrap_nonpresent_pte;
174 static u64 __read_mostly shadow_base_present_pte;
175 static u64 __read_mostly shadow_nx_mask;
176 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
177 static u64 __read_mostly shadow_user_mask;
178 static u64 __read_mostly shadow_accessed_mask;
179 static u64 __read_mostly shadow_dirty_mask;
180 static u64 __read_mostly shadow_mt_mask;
181
182 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
183 {
184         shadow_trap_nonpresent_pte = trap_pte;
185         shadow_notrap_nonpresent_pte = notrap_pte;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
188
189 void kvm_mmu_set_base_ptes(u64 base_pte)
190 {
191         shadow_base_present_pte = base_pte;
192 }
193 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
194
195 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
196                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
197 {
198         shadow_user_mask = user_mask;
199         shadow_accessed_mask = accessed_mask;
200         shadow_dirty_mask = dirty_mask;
201         shadow_nx_mask = nx_mask;
202         shadow_x_mask = x_mask;
203         shadow_mt_mask = mt_mask;
204 }
205 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
206
207 static int is_write_protection(struct kvm_vcpu *vcpu)
208 {
209         return vcpu->arch.cr0 & X86_CR0_WP;
210 }
211
212 static int is_cpuid_PSE36(void)
213 {
214         return 1;
215 }
216
217 static int is_nx(struct kvm_vcpu *vcpu)
218 {
219         return vcpu->arch.shadow_efer & EFER_NX;
220 }
221
222 static int is_present_pte(unsigned long pte)
223 {
224         return pte & PT_PRESENT_MASK;
225 }
226
227 static int is_shadow_present_pte(u64 pte)
228 {
229         return pte != shadow_trap_nonpresent_pte
230                 && pte != shadow_notrap_nonpresent_pte;
231 }
232
233 static int is_large_pte(u64 pte)
234 {
235         return pte & PT_PAGE_SIZE_MASK;
236 }
237
238 static int is_writeble_pte(unsigned long pte)
239 {
240         return pte & PT_WRITABLE_MASK;
241 }
242
243 static int is_dirty_pte(unsigned long pte)
244 {
245         return pte & shadow_dirty_mask;
246 }
247
248 static int is_rmap_pte(u64 pte)
249 {
250         return is_shadow_present_pte(pte);
251 }
252
253 static pfn_t spte_to_pfn(u64 pte)
254 {
255         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
256 }
257
258 static gfn_t pse36_gfn_delta(u32 gpte)
259 {
260         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
261
262         return (gpte & PT32_DIR_PSE36_MASK) << shift;
263 }
264
265 static void set_shadow_pte(u64 *sptep, u64 spte)
266 {
267 #ifdef CONFIG_X86_64
268         set_64bit((unsigned long *)sptep, spte);
269 #else
270         set_64bit((unsigned long long *)sptep, spte);
271 #endif
272 }
273
274 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
275                                   struct kmem_cache *base_cache, int min)
276 {
277         void *obj;
278
279         if (cache->nobjs >= min)
280                 return 0;
281         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
282                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
283                 if (!obj)
284                         return -ENOMEM;
285                 cache->objects[cache->nobjs++] = obj;
286         }
287         return 0;
288 }
289
290 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
291 {
292         while (mc->nobjs)
293                 kfree(mc->objects[--mc->nobjs]);
294 }
295
296 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
297                                        int min)
298 {
299         struct page *page;
300
301         if (cache->nobjs >= min)
302                 return 0;
303         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
304                 page = alloc_page(GFP_KERNEL);
305                 if (!page)
306                         return -ENOMEM;
307                 set_page_private(page, 0);
308                 cache->objects[cache->nobjs++] = page_address(page);
309         }
310         return 0;
311 }
312
313 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
314 {
315         while (mc->nobjs)
316                 free_page((unsigned long)mc->objects[--mc->nobjs]);
317 }
318
319 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
320 {
321         int r;
322
323         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
324                                    pte_chain_cache, 4);
325         if (r)
326                 goto out;
327         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
328                                    rmap_desc_cache, 4);
329         if (r)
330                 goto out;
331         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
332         if (r)
333                 goto out;
334         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
335                                    mmu_page_header_cache, 4);
336 out:
337         return r;
338 }
339
340 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
341 {
342         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
343         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
344         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
345         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
346 }
347
348 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
349                                     size_t size)
350 {
351         void *p;
352
353         BUG_ON(!mc->nobjs);
354         p = mc->objects[--mc->nobjs];
355         return p;
356 }
357
358 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
359 {
360         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
361                                       sizeof(struct kvm_pte_chain));
362 }
363
364 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
365 {
366         kfree(pc);
367 }
368
369 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
370 {
371         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
372                                       sizeof(struct kvm_rmap_desc));
373 }
374
375 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
376 {
377         kfree(rd);
378 }
379
380 /*
381  * Return the pointer to the largepage write count for a given
382  * gfn, handling slots that are not large page aligned.
383  */
384 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
385 {
386         unsigned long idx;
387
388         idx = (gfn / KVM_PAGES_PER_HPAGE) -
389               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
390         return &slot->lpage_info[idx].write_count;
391 }
392
393 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
394 {
395         int *write_count;
396
397         gfn = unalias_gfn(kvm, gfn);
398         write_count = slot_largepage_idx(gfn,
399                                          gfn_to_memslot_unaliased(kvm, gfn));
400         *write_count += 1;
401 }
402
403 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
404 {
405         int *write_count;
406
407         gfn = unalias_gfn(kvm, gfn);
408         write_count = slot_largepage_idx(gfn,
409                                          gfn_to_memslot_unaliased(kvm, gfn));
410         *write_count -= 1;
411         WARN_ON(*write_count < 0);
412 }
413
414 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
415 {
416         struct kvm_memory_slot *slot;
417         int *largepage_idx;
418
419         gfn = unalias_gfn(kvm, gfn);
420         slot = gfn_to_memslot_unaliased(kvm, gfn);
421         if (slot) {
422                 largepage_idx = slot_largepage_idx(gfn, slot);
423                 return *largepage_idx;
424         }
425
426         return 1;
427 }
428
429 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
430 {
431         struct vm_area_struct *vma;
432         unsigned long addr;
433         int ret = 0;
434
435         addr = gfn_to_hva(kvm, gfn);
436         if (kvm_is_error_hva(addr))
437                 return ret;
438
439         down_read(&current->mm->mmap_sem);
440         vma = find_vma(current->mm, addr);
441         if (vma && is_vm_hugetlb_page(vma))
442                 ret = 1;
443         up_read(&current->mm->mmap_sem);
444
445         return ret;
446 }
447
448 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
449 {
450         struct kvm_memory_slot *slot;
451
452         if (has_wrprotected_page(vcpu->kvm, large_gfn))
453                 return 0;
454
455         if (!host_largepage_backed(vcpu->kvm, large_gfn))
456                 return 0;
457
458         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
459         if (slot && slot->dirty_bitmap)
460                 return 0;
461
462         return 1;
463 }
464
465 /*
466  * Take gfn and return the reverse mapping to it.
467  * Note: gfn must be unaliased before this function get called
468  */
469
470 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
471 {
472         struct kvm_memory_slot *slot;
473         unsigned long idx;
474
475         slot = gfn_to_memslot(kvm, gfn);
476         if (!lpage)
477                 return &slot->rmap[gfn - slot->base_gfn];
478
479         idx = (gfn / KVM_PAGES_PER_HPAGE) -
480               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
481
482         return &slot->lpage_info[idx].rmap_pde;
483 }
484
485 /*
486  * Reverse mapping data structures:
487  *
488  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
489  * that points to page_address(page).
490  *
491  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
492  * containing more mappings.
493  */
494 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
495 {
496         struct kvm_mmu_page *sp;
497         struct kvm_rmap_desc *desc;
498         unsigned long *rmapp;
499         int i;
500
501         if (!is_rmap_pte(*spte))
502                 return;
503         gfn = unalias_gfn(vcpu->kvm, gfn);
504         sp = page_header(__pa(spte));
505         sp->gfns[spte - sp->spt] = gfn;
506         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
507         if (!*rmapp) {
508                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
509                 *rmapp = (unsigned long)spte;
510         } else if (!(*rmapp & 1)) {
511                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
512                 desc = mmu_alloc_rmap_desc(vcpu);
513                 desc->shadow_ptes[0] = (u64 *)*rmapp;
514                 desc->shadow_ptes[1] = spte;
515                 *rmapp = (unsigned long)desc | 1;
516         } else {
517                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
518                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
519                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
520                         desc = desc->more;
521                 if (desc->shadow_ptes[RMAP_EXT-1]) {
522                         desc->more = mmu_alloc_rmap_desc(vcpu);
523                         desc = desc->more;
524                 }
525                 for (i = 0; desc->shadow_ptes[i]; ++i)
526                         ;
527                 desc->shadow_ptes[i] = spte;
528         }
529 }
530
531 static void rmap_desc_remove_entry(unsigned long *rmapp,
532                                    struct kvm_rmap_desc *desc,
533                                    int i,
534                                    struct kvm_rmap_desc *prev_desc)
535 {
536         int j;
537
538         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
539                 ;
540         desc->shadow_ptes[i] = desc->shadow_ptes[j];
541         desc->shadow_ptes[j] = NULL;
542         if (j != 0)
543                 return;
544         if (!prev_desc && !desc->more)
545                 *rmapp = (unsigned long)desc->shadow_ptes[0];
546         else
547                 if (prev_desc)
548                         prev_desc->more = desc->more;
549                 else
550                         *rmapp = (unsigned long)desc->more | 1;
551         mmu_free_rmap_desc(desc);
552 }
553
554 static void rmap_remove(struct kvm *kvm, u64 *spte)
555 {
556         struct kvm_rmap_desc *desc;
557         struct kvm_rmap_desc *prev_desc;
558         struct kvm_mmu_page *sp;
559         pfn_t pfn;
560         unsigned long *rmapp;
561         int i;
562
563         if (!is_rmap_pte(*spte))
564                 return;
565         sp = page_header(__pa(spte));
566         pfn = spte_to_pfn(*spte);
567         if (*spte & shadow_accessed_mask)
568                 kvm_set_pfn_accessed(pfn);
569         if (is_writeble_pte(*spte))
570                 kvm_release_pfn_dirty(pfn);
571         else
572                 kvm_release_pfn_clean(pfn);
573         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
574         if (!*rmapp) {
575                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
576                 BUG();
577         } else if (!(*rmapp & 1)) {
578                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
579                 if ((u64 *)*rmapp != spte) {
580                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
581                                spte, *spte);
582                         BUG();
583                 }
584                 *rmapp = 0;
585         } else {
586                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
587                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
588                 prev_desc = NULL;
589                 while (desc) {
590                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
591                                 if (desc->shadow_ptes[i] == spte) {
592                                         rmap_desc_remove_entry(rmapp,
593                                                                desc, i,
594                                                                prev_desc);
595                                         return;
596                                 }
597                         prev_desc = desc;
598                         desc = desc->more;
599                 }
600                 BUG();
601         }
602 }
603
604 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
605 {
606         struct kvm_rmap_desc *desc;
607         struct kvm_rmap_desc *prev_desc;
608         u64 *prev_spte;
609         int i;
610
611         if (!*rmapp)
612                 return NULL;
613         else if (!(*rmapp & 1)) {
614                 if (!spte)
615                         return (u64 *)*rmapp;
616                 return NULL;
617         }
618         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
619         prev_desc = NULL;
620         prev_spte = NULL;
621         while (desc) {
622                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
623                         if (prev_spte == spte)
624                                 return desc->shadow_ptes[i];
625                         prev_spte = desc->shadow_ptes[i];
626                 }
627                 desc = desc->more;
628         }
629         return NULL;
630 }
631
632 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
633 {
634         unsigned long *rmapp;
635         u64 *spte;
636         int write_protected = 0;
637
638         gfn = unalias_gfn(kvm, gfn);
639         rmapp = gfn_to_rmap(kvm, gfn, 0);
640
641         spte = rmap_next(kvm, rmapp, NULL);
642         while (spte) {
643                 BUG_ON(!spte);
644                 BUG_ON(!(*spte & PT_PRESENT_MASK));
645                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
646                 if (is_writeble_pte(*spte)) {
647                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
648                         write_protected = 1;
649                 }
650                 spte = rmap_next(kvm, rmapp, spte);
651         }
652         if (write_protected) {
653                 pfn_t pfn;
654
655                 spte = rmap_next(kvm, rmapp, NULL);
656                 pfn = spte_to_pfn(*spte);
657                 kvm_set_pfn_dirty(pfn);
658         }
659
660         /* check for huge page mappings */
661         rmapp = gfn_to_rmap(kvm, gfn, 1);
662         spte = rmap_next(kvm, rmapp, NULL);
663         while (spte) {
664                 BUG_ON(!spte);
665                 BUG_ON(!(*spte & PT_PRESENT_MASK));
666                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
667                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
668                 if (is_writeble_pte(*spte)) {
669                         rmap_remove(kvm, spte);
670                         --kvm->stat.lpages;
671                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
672                         spte = NULL;
673                         write_protected = 1;
674                 }
675                 spte = rmap_next(kvm, rmapp, spte);
676         }
677
678         return write_protected;
679 }
680
681 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
682 {
683         u64 *spte;
684         int need_tlb_flush = 0;
685
686         while ((spte = rmap_next(kvm, rmapp, NULL))) {
687                 BUG_ON(!(*spte & PT_PRESENT_MASK));
688                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
689                 rmap_remove(kvm, spte);
690                 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
691                 need_tlb_flush = 1;
692         }
693         return need_tlb_flush;
694 }
695
696 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
697                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
698 {
699         int i;
700         int retval = 0;
701
702         /*
703          * If mmap_sem isn't taken, we can look the memslots with only
704          * the mmu_lock by skipping over the slots with userspace_addr == 0.
705          */
706         for (i = 0; i < kvm->nmemslots; i++) {
707                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
708                 unsigned long start = memslot->userspace_addr;
709                 unsigned long end;
710
711                 /* mmu_lock protects userspace_addr */
712                 if (!start)
713                         continue;
714
715                 end = start + (memslot->npages << PAGE_SHIFT);
716                 if (hva >= start && hva < end) {
717                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
718                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
719                         retval |= handler(kvm,
720                                           &memslot->lpage_info[
721                                                   gfn_offset /
722                                                   KVM_PAGES_PER_HPAGE].rmap_pde);
723                 }
724         }
725
726         return retval;
727 }
728
729 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
730 {
731         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
732 }
733
734 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
735 {
736         u64 *spte;
737         int young = 0;
738
739         /* always return old for EPT */
740         if (!shadow_accessed_mask)
741                 return 0;
742
743         spte = rmap_next(kvm, rmapp, NULL);
744         while (spte) {
745                 int _young;
746                 u64 _spte = *spte;
747                 BUG_ON(!(_spte & PT_PRESENT_MASK));
748                 _young = _spte & PT_ACCESSED_MASK;
749                 if (_young) {
750                         young = 1;
751                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
752                 }
753                 spte = rmap_next(kvm, rmapp, spte);
754         }
755         return young;
756 }
757
758 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
759 {
760         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
761 }
762
763 #ifdef MMU_DEBUG
764 static int is_empty_shadow_page(u64 *spt)
765 {
766         u64 *pos;
767         u64 *end;
768
769         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
770                 if (is_shadow_present_pte(*pos)) {
771                         printk(KERN_ERR "%s: %p %llx\n", __func__,
772                                pos, *pos);
773                         return 0;
774                 }
775         return 1;
776 }
777 #endif
778
779 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         ASSERT(is_empty_shadow_page(sp->spt));
782         list_del(&sp->link);
783         __free_page(virt_to_page(sp->spt));
784         __free_page(virt_to_page(sp->gfns));
785         kfree(sp);
786         ++kvm->arch.n_free_mmu_pages;
787 }
788
789 static unsigned kvm_page_table_hashfn(gfn_t gfn)
790 {
791         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
792 }
793
794 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
795                                                u64 *parent_pte)
796 {
797         struct kvm_mmu_page *sp;
798
799         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
800         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
801         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
802         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
803         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
804         INIT_LIST_HEAD(&sp->oos_link);
805         ASSERT(is_empty_shadow_page(sp->spt));
806         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
807         sp->multimapped = 0;
808         sp->parent_pte = parent_pte;
809         --vcpu->kvm->arch.n_free_mmu_pages;
810         return sp;
811 }
812
813 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
814                                     struct kvm_mmu_page *sp, u64 *parent_pte)
815 {
816         struct kvm_pte_chain *pte_chain;
817         struct hlist_node *node;
818         int i;
819
820         if (!parent_pte)
821                 return;
822         if (!sp->multimapped) {
823                 u64 *old = sp->parent_pte;
824
825                 if (!old) {
826                         sp->parent_pte = parent_pte;
827                         return;
828                 }
829                 sp->multimapped = 1;
830                 pte_chain = mmu_alloc_pte_chain(vcpu);
831                 INIT_HLIST_HEAD(&sp->parent_ptes);
832                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
833                 pte_chain->parent_ptes[0] = old;
834         }
835         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
836                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
837                         continue;
838                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
839                         if (!pte_chain->parent_ptes[i]) {
840                                 pte_chain->parent_ptes[i] = parent_pte;
841                                 return;
842                         }
843         }
844         pte_chain = mmu_alloc_pte_chain(vcpu);
845         BUG_ON(!pte_chain);
846         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
847         pte_chain->parent_ptes[0] = parent_pte;
848 }
849
850 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
851                                        u64 *parent_pte)
852 {
853         struct kvm_pte_chain *pte_chain;
854         struct hlist_node *node;
855         int i;
856
857         if (!sp->multimapped) {
858                 BUG_ON(sp->parent_pte != parent_pte);
859                 sp->parent_pte = NULL;
860                 return;
861         }
862         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
863                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
864                         if (!pte_chain->parent_ptes[i])
865                                 break;
866                         if (pte_chain->parent_ptes[i] != parent_pte)
867                                 continue;
868                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
869                                 && pte_chain->parent_ptes[i + 1]) {
870                                 pte_chain->parent_ptes[i]
871                                         = pte_chain->parent_ptes[i + 1];
872                                 ++i;
873                         }
874                         pte_chain->parent_ptes[i] = NULL;
875                         if (i == 0) {
876                                 hlist_del(&pte_chain->link);
877                                 mmu_free_pte_chain(pte_chain);
878                                 if (hlist_empty(&sp->parent_ptes)) {
879                                         sp->multimapped = 0;
880                                         sp->parent_pte = NULL;
881                                 }
882                         }
883                         return;
884                 }
885         BUG();
886 }
887
888
889 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
890                             mmu_parent_walk_fn fn)
891 {
892         struct kvm_pte_chain *pte_chain;
893         struct hlist_node *node;
894         struct kvm_mmu_page *parent_sp;
895         int i;
896
897         if (!sp->multimapped && sp->parent_pte) {
898                 parent_sp = page_header(__pa(sp->parent_pte));
899                 fn(vcpu, parent_sp);
900                 mmu_parent_walk(vcpu, parent_sp, fn);
901                 return;
902         }
903         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
904                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
905                         if (!pte_chain->parent_ptes[i])
906                                 break;
907                         parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
908                         fn(vcpu, parent_sp);
909                         mmu_parent_walk(vcpu, parent_sp, fn);
910                 }
911 }
912
913 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
914 {
915         unsigned int index;
916         struct kvm_mmu_page *sp = page_header(__pa(spte));
917
918         index = spte - sp->spt;
919         if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
920                 sp->unsync_children++;
921         WARN_ON(!sp->unsync_children);
922 }
923
924 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
925 {
926         struct kvm_pte_chain *pte_chain;
927         struct hlist_node *node;
928         int i;
929
930         if (!sp->parent_pte)
931                 return;
932
933         if (!sp->multimapped) {
934                 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
935                 return;
936         }
937
938         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
939                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
940                         if (!pte_chain->parent_ptes[i])
941                                 break;
942                         kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
943                 }
944 }
945
946 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
947 {
948         kvm_mmu_update_parents_unsync(sp);
949         return 1;
950 }
951
952 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
953                                         struct kvm_mmu_page *sp)
954 {
955         mmu_parent_walk(vcpu, sp, unsync_walk_fn);
956         kvm_mmu_update_parents_unsync(sp);
957 }
958
959 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
960                                     struct kvm_mmu_page *sp)
961 {
962         int i;
963
964         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
965                 sp->spt[i] = shadow_trap_nonpresent_pte;
966 }
967
968 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
969                                struct kvm_mmu_page *sp)
970 {
971         return 1;
972 }
973
974 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
975 {
976 }
977
978 #define KVM_PAGE_ARRAY_NR 16
979
980 struct kvm_mmu_pages {
981         struct mmu_page_and_offset {
982                 struct kvm_mmu_page *sp;
983                 unsigned int idx;
984         } page[KVM_PAGE_ARRAY_NR];
985         unsigned int nr;
986 };
987
988 #define for_each_unsync_children(bitmap, idx)           \
989         for (idx = find_first_bit(bitmap, 512);         \
990              idx < 512;                                 \
991              idx = find_next_bit(bitmap, 512, idx+1))
992
993 int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
994                    int idx)
995 {
996         int i;
997
998         if (sp->unsync)
999                 for (i=0; i < pvec->nr; i++)
1000                         if (pvec->page[i].sp == sp)
1001                                 return 0;
1002
1003         pvec->page[pvec->nr].sp = sp;
1004         pvec->page[pvec->nr].idx = idx;
1005         pvec->nr++;
1006         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1007 }
1008
1009 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1010                            struct kvm_mmu_pages *pvec)
1011 {
1012         int i, ret, nr_unsync_leaf = 0;
1013
1014         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1015                 u64 ent = sp->spt[i];
1016
1017                 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1018                         struct kvm_mmu_page *child;
1019                         child = page_header(ent & PT64_BASE_ADDR_MASK);
1020
1021                         if (child->unsync_children) {
1022                                 if (mmu_pages_add(pvec, child, i))
1023                                         return -ENOSPC;
1024
1025                                 ret = __mmu_unsync_walk(child, pvec);
1026                                 if (!ret)
1027                                         __clear_bit(i, sp->unsync_child_bitmap);
1028                                 else if (ret > 0)
1029                                         nr_unsync_leaf += ret;
1030                                 else
1031                                         return ret;
1032                         }
1033
1034                         if (child->unsync) {
1035                                 nr_unsync_leaf++;
1036                                 if (mmu_pages_add(pvec, child, i))
1037                                         return -ENOSPC;
1038                         }
1039                 }
1040         }
1041
1042         if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1043                 sp->unsync_children = 0;
1044
1045         return nr_unsync_leaf;
1046 }
1047
1048 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1049                            struct kvm_mmu_pages *pvec)
1050 {
1051         if (!sp->unsync_children)
1052                 return 0;
1053
1054         mmu_pages_add(pvec, sp, 0);
1055         return __mmu_unsync_walk(sp, pvec);
1056 }
1057
1058 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1059 {
1060         unsigned index;
1061         struct hlist_head *bucket;
1062         struct kvm_mmu_page *sp;
1063         struct hlist_node *node;
1064
1065         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1066         index = kvm_page_table_hashfn(gfn);
1067         bucket = &kvm->arch.mmu_page_hash[index];
1068         hlist_for_each_entry(sp, node, bucket, hash_link)
1069                 if (sp->gfn == gfn && !sp->role.direct
1070                     && !sp->role.invalid) {
1071                         pgprintk("%s: found role %x\n",
1072                                  __func__, sp->role.word);
1073                         return sp;
1074                 }
1075         return NULL;
1076 }
1077
1078 static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
1079 {
1080         list_del(&sp->oos_link);
1081         --kvm->stat.mmu_unsync_global;
1082 }
1083
1084 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1085 {
1086         WARN_ON(!sp->unsync);
1087         sp->unsync = 0;
1088         if (sp->global)
1089                 kvm_unlink_unsync_global(kvm, sp);
1090         --kvm->stat.mmu_unsync;
1091 }
1092
1093 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1094
1095 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1096 {
1097         if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1098                 kvm_mmu_zap_page(vcpu->kvm, sp);
1099                 return 1;
1100         }
1101
1102         if (rmap_write_protect(vcpu->kvm, sp->gfn))
1103                 kvm_flush_remote_tlbs(vcpu->kvm);
1104         kvm_unlink_unsync_page(vcpu->kvm, sp);
1105         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1106                 kvm_mmu_zap_page(vcpu->kvm, sp);
1107                 return 1;
1108         }
1109
1110         kvm_mmu_flush_tlb(vcpu);
1111         return 0;
1112 }
1113
1114 struct mmu_page_path {
1115         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1116         unsigned int idx[PT64_ROOT_LEVEL-1];
1117 };
1118
1119 #define for_each_sp(pvec, sp, parents, i)                       \
1120                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1121                         sp = pvec.page[i].sp;                   \
1122                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1123                         i = mmu_pages_next(&pvec, &parents, i))
1124
1125 int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
1126                    int i)
1127 {
1128         int n;
1129
1130         for (n = i+1; n < pvec->nr; n++) {
1131                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1132
1133                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1134                         parents->idx[0] = pvec->page[n].idx;
1135                         return n;
1136                 }
1137
1138                 parents->parent[sp->role.level-2] = sp;
1139                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1140         }
1141
1142         return n;
1143 }
1144
1145 void mmu_pages_clear_parents(struct mmu_page_path *parents)
1146 {
1147         struct kvm_mmu_page *sp;
1148         unsigned int level = 0;
1149
1150         do {
1151                 unsigned int idx = parents->idx[level];
1152
1153                 sp = parents->parent[level];
1154                 if (!sp)
1155                         return;
1156
1157                 --sp->unsync_children;
1158                 WARN_ON((int)sp->unsync_children < 0);
1159                 __clear_bit(idx, sp->unsync_child_bitmap);
1160                 level++;
1161         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1162 }
1163
1164 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1165                                struct mmu_page_path *parents,
1166                                struct kvm_mmu_pages *pvec)
1167 {
1168         parents->parent[parent->role.level-1] = NULL;
1169         pvec->nr = 0;
1170 }
1171
1172 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1173                               struct kvm_mmu_page *parent)
1174 {
1175         int i;
1176         struct kvm_mmu_page *sp;
1177         struct mmu_page_path parents;
1178         struct kvm_mmu_pages pages;
1179
1180         kvm_mmu_pages_init(parent, &parents, &pages);
1181         while (mmu_unsync_walk(parent, &pages)) {
1182                 int protected = 0;
1183
1184                 for_each_sp(pages, sp, parents, i)
1185                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1186
1187                 if (protected)
1188                         kvm_flush_remote_tlbs(vcpu->kvm);
1189
1190                 for_each_sp(pages, sp, parents, i) {
1191                         kvm_sync_page(vcpu, sp);
1192                         mmu_pages_clear_parents(&parents);
1193                 }
1194                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1195                 kvm_mmu_pages_init(parent, &parents, &pages);
1196         }
1197 }
1198
1199 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1200                                              gfn_t gfn,
1201                                              gva_t gaddr,
1202                                              unsigned level,
1203                                              int direct,
1204                                              unsigned access,
1205                                              u64 *parent_pte)
1206 {
1207         union kvm_mmu_page_role role;
1208         unsigned index;
1209         unsigned quadrant;
1210         struct hlist_head *bucket;
1211         struct kvm_mmu_page *sp;
1212         struct hlist_node *node, *tmp;
1213
1214         role = vcpu->arch.mmu.base_role;
1215         role.level = level;
1216         role.direct = direct;
1217         role.access = access;
1218         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1219                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1220                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1221                 role.quadrant = quadrant;
1222         }
1223         pgprintk("%s: looking gfn %lx role %x\n", __func__,
1224                  gfn, role.word);
1225         index = kvm_page_table_hashfn(gfn);
1226         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1227         hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1228                 if (sp->gfn == gfn) {
1229                         if (sp->unsync)
1230                                 if (kvm_sync_page(vcpu, sp))
1231                                         continue;
1232
1233                         if (sp->role.word != role.word)
1234                                 continue;
1235
1236                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1237                         if (sp->unsync_children) {
1238                                 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1239                                 kvm_mmu_mark_parents_unsync(vcpu, sp);
1240                         }
1241                         pgprintk("%s: found\n", __func__);
1242                         return sp;
1243                 }
1244         ++vcpu->kvm->stat.mmu_cache_miss;
1245         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1246         if (!sp)
1247                 return sp;
1248         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1249         sp->gfn = gfn;
1250         sp->role = role;
1251         sp->global = role.cr4_pge;
1252         hlist_add_head(&sp->hash_link, bucket);
1253         if (!direct) {
1254                 if (rmap_write_protect(vcpu->kvm, gfn))
1255                         kvm_flush_remote_tlbs(vcpu->kvm);
1256                 account_shadowed(vcpu->kvm, gfn);
1257         }
1258         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1259                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1260         else
1261                 nonpaging_prefetch_page(vcpu, sp);
1262         return sp;
1263 }
1264
1265 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1266                              struct kvm_vcpu *vcpu, u64 addr)
1267 {
1268         iterator->addr = addr;
1269         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1270         iterator->level = vcpu->arch.mmu.shadow_root_level;
1271         if (iterator->level == PT32E_ROOT_LEVEL) {
1272                 iterator->shadow_addr
1273                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1274                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1275                 --iterator->level;
1276                 if (!iterator->shadow_addr)
1277                         iterator->level = 0;
1278         }
1279 }
1280
1281 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1282 {
1283         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1284                 return false;
1285         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1286         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1287         return true;
1288 }
1289
1290 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1291 {
1292         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1293         --iterator->level;
1294 }
1295
1296 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1297                                          struct kvm_mmu_page *sp)
1298 {
1299         unsigned i;
1300         u64 *pt;
1301         u64 ent;
1302
1303         pt = sp->spt;
1304
1305         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1306                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1307                         if (is_shadow_present_pte(pt[i]))
1308                                 rmap_remove(kvm, &pt[i]);
1309                         pt[i] = shadow_trap_nonpresent_pte;
1310                 }
1311                 return;
1312         }
1313
1314         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1315                 ent = pt[i];
1316
1317                 if (is_shadow_present_pte(ent)) {
1318                         if (!is_large_pte(ent)) {
1319                                 ent &= PT64_BASE_ADDR_MASK;
1320                                 mmu_page_remove_parent_pte(page_header(ent),
1321                                                            &pt[i]);
1322                         } else {
1323                                 --kvm->stat.lpages;
1324                                 rmap_remove(kvm, &pt[i]);
1325                         }
1326                 }
1327                 pt[i] = shadow_trap_nonpresent_pte;
1328         }
1329 }
1330
1331 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1332 {
1333         mmu_page_remove_parent_pte(sp, parent_pte);
1334 }
1335
1336 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1337 {
1338         int i;
1339
1340         for (i = 0; i < KVM_MAX_VCPUS; ++i)
1341                 if (kvm->vcpus[i])
1342                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
1343 }
1344
1345 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1346 {
1347         u64 *parent_pte;
1348
1349         while (sp->multimapped || sp->parent_pte) {
1350                 if (!sp->multimapped)
1351                         parent_pte = sp->parent_pte;
1352                 else {
1353                         struct kvm_pte_chain *chain;
1354
1355                         chain = container_of(sp->parent_ptes.first,
1356                                              struct kvm_pte_chain, link);
1357                         parent_pte = chain->parent_ptes[0];
1358                 }
1359                 BUG_ON(!parent_pte);
1360                 kvm_mmu_put_page(sp, parent_pte);
1361                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1362         }
1363 }
1364
1365 static int mmu_zap_unsync_children(struct kvm *kvm,
1366                                    struct kvm_mmu_page *parent)
1367 {
1368         int i, zapped = 0;
1369         struct mmu_page_path parents;
1370         struct kvm_mmu_pages pages;
1371
1372         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1373                 return 0;
1374
1375         kvm_mmu_pages_init(parent, &parents, &pages);
1376         while (mmu_unsync_walk(parent, &pages)) {
1377                 struct kvm_mmu_page *sp;
1378
1379                 for_each_sp(pages, sp, parents, i) {
1380                         kvm_mmu_zap_page(kvm, sp);
1381                         mmu_pages_clear_parents(&parents);
1382                 }
1383                 zapped += pages.nr;
1384                 kvm_mmu_pages_init(parent, &parents, &pages);
1385         }
1386
1387         return zapped;
1388 }
1389
1390 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1391 {
1392         int ret;
1393         ++kvm->stat.mmu_shadow_zapped;
1394         ret = mmu_zap_unsync_children(kvm, sp);
1395         kvm_mmu_page_unlink_children(kvm, sp);
1396         kvm_mmu_unlink_parents(kvm, sp);
1397         kvm_flush_remote_tlbs(kvm);
1398         if (!sp->role.invalid && !sp->role.direct)
1399                 unaccount_shadowed(kvm, sp->gfn);
1400         if (sp->unsync)
1401                 kvm_unlink_unsync_page(kvm, sp);
1402         if (!sp->root_count) {
1403                 hlist_del(&sp->hash_link);
1404                 kvm_mmu_free_page(kvm, sp);
1405         } else {
1406                 sp->role.invalid = 1;
1407                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1408                 kvm_reload_remote_mmus(kvm);
1409         }
1410         kvm_mmu_reset_last_pte_updated(kvm);
1411         return ret;
1412 }
1413
1414 /*
1415  * Changing the number of mmu pages allocated to the vm
1416  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1417  */
1418 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1419 {
1420         /*
1421          * If we set the number of mmu pages to be smaller be than the
1422          * number of actived pages , we must to free some mmu pages before we
1423          * change the value
1424          */
1425
1426         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1427             kvm_nr_mmu_pages) {
1428                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1429                                        - kvm->arch.n_free_mmu_pages;
1430
1431                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1432                         struct kvm_mmu_page *page;
1433
1434                         page = container_of(kvm->arch.active_mmu_pages.prev,
1435                                             struct kvm_mmu_page, link);
1436                         kvm_mmu_zap_page(kvm, page);
1437                         n_used_mmu_pages--;
1438                 }
1439                 kvm->arch.n_free_mmu_pages = 0;
1440         }
1441         else
1442                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1443                                          - kvm->arch.n_alloc_mmu_pages;
1444
1445         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1446 }
1447
1448 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1449 {
1450         unsigned index;
1451         struct hlist_head *bucket;
1452         struct kvm_mmu_page *sp;
1453         struct hlist_node *node, *n;
1454         int r;
1455
1456         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1457         r = 0;
1458         index = kvm_page_table_hashfn(gfn);
1459         bucket = &kvm->arch.mmu_page_hash[index];
1460         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1461                 if (sp->gfn == gfn && !sp->role.direct) {
1462                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1463                                  sp->role.word);
1464                         r = 1;
1465                         if (kvm_mmu_zap_page(kvm, sp))
1466                                 n = bucket->first;
1467                 }
1468         return r;
1469 }
1470
1471 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1472 {
1473         unsigned index;
1474         struct hlist_head *bucket;
1475         struct kvm_mmu_page *sp;
1476         struct hlist_node *node, *nn;
1477
1478         index = kvm_page_table_hashfn(gfn);
1479         bucket = &kvm->arch.mmu_page_hash[index];
1480         hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
1481                 if (sp->gfn == gfn && !sp->role.direct
1482                     && !sp->role.invalid) {
1483                         pgprintk("%s: zap %lx %x\n",
1484                                  __func__, gfn, sp->role.word);
1485                         kvm_mmu_zap_page(kvm, sp);
1486                 }
1487         }
1488 }
1489
1490 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1491 {
1492         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1493         struct kvm_mmu_page *sp = page_header(__pa(pte));
1494
1495         __set_bit(slot, sp->slot_bitmap);
1496 }
1497
1498 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1499 {
1500         int i;
1501         u64 *pt = sp->spt;
1502
1503         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1504                 return;
1505
1506         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1507                 if (pt[i] == shadow_notrap_nonpresent_pte)
1508                         set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
1509         }
1510 }
1511
1512 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1513 {
1514         struct page *page;
1515
1516         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1517
1518         if (gpa == UNMAPPED_GVA)
1519                 return NULL;
1520
1521         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1522
1523         return page;
1524 }
1525
1526 /*
1527  * The function is based on mtrr_type_lookup() in
1528  * arch/x86/kernel/cpu/mtrr/generic.c
1529  */
1530 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1531                          u64 start, u64 end)
1532 {
1533         int i;
1534         u64 base, mask;
1535         u8 prev_match, curr_match;
1536         int num_var_ranges = KVM_NR_VAR_MTRR;
1537
1538         if (!mtrr_state->enabled)
1539                 return 0xFF;
1540
1541         /* Make end inclusive end, instead of exclusive */
1542         end--;
1543
1544         /* Look in fixed ranges. Just return the type as per start */
1545         if (mtrr_state->have_fixed && (start < 0x100000)) {
1546                 int idx;
1547
1548                 if (start < 0x80000) {
1549                         idx = 0;
1550                         idx += (start >> 16);
1551                         return mtrr_state->fixed_ranges[idx];
1552                 } else if (start < 0xC0000) {
1553                         idx = 1 * 8;
1554                         idx += ((start - 0x80000) >> 14);
1555                         return mtrr_state->fixed_ranges[idx];
1556                 } else if (start < 0x1000000) {
1557                         idx = 3 * 8;
1558                         idx += ((start - 0xC0000) >> 12);
1559                         return mtrr_state->fixed_ranges[idx];
1560                 }
1561         }
1562
1563         /*
1564          * Look in variable ranges
1565          * Look of multiple ranges matching this address and pick type
1566          * as per MTRR precedence
1567          */
1568         if (!(mtrr_state->enabled & 2))
1569                 return mtrr_state->def_type;
1570
1571         prev_match = 0xFF;
1572         for (i = 0; i < num_var_ranges; ++i) {
1573                 unsigned short start_state, end_state;
1574
1575                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1576                         continue;
1577
1578                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1579                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1580                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1581                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1582
1583                 start_state = ((start & mask) == (base & mask));
1584                 end_state = ((end & mask) == (base & mask));
1585                 if (start_state != end_state)
1586                         return 0xFE;
1587
1588                 if ((start & mask) != (base & mask))
1589                         continue;
1590
1591                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1592                 if (prev_match == 0xFF) {
1593                         prev_match = curr_match;
1594                         continue;
1595                 }
1596
1597                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1598                     curr_match == MTRR_TYPE_UNCACHABLE)
1599                         return MTRR_TYPE_UNCACHABLE;
1600
1601                 if ((prev_match == MTRR_TYPE_WRBACK &&
1602                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1603                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1604                      curr_match == MTRR_TYPE_WRBACK)) {
1605                         prev_match = MTRR_TYPE_WRTHROUGH;
1606                         curr_match = MTRR_TYPE_WRTHROUGH;
1607                 }
1608
1609                 if (prev_match != curr_match)
1610                         return MTRR_TYPE_UNCACHABLE;
1611         }
1612
1613         if (prev_match != 0xFF)
1614                 return prev_match;
1615
1616         return mtrr_state->def_type;
1617 }
1618
1619 static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621         u8 mtrr;
1622
1623         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1624                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1625         if (mtrr == 0xfe || mtrr == 0xff)
1626                 mtrr = MTRR_TYPE_WRBACK;
1627         return mtrr;
1628 }
1629
1630 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1631 {
1632         unsigned index;
1633         struct hlist_head *bucket;
1634         struct kvm_mmu_page *s;
1635         struct hlist_node *node, *n;
1636
1637         index = kvm_page_table_hashfn(sp->gfn);
1638         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1639         /* don't unsync if pagetable is shadowed with multiple roles */
1640         hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1641                 if (s->gfn != sp->gfn || s->role.direct)
1642                         continue;
1643                 if (s->role.word != sp->role.word)
1644                         return 1;
1645         }
1646         ++vcpu->kvm->stat.mmu_unsync;
1647         sp->unsync = 1;
1648
1649         if (sp->global) {
1650                 list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
1651                 ++vcpu->kvm->stat.mmu_unsync_global;
1652         } else
1653                 kvm_mmu_mark_parents_unsync(vcpu, sp);
1654
1655         mmu_convert_notrap(sp);
1656         return 0;
1657 }
1658
1659 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1660                                   bool can_unsync)
1661 {
1662         struct kvm_mmu_page *shadow;
1663
1664         shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1665         if (shadow) {
1666                 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1667                         return 1;
1668                 if (shadow->unsync)
1669                         return 0;
1670                 if (can_unsync && oos_shadow)
1671                         return kvm_unsync_page(vcpu, shadow);
1672                 return 1;
1673         }
1674         return 0;
1675 }
1676
1677 static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1678                     unsigned pte_access, int user_fault,
1679                     int write_fault, int dirty, int largepage,
1680                     int global, gfn_t gfn, pfn_t pfn, bool speculative,
1681                     bool can_unsync)
1682 {
1683         u64 spte;
1684         int ret = 0;
1685         u64 mt_mask = shadow_mt_mask;
1686         struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
1687
1688         if (!global && sp->global) {
1689                 sp->global = 0;
1690                 if (sp->unsync) {
1691                         kvm_unlink_unsync_global(vcpu->kvm, sp);
1692                         kvm_mmu_mark_parents_unsync(vcpu, sp);
1693                 }
1694         }
1695
1696         /*
1697          * We don't set the accessed bit, since we sometimes want to see
1698          * whether the guest actually used the pte (in order to detect
1699          * demand paging).
1700          */
1701         spte = shadow_base_present_pte | shadow_dirty_mask;
1702         if (!speculative)
1703                 spte |= shadow_accessed_mask;
1704         if (!dirty)
1705                 pte_access &= ~ACC_WRITE_MASK;
1706         if (pte_access & ACC_EXEC_MASK)
1707                 spte |= shadow_x_mask;
1708         else
1709                 spte |= shadow_nx_mask;
1710         if (pte_access & ACC_USER_MASK)
1711                 spte |= shadow_user_mask;
1712         if (largepage)
1713                 spte |= PT_PAGE_SIZE_MASK;
1714         if (mt_mask) {
1715                 if (!kvm_is_mmio_pfn(pfn)) {
1716                         mt_mask = get_memory_type(vcpu, gfn) <<
1717                                 kvm_x86_ops->get_mt_mask_shift();
1718                         mt_mask |= VMX_EPT_IGMT_BIT;
1719                 } else
1720                         mt_mask = MTRR_TYPE_UNCACHABLE <<
1721                                 kvm_x86_ops->get_mt_mask_shift();
1722                 spte |= mt_mask;
1723         }
1724
1725         spte |= (u64)pfn << PAGE_SHIFT;
1726
1727         if ((pte_access & ACC_WRITE_MASK)
1728             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1729
1730                 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1731                         ret = 1;
1732                         spte = shadow_trap_nonpresent_pte;
1733                         goto set_pte;
1734                 }
1735
1736                 spte |= PT_WRITABLE_MASK;
1737
1738                 /*
1739                  * Optimization: for pte sync, if spte was writable the hash
1740                  * lookup is unnecessary (and expensive). Write protection
1741                  * is responsibility of mmu_get_page / kvm_sync_page.
1742                  * Same reasoning can be applied to dirty page accounting.
1743                  */
1744                 if (!can_unsync && is_writeble_pte(*shadow_pte))
1745                         goto set_pte;
1746
1747                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1748                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1749                                  __func__, gfn);
1750                         ret = 1;
1751                         pte_access &= ~ACC_WRITE_MASK;
1752                         if (is_writeble_pte(spte))
1753                                 spte &= ~PT_WRITABLE_MASK;
1754                 }
1755         }
1756
1757         if (pte_access & ACC_WRITE_MASK)
1758                 mark_page_dirty(vcpu->kvm, gfn);
1759
1760 set_pte:
1761         set_shadow_pte(shadow_pte, spte);
1762         return ret;
1763 }
1764
1765 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1766                          unsigned pt_access, unsigned pte_access,
1767                          int user_fault, int write_fault, int dirty,
1768                          int *ptwrite, int largepage, int global,
1769                          gfn_t gfn, pfn_t pfn, bool speculative)
1770 {
1771         int was_rmapped = 0;
1772         int was_writeble = is_writeble_pte(*shadow_pte);
1773
1774         pgprintk("%s: spte %llx access %x write_fault %d"
1775                  " user_fault %d gfn %lx\n",
1776                  __func__, *shadow_pte, pt_access,
1777                  write_fault, user_fault, gfn);
1778
1779         if (is_rmap_pte(*shadow_pte)) {
1780                 /*
1781                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1782                  * the parent of the now unreachable PTE.
1783                  */
1784                 if (largepage && !is_large_pte(*shadow_pte)) {
1785                         struct kvm_mmu_page *child;
1786                         u64 pte = *shadow_pte;
1787
1788                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1789                         mmu_page_remove_parent_pte(child, shadow_pte);
1790                 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1791                         pgprintk("hfn old %lx new %lx\n",
1792                                  spte_to_pfn(*shadow_pte), pfn);
1793                         rmap_remove(vcpu->kvm, shadow_pte);
1794                 } else {
1795                         if (largepage)
1796                                 was_rmapped = is_large_pte(*shadow_pte);
1797                         else
1798                                 was_rmapped = 1;
1799                 }
1800         }
1801         if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
1802                       dirty, largepage, global, gfn, pfn, speculative, true)) {
1803                 if (write_fault)
1804                         *ptwrite = 1;
1805                 kvm_x86_ops->tlb_flush(vcpu);
1806         }
1807
1808         pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
1809         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1810                  is_large_pte(*shadow_pte)? "2MB" : "4kB",
1811                  is_present_pte(*shadow_pte)?"RW":"R", gfn,
1812                  *shadow_pte, shadow_pte);
1813         if (!was_rmapped && is_large_pte(*shadow_pte))
1814                 ++vcpu->kvm->stat.lpages;
1815
1816         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1817         if (!was_rmapped) {
1818                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1819                 if (!is_rmap_pte(*shadow_pte))
1820                         kvm_release_pfn_clean(pfn);
1821         } else {
1822                 if (was_writeble)
1823                         kvm_release_pfn_dirty(pfn);
1824                 else
1825                         kvm_release_pfn_clean(pfn);
1826         }
1827         if (speculative) {
1828                 vcpu->arch.last_pte_updated = shadow_pte;
1829                 vcpu->arch.last_pte_gfn = gfn;
1830         }
1831 }
1832
1833 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1834 {
1835 }
1836
1837 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1838                         int largepage, gfn_t gfn, pfn_t pfn)
1839 {
1840         struct kvm_shadow_walk_iterator iterator;
1841         struct kvm_mmu_page *sp;
1842         int pt_write = 0;
1843         gfn_t pseudo_gfn;
1844
1845         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1846                 if (iterator.level == PT_PAGE_TABLE_LEVEL
1847                     || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
1848                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1849                                      0, write, 1, &pt_write,
1850                                      largepage, 0, gfn, pfn, false);
1851                         ++vcpu->stat.pf_fixed;
1852                         break;
1853                 }
1854
1855                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1856                         pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1857                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1858                                               iterator.level - 1,
1859                                               1, ACC_ALL, iterator.sptep);
1860                         if (!sp) {
1861                                 pgprintk("nonpaging_map: ENOMEM\n");
1862                                 kvm_release_pfn_clean(pfn);
1863                                 return -ENOMEM;
1864                         }
1865
1866                         set_shadow_pte(iterator.sptep,
1867                                        __pa(sp->spt)
1868                                        | PT_PRESENT_MASK | PT_WRITABLE_MASK
1869                                        | shadow_user_mask | shadow_x_mask);
1870                 }
1871         }
1872         return pt_write;
1873 }
1874
1875 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1876 {
1877         int r;
1878         int largepage = 0;
1879         pfn_t pfn;
1880         unsigned long mmu_seq;
1881
1882         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1883                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1884                 largepage = 1;
1885         }
1886
1887         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1888         smp_rmb();
1889         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1890
1891         /* mmio */
1892         if (is_error_pfn(pfn)) {
1893                 kvm_release_pfn_clean(pfn);
1894                 return 1;
1895         }
1896
1897         spin_lock(&vcpu->kvm->mmu_lock);
1898         if (mmu_notifier_retry(vcpu, mmu_seq))
1899                 goto out_unlock;
1900         kvm_mmu_free_some_pages(vcpu);
1901         r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1902         spin_unlock(&vcpu->kvm->mmu_lock);
1903
1904
1905         return r;
1906
1907 out_unlock:
1908         spin_unlock(&vcpu->kvm->mmu_lock);
1909         kvm_release_pfn_clean(pfn);
1910         return 0;
1911 }
1912
1913
1914 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1915 {
1916         int i;
1917         struct kvm_mmu_page *sp;
1918
1919         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1920                 return;
1921         spin_lock(&vcpu->kvm->mmu_lock);
1922         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1923                 hpa_t root = vcpu->arch.mmu.root_hpa;
1924
1925                 sp = page_header(root);
1926                 --sp->root_count;
1927                 if (!sp->root_count && sp->role.invalid)
1928                         kvm_mmu_zap_page(vcpu->kvm, sp);
1929                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1930                 spin_unlock(&vcpu->kvm->mmu_lock);
1931                 return;
1932         }
1933         for (i = 0; i < 4; ++i) {
1934                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1935
1936                 if (root) {
1937                         root &= PT64_BASE_ADDR_MASK;
1938                         sp = page_header(root);
1939                         --sp->root_count;
1940                         if (!sp->root_count && sp->role.invalid)
1941                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1942                 }
1943                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1944         }
1945         spin_unlock(&vcpu->kvm->mmu_lock);
1946         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1947 }
1948
1949 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1950 {
1951         int i;
1952         gfn_t root_gfn;
1953         struct kvm_mmu_page *sp;
1954         int direct = 0;
1955
1956         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1957
1958         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1959                 hpa_t root = vcpu->arch.mmu.root_hpa;
1960
1961                 ASSERT(!VALID_PAGE(root));
1962                 if (tdp_enabled)
1963                         direct = 1;
1964                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1965                                       PT64_ROOT_LEVEL, direct,
1966                                       ACC_ALL, NULL);
1967                 root = __pa(sp->spt);
1968                 ++sp->root_count;
1969                 vcpu->arch.mmu.root_hpa = root;
1970                 return;
1971         }
1972         direct = !is_paging(vcpu);
1973         if (tdp_enabled)
1974                 direct = 1;
1975         for (i = 0; i < 4; ++i) {
1976                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1977
1978                 ASSERT(!VALID_PAGE(root));
1979                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1980                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1981                                 vcpu->arch.mmu.pae_root[i] = 0;
1982                                 continue;
1983                         }
1984                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1985                 } else if (vcpu->arch.mmu.root_level == 0)
1986                         root_gfn = 0;
1987                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1988                                       PT32_ROOT_LEVEL, direct,
1989                                       ACC_ALL, NULL);
1990                 root = __pa(sp->spt);
1991                 ++sp->root_count;
1992                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1993         }
1994         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1995 }
1996
1997 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
1998 {
1999         int i;
2000         struct kvm_mmu_page *sp;
2001
2002         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2003                 return;
2004         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2005                 hpa_t root = vcpu->arch.mmu.root_hpa;
2006                 sp = page_header(root);
2007                 mmu_sync_children(vcpu, sp);
2008                 return;
2009         }
2010         for (i = 0; i < 4; ++i) {
2011                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2012
2013                 if (root) {
2014                         root &= PT64_BASE_ADDR_MASK;
2015                         sp = page_header(root);
2016                         mmu_sync_children(vcpu, sp);
2017                 }
2018         }
2019 }
2020
2021 static void mmu_sync_global(struct kvm_vcpu *vcpu)
2022 {
2023         struct kvm *kvm = vcpu->kvm;
2024         struct kvm_mmu_page *sp, *n;
2025
2026         list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
2027                 kvm_sync_page(vcpu, sp);
2028 }
2029
2030 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2031 {
2032         spin_lock(&vcpu->kvm->mmu_lock);
2033         mmu_sync_roots(vcpu);
2034         spin_unlock(&vcpu->kvm->mmu_lock);
2035 }
2036
2037 void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
2038 {
2039         spin_lock(&vcpu->kvm->mmu_lock);
2040         mmu_sync_global(vcpu);
2041         spin_unlock(&vcpu->kvm->mmu_lock);
2042 }
2043
2044 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2045 {
2046         return vaddr;
2047 }
2048
2049 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2050                                 u32 error_code)
2051 {
2052         gfn_t gfn;
2053         int r;
2054
2055         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2056         r = mmu_topup_memory_caches(vcpu);
2057         if (r)
2058                 return r;
2059
2060         ASSERT(vcpu);
2061         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2062
2063         gfn = gva >> PAGE_SHIFT;
2064
2065         return nonpaging_map(vcpu, gva & PAGE_MASK,
2066                              error_code & PFERR_WRITE_MASK, gfn);
2067 }
2068
2069 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2070                                 u32 error_code)
2071 {
2072         pfn_t pfn;
2073         int r;
2074         int largepage = 0;
2075         gfn_t gfn = gpa >> PAGE_SHIFT;
2076         unsigned long mmu_seq;
2077
2078         ASSERT(vcpu);
2079         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2080
2081         r = mmu_topup_memory_caches(vcpu);
2082         if (r)
2083                 return r;
2084
2085         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2086                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2087                 largepage = 1;
2088         }
2089         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2090         smp_rmb();
2091         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2092         if (is_error_pfn(pfn)) {
2093                 kvm_release_pfn_clean(pfn);
2094                 return 1;
2095         }
2096         spin_lock(&vcpu->kvm->mmu_lock);
2097         if (mmu_notifier_retry(vcpu, mmu_seq))
2098                 goto out_unlock;
2099         kvm_mmu_free_some_pages(vcpu);
2100         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2101                          largepage, gfn, pfn);
2102         spin_unlock(&vcpu->kvm->mmu_lock);
2103
2104         return r;
2105
2106 out_unlock:
2107         spin_unlock(&vcpu->kvm->mmu_lock);
2108         kvm_release_pfn_clean(pfn);
2109         return 0;
2110 }
2111
2112 static void nonpaging_free(struct kvm_vcpu *vcpu)
2113 {
2114         mmu_free_roots(vcpu);
2115 }
2116
2117 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2118 {
2119         struct kvm_mmu *context = &vcpu->arch.mmu;
2120
2121         context->new_cr3 = nonpaging_new_cr3;
2122         context->page_fault = nonpaging_page_fault;
2123         context->gva_to_gpa = nonpaging_gva_to_gpa;
2124         context->free = nonpaging_free;
2125         context->prefetch_page = nonpaging_prefetch_page;
2126         context->sync_page = nonpaging_sync_page;
2127         context->invlpg = nonpaging_invlpg;
2128         context->root_level = 0;
2129         context->shadow_root_level = PT32E_ROOT_LEVEL;
2130         context->root_hpa = INVALID_PAGE;
2131         return 0;
2132 }
2133
2134 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2135 {
2136         ++vcpu->stat.tlb_flush;
2137         kvm_x86_ops->tlb_flush(vcpu);
2138 }
2139
2140 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2141 {
2142         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2143         mmu_free_roots(vcpu);
2144 }
2145
2146 static void inject_page_fault(struct kvm_vcpu *vcpu,
2147                               u64 addr,
2148                               u32 err_code)
2149 {
2150         kvm_inject_page_fault(vcpu, addr, err_code);
2151 }
2152
2153 static void paging_free(struct kvm_vcpu *vcpu)
2154 {
2155         nonpaging_free(vcpu);
2156 }
2157
2158 #define PTTYPE 64
2159 #include "paging_tmpl.h"
2160 #undef PTTYPE
2161
2162 #define PTTYPE 32
2163 #include "paging_tmpl.h"
2164 #undef PTTYPE
2165
2166 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2167 {
2168         struct kvm_mmu *context = &vcpu->arch.mmu;
2169
2170         ASSERT(is_pae(vcpu));
2171         context->new_cr3 = paging_new_cr3;
2172         context->page_fault = paging64_page_fault;
2173         context->gva_to_gpa = paging64_gva_to_gpa;
2174         context->prefetch_page = paging64_prefetch_page;
2175         context->sync_page = paging64_sync_page;
2176         context->invlpg = paging64_invlpg;
2177         context->free = paging_free;
2178         context->root_level = level;
2179         context->shadow_root_level = level;
2180         context->root_hpa = INVALID_PAGE;
2181         return 0;
2182 }
2183
2184 static int paging64_init_context(struct kvm_vcpu *vcpu)
2185 {
2186         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2187 }
2188
2189 static int paging32_init_context(struct kvm_vcpu *vcpu)
2190 {
2191         struct kvm_mmu *context = &vcpu->arch.mmu;
2192
2193         context->new_cr3 = paging_new_cr3;
2194         context->page_fault = paging32_page_fault;
2195         context->gva_to_gpa = paging32_gva_to_gpa;
2196         context->free = paging_free;
2197         context->prefetch_page = paging32_prefetch_page;
2198         context->sync_page = paging32_sync_page;
2199         context->invlpg = paging32_invlpg;
2200         context->root_level = PT32_ROOT_LEVEL;
2201         context->shadow_root_level = PT32E_ROOT_LEVEL;
2202         context->root_hpa = INVALID_PAGE;
2203         return 0;
2204 }
2205
2206 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2207 {
2208         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2209 }
2210
2211 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2212 {
2213         struct kvm_mmu *context = &vcpu->arch.mmu;
2214
2215         context->new_cr3 = nonpaging_new_cr3;
2216         context->page_fault = tdp_page_fault;
2217         context->free = nonpaging_free;
2218         context->prefetch_page = nonpaging_prefetch_page;
2219         context->sync_page = nonpaging_sync_page;
2220         context->invlpg = nonpaging_invlpg;
2221         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2222         context->root_hpa = INVALID_PAGE;
2223
2224         if (!is_paging(vcpu)) {
2225                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2226                 context->root_level = 0;
2227         } else if (is_long_mode(vcpu)) {
2228                 context->gva_to_gpa = paging64_gva_to_gpa;
2229                 context->root_level = PT64_ROOT_LEVEL;
2230         } else if (is_pae(vcpu)) {
2231                 context->gva_to_gpa = paging64_gva_to_gpa;
2232                 context->root_level = PT32E_ROOT_LEVEL;
2233         } else {
2234                 context->gva_to_gpa = paging32_gva_to_gpa;
2235                 context->root_level = PT32_ROOT_LEVEL;
2236         }
2237
2238         return 0;
2239 }
2240
2241 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2242 {
2243         int r;
2244
2245         ASSERT(vcpu);
2246         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2247
2248         if (!is_paging(vcpu))
2249                 r = nonpaging_init_context(vcpu);
2250         else if (is_long_mode(vcpu))
2251                 r = paging64_init_context(vcpu);
2252         else if (is_pae(vcpu))
2253                 r = paging32E_init_context(vcpu);
2254         else
2255                 r = paging32_init_context(vcpu);
2256
2257         vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2258
2259         return r;
2260 }
2261
2262 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2263 {
2264         vcpu->arch.update_pte.pfn = bad_pfn;
2265
2266         if (tdp_enabled)
2267                 return init_kvm_tdp_mmu(vcpu);
2268         else
2269                 return init_kvm_softmmu(vcpu);
2270 }
2271
2272 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2273 {
2274         ASSERT(vcpu);
2275         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2276                 vcpu->arch.mmu.free(vcpu);
2277                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2278         }
2279 }
2280
2281 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2282 {
2283         destroy_kvm_mmu(vcpu);
2284         return init_kvm_mmu(vcpu);
2285 }
2286 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2287
2288 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2289 {
2290         int r;
2291
2292         r = mmu_topup_memory_caches(vcpu);
2293         if (r)
2294                 goto out;
2295         spin_lock(&vcpu->kvm->mmu_lock);
2296         kvm_mmu_free_some_pages(vcpu);
2297         mmu_alloc_roots(vcpu);
2298         mmu_sync_roots(vcpu);
2299         spin_unlock(&vcpu->kvm->mmu_lock);
2300         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2301         kvm_mmu_flush_tlb(vcpu);
2302 out:
2303         return r;
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2306
2307 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2308 {
2309         mmu_free_roots(vcpu);
2310 }
2311
2312 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2313                                   struct kvm_mmu_page *sp,
2314                                   u64 *spte)
2315 {
2316         u64 pte;
2317         struct kvm_mmu_page *child;
2318
2319         pte = *spte;
2320         if (is_shadow_present_pte(pte)) {
2321                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
2322                     is_large_pte(pte))
2323                         rmap_remove(vcpu->kvm, spte);
2324                 else {
2325                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2326                         mmu_page_remove_parent_pte(child, spte);
2327                 }
2328         }
2329         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
2330         if (is_large_pte(pte))
2331                 --vcpu->kvm->stat.lpages;
2332 }
2333
2334 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2335                                   struct kvm_mmu_page *sp,
2336                                   u64 *spte,
2337                                   const void *new)
2338 {
2339         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2340                 if (!vcpu->arch.update_pte.largepage ||
2341                     sp->role.glevels == PT32_ROOT_LEVEL) {
2342                         ++vcpu->kvm->stat.mmu_pde_zapped;
2343                         return;
2344                 }
2345         }
2346
2347         ++vcpu->kvm->stat.mmu_pte_updated;
2348         if (sp->role.glevels == PT32_ROOT_LEVEL)
2349                 paging32_update_pte(vcpu, sp, spte, new);
2350         else
2351                 paging64_update_pte(vcpu, sp, spte, new);
2352 }
2353
2354 static bool need_remote_flush(u64 old, u64 new)
2355 {
2356         if (!is_shadow_present_pte(old))
2357                 return false;
2358         if (!is_shadow_present_pte(new))
2359                 return true;
2360         if ((old ^ new) & PT64_BASE_ADDR_MASK)
2361                 return true;
2362         old ^= PT64_NX_MASK;
2363         new ^= PT64_NX_MASK;
2364         return (old & ~new & PT64_PERM_MASK) != 0;
2365 }
2366
2367 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2368 {
2369         if (need_remote_flush(old, new))
2370                 kvm_flush_remote_tlbs(vcpu->kvm);
2371         else
2372                 kvm_mmu_flush_tlb(vcpu);
2373 }
2374
2375 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2376 {
2377         u64 *spte = vcpu->arch.last_pte_updated;
2378
2379         return !!(spte && (*spte & shadow_accessed_mask));
2380 }
2381
2382 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2383                                           const u8 *new, int bytes)
2384 {
2385         gfn_t gfn;
2386         int r;
2387         u64 gpte = 0;
2388         pfn_t pfn;
2389
2390         vcpu->arch.update_pte.largepage = 0;
2391
2392         if (bytes != 4 && bytes != 8)
2393                 return;
2394
2395         /*
2396          * Assume that the pte write on a page table of the same type
2397          * as the current vcpu paging mode.  This is nearly always true
2398          * (might be false while changing modes).  Note it is verified later
2399          * by update_pte().
2400          */
2401         if (is_pae(vcpu)) {
2402                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2403                 if ((bytes == 4) && (gpa % 4 == 0)) {
2404                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2405                         if (r)
2406                                 return;
2407                         memcpy((void *)&gpte + (gpa % 8), new, 4);
2408                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2409                         memcpy((void *)&gpte, new, 8);
2410                 }
2411         } else {
2412                 if ((bytes == 4) && (gpa % 4 == 0))
2413                         memcpy((void *)&gpte, new, 4);
2414         }
2415         if (!is_present_pte(gpte))
2416                 return;
2417         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2418
2419         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2420                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2421                 vcpu->arch.update_pte.largepage = 1;
2422         }
2423         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2424         smp_rmb();
2425         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2426
2427         if (is_error_pfn(pfn)) {
2428                 kvm_release_pfn_clean(pfn);
2429                 return;
2430         }
2431         vcpu->arch.update_pte.gfn = gfn;
2432         vcpu->arch.update_pte.pfn = pfn;
2433 }
2434
2435 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2436 {
2437         u64 *spte = vcpu->arch.last_pte_updated;
2438
2439         if (spte
2440             && vcpu->arch.last_pte_gfn == gfn
2441             && shadow_accessed_mask
2442             && !(*spte & shadow_accessed_mask)
2443             && is_shadow_present_pte(*spte))
2444                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2445 }
2446
2447 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2448                        const u8 *new, int bytes,
2449                        bool guest_initiated)
2450 {
2451         gfn_t gfn = gpa >> PAGE_SHIFT;
2452         struct kvm_mmu_page *sp;
2453         struct hlist_node *node, *n;
2454         struct hlist_head *bucket;
2455         unsigned index;
2456         u64 entry, gentry;
2457         u64 *spte;
2458         unsigned offset = offset_in_page(gpa);
2459         unsigned pte_size;
2460         unsigned page_offset;
2461         unsigned misaligned;
2462         unsigned quadrant;
2463         int level;
2464         int flooded = 0;
2465         int npte;
2466         int r;
2467
2468         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2469         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2470         spin_lock(&vcpu->kvm->mmu_lock);
2471         kvm_mmu_access_page(vcpu, gfn);
2472         kvm_mmu_free_some_pages(vcpu);
2473         ++vcpu->kvm->stat.mmu_pte_write;
2474         kvm_mmu_audit(vcpu, "pre pte write");
2475         if (guest_initiated) {
2476                 if (gfn == vcpu->arch.last_pt_write_gfn
2477                     && !last_updated_pte_accessed(vcpu)) {
2478                         ++vcpu->arch.last_pt_write_count;
2479                         if (vcpu->arch.last_pt_write_count >= 3)
2480                                 flooded = 1;
2481                 } else {
2482                         vcpu->arch.last_pt_write_gfn = gfn;
2483                         vcpu->arch.last_pt_write_count = 1;
2484                         vcpu->arch.last_pte_updated = NULL;
2485                 }
2486         }
2487         index = kvm_page_table_hashfn(gfn);
2488         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2489         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2490                 if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
2491                         continue;
2492                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2493                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2494                 misaligned |= bytes < 4;
2495                 if (misaligned || flooded) {
2496                         /*
2497                          * Misaligned accesses are too much trouble to fix
2498                          * up; also, they usually indicate a page is not used
2499                          * as a page table.
2500                          *
2501                          * If we're seeing too many writes to a page,
2502                          * it may no longer be a page table, or we may be
2503                          * forking, in which case it is better to unmap the
2504                          * page.
2505                          */
2506                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2507                                  gpa, bytes, sp->role.word);
2508                         if (kvm_mmu_zap_page(vcpu->kvm, sp))
2509                                 n = bucket->first;
2510                         ++vcpu->kvm->stat.mmu_flooded;
2511                         continue;
2512                 }
2513                 page_offset = offset;
2514                 level = sp->role.level;
2515                 npte = 1;
2516                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2517                         page_offset <<= 1;      /* 32->64 */
2518                         /*
2519                          * A 32-bit pde maps 4MB while the shadow pdes map
2520                          * only 2MB.  So we need to double the offset again
2521                          * and zap two pdes instead of one.
2522                          */
2523                         if (level == PT32_ROOT_LEVEL) {
2524                                 page_offset &= ~7; /* kill rounding error */
2525                                 page_offset <<= 1;
2526                                 npte = 2;
2527                         }
2528                         quadrant = page_offset >> PAGE_SHIFT;
2529                         page_offset &= ~PAGE_MASK;
2530                         if (quadrant != sp->role.quadrant)
2531                                 continue;
2532                 }
2533                 spte = &sp->spt[page_offset / sizeof(*spte)];
2534                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2535                         gentry = 0;
2536                         r = kvm_read_guest_atomic(vcpu->kvm,
2537                                                   gpa & ~(u64)(pte_size - 1),
2538                                                   &gentry, pte_size);
2539                         new = (const void *)&gentry;
2540                         if (r < 0)
2541                                 new = NULL;
2542                 }
2543                 while (npte--) {
2544                         entry = *spte;
2545                         mmu_pte_write_zap_pte(vcpu, sp, spte);
2546                         if (new)
2547                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2548                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2549                         ++spte;
2550                 }
2551         }
2552         kvm_mmu_audit(vcpu, "post pte write");
2553         spin_unlock(&vcpu->kvm->mmu_lock);
2554         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2555                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2556                 vcpu->arch.update_pte.pfn = bad_pfn;
2557         }
2558 }
2559
2560 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2561 {
2562         gpa_t gpa;
2563         int r;
2564
2565         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2566
2567         spin_lock(&vcpu->kvm->mmu_lock);
2568         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2569         spin_unlock(&vcpu->kvm->mmu_lock);
2570         return r;
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2573
2574 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2575 {
2576         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2577                 struct kvm_mmu_page *sp;
2578
2579                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2580                                   struct kvm_mmu_page, link);
2581                 kvm_mmu_zap_page(vcpu->kvm, sp);
2582                 ++vcpu->kvm->stat.mmu_recycled;
2583         }
2584 }
2585
2586 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2587 {
2588         int r;
2589         enum emulation_result er;
2590
2591         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2592         if (r < 0)
2593                 goto out;
2594
2595         if (!r) {
2596                 r = 1;
2597                 goto out;
2598         }
2599
2600         r = mmu_topup_memory_caches(vcpu);
2601         if (r)
2602                 goto out;
2603
2604         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2605
2606         switch (er) {
2607         case EMULATE_DONE:
2608                 return 1;
2609         case EMULATE_DO_MMIO:
2610                 ++vcpu->stat.mmio_exits;
2611                 return 0;
2612         case EMULATE_FAIL:
2613                 kvm_report_emulation_failure(vcpu, "pagetable");
2614                 return 1;
2615         default:
2616                 BUG();
2617         }
2618 out:
2619         return r;
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2622
2623 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2624 {
2625         vcpu->arch.mmu.invlpg(vcpu, gva);
2626         kvm_mmu_flush_tlb(vcpu);
2627         ++vcpu->stat.invlpg;
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2630
2631 void kvm_enable_tdp(void)
2632 {
2633         tdp_enabled = true;
2634 }
2635 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2636
2637 void kvm_disable_tdp(void)
2638 {
2639         tdp_enabled = false;
2640 }
2641 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2642
2643 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2644 {
2645         struct kvm_mmu_page *sp;
2646
2647         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2648                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2649                                   struct kvm_mmu_page, link);
2650                 kvm_mmu_zap_page(vcpu->kvm, sp);
2651                 cond_resched();
2652         }
2653         free_page((unsigned long)vcpu->arch.mmu.pae_root);
2654 }
2655
2656 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2657 {
2658         struct page *page;
2659         int i;
2660
2661         ASSERT(vcpu);
2662
2663         if (vcpu->kvm->arch.n_requested_mmu_pages)
2664                 vcpu->kvm->arch.n_free_mmu_pages =
2665                                         vcpu->kvm->arch.n_requested_mmu_pages;
2666         else
2667                 vcpu->kvm->arch.n_free_mmu_pages =
2668                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2669         /*
2670          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2671          * Therefore we need to allocate shadow page tables in the first
2672          * 4GB of memory, which happens to fit the DMA32 zone.
2673          */
2674         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2675         if (!page)
2676                 goto error_1;
2677         vcpu->arch.mmu.pae_root = page_address(page);
2678         for (i = 0; i < 4; ++i)
2679                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2680
2681         return 0;
2682
2683 error_1:
2684         free_mmu_pages(vcpu);
2685         return -ENOMEM;
2686 }
2687
2688 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2689 {
2690         ASSERT(vcpu);
2691         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2692
2693         return alloc_mmu_pages(vcpu);
2694 }
2695
2696 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2697 {
2698         ASSERT(vcpu);
2699         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2700
2701         return init_kvm_mmu(vcpu);
2702 }
2703
2704 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2705 {
2706         ASSERT(vcpu);
2707
2708         destroy_kvm_mmu(vcpu);
2709         free_mmu_pages(vcpu);
2710         mmu_free_memory_caches(vcpu);
2711 }
2712
2713 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2714 {
2715         struct kvm_mmu_page *sp;
2716
2717         spin_lock(&kvm->mmu_lock);
2718         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2719                 int i;
2720                 u64 *pt;
2721
2722                 if (!test_bit(slot, sp->slot_bitmap))
2723                         continue;
2724
2725                 pt = sp->spt;
2726                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2727                         /* avoid RMW */
2728                         if (pt[i] & PT_WRITABLE_MASK)
2729                                 pt[i] &= ~PT_WRITABLE_MASK;
2730         }
2731         kvm_flush_remote_tlbs(kvm);
2732         spin_unlock(&kvm->mmu_lock);
2733 }
2734
2735 void kvm_mmu_zap_all(struct kvm *kvm)
2736 {
2737         struct kvm_mmu_page *sp, *node;
2738
2739         spin_lock(&kvm->mmu_lock);
2740         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2741                 if (kvm_mmu_zap_page(kvm, sp))
2742                         node = container_of(kvm->arch.active_mmu_pages.next,
2743                                             struct kvm_mmu_page, link);
2744         spin_unlock(&kvm->mmu_lock);
2745
2746         kvm_flush_remote_tlbs(kvm);
2747 }
2748
2749 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2750 {
2751         struct kvm_mmu_page *page;
2752
2753         page = container_of(kvm->arch.active_mmu_pages.prev,
2754                             struct kvm_mmu_page, link);
2755         kvm_mmu_zap_page(kvm, page);
2756 }
2757
2758 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2759 {
2760         struct kvm *kvm;
2761         struct kvm *kvm_freed = NULL;
2762         int cache_count = 0;
2763
2764         spin_lock(&kvm_lock);
2765
2766         list_for_each_entry(kvm, &vm_list, vm_list) {
2767                 int npages;
2768
2769                 if (!down_read_trylock(&kvm->slots_lock))
2770                         continue;
2771                 spin_lock(&kvm->mmu_lock);
2772                 npages = kvm->arch.n_alloc_mmu_pages -
2773                          kvm->arch.n_free_mmu_pages;
2774                 cache_count += npages;
2775                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2776                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2777                         cache_count--;
2778                         kvm_freed = kvm;
2779                 }
2780                 nr_to_scan--;
2781
2782                 spin_unlock(&kvm->mmu_lock);
2783                 up_read(&kvm->slots_lock);
2784         }
2785         if (kvm_freed)
2786                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2787
2788         spin_unlock(&kvm_lock);
2789
2790         return cache_count;
2791 }
2792
2793 static struct shrinker mmu_shrinker = {
2794         .shrink = mmu_shrink,
2795         .seeks = DEFAULT_SEEKS * 10,
2796 };
2797
2798 static void mmu_destroy_caches(void)
2799 {
2800         if (pte_chain_cache)
2801                 kmem_cache_destroy(pte_chain_cache);
2802         if (rmap_desc_cache)
2803                 kmem_cache_destroy(rmap_desc_cache);
2804         if (mmu_page_header_cache)
2805                 kmem_cache_destroy(mmu_page_header_cache);
2806 }
2807
2808 void kvm_mmu_module_exit(void)
2809 {
2810         mmu_destroy_caches();
2811         unregister_shrinker(&mmu_shrinker);
2812 }
2813
2814 int kvm_mmu_module_init(void)
2815 {
2816         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2817                                             sizeof(struct kvm_pte_chain),
2818                                             0, 0, NULL);
2819         if (!pte_chain_cache)
2820                 goto nomem;
2821         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2822                                             sizeof(struct kvm_rmap_desc),
2823                                             0, 0, NULL);
2824         if (!rmap_desc_cache)
2825                 goto nomem;
2826
2827         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2828                                                   sizeof(struct kvm_mmu_page),
2829                                                   0, 0, NULL);
2830         if (!mmu_page_header_cache)
2831                 goto nomem;
2832
2833         register_shrinker(&mmu_shrinker);
2834
2835         return 0;
2836
2837 nomem:
2838         mmu_destroy_caches();
2839         return -ENOMEM;
2840 }
2841
2842 /*
2843  * Caculate mmu pages needed for kvm.
2844  */
2845 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2846 {
2847         int i;
2848         unsigned int nr_mmu_pages;
2849         unsigned int  nr_pages = 0;
2850
2851         for (i = 0; i < kvm->nmemslots; i++)
2852                 nr_pages += kvm->memslots[i].npages;
2853
2854         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2855         nr_mmu_pages = max(nr_mmu_pages,
2856                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2857
2858         return nr_mmu_pages;
2859 }
2860
2861 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2862                                 unsigned len)
2863 {
2864         if (len > buffer->len)
2865                 return NULL;
2866         return buffer->ptr;
2867 }
2868
2869 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2870                                 unsigned len)
2871 {
2872         void *ret;
2873
2874         ret = pv_mmu_peek_buffer(buffer, len);
2875         if (!ret)
2876                 return ret;
2877         buffer->ptr += len;
2878         buffer->len -= len;
2879         buffer->processed += len;
2880         return ret;
2881 }
2882
2883 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2884                              gpa_t addr, gpa_t value)
2885 {
2886         int bytes = 8;
2887         int r;
2888
2889         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2890                 bytes = 4;
2891
2892         r = mmu_topup_memory_caches(vcpu);
2893         if (r)
2894                 return r;
2895
2896         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2897                 return -EFAULT;
2898
2899         return 1;
2900 }
2901
2902 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2903 {
2904         kvm_x86_ops->tlb_flush(vcpu);
2905         set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
2906         return 1;
2907 }
2908
2909 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2910 {
2911         spin_lock(&vcpu->kvm->mmu_lock);
2912         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2913         spin_unlock(&vcpu->kvm->mmu_lock);
2914         return 1;
2915 }
2916
2917 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2918                              struct kvm_pv_mmu_op_buffer *buffer)
2919 {
2920         struct kvm_mmu_op_header *header;
2921
2922         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2923         if (!header)
2924                 return 0;
2925         switch (header->op) {
2926         case KVM_MMU_OP_WRITE_PTE: {
2927                 struct kvm_mmu_op_write_pte *wpte;
2928
2929                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2930                 if (!wpte)
2931                         return 0;
2932                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2933                                         wpte->pte_val);
2934         }
2935         case KVM_MMU_OP_FLUSH_TLB: {
2936                 struct kvm_mmu_op_flush_tlb *ftlb;
2937
2938                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2939                 if (!ftlb)
2940                         return 0;
2941                 return kvm_pv_mmu_flush_tlb(vcpu);
2942         }
2943         case KVM_MMU_OP_RELEASE_PT: {
2944                 struct kvm_mmu_op_release_pt *rpt;
2945
2946                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2947                 if (!rpt)
2948                         return 0;
2949                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2950         }
2951         default: return 0;
2952         }
2953 }
2954
2955 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2956                   gpa_t addr, unsigned long *ret)
2957 {
2958         int r;
2959         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2960
2961         buffer->ptr = buffer->buf;
2962         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2963         buffer->processed = 0;
2964
2965         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2966         if (r)
2967                 goto out;
2968
2969         while (buffer->len) {
2970                 r = kvm_pv_mmu_op_one(vcpu, buffer);
2971                 if (r < 0)
2972                         goto out;
2973                 if (r == 0)
2974                         break;
2975         }
2976
2977         r = 1;
2978 out:
2979         *ret = buffer->processed;
2980         return r;
2981 }
2982
2983 #ifdef AUDIT
2984
2985 static const char *audit_msg;
2986
2987 static gva_t canonicalize(gva_t gva)
2988 {
2989 #ifdef CONFIG_X86_64
2990         gva = (long long)(gva << 16) >> 16;
2991 #endif
2992         return gva;
2993 }
2994
2995 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2996                                 gva_t va, int level)
2997 {
2998         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2999         int i;
3000         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3001
3002         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3003                 u64 ent = pt[i];
3004
3005                 if (ent == shadow_trap_nonpresent_pte)
3006                         continue;
3007
3008                 va = canonicalize(va);
3009                 if (level > 1) {
3010                         if (ent == shadow_notrap_nonpresent_pte)
3011                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
3012                                        " in nonleaf level: levels %d gva %lx"
3013                                        " level %d pte %llx\n", audit_msg,
3014                                        vcpu->arch.mmu.root_level, va, level, ent);
3015
3016                         audit_mappings_page(vcpu, ent, va, level - 1);
3017                 } else {
3018                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3019                         hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
3020
3021                         if (is_shadow_present_pte(ent)
3022                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
3023                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
3024                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3025                                        audit_msg, vcpu->arch.mmu.root_level,
3026                                        va, gpa, hpa, ent,
3027                                        is_shadow_present_pte(ent));
3028                         else if (ent == shadow_notrap_nonpresent_pte
3029                                  && !is_error_hpa(hpa))
3030                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
3031                                        " valid guest gva %lx\n", audit_msg, va);
3032                         kvm_release_pfn_clean(pfn);
3033
3034                 }
3035         }
3036 }
3037
3038 static void audit_mappings(struct kvm_vcpu *vcpu)
3039 {
3040         unsigned i;
3041
3042         if (vcpu->arch.mmu.root_level == 4)
3043                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3044         else
3045                 for (i = 0; i < 4; ++i)
3046                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3047                                 audit_mappings_page(vcpu,
3048                                                     vcpu->arch.mmu.pae_root[i],
3049                                                     i << 30,
3050                                                     2);
3051 }
3052
3053 static int count_rmaps(struct kvm_vcpu *vcpu)
3054 {
3055         int nmaps = 0;
3056         int i, j, k;
3057
3058         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3059                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3060                 struct kvm_rmap_desc *d;
3061
3062                 for (j = 0; j < m->npages; ++j) {
3063                         unsigned long *rmapp = &m->rmap[j];
3064
3065                         if (!*rmapp)
3066                                 continue;
3067                         if (!(*rmapp & 1)) {
3068                                 ++nmaps;
3069                                 continue;
3070                         }
3071                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3072                         while (d) {
3073                                 for (k = 0; k < RMAP_EXT; ++k)
3074                                         if (d->shadow_ptes[k])
3075                                                 ++nmaps;
3076                                         else
3077                                                 break;
3078                                 d = d->more;
3079                         }
3080                 }
3081         }
3082         return nmaps;
3083 }
3084
3085 static int count_writable_mappings(struct kvm_vcpu *vcpu)
3086 {
3087         int nmaps = 0;
3088         struct kvm_mmu_page *sp;
3089         int i;
3090
3091         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3092                 u64 *pt = sp->spt;
3093
3094                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3095                         continue;
3096
3097                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3098                         u64 ent = pt[i];
3099
3100                         if (!(ent & PT_PRESENT_MASK))
3101                                 continue;
3102                         if (!(ent & PT_WRITABLE_MASK))
3103                                 continue;
3104                         ++nmaps;
3105                 }
3106         }
3107         return nmaps;
3108 }
3109
3110 static void audit_rmap(struct kvm_vcpu *vcpu)
3111 {
3112         int n_rmap = count_rmaps(vcpu);
3113         int n_actual = count_writable_mappings(vcpu);
3114
3115         if (n_rmap != n_actual)
3116                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
3117                        __func__, audit_msg, n_rmap, n_actual);
3118 }
3119
3120 static void audit_write_protection(struct kvm_vcpu *vcpu)
3121 {
3122         struct kvm_mmu_page *sp;
3123         struct kvm_memory_slot *slot;
3124         unsigned long *rmapp;
3125         gfn_t gfn;
3126
3127         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3128                 if (sp->role.direct)
3129                         continue;
3130
3131                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3132                 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3133                 rmapp = &slot->rmap[gfn - slot->base_gfn];
3134                 if (*rmapp)
3135                         printk(KERN_ERR "%s: (%s) shadow page has writable"
3136                                " mappings: gfn %lx role %x\n",
3137                                __func__, audit_msg, sp->gfn,
3138                                sp->role.word);
3139         }
3140 }
3141
3142 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3143 {
3144         int olddbg = dbg;
3145
3146         dbg = 0;
3147         audit_msg = msg;
3148         audit_rmap(vcpu);
3149         audit_write_protection(vcpu);
3150         audit_mappings(vcpu);
3151         dbg = olddbg;
3152 }
3153
3154 #endif